validmind 2.5.8__py3-none-any.whl → 2.5.15__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (212) hide show
  1. validmind/__version__.py +1 -1
  2. validmind/ai/test_descriptions.py +26 -7
  3. validmind/api_client.py +89 -43
  4. validmind/client.py +2 -2
  5. validmind/client_config.py +11 -14
  6. validmind/datasets/regression/fred_timeseries.py +67 -138
  7. validmind/template.py +1 -0
  8. validmind/test_suites/__init__.py +0 -2
  9. validmind/test_suites/statsmodels_timeseries.py +1 -1
  10. validmind/test_suites/summarization.py +0 -1
  11. validmind/test_suites/time_series.py +0 -43
  12. validmind/tests/__types__.py +3 -13
  13. validmind/tests/data_validation/ACFandPACFPlot.py +15 -13
  14. validmind/tests/data_validation/ADF.py +31 -24
  15. validmind/tests/data_validation/AutoAR.py +9 -9
  16. validmind/tests/data_validation/AutoMA.py +23 -16
  17. validmind/tests/data_validation/AutoSeasonality.py +18 -16
  18. validmind/tests/data_validation/AutoStationarity.py +21 -16
  19. validmind/tests/data_validation/BivariateScatterPlots.py +67 -96
  20. validmind/tests/data_validation/ChiSquaredFeaturesTable.py +82 -124
  21. validmind/tests/data_validation/ClassImbalance.py +15 -12
  22. validmind/tests/data_validation/DFGLSArch.py +19 -13
  23. validmind/tests/data_validation/DatasetDescription.py +17 -11
  24. validmind/tests/data_validation/DatasetSplit.py +7 -5
  25. validmind/tests/data_validation/DescriptiveStatistics.py +28 -21
  26. validmind/tests/data_validation/Duplicates.py +33 -25
  27. validmind/tests/data_validation/EngleGrangerCoint.py +35 -33
  28. validmind/tests/data_validation/FeatureTargetCorrelationPlot.py +59 -71
  29. validmind/tests/data_validation/HighCardinality.py +19 -12
  30. validmind/tests/data_validation/HighPearsonCorrelation.py +27 -22
  31. validmind/tests/data_validation/IQROutliersBarPlot.py +13 -10
  32. validmind/tests/data_validation/IQROutliersTable.py +40 -36
  33. validmind/tests/data_validation/IsolationForestOutliers.py +21 -14
  34. validmind/tests/data_validation/KPSS.py +34 -29
  35. validmind/tests/data_validation/LaggedCorrelationHeatmap.py +22 -15
  36. validmind/tests/data_validation/MissingValues.py +32 -27
  37. validmind/tests/data_validation/MissingValuesBarPlot.py +25 -21
  38. validmind/tests/data_validation/PearsonCorrelationMatrix.py +71 -84
  39. validmind/tests/data_validation/PhillipsPerronArch.py +37 -30
  40. validmind/tests/data_validation/RollingStatsPlot.py +31 -23
  41. validmind/tests/data_validation/ScatterPlot.py +63 -78
  42. validmind/tests/data_validation/SeasonalDecompose.py +38 -34
  43. validmind/tests/data_validation/Skewness.py +35 -37
  44. validmind/tests/data_validation/SpreadPlot.py +35 -35
  45. validmind/tests/data_validation/TabularCategoricalBarPlots.py +23 -17
  46. validmind/tests/data_validation/TabularDateTimeHistograms.py +21 -13
  47. validmind/tests/data_validation/TabularDescriptionTables.py +51 -16
  48. validmind/tests/data_validation/TabularNumericalHistograms.py +25 -22
  49. validmind/tests/data_validation/TargetRateBarPlots.py +21 -14
  50. validmind/tests/data_validation/TimeSeriesDescription.py +25 -18
  51. validmind/tests/data_validation/TimeSeriesDescriptiveStatistics.py +23 -17
  52. validmind/tests/data_validation/TimeSeriesFrequency.py +24 -17
  53. validmind/tests/data_validation/TimeSeriesHistogram.py +33 -32
  54. validmind/tests/data_validation/TimeSeriesLinePlot.py +17 -10
  55. validmind/tests/data_validation/TimeSeriesMissingValues.py +15 -10
  56. validmind/tests/data_validation/TimeSeriesOutliers.py +37 -33
  57. validmind/tests/data_validation/TooManyZeroValues.py +16 -11
  58. validmind/tests/data_validation/UniqueRows.py +11 -6
  59. validmind/tests/data_validation/WOEBinPlots.py +23 -16
  60. validmind/tests/data_validation/WOEBinTable.py +35 -30
  61. validmind/tests/data_validation/ZivotAndrewsArch.py +34 -28
  62. validmind/tests/data_validation/nlp/CommonWords.py +21 -14
  63. validmind/tests/data_validation/nlp/Hashtags.py +27 -20
  64. validmind/tests/data_validation/nlp/LanguageDetection.py +33 -14
  65. validmind/tests/data_validation/nlp/Mentions.py +21 -15
  66. validmind/tests/data_validation/nlp/PolarityAndSubjectivity.py +32 -9
  67. validmind/tests/data_validation/nlp/Punctuations.py +24 -20
  68. validmind/tests/data_validation/nlp/Sentiment.py +27 -8
  69. validmind/tests/data_validation/nlp/StopWords.py +26 -19
  70. validmind/tests/data_validation/nlp/TextDescription.py +36 -35
  71. validmind/tests/data_validation/nlp/Toxicity.py +32 -9
  72. validmind/tests/decorator.py +81 -42
  73. validmind/tests/model_validation/BertScore.py +36 -27
  74. validmind/tests/model_validation/BleuScore.py +25 -19
  75. validmind/tests/model_validation/ClusterSizeDistribution.py +38 -34
  76. validmind/tests/model_validation/ContextualRecall.py +35 -13
  77. validmind/tests/model_validation/FeaturesAUC.py +32 -13
  78. validmind/tests/model_validation/MeteorScore.py +46 -33
  79. validmind/tests/model_validation/ModelMetadata.py +32 -64
  80. validmind/tests/model_validation/ModelPredictionResiduals.py +75 -73
  81. validmind/tests/model_validation/RegardScore.py +30 -14
  82. validmind/tests/model_validation/RegressionResidualsPlot.py +10 -5
  83. validmind/tests/model_validation/RougeScore.py +36 -30
  84. validmind/tests/model_validation/TimeSeriesPredictionWithCI.py +30 -14
  85. validmind/tests/model_validation/TimeSeriesPredictionsPlot.py +27 -30
  86. validmind/tests/model_validation/TimeSeriesR2SquareBySegments.py +68 -63
  87. validmind/tests/model_validation/TokenDisparity.py +31 -23
  88. validmind/tests/model_validation/ToxicityScore.py +26 -17
  89. validmind/tests/model_validation/embeddings/ClusterDistribution.py +24 -20
  90. validmind/tests/model_validation/embeddings/CosineSimilarityComparison.py +30 -27
  91. validmind/tests/model_validation/embeddings/CosineSimilarityDistribution.py +7 -5
  92. validmind/tests/model_validation/embeddings/CosineSimilarityHeatmap.py +32 -23
  93. validmind/tests/model_validation/embeddings/DescriptiveAnalytics.py +7 -5
  94. validmind/tests/model_validation/embeddings/EmbeddingsVisualization2D.py +15 -11
  95. validmind/tests/model_validation/embeddings/EuclideanDistanceComparison.py +29 -29
  96. validmind/tests/model_validation/embeddings/EuclideanDistanceHeatmap.py +34 -25
  97. validmind/tests/model_validation/embeddings/PCAComponentsPairwisePlots.py +38 -26
  98. validmind/tests/model_validation/embeddings/StabilityAnalysis.py +40 -1
  99. validmind/tests/model_validation/embeddings/StabilityAnalysisKeyword.py +18 -17
  100. validmind/tests/model_validation/embeddings/StabilityAnalysisRandomNoise.py +40 -45
  101. validmind/tests/model_validation/embeddings/StabilityAnalysisSynonyms.py +17 -19
  102. validmind/tests/model_validation/embeddings/StabilityAnalysisTranslation.py +29 -25
  103. validmind/tests/model_validation/embeddings/TSNEComponentsPairwisePlots.py +38 -28
  104. validmind/tests/model_validation/ragas/AnswerCorrectness.py +5 -4
  105. validmind/tests/model_validation/ragas/AnswerRelevance.py +5 -4
  106. validmind/tests/model_validation/ragas/AnswerSimilarity.py +5 -4
  107. validmind/tests/model_validation/ragas/AspectCritique.py +7 -0
  108. validmind/tests/model_validation/ragas/ContextEntityRecall.py +9 -8
  109. validmind/tests/model_validation/ragas/ContextPrecision.py +5 -4
  110. validmind/tests/model_validation/ragas/ContextRecall.py +5 -4
  111. validmind/tests/model_validation/ragas/Faithfulness.py +5 -4
  112. validmind/tests/model_validation/ragas/utils.py +6 -0
  113. validmind/tests/model_validation/sklearn/AdjustedMutualInformation.py +19 -12
  114. validmind/tests/model_validation/sklearn/AdjustedRandIndex.py +22 -17
  115. validmind/tests/model_validation/sklearn/ClassifierPerformance.py +27 -25
  116. validmind/tests/model_validation/sklearn/ClusterCosineSimilarity.py +7 -5
  117. validmind/tests/model_validation/sklearn/ClusterPerformance.py +40 -78
  118. validmind/tests/model_validation/sklearn/ClusterPerformanceMetrics.py +15 -17
  119. validmind/tests/model_validation/sklearn/CompletenessScore.py +17 -11
  120. validmind/tests/model_validation/sklearn/ConfusionMatrix.py +22 -15
  121. validmind/tests/model_validation/sklearn/FeatureImportance.py +95 -0
  122. validmind/tests/model_validation/sklearn/FowlkesMallowsScore.py +7 -7
  123. validmind/tests/model_validation/sklearn/HomogeneityScore.py +19 -12
  124. validmind/tests/model_validation/sklearn/HyperParametersTuning.py +35 -30
  125. validmind/tests/model_validation/sklearn/KMeansClustersOptimization.py +10 -5
  126. validmind/tests/model_validation/sklearn/MinimumAccuracy.py +32 -32
  127. validmind/tests/model_validation/sklearn/MinimumF1Score.py +23 -23
  128. validmind/tests/model_validation/sklearn/MinimumROCAUCScore.py +15 -10
  129. validmind/tests/model_validation/sklearn/ModelsPerformanceComparison.py +26 -19
  130. validmind/tests/model_validation/sklearn/OverfitDiagnosis.py +38 -18
  131. validmind/tests/model_validation/sklearn/PermutationFeatureImportance.py +31 -25
  132. validmind/tests/model_validation/sklearn/PopulationStabilityIndex.py +8 -6
  133. validmind/tests/model_validation/sklearn/PrecisionRecallCurve.py +24 -17
  134. validmind/tests/model_validation/sklearn/ROCCurve.py +12 -7
  135. validmind/tests/model_validation/sklearn/RegressionErrors.py +74 -130
  136. validmind/tests/model_validation/sklearn/RegressionErrorsComparison.py +27 -12
  137. validmind/tests/model_validation/sklearn/{RegressionModelsPerformanceComparison.py → RegressionPerformance.py} +18 -20
  138. validmind/tests/model_validation/sklearn/RegressionR2Square.py +55 -93
  139. validmind/tests/model_validation/sklearn/RegressionR2SquareComparison.py +32 -13
  140. validmind/tests/model_validation/sklearn/RobustnessDiagnosis.py +36 -32
  141. validmind/tests/model_validation/sklearn/SHAPGlobalImportance.py +7 -5
  142. validmind/tests/model_validation/sklearn/SilhouettePlot.py +27 -19
  143. validmind/tests/model_validation/sklearn/TrainingTestDegradation.py +25 -18
  144. validmind/tests/model_validation/sklearn/VMeasure.py +14 -13
  145. validmind/tests/model_validation/sklearn/WeakspotsDiagnosis.py +7 -5
  146. validmind/tests/model_validation/statsmodels/AutoARIMA.py +24 -18
  147. validmind/tests/model_validation/statsmodels/BoxPierce.py +14 -10
  148. validmind/tests/model_validation/statsmodels/CumulativePredictionProbabilities.py +73 -104
  149. validmind/tests/model_validation/statsmodels/DurbinWatsonTest.py +19 -12
  150. validmind/tests/model_validation/statsmodels/GINITable.py +44 -77
  151. validmind/tests/model_validation/statsmodels/JarqueBera.py +27 -22
  152. validmind/tests/model_validation/statsmodels/KolmogorovSmirnov.py +33 -34
  153. validmind/tests/model_validation/statsmodels/LJungBox.py +32 -28
  154. validmind/tests/model_validation/statsmodels/Lilliefors.py +27 -24
  155. validmind/tests/model_validation/statsmodels/PredictionProbabilitiesHistogram.py +87 -119
  156. validmind/tests/model_validation/statsmodels/RegressionCoeffs.py +100 -0
  157. validmind/tests/model_validation/statsmodels/RegressionFeatureSignificance.py +14 -9
  158. validmind/tests/model_validation/statsmodels/RegressionModelForecastPlot.py +17 -13
  159. validmind/tests/model_validation/statsmodels/RegressionModelForecastPlotLevels.py +46 -43
  160. validmind/tests/model_validation/statsmodels/RegressionModelSensitivityPlot.py +38 -36
  161. validmind/tests/model_validation/statsmodels/RegressionModelSummary.py +30 -28
  162. validmind/tests/model_validation/statsmodels/RegressionPermutationFeatureImportance.py +18 -11
  163. validmind/tests/model_validation/statsmodels/RunsTest.py +32 -28
  164. validmind/tests/model_validation/statsmodels/ScorecardHistogram.py +75 -107
  165. validmind/tests/model_validation/statsmodels/ShapiroWilk.py +15 -8
  166. validmind/tests/ongoing_monitoring/FeatureDrift.py +10 -6
  167. validmind/tests/ongoing_monitoring/PredictionAcrossEachFeature.py +31 -25
  168. validmind/tests/ongoing_monitoring/PredictionCorrelation.py +29 -21
  169. validmind/tests/ongoing_monitoring/TargetPredictionDistributionPlot.py +31 -23
  170. validmind/tests/prompt_validation/Bias.py +14 -11
  171. validmind/tests/prompt_validation/Clarity.py +16 -14
  172. validmind/tests/prompt_validation/Conciseness.py +7 -5
  173. validmind/tests/prompt_validation/Delimitation.py +23 -22
  174. validmind/tests/prompt_validation/NegativeInstruction.py +7 -5
  175. validmind/tests/prompt_validation/Robustness.py +12 -10
  176. validmind/tests/prompt_validation/Specificity.py +13 -11
  177. validmind/tests/prompt_validation/ai_powered_test.py +6 -0
  178. validmind/tests/run.py +68 -23
  179. validmind/unit_metrics/__init__.py +81 -144
  180. validmind/unit_metrics/classification/{sklearn/Accuracy.py → Accuracy.py} +1 -1
  181. validmind/unit_metrics/classification/{sklearn/F1.py → F1.py} +1 -1
  182. validmind/unit_metrics/classification/{sklearn/Precision.py → Precision.py} +1 -1
  183. validmind/unit_metrics/classification/{sklearn/ROC_AUC.py → ROC_AUC.py} +1 -2
  184. validmind/unit_metrics/classification/{sklearn/Recall.py → Recall.py} +1 -1
  185. validmind/unit_metrics/regression/{sklearn/AdjustedRSquaredScore.py → AdjustedRSquaredScore.py} +1 -1
  186. validmind/unit_metrics/regression/GiniCoefficient.py +1 -1
  187. validmind/unit_metrics/regression/HuberLoss.py +1 -1
  188. validmind/unit_metrics/regression/KolmogorovSmirnovStatistic.py +1 -1
  189. validmind/unit_metrics/regression/{sklearn/MeanAbsoluteError.py → MeanAbsoluteError.py} +1 -1
  190. validmind/unit_metrics/regression/MeanAbsolutePercentageError.py +1 -1
  191. validmind/unit_metrics/regression/MeanBiasDeviation.py +1 -1
  192. validmind/unit_metrics/regression/{sklearn/MeanSquaredError.py → MeanSquaredError.py} +1 -1
  193. validmind/unit_metrics/regression/QuantileLoss.py +1 -1
  194. validmind/unit_metrics/regression/{sklearn/RSquaredScore.py → RSquaredScore.py} +1 -1
  195. validmind/unit_metrics/regression/{sklearn/RootMeanSquaredError.py → RootMeanSquaredError.py} +1 -1
  196. validmind/vm_models/dataset/dataset.py +2 -0
  197. validmind/vm_models/figure.py +5 -0
  198. validmind/vm_models/test/result_wrapper.py +93 -132
  199. {validmind-2.5.8.dist-info → validmind-2.5.15.dist-info}/METADATA +1 -1
  200. {validmind-2.5.8.dist-info → validmind-2.5.15.dist-info}/RECORD +203 -210
  201. validmind/tests/data_validation/ANOVAOneWayTable.py +0 -138
  202. validmind/tests/data_validation/BivariateFeaturesBarPlots.py +0 -142
  203. validmind/tests/data_validation/BivariateHistograms.py +0 -117
  204. validmind/tests/data_validation/HeatmapFeatureCorrelations.py +0 -124
  205. validmind/tests/data_validation/MissingValuesRisk.py +0 -88
  206. validmind/tests/model_validation/ModelMetadataComparison.py +0 -59
  207. validmind/tests/model_validation/sklearn/FeatureImportanceComparison.py +0 -83
  208. validmind/tests/model_validation/statsmodels/RegressionCoeffsPlot.py +0 -135
  209. validmind/tests/model_validation/statsmodels/RegressionModelsCoeffs.py +0 -103
  210. {validmind-2.5.8.dist-info → validmind-2.5.15.dist-info}/LICENSE +0 -0
  211. {validmind-2.5.8.dist-info → validmind-2.5.15.dist-info}/WHEEL +0 -0
  212. {validmind-2.5.8.dist-info → validmind-2.5.15.dist-info}/entry_points.txt +0 -0
@@ -13,32 +13,34 @@ class CosineSimilarityDistribution(Metric):
13
13
  Assesses the similarity between predicted text embeddings from a model using a Cosine Similarity distribution
14
14
  histogram.
15
15
 
16
- **Purpose:**
16
+ ### Purpose
17
+
17
18
  This metric is used to assess the degree of similarity between the embeddings produced by a text embedding model
18
19
  using Cosine Similarity. Cosine Similarity is a measure that calculates the cosine of the angle between two
19
20
  vectors. This metric is predominantly used in text analysis — in this case, to determine how closely the predicted
20
21
  text embeddings align with one another.
21
22
 
22
- **Test Mechanism:**
23
+ ### Test Mechanism
24
+
23
25
  The implementation starts by computing the cosine similarity between the predicted values of the model's test
24
26
  dataset. These cosine similarity scores are then plotted on a histogram with 100 bins to visualize the distribution
25
27
  of the scores. The x-axis of the histogram represents the computed Cosine Similarity.
26
28
 
27
- **Signs of High Risk:**
29
+ ### Signs of High Risk
28
30
 
29
31
  - If the cosine similarity scores cluster close to 1 or -1, it may indicate overfitting, as the model's predictions
30
32
  are almost perfectly aligned. This could suggest that the model is not generalizable.
31
33
  - A broad spread of cosine similarity scores across the histogram may indicate a potential issue with the model's
32
34
  ability to generate consistent embeddings.
33
35
 
34
- **Strengths:**
36
+ ### Strengths
35
37
 
36
38
  - Provides a visual representation of the model's performance which is easily interpretable.
37
39
  - Can help identify patterns, trends, and outliers in the model's alignment of predicted text embeddings.
38
40
  - Useful in measuring the similarity between vectors in multi-dimensional space, important in the case of text
39
41
  embeddings.
40
42
 
41
- **Limitations:**
43
+ ### Limitations
42
44
 
43
45
  - Only evaluates the similarity between outputs. It does not provide insight into the model's ability to correctly
44
46
  classify or predict.
@@ -23,33 +23,42 @@ def CosineSimilarityHeatmap(
23
23
  """
24
24
  Generates an interactive heatmap to visualize the cosine similarities among embeddings derived from a given model.
25
25
 
26
- **Purpose:**
27
- This function is designed to visually analyze the cosine similarities of embeddings from a specific model.
28
- Cosine similarity, a measure of the cosine of the angle between two vectors, aids in understanding the
29
- orientation and similarity of vectors in multi-dimensional space. This is particularly valuable for exploring
30
- text embeddings and their relative similarities among documents, words, or phrases.
31
-
32
- **Test Mechanism:**
33
- The function operates through a sequence of steps to visualize cosine similarities. Initially,
34
- embeddings are extracted for each dataset entry using the designated model. Following this,
35
- the function computes the pairwise cosine similarities among these embeddings. The computed similarities
36
- are then displayed in an interactive heatmap.
37
-
38
- **Signs of High Risk:**
39
- - High similarity values (close to 1) across the heatmap might not always be indicative of a risk;
40
- however, in contexts where diverse perspectives or features are desired, this could suggest a lack of
41
- diversity in the model's learning process or potential redundancy.
26
+ ### Purpose
27
+
28
+ This function is designed to visually analyze the cosine similarities of embeddings from a specific model. Cosine
29
+ similarity, a measure of the cosine of the angle between two vectors, aids in understanding the orientation and
30
+ similarity of vectors in multi-dimensional space. This is particularly valuable for exploring text embeddings and
31
+ their relative similarities among documents, words, or phrases.
32
+
33
+ ### Test Mechanism
34
+
35
+ The function operates through a sequence of steps to visualize cosine similarities. Initially, embeddings are
36
+ extracted for each dataset entry using the designated model. Following this, the function computes the pairwise
37
+ cosine similarities among these embeddings. The computed similarities are then displayed in an interactive heatmap.
38
+
39
+ ### Signs of High Risk
40
+
41
+ - High similarity values (close to 1) across the heatmap might not always be indicative of a risk; however, in
42
+ contexts where diverse perspectives or features are desired, this could suggest a lack of diversity in the model's
43
+ learning process or potential redundancy.
42
44
  - Similarly, low similarity values (close to -1) indicate strong dissimilarity, which could be beneficial in
43
45
  scenarios demanding diverse outputs. However, in cases where consistency is needed, these low values might
44
- highlight that the model is unable to capture a coherent set of features from the data, potentially leading to poor performance on related tasks.
46
+ highlight that the model is unable to capture a coherent set of features from the data, potentially leading to poor
47
+ performance on related tasks.
48
+
49
+ ### Strengths
50
+
51
+ - Provides an interactive and intuitive visual representation of embedding similarities, facilitating easy
52
+ exploration and analysis.
53
+ - Allows customization of visual elements such as title, axis labels, and color scale to suit specific analytical
54
+ needs and preferences.
45
55
 
46
- **Strengths:**
47
- - Provides an interactive and intuitive visual representation of embedding similarities, facilitating easy exploration and analysis.
48
- - Allows customization of visual elements such as title, axis labels, and color scale to suit specific analytical needs and preferences.
56
+ ### Limitations
49
57
 
50
- **Limitations:**
51
- - As the number of embeddings increases, the effectiveness of the heatmap might diminish due to overcrowding, making it hard to discern detailed similarities.
52
- - The interpretation of the heatmap heavily relies on the appropriate setting of the color scale, as incorrect settings can lead to misleading visual interpretations.
58
+ - As the number of embeddings increases, the effectiveness of the heatmap might diminish due to overcrowding,
59
+ making it hard to discern detailed similarities.
60
+ - The interpretation of the heatmap heavily relies on the appropriate setting of the color scale, as incorrect
61
+ settings can lead to misleading visual interpretations.
53
62
  """
54
63
 
55
64
  embeddings = np.stack(dataset.y_pred(model))
@@ -13,26 +13,28 @@ class DescriptiveAnalytics(Metric):
13
13
  Evaluates statistical properties of text embeddings in an ML model via mean, median, and standard deviation
14
14
  histograms.
15
15
 
16
- **1. Purpose:**
16
+ ### Purpose
17
+
17
18
  This metric, Descriptive Analytics for Text Embeddings Models, is employed to comprehend the fundamental properties
18
19
  and statistical characteristics of the embeddings in a Machine Learning model. It measures the dimensionality as
19
20
  well as the statistical distributions of embedding values including the mean, median, and standard deviation.
20
21
 
21
- **2. Test Mechanism:**
22
+ ### Test Mechanism
23
+
22
24
  The test mechanism involves using the 'DescriptiveAnalytics' class provided in the code which includes the 'run'
23
25
  function. This function computes three statistical measures - mean, median, and standard deviation of the test
24
26
  predictions from the model. It generates and caches three separate histograms showing the distribution of these
25
27
  measures. Each histogram visualizes the measure's distribution across the embedding values. Therefore, the method
26
28
  does not utilize a grading scale or threshold; it is fundamentally a visual exploration and data exploration tool.
27
29
 
28
- **3. Signs of High Risk:**
30
+ ### Signs of High Risk
29
31
 
30
32
  - Abnormal patterns or values in the distributions of the statistical measures. This may include skewed
31
33
  distributions or a significant amount of outliers.
32
34
  - Very high standard deviation values which indicate a high degree of variability in the data.
33
35
  - The mean and median values are vastly different, suggesting skewed data.
34
36
 
35
- **4. Strengths:**
37
+ ### Strengths
36
38
 
37
39
  - Provides a visual and quantifiable understanding of the embeddings' statistical characteristics, allowing for a
38
40
  comprehensive evaluation.
@@ -41,7 +43,7 @@ class DescriptiveAnalytics(Metric):
41
43
  - It considers three key statistical measures (mean, median, and standard deviation), offering a more well-rounded
42
44
  understanding of the data.
43
45
 
44
- **5. Limitations:**
46
+ ### Limitations
45
47
 
46
48
  - The method does not offer an explicit measure of model performance or accuracy, as it mainly focuses on
47
49
  understanding data properties.
@@ -12,24 +12,28 @@ class EmbeddingsVisualization2D(Metric):
12
12
  """
13
13
  Visualizes 2D representation of text embeddings generated by a model using t-SNE technique.
14
14
 
15
- **1. Purpose:** The objective of this metric is to provide a visual 2D representation of the embeddings created by
16
- a text embedding machine learning model. By doing so, it aids in analyzing the embedding space created by the model
17
- and helps in understanding how the learned embeddings are distributed and how they relate to each other.
15
+ ### Purpose
18
16
 
19
- **2. Test Mechanism:** This metric uses the t-Distributed Stochastic Neighbor Embedding (t-SNE) technique, which is
20
- a tool for visualizing high-dimensional data by reducing the dimensionality to 2. The perplexity parameter for
21
- t-SNE is set to the value provided by the user. If the input perplexity value is greater than the number of
22
- samples, the perplexity is adjusted to be one less than the number of samples. Following the reduction of
23
- dimensionality, a scatter plot is produced depicting each embedding as a data point in the visualized 2D plane.
17
+ The objective of this metric is to provide a visual 2D representation of the embeddings created by a text embedding
18
+ machine learning model. By doing so, it aids in analyzing the embedding space created by the model and helps in
19
+ understanding how the learned embeddings are distributed and how they relate to each other.
24
20
 
25
- **3. Signs of High Risk:**
21
+ ### Test Mechanism
22
+
23
+ This metric uses the t-Distributed Stochastic Neighbor Embedding (t-SNE) technique, which is a tool for visualizing
24
+ high-dimensional data by reducing the dimensionality to 2. The perplexity parameter for t-SNE is set to the value
25
+ provided by the user. If the input perplexity value is greater than the number of samples, the perplexity is
26
+ adjusted to be one less than the number of samples. Following the reduction of dimensionality, a scatter plot is
27
+ produced depicting each embedding as a data point in the visualized 2D plane.
28
+
29
+ ### Signs of High Risk
26
30
 
27
31
  - If the embeddings are highly concentrated in a specific region of the plane, it might indicate that the model is
28
32
  not learning diverse representations of the text.
29
33
  - Wide gaps or partitions in the visualization could suggest that the model is over-segmenting in the embedding
30
34
  space and may lead to poor generalization.
31
35
 
32
- **4. Strengths:**
36
+ ### Strengths
33
37
 
34
38
  - Offers a powerful visual tool that can assist in understanding and interpreting high-dimensional embeddings,
35
39
  which could otherwise be difficult to visualize.
@@ -37,7 +41,7 @@ class EmbeddingsVisualization2D(Metric):
37
41
  - t-SNE visualization helps in focusing on local structures and preserves the proximity of points that are close
38
42
  together in the original high-dimensional space.
39
43
 
40
- **5. Limitations:**
44
+ ### Limitations
41
45
 
42
46
  - The reduction of high-dimensional data to 2D can result in loss of some information, which may lead to
43
47
  misinterpretation.
@@ -16,41 +16,41 @@ from validmind import tags, tasks
16
16
  @tasks("text_qa", "text_generation", "text_summarization")
17
17
  def EuclideanDistanceComparison(dataset, models):
18
18
  """
19
- Computes pairwise Euclidean distances between model embeddings and visualizes the results through bar charts,
20
- alongside compiling a comprehensive table of descriptive statistics for each model pair.
21
-
22
- **Purpose:**
23
- This function is designed to analyze and compare the embeddings produced by different models using Euclidean Distance.
24
- Euclidean Distance measures the "ordinary" straight-line distance between two points in Euclidean space, providing a
25
- straightforward metric to assess the absolute differences between vectors. This analysis helps in understanding the
26
- magnitude of dissimilarity between the embeddings generated by different models, which is crucial for tasks that require
27
- distinctive model responses or feature separations.
28
-
29
- **Test Mechanism:**
30
- The function begins by computing the embeddings for each model using the provided dataset. It then calculates the
31
- Euclidean distance for every possible pair of models, generating a distance matrix. Each element of this matrix
32
- represents the Euclidean distance between two model embeddings. The function flattens this matrix and uses it to
33
- create a bar chart for each model pair, visualizing their distance distribution. Additionally, it compiles a table
34
- with descriptive statistics (mean, median, standard deviation, minimum, and maximum) for the distances of each
35
- pair, including a reference to the compared models.
36
-
37
- **Signs of High Risk:**
38
-
39
- - Very high distance values could suggest that the models are focusing on completely different features or aspects
40
- of the data, which might be undesirable for ensemble methods or similar applications where some degree of
41
- consensus is expected.
42
- - Extremely low distances across different models might indicate redundancy, suggesting that the models are not
43
- providing diverse enough perspectives on the data.
44
-
45
- **Strengths:**
19
+ Assesses and visualizes the dissimilarity between model embeddings using Euclidean distance, providing insights
20
+ into model behavior and potential redundancy or diversity.
21
+
22
+ ### Purpose
23
+
24
+ The Euclidean Distance Comparison test aims to analyze and compare the embeddings produced by different models. By
25
+ measuring the Euclidean distance between vectors in Euclidean space, it provides a metric to assess the magnitude
26
+ of dissimilarity between embeddings created by different models. This is crucial for tasks that require models to
27
+ produce distinct responses or feature separations.
28
+
29
+ ### Test Mechanism
30
+
31
+ The test computes the embeddings for each model using the provided dataset and calculates the Euclidean distance
32
+ for every possible pair of models. It generates a distance matrix where each element represents the Euclidean
33
+ distance between two model embeddings. This matrix is then visualized through bar charts, showing the distance
34
+ distribution for each model pair. Additionally, it compiles a table with descriptive statistics such as mean,
35
+ median, standard deviation, minimum, and maximum distances for each model pair, including references to the
36
+ compared models.
37
+
38
+ ### Signs of High Risk
39
+
40
+ - Very high distance values could suggest that models are focusing on entirely different features or aspects of the
41
+ data, which might be undesirable for ensemble methods or when a consensus is required.
42
+ - Extremely low distances across different models might indicate redundancy, suggesting that models are not
43
+ providing diverse enough perspectives on the data.
44
+
45
+ ### Strengths
46
46
 
47
47
  - Provides a clear and quantifiable measure of how different the embeddings from various models are.
48
48
  - Useful for identifying outlier models or those that behave significantly differently from others in a group.
49
49
 
50
- **Limitations:**
50
+ ### Limitations
51
51
 
52
52
  - Euclidean distance can be sensitive to the scale of the data, meaning that preprocessing steps like normalization
53
- might be necessary to ensure meaningful comparisons.
53
+ might be necessary to ensure meaningful comparisons.
54
54
  - Does not consider the orientation or angle between vectors, focusing purely on magnitude differences.
55
55
  """
56
56
 
@@ -23,31 +23,40 @@ def EuclideanDistanceHeatmap(
23
23
  """
24
24
  Generates an interactive heatmap to visualize the Euclidean distances among embeddings derived from a given model.
25
25
 
26
- **Purpose:**
27
- This function visualizes the Euclidean distances between embeddings generated by a model, offering insights into the
28
- absolute differences between data points. Euclidean distance, a fundamental metric in data analysis, measures the
29
- straight-line distance between two points in Euclidean space. It is particularly useful for understanding spatial
30
- relationships and clustering tendencies in high-dimensional data.
31
-
32
- **Test Mechanism:**
33
- The function operates through a streamlined process: firstly, embeddings are extracted for each dataset entry using the specified model.
34
- Subsequently, it computes the pairwise Euclidean distances among these embeddings. The results are then visualized in an interactive heatmap format,
35
- where each cell's color intensity correlates with the distance magnitude between pairs of embeddings, providing a visual assessment of these distances.
36
-
37
- **Signs of High Risk:**
38
- - Uniform Distances: Uniformly low distances across the heatmap might suggest a lack of variability in the data or
39
- model overfitting, where the model fails to distinguish between distinct data points effectively.
40
- - High Variability: Conversely, excessive variability in distances could indicate inconsistent data representation,
41
- potentially leading to unreliable model predictions.
42
-
43
- **Strengths:**
44
- - Provides a direct, intuitive visual representation of distances between embeddings, aiding in the detection of patterns or anomalies.
45
- - Allows customization of visual aspects such as the heatmap's title, axis labels, and color scale, adapting to various analytical needs.
46
-
47
- **Limitations:**
48
- - The interpretation of distances can be sensitive to the scale of data; normalization might be necessary for meaningful analysis.
49
- - Large datasets may lead to dense, cluttered heatmaps, making it difficult to discern individual distances, potentially requiring
50
- techniques like data sampling or dimensionality reduction for clearer visualization.
26
+ ### Purpose
27
+
28
+ This function visualizes the Euclidean distances between embeddings generated by a model, offering insights into
29
+ the absolute differences between data points. Euclidean distance, a fundamental metric in data analysis, measures
30
+ the straight-line distance between two points in Euclidean space. It is particularly useful for understanding
31
+ spatial relationships and clustering tendencies in high-dimensional data.
32
+
33
+ ### Test Mechanism
34
+
35
+ The function operates through a streamlined process: firstly, embeddings are extracted for each dataset entry using
36
+ the specified model. Subsequently, it computes the pairwise Euclidean distances among these embeddings. The results
37
+ are then visualized in an interactive heatmap format, where each cell's color intensity correlates with the
38
+ distance magnitude between pairs of embeddings, providing a visual assessment of these distances.
39
+
40
+ ### Signs of High Risk
41
+
42
+ - Uniformly low distances across the heatmap might suggest a lack of variability in the data or model overfitting,
43
+ where the model fails to distinguish between distinct data points effectively.
44
+ - Excessive variability in distances could indicate inconsistent data representation, potentially leading to
45
+ unreliable model predictions.
46
+
47
+ ### Strengths
48
+
49
+ - Provides a direct, intuitive visual representation of distances between embeddings, aiding in the detection of
50
+ patterns or anomalies.
51
+ - Allows customization of visual aspects such as the heatmap's title, axis labels, and color scale, adapting to
52
+ various analytical needs.
53
+
54
+ ### Limitations
55
+
56
+ - The interpretation of distances can be sensitive to the scale of data; normalization might be necessary for
57
+ meaningful analysis.
58
+ - Large datasets may lead to dense, cluttered heatmaps, making it difficult to discern individual distances,
59
+ potentially requiring techniques like data sampling or dimensionality reduction for clearer visualization.
51
60
  """
52
61
 
53
62
  embeddings = np.stack(dataset.y_pred(model))
@@ -17,32 +17,44 @@ from validmind import tags, tasks
17
17
  @tasks("text_qa", "text_generation", "text_summarization")
18
18
  def PCAComponentsPairwisePlots(dataset, model, n_components=3):
19
19
  """
20
- Generates scatter plots for pairwise combinations of principal component analysis (PCA) components of model embeddings.
21
-
22
- **Purpose:**
23
- This function visualizes the principal components of embeddings derived from a specified model. Principal Component Analysis (PCA)
24
- is a statistical technique that emphasizes variation and uncovers strong patterns in a dataset.
25
- It transforms the original variables into new, uncorrelated variables (principal components) that maximize variance.
26
-
27
- **Test Mechanism:**
28
- The function follows a sequential process to visualize PCA components effectively.
29
- It starts by extracting embeddings from the dataset, utilizing the model specified by the user.
30
- These embeddings are then standardized to ensure zero mean and unit variance, which is crucial to prevent
31
- any single feature from dominating due to scale—this standardization is a critical preprocessing step for PCA.
32
- Following this, the function calculates the specified number of principal components.
33
- The core of the visualization process involves creating scatter plots for each pairwise combination of these principal components.
34
-
35
- **Signs of High Risk:**
36
- - If the principal components do not account for a significant portion of the variance, it may suggest that PCA is not capturing the essential structures of the data.
37
- - Similarity in scatter plots across different pairs of components could indicate redundancy in the components, suggesting that fewer dimensions might be sufficient to represent the data.
38
-
39
- **Strengths:**
40
- - Enables a simplified visualization of multivariate data, helping to identify patterns across many variables effectively.
41
- - Provides a clear depiction of the directions of maximum variance in the data, which is valuable for feature selection and dimensionality reduction.
42
-
43
- **Limitations:**
44
- - PCA's effectiveness hinges on the scaling of the variables; improper standardization can lead to misleading interpretations.
45
- - The interpretation of principal components can be challenging, especially if they capture less significant variances or are difficult to relate back to the original features.
20
+ Generates scatter plots for pairwise combinations of principal component analysis (PCA) components of model
21
+ embeddings.
22
+
23
+ ### Purpose
24
+
25
+ This function visualizes the principal components of embeddings derived from a specified model. Principal Component
26
+ Analysis (PCA) is a statistical technique that emphasizes variation and uncovers strong patterns in a dataset. It
27
+ transforms the original variables into new, uncorrelated variables (principal components) that maximize variance.
28
+
29
+ ### Test Mechanism
30
+
31
+ The function follows a sequential process to visualize PCA components effectively. It starts by extracting
32
+ embeddings from the dataset, utilizing the model specified by the user. These embeddings are then standardized to
33
+ ensure zero mean and unit variance, which is crucial to prevent any single feature from dominating due to
34
+ scale—this standardization is a critical preprocessing step for PCA. Following this, the function calculates the
35
+ specified number of principal components. The core of the visualization process involves creating scatter plots for
36
+ each pairwise combination of these principal components.
37
+
38
+ ### Signs of High Risk
39
+
40
+ - If the principal components do not account for a significant portion of the variance, it may suggest that PCA is
41
+ not capturing the essential structures of the data.
42
+ - Similarity in scatter plots across different pairs of components could indicate redundancy in the components,
43
+ suggesting that fewer dimensions might be sufficient to represent the data.
44
+
45
+ ### Strengths
46
+
47
+ - Enables a simplified visualization of multivariate data, helping to identify patterns across many variables
48
+ effectively.
49
+ - Provides a clear depiction of the directions of maximum variance in the data, which is valuable for feature
50
+ selection and dimensionality reduction.
51
+
52
+ ### Limitations
53
+
54
+ - PCA's effectiveness hinges on the scaling of the variables; improper standardization can lead to misleading
55
+ interpretations.
56
+ - The interpretation of principal components can be challenging, especially if they capture less significant
57
+ variances or are difficult to relate back to the original features.
46
58
  """
47
59
 
48
60
  # Get embeddings from the dataset using the model
@@ -23,7 +23,46 @@ logger = get_logger(__name__)
23
23
 
24
24
 
25
25
  class StabilityAnalysis(ThresholdTest):
26
- """Base class for embeddings stability analysis tests"""
26
+ """
27
+ Assesses the stability of embeddings generated by a model when faced with perturbed input data to ensure robustness
28
+ and consistency.
29
+
30
+ ### Purpose
31
+
32
+ The Embedding Stability test evaluates the robustness of the embeddings generated by a model when the input text is
33
+ perturbed. By comparing the cosine similarities between the original and perturbed embeddings, it gauges the
34
+ model's ability to maintain consistent semantic representations under slight variations in the input data.
35
+
36
+ ### Test Mechanism
37
+
38
+ This test works by:
39
+
40
+ - Perturbing the original text data.
41
+ - Generating embeddings for both the original and perturbed datasets using the model.
42
+ - Calculating the cosine similarities between the original and perturbed embeddings.
43
+ - Analyzing the distribution of these similarities (mean, min, max, median, and standard deviation).
44
+ - Determining the test result based on whether the mean similarity exceeds a predefined threshold (default is 0.7).
45
+
46
+ ### Signs of High Risk
47
+
48
+ - Mean cosine similarity below the threshold (default is 0.7).
49
+ - Large standard deviation of cosine similarities, indicating inconsistency.
50
+ - Minimum similarity score significantly lower than expected.
51
+ - Failure to pass the threshold test based on the mean similarity.
52
+
53
+ ### Strengths
54
+
55
+ - Provides a quantitative measure of embedding stability.
56
+ - Helps in identifying weaknesses in the model's ability to handle minor input variations.
57
+ - Visualization of similarity distributions aids in comprehensive analysis.
58
+ - Easy to interpret results with clear pass/fail criteria.
59
+
60
+ ### Limitations
61
+
62
+ - Relies on the chosen perturbation method, which may not cover all possible variations in real-world data.
63
+ - Thresholds for similarity might need adjustment based on specific application requirements.
64
+ - Cosine similarity, while useful, may not capture all aspects of semantic stability.
65
+ """
27
66
 
28
67
  required_inputs = ["model", "dataset"]
29
68
  default_params = {
@@ -9,37 +9,38 @@ from .StabilityAnalysis import StabilityAnalysis
9
9
 
10
10
  class StabilityAnalysisKeyword(StabilityAnalysis):
11
11
  """
12
- Evaluate robustness of embeddings models to keyword swaps on the test dataset
12
+ Evaluates robustness of embedding models to keyword swaps in the test dataset.
13
13
 
14
- This tests expects a parameter `keyword_dict` that maps words to other words
15
- so that any instances of the key words in the test dataset will be replaced
16
- with the corresponding value.
14
+ ### Purpose
17
15
 
18
- **Purpose:**
19
- This test metric is used to evaluate the robustness of text embedding machine learning models to
20
- keyword swaps. A keyword swap is a scenario where instances of certain specified keywords in the dataset are
21
- replaced with other specified words (usually synonyms). The purpose of this metric is to ensure that these models
22
- maintain performance stability even when the input data slightly deviates, imitating real-world variability.
16
+ This test metric is used to evaluate the robustness of text embedding machine learning models to keyword swaps. A
17
+ keyword swap is a scenario where instances of certain specified keywords in the dataset are replaced with other
18
+ specified words (usually synonyms). The purpose of this metric is to ensure that these models maintain performance
19
+ stability even when the input data slightly deviates, imitating real-world variability.
23
20
 
24
- **Test Mechanism:**
25
- The test mechanism involves perturbation of the dataset used in testing the model. Each
26
- instance of a specific word found in the dataset is replaced with the corresponding word as specified in a
27
- 'keyword_dict' mapping. The model is then re-run with the perturbed dataset and the results are compared with the
28
- non-perturbed dataset. This comparison quantifies the extent to which keyword swaps impact the model's performance.
21
+ ### Test Mechanism
22
+
23
+ The test mechanism involves a perturbation of the dataset used in testing the model. Each instance of a specific
24
+ word found in the dataset is replaced with the corresponding word as specified in a 'keyword_dict' mapping. The
25
+ model is then re-run with the perturbed dataset and the results are compared with the non-perturbed dataset. This
26
+ comparison quantifies the extent to which keyword swaps impact the model's performance.
27
+
28
+ ### Signs of High Risk
29
29
 
30
- **Signs of High Risk:**
31
30
  - A significant drop in model performance after keyword swaps indicates a high risk of model failure in real-world
32
31
  scenarios.
33
32
  - The model results being heavily reliant on specific word choices instead of capturing the context properly.
34
33
 
35
- **Strengths:**
34
+ ### Strengths
35
+
36
36
  - This test provides a way to measure model robustness to small changes in input data, which reinforces its
37
37
  applicability and reliability in real-world scenarios.
38
38
  - This test encourages a model to understand the context of a sentence rather than memorizing specific words.
39
39
  - It helps to detect overfitting - a situation where a model performs well on training data but poorly on new or
40
40
  slightly altered data.
41
41
 
42
- **Limitations:**
42
+ ### Limitations
43
+
43
44
  - It may not fully address semantic differences that can be introduced through keyword swaps. That is, the
44
45
  replacement words might not preserve the exact semantic meaning of the original words.
45
46
  - It only tests for changes in keywords (word-level alterations) and might not expose model limitations related to