ultralytics 8.1.29__py3-none-any.whl → 8.3.63__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (247) hide show
  1. tests/__init__.py +22 -0
  2. tests/conftest.py +83 -0
  3. tests/test_cli.py +122 -0
  4. tests/test_cuda.py +155 -0
  5. tests/test_engine.py +131 -0
  6. tests/test_exports.py +216 -0
  7. tests/test_integrations.py +150 -0
  8. tests/test_python.py +615 -0
  9. tests/test_solutions.py +94 -0
  10. ultralytics/__init__.py +11 -8
  11. ultralytics/cfg/__init__.py +569 -131
  12. ultralytics/cfg/datasets/Argoverse.yaml +2 -1
  13. ultralytics/cfg/datasets/DOTAv1.5.yaml +3 -2
  14. ultralytics/cfg/datasets/DOTAv1.yaml +3 -2
  15. ultralytics/cfg/datasets/GlobalWheat2020.yaml +3 -2
  16. ultralytics/cfg/datasets/ImageNet.yaml +2 -1
  17. ultralytics/cfg/datasets/Objects365.yaml +5 -4
  18. ultralytics/cfg/datasets/SKU-110K.yaml +2 -1
  19. ultralytics/cfg/datasets/VOC.yaml +3 -2
  20. ultralytics/cfg/datasets/VisDrone.yaml +6 -5
  21. ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
  22. ultralytics/cfg/datasets/brain-tumor.yaml +23 -0
  23. ultralytics/cfg/datasets/carparts-seg.yaml +3 -2
  24. ultralytics/cfg/datasets/coco-pose.yaml +7 -6
  25. ultralytics/cfg/datasets/coco.yaml +3 -2
  26. ultralytics/cfg/datasets/coco128-seg.yaml +4 -3
  27. ultralytics/cfg/datasets/coco128.yaml +4 -3
  28. ultralytics/cfg/datasets/coco8-pose.yaml +3 -2
  29. ultralytics/cfg/datasets/coco8-seg.yaml +3 -2
  30. ultralytics/cfg/datasets/coco8.yaml +3 -2
  31. ultralytics/cfg/datasets/crack-seg.yaml +3 -2
  32. ultralytics/cfg/datasets/dog-pose.yaml +24 -0
  33. ultralytics/cfg/datasets/dota8.yaml +3 -2
  34. ultralytics/cfg/datasets/hand-keypoints.yaml +26 -0
  35. ultralytics/cfg/datasets/lvis.yaml +1236 -0
  36. ultralytics/cfg/datasets/medical-pills.yaml +22 -0
  37. ultralytics/cfg/datasets/open-images-v7.yaml +2 -1
  38. ultralytics/cfg/datasets/package-seg.yaml +5 -4
  39. ultralytics/cfg/datasets/signature.yaml +21 -0
  40. ultralytics/cfg/datasets/tiger-pose.yaml +3 -2
  41. ultralytics/cfg/datasets/xView.yaml +2 -1
  42. ultralytics/cfg/default.yaml +14 -11
  43. ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +24 -0
  44. ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
  45. ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
  46. ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
  47. ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
  48. ultralytics/cfg/models/11/yolo11.yaml +50 -0
  49. ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +5 -2
  50. ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +5 -2
  51. ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +5 -2
  52. ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +5 -2
  53. ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
  54. ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
  55. ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
  56. ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
  57. ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
  58. ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
  59. ultralytics/cfg/models/v3/yolov3-spp.yaml +5 -2
  60. ultralytics/cfg/models/v3/yolov3-tiny.yaml +5 -2
  61. ultralytics/cfg/models/v3/yolov3.yaml +5 -2
  62. ultralytics/cfg/models/v5/yolov5-p6.yaml +5 -2
  63. ultralytics/cfg/models/v5/yolov5.yaml +5 -2
  64. ultralytics/cfg/models/v6/yolov6.yaml +5 -2
  65. ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +5 -2
  66. ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +5 -2
  67. ultralytics/cfg/models/v8/yolov8-cls.yaml +5 -2
  68. ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +6 -2
  69. ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +6 -2
  70. ultralytics/cfg/models/v8/yolov8-ghost.yaml +5 -2
  71. ultralytics/cfg/models/v8/yolov8-obb.yaml +5 -2
  72. ultralytics/cfg/models/v8/yolov8-p2.yaml +5 -2
  73. ultralytics/cfg/models/v8/yolov8-p6.yaml +10 -7
  74. ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +5 -2
  75. ultralytics/cfg/models/v8/yolov8-pose.yaml +5 -2
  76. ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +5 -2
  77. ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +5 -2
  78. ultralytics/cfg/models/v8/yolov8-seg.yaml +5 -2
  79. ultralytics/cfg/models/v8/yolov8-world.yaml +5 -2
  80. ultralytics/cfg/models/v8/yolov8-worldv2.yaml +5 -2
  81. ultralytics/cfg/models/v8/yolov8.yaml +5 -2
  82. ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
  83. ultralytics/cfg/models/v9/yolov9c.yaml +30 -25
  84. ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
  85. ultralytics/cfg/models/v9/yolov9e.yaml +46 -42
  86. ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
  87. ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
  88. ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
  89. ultralytics/cfg/solutions/default.yaml +24 -0
  90. ultralytics/cfg/trackers/botsort.yaml +8 -5
  91. ultralytics/cfg/trackers/bytetrack.yaml +8 -5
  92. ultralytics/data/__init__.py +14 -3
  93. ultralytics/data/annotator.py +37 -15
  94. ultralytics/data/augment.py +1783 -289
  95. ultralytics/data/base.py +62 -27
  96. ultralytics/data/build.py +37 -8
  97. ultralytics/data/converter.py +196 -36
  98. ultralytics/data/dataset.py +233 -94
  99. ultralytics/data/loaders.py +199 -96
  100. ultralytics/data/split_dota.py +39 -29
  101. ultralytics/data/utils.py +111 -41
  102. ultralytics/engine/__init__.py +1 -1
  103. ultralytics/engine/exporter.py +579 -244
  104. ultralytics/engine/model.py +604 -252
  105. ultralytics/engine/predictor.py +22 -11
  106. ultralytics/engine/results.py +1228 -218
  107. ultralytics/engine/trainer.py +191 -129
  108. ultralytics/engine/tuner.py +18 -18
  109. ultralytics/engine/validator.py +18 -15
  110. ultralytics/hub/__init__.py +31 -13
  111. ultralytics/hub/auth.py +11 -7
  112. ultralytics/hub/google/__init__.py +159 -0
  113. ultralytics/hub/session.py +128 -94
  114. ultralytics/hub/utils.py +20 -21
  115. ultralytics/models/__init__.py +4 -2
  116. ultralytics/models/fastsam/__init__.py +2 -3
  117. ultralytics/models/fastsam/model.py +26 -4
  118. ultralytics/models/fastsam/predict.py +127 -63
  119. ultralytics/models/fastsam/utils.py +1 -44
  120. ultralytics/models/fastsam/val.py +1 -1
  121. ultralytics/models/nas/__init__.py +1 -1
  122. ultralytics/models/nas/model.py +21 -10
  123. ultralytics/models/nas/predict.py +3 -6
  124. ultralytics/models/nas/val.py +4 -4
  125. ultralytics/models/rtdetr/__init__.py +1 -1
  126. ultralytics/models/rtdetr/model.py +1 -1
  127. ultralytics/models/rtdetr/predict.py +6 -8
  128. ultralytics/models/rtdetr/train.py +6 -2
  129. ultralytics/models/rtdetr/val.py +3 -3
  130. ultralytics/models/sam/__init__.py +3 -3
  131. ultralytics/models/sam/amg.py +29 -23
  132. ultralytics/models/sam/build.py +211 -13
  133. ultralytics/models/sam/model.py +91 -30
  134. ultralytics/models/sam/modules/__init__.py +1 -1
  135. ultralytics/models/sam/modules/blocks.py +1129 -0
  136. ultralytics/models/sam/modules/decoders.py +381 -53
  137. ultralytics/models/sam/modules/encoders.py +515 -324
  138. ultralytics/models/sam/modules/memory_attention.py +237 -0
  139. ultralytics/models/sam/modules/sam.py +969 -21
  140. ultralytics/models/sam/modules/tiny_encoder.py +425 -154
  141. ultralytics/models/sam/modules/transformer.py +159 -60
  142. ultralytics/models/sam/modules/utils.py +293 -0
  143. ultralytics/models/sam/predict.py +1263 -132
  144. ultralytics/models/utils/__init__.py +1 -1
  145. ultralytics/models/utils/loss.py +36 -24
  146. ultralytics/models/utils/ops.py +3 -7
  147. ultralytics/models/yolo/__init__.py +3 -3
  148. ultralytics/models/yolo/classify/__init__.py +1 -1
  149. ultralytics/models/yolo/classify/predict.py +7 -8
  150. ultralytics/models/yolo/classify/train.py +17 -22
  151. ultralytics/models/yolo/classify/val.py +8 -4
  152. ultralytics/models/yolo/detect/__init__.py +1 -1
  153. ultralytics/models/yolo/detect/predict.py +3 -5
  154. ultralytics/models/yolo/detect/train.py +11 -4
  155. ultralytics/models/yolo/detect/val.py +90 -52
  156. ultralytics/models/yolo/model.py +14 -9
  157. ultralytics/models/yolo/obb/__init__.py +1 -1
  158. ultralytics/models/yolo/obb/predict.py +2 -2
  159. ultralytics/models/yolo/obb/train.py +5 -3
  160. ultralytics/models/yolo/obb/val.py +41 -23
  161. ultralytics/models/yolo/pose/__init__.py +1 -1
  162. ultralytics/models/yolo/pose/predict.py +3 -5
  163. ultralytics/models/yolo/pose/train.py +2 -2
  164. ultralytics/models/yolo/pose/val.py +51 -17
  165. ultralytics/models/yolo/segment/__init__.py +1 -1
  166. ultralytics/models/yolo/segment/predict.py +3 -5
  167. ultralytics/models/yolo/segment/train.py +2 -2
  168. ultralytics/models/yolo/segment/val.py +60 -19
  169. ultralytics/models/yolo/world/__init__.py +5 -0
  170. ultralytics/models/yolo/world/train.py +92 -0
  171. ultralytics/models/yolo/world/train_world.py +109 -0
  172. ultralytics/nn/__init__.py +1 -1
  173. ultralytics/nn/autobackend.py +228 -93
  174. ultralytics/nn/modules/__init__.py +39 -14
  175. ultralytics/nn/modules/activation.py +21 -0
  176. ultralytics/nn/modules/block.py +526 -66
  177. ultralytics/nn/modules/conv.py +24 -7
  178. ultralytics/nn/modules/head.py +177 -34
  179. ultralytics/nn/modules/transformer.py +6 -5
  180. ultralytics/nn/modules/utils.py +1 -2
  181. ultralytics/nn/tasks.py +226 -82
  182. ultralytics/solutions/__init__.py +30 -1
  183. ultralytics/solutions/ai_gym.py +96 -143
  184. ultralytics/solutions/analytics.py +247 -0
  185. ultralytics/solutions/distance_calculation.py +78 -135
  186. ultralytics/solutions/heatmap.py +93 -247
  187. ultralytics/solutions/object_counter.py +184 -259
  188. ultralytics/solutions/parking_management.py +246 -0
  189. ultralytics/solutions/queue_management.py +112 -0
  190. ultralytics/solutions/region_counter.py +116 -0
  191. ultralytics/solutions/security_alarm.py +144 -0
  192. ultralytics/solutions/solutions.py +178 -0
  193. ultralytics/solutions/speed_estimation.py +86 -174
  194. ultralytics/solutions/streamlit_inference.py +190 -0
  195. ultralytics/solutions/trackzone.py +68 -0
  196. ultralytics/trackers/__init__.py +1 -1
  197. ultralytics/trackers/basetrack.py +32 -13
  198. ultralytics/trackers/bot_sort.py +61 -28
  199. ultralytics/trackers/byte_tracker.py +83 -51
  200. ultralytics/trackers/track.py +21 -6
  201. ultralytics/trackers/utils/__init__.py +1 -1
  202. ultralytics/trackers/utils/gmc.py +62 -48
  203. ultralytics/trackers/utils/kalman_filter.py +166 -35
  204. ultralytics/trackers/utils/matching.py +40 -21
  205. ultralytics/utils/__init__.py +511 -239
  206. ultralytics/utils/autobatch.py +40 -22
  207. ultralytics/utils/benchmarks.py +266 -85
  208. ultralytics/utils/callbacks/__init__.py +1 -1
  209. ultralytics/utils/callbacks/base.py +1 -3
  210. ultralytics/utils/callbacks/clearml.py +7 -6
  211. ultralytics/utils/callbacks/comet.py +39 -17
  212. ultralytics/utils/callbacks/dvc.py +1 -1
  213. ultralytics/utils/callbacks/hub.py +16 -16
  214. ultralytics/utils/callbacks/mlflow.py +28 -24
  215. ultralytics/utils/callbacks/neptune.py +6 -2
  216. ultralytics/utils/callbacks/raytune.py +3 -4
  217. ultralytics/utils/callbacks/tensorboard.py +18 -18
  218. ultralytics/utils/callbacks/wb.py +27 -20
  219. ultralytics/utils/checks.py +172 -100
  220. ultralytics/utils/dist.py +2 -1
  221. ultralytics/utils/downloads.py +40 -34
  222. ultralytics/utils/errors.py +1 -1
  223. ultralytics/utils/files.py +72 -38
  224. ultralytics/utils/instance.py +41 -19
  225. ultralytics/utils/loss.py +83 -55
  226. ultralytics/utils/metrics.py +61 -56
  227. ultralytics/utils/ops.py +94 -89
  228. ultralytics/utils/patches.py +30 -14
  229. ultralytics/utils/plotting.py +600 -269
  230. ultralytics/utils/tal.py +67 -26
  231. ultralytics/utils/torch_utils.py +305 -112
  232. ultralytics/utils/triton.py +2 -1
  233. ultralytics/utils/tuner.py +21 -12
  234. ultralytics-8.3.63.dist-info/METADATA +370 -0
  235. ultralytics-8.3.63.dist-info/RECORD +241 -0
  236. {ultralytics-8.1.29.dist-info → ultralytics-8.3.63.dist-info}/WHEEL +1 -1
  237. ultralytics/data/explorer/__init__.py +0 -5
  238. ultralytics/data/explorer/explorer.py +0 -472
  239. ultralytics/data/explorer/gui/__init__.py +0 -1
  240. ultralytics/data/explorer/gui/dash.py +0 -268
  241. ultralytics/data/explorer/utils.py +0 -166
  242. ultralytics/models/fastsam/prompt.py +0 -357
  243. ultralytics-8.1.29.dist-info/METADATA +0 -373
  244. ultralytics-8.1.29.dist-info/RECORD +0 -197
  245. {ultralytics-8.1.29.dist-info → ultralytics-8.3.63.dist-info}/LICENSE +0 -0
  246. {ultralytics-8.1.29.dist-info → ultralytics-8.3.63.dist-info}/entry_points.txt +0 -0
  247. {ultralytics-8.1.29.dist-info → ultralytics-8.3.63.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,5 @@
1
- # Ultralytics YOLO 🚀, AGPL-3.0 license
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
2
3
  # Argoverse-HD dataset (ring-front-center camera) https://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
3
4
  # Documentation: https://docs.ultralytics.com/datasets/detect/argoverse/
4
5
  # Example usage: yolo train data=Argoverse.yaml
@@ -1,4 +1,5 @@
1
- # Ultralytics YOLO 🚀, AGPL-3.0 license
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
2
3
  # DOTA 1.5 dataset https://captain-whu.github.io/DOTA/index.html for object detection in aerial images by Wuhan University
3
4
  # Documentation: https://docs.ultralytics.com/datasets/obb/dota-v2/
4
5
  # Example usage: yolo train model=yolov8n-obb.pt data=DOTAv1.5.yaml
@@ -33,4 +34,4 @@ names:
33
34
  15: container crane
34
35
 
35
36
  # Download script/URL (optional)
36
- download: https://github.com/ultralytics/yolov5/releases/download/v1.0/DOTAv1.5.zip
37
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/DOTAv1.5.zip
@@ -1,4 +1,5 @@
1
- # Ultralytics YOLO 🚀, AGPL-3.0 license
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
2
3
  # DOTA 1.0 dataset https://captain-whu.github.io/DOTA/index.html for object detection in aerial images by Wuhan University
3
4
  # Documentation: https://docs.ultralytics.com/datasets/obb/dota-v2/
4
5
  # Example usage: yolo train model=yolov8n-obb.pt data=DOTAv1.yaml
@@ -32,4 +33,4 @@ names:
32
33
  14: swimming pool
33
34
 
34
35
  # Download script/URL (optional)
35
- download: https://github.com/ultralytics/yolov5/releases/download/v1.0/DOTAv1.zip
36
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/DOTAv1.zip
@@ -1,4 +1,5 @@
1
- # Ultralytics YOLO 🚀, AGPL-3.0 license
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
2
3
  # Global Wheat 2020 dataset https://www.global-wheat.com/ by University of Saskatchewan
3
4
  # Documentation: https://docs.ultralytics.com/datasets/detect/globalwheat2020/
4
5
  # Example usage: yolo train data=GlobalWheat2020.yaml
@@ -37,7 +38,7 @@ download: |
37
38
  # Download
38
39
  dir = Path(yaml['path']) # dataset root dir
39
40
  urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip',
40
- 'https://github.com/ultralytics/yolov5/releases/download/v1.0/GlobalWheat2020_labels.zip']
41
+ 'https://github.com/ultralytics/assets/releases/download/v0.0.0/GlobalWheat2020_labels.zip']
41
42
  download(urls, dir=dir)
42
43
 
43
44
  # Make Directories
@@ -1,4 +1,5 @@
1
- # Ultralytics YOLO 🚀, AGPL-3.0 license
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
2
3
  # ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University
3
4
  # Simplified class names from https://github.com/anishathalye/imagenet-simple-labels
4
5
  # Documentation: https://docs.ultralytics.com/datasets/classify/imagenet/
@@ -1,4 +1,5 @@
1
- # Ultralytics YOLO 🚀, AGPL-3.0 license
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
2
3
  # Objects365 dataset https://www.objects365.org/ by Megvii
3
4
  # Documentation: https://docs.ultralytics.com/datasets/detect/objects365/
4
5
  # Example usage: yolo train data=Objects365.yaml
@@ -113,7 +114,7 @@ names:
113
114
  95: Pot
114
115
  96: Cow
115
116
  97: Cake
116
- 98: Dinning Table
117
+ 98: Dining Table
117
118
  99: Sheep
118
119
  100: Hanger
119
120
  101: Blackboard/Whiteboard
@@ -304,7 +305,7 @@ names:
304
305
  286: Hammer
305
306
  287: Cue
306
307
  288: Avocado
307
- 289: Hamimelon
308
+ 289: Hami melon
308
309
  290: Flask
309
310
  291: Mushroom
310
311
  292: Screwdriver
@@ -328,7 +329,7 @@ names:
328
329
  310: Dishwasher
329
330
  311: Crab
330
331
  312: Hoverboard
331
- 313: Meat ball
332
+ 313: Meatball
332
333
  314: Rice Cooker
333
334
  315: Tuba
334
335
  316: Calculator
@@ -1,4 +1,5 @@
1
- # Ultralytics YOLO 🚀, AGPL-3.0 license
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
2
3
  # SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail
3
4
  # Documentation: https://docs.ultralytics.com/datasets/detect/sku-110k/
4
5
  # Example usage: yolo train data=SKU-110K.yaml
@@ -1,4 +1,5 @@
1
- # Ultralytics YOLO 🚀, AGPL-3.0 license
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
2
3
  # PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
3
4
  # Documentation: # Documentation: https://docs.ultralytics.com/datasets/detect/voc/
4
5
  # Example usage: yolo train data=VOC.yaml
@@ -76,7 +77,7 @@ download: |
76
77
 
77
78
  # Download
78
79
  dir = Path(yaml['path']) # dataset root dir
79
- url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
80
+ url = 'https://github.com/ultralytics/assets/releases/download/v0.0.0/'
80
81
  urls = [f'{url}VOCtrainval_06-Nov-2007.zip', # 446MB, 5012 images
81
82
  f'{url}VOCtest_06-Nov-2007.zip', # 438MB, 4953 images
82
83
  f'{url}VOCtrainval_11-May-2012.zip'] # 1.95GB, 17126 images
@@ -1,4 +1,5 @@
1
- # Ultralytics YOLO 🚀, AGPL-3.0 license
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
2
3
  # VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University
3
4
  # Documentation: https://docs.ultralytics.com/datasets/detect/visdrone/
4
5
  # Example usage: yolo train data=VisDrone.yaml
@@ -61,10 +62,10 @@ download: |
61
62
 
62
63
  # Download
63
64
  dir = Path(yaml['path']) # dataset root dir
64
- urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip',
65
- 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip',
66
- 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip',
67
- 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip']
65
+ urls = ['https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-train.zip',
66
+ 'https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-val.zip',
67
+ 'https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-test-dev.zip',
68
+ 'https://github.com/ultralytics/assets/releases/download/v0.0.0/VisDrone2019-DET-test-challenge.zip']
68
69
  download(urls, dir=dir, curl=True, threads=4)
69
70
 
70
71
  # Convert
@@ -0,0 +1,25 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # African-wildlife dataset by Ultralytics
4
+ # Documentation: https://docs.ultralytics.com/datasets/detect/african-wildlife/
5
+ # Example usage: yolo train data=african-wildlife.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── african-wildlife ← downloads here (100 MB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: ../datasets/african-wildlife # dataset root dir
13
+ train: train/images # train images (relative to 'path') 1052 images
14
+ val: valid/images # val images (relative to 'path') 225 images
15
+ test: test/images # test images (relative to 'path') 227 images
16
+
17
+ # Classes
18
+ names:
19
+ 0: buffalo
20
+ 1: elephant
21
+ 2: rhino
22
+ 3: zebra
23
+
24
+ # Download script/URL (optional)
25
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/african-wildlife.zip
@@ -0,0 +1,23 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Brain-tumor dataset by Ultralytics
4
+ # Documentation: https://docs.ultralytics.com/datasets/detect/brain-tumor/
5
+ # Example usage: yolo train data=brain-tumor.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── brain-tumor ← downloads here (4.05 MB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: ../datasets/brain-tumor # dataset root dir
13
+ train: train/images # train images (relative to 'path') 893 images
14
+ val: valid/images # val images (relative to 'path') 223 images
15
+ test: # test images (relative to 'path')
16
+
17
+ # Classes
18
+ names:
19
+ 0: negative
20
+ 1: positive
21
+
22
+ # Download script/URL (optional)
23
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/brain-tumor.zip
@@ -1,4 +1,5 @@
1
- # Ultralytics YOLO 🚀, AGPL-3.0 license
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
2
3
  # Carparts-seg dataset by Ultralytics
3
4
  # Documentation: https://docs.ultralytics.com/datasets/segment/carparts-seg/
4
5
  # Example usage: yolo train data=carparts-seg.yaml
@@ -40,4 +41,4 @@ names:
40
41
  22: wheel
41
42
 
42
43
  # Download script/URL (optional)
43
- download: https://ultralytics.com/assets/carparts-seg.zip
44
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/carparts-seg.zip
@@ -1,5 +1,6 @@
1
- # Ultralytics YOLO 🚀, AGPL-3.0 license
2
- # COCO 2017 dataset https://cocodataset.org by Microsoft
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # COCO 2017 Keypoints dataset https://cocodataset.org by Microsoft
3
4
  # Documentation: https://docs.ultralytics.com/datasets/pose/coco/
4
5
  # Example usage: yolo train data=coco-pose.yaml
5
6
  # parent
@@ -9,9 +10,9 @@
9
10
 
10
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
12
  path: ../datasets/coco-pose # dataset root dir
12
- train: train2017.txt # train images (relative to 'path') 118287 images
13
- val: val2017.txt # val images (relative to 'path') 5000 images
14
- test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
13
+ train: train2017.txt # train images (relative to 'path') 56599 images
14
+ val: val2017.txt # val images (relative to 'path') 2346 images
15
+ test: test-dev2017.txt # 20288 of 40670 images, submit to https://codalab.lisn.upsaclay.fr/competitions/7403
15
16
 
16
17
  # Keypoints
17
18
  kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
@@ -28,7 +29,7 @@ download: |
28
29
 
29
30
  # Download labels
30
31
  dir = Path(yaml['path']) # dataset root dir
31
- url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
32
+ url = 'https://github.com/ultralytics/assets/releases/download/v0.0.0/'
32
33
  urls = [url + 'coco2017labels-pose.zip'] # labels
33
34
  download(urls, dir=dir.parent)
34
35
  # Download data
@@ -1,4 +1,5 @@
1
- # Ultralytics YOLO 🚀, AGPL-3.0 license
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
2
3
  # COCO 2017 dataset https://cocodataset.org by Microsoft
3
4
  # Documentation: https://docs.ultralytics.com/datasets/detect/coco/
4
5
  # Example usage: yolo train data=coco.yaml
@@ -104,7 +105,7 @@ download: |
104
105
  # Download labels
105
106
  segments = True # segment or box labels
106
107
  dir = Path(yaml['path']) # dataset root dir
107
- url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
108
+ url = 'https://github.com/ultralytics/assets/releases/download/v0.0.0/'
108
109
  urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')] # labels
109
110
  download(urls, dir=dir.parent)
110
111
  # Download data
@@ -1,5 +1,6 @@
1
- # Ultralytics YOLO 🚀, AGPL-3.0 license
2
- # COCO128-seg dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # COCO128-seg dataset https://www.kaggle.com/datasets/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
3
4
  # Documentation: https://docs.ultralytics.com/datasets/segment/coco/
4
5
  # Example usage: yolo train data=coco128.yaml
5
6
  # parent
@@ -97,4 +98,4 @@ names:
97
98
  79: toothbrush
98
99
 
99
100
  # Download script/URL (optional)
100
- download: https://ultralytics.com/assets/coco128-seg.zip
101
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco128-seg.zip
@@ -1,5 +1,6 @@
1
- # Ultralytics YOLO 🚀, AGPL-3.0 license
2
- # COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # COCO128 dataset https://www.kaggle.com/datasets/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
3
4
  # Documentation: https://docs.ultralytics.com/datasets/detect/coco/
4
5
  # Example usage: yolo train data=coco128.yaml
5
6
  # parent
@@ -97,4 +98,4 @@ names:
97
98
  79: toothbrush
98
99
 
99
100
  # Download script/URL (optional)
100
- download: https://ultralytics.com/assets/coco128.zip
101
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco128.zip
@@ -1,4 +1,5 @@
1
- # Ultralytics YOLO 🚀, AGPL-3.0 license
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
2
3
  # COCO8-pose dataset (first 8 images from COCO train2017) by Ultralytics
3
4
  # Documentation: https://docs.ultralytics.com/datasets/pose/coco8-pose/
4
5
  # Example usage: yolo train data=coco8-pose.yaml
@@ -22,4 +23,4 @@ names:
22
23
  0: person
23
24
 
24
25
  # Download script/URL (optional)
25
- download: https://ultralytics.com/assets/coco8-pose.zip
26
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-pose.zip
@@ -1,4 +1,5 @@
1
- # Ultralytics YOLO 🚀, AGPL-3.0 license
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
2
3
  # COCO8-seg dataset (first 8 images from COCO train2017) by Ultralytics
3
4
  # Documentation: https://docs.ultralytics.com/datasets/segment/coco8-seg/
4
5
  # Example usage: yolo train data=coco8-seg.yaml
@@ -97,4 +98,4 @@ names:
97
98
  79: toothbrush
98
99
 
99
100
  # Download script/URL (optional)
100
- download: https://ultralytics.com/assets/coco8-seg.zip
101
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-seg.zip
@@ -1,4 +1,5 @@
1
- # Ultralytics YOLO 🚀, AGPL-3.0 license
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
2
3
  # COCO8 dataset (first 8 images from COCO train2017) by Ultralytics
3
4
  # Documentation: https://docs.ultralytics.com/datasets/detect/coco8/
4
5
  # Example usage: yolo train data=coco8.yaml
@@ -97,4 +98,4 @@ names:
97
98
  79: toothbrush
98
99
 
99
100
  # Download script/URL (optional)
100
- download: https://ultralytics.com/assets/coco8.zip
101
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8.zip
@@ -1,4 +1,5 @@
1
- # Ultralytics YOLO 🚀, AGPL-3.0 license
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
2
3
  # Crack-seg dataset by Ultralytics
3
4
  # Documentation: https://docs.ultralytics.com/datasets/segment/crack-seg/
4
5
  # Example usage: yolo train data=crack-seg.yaml
@@ -18,4 +19,4 @@ names:
18
19
  0: crack
19
20
 
20
21
  # Download script/URL (optional)
21
- download: https://ultralytics.com/assets/crack-seg.zip
22
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/crack-seg.zip
@@ -0,0 +1,24 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Dogs dataset http://vision.stanford.edu/aditya86/ImageNetDogs/ by Stanford
4
+ # Documentation: https://docs.ultralytics.com/datasets/pose/dog-pose/
5
+ # Example usage: yolo train data=dog-pose.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── dog-pose ← downloads here (337 MB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: ../datasets/dog-pose # dataset root dir
13
+ train: train # train images (relative to 'path') 6773 images
14
+ val: val # val images (relative to 'path') 1703 images
15
+
16
+ # Keypoints
17
+ kpt_shape: [24, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
18
+
19
+ # Classes
20
+ names:
21
+ 0: dog
22
+
23
+ # Download script/URL (optional)
24
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/dog-pose.zip
@@ -1,4 +1,5 @@
1
- # Ultralytics YOLO 🚀, AGPL-3.0 license
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
2
3
  # DOTA8 dataset 8 images from split DOTAv1 dataset by Ultralytics
3
4
  # Documentation: https://docs.ultralytics.com/datasets/obb/dota8/
4
5
  # Example usage: yolo train model=yolov8n-obb.pt data=dota8.yaml
@@ -31,4 +32,4 @@ names:
31
32
  14: swimming pool
32
33
 
33
34
  # Download script/URL (optional)
34
- download: https://github.com/ultralytics/yolov5/releases/download/v1.0/dota8.zip
35
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/dota8.zip
@@ -0,0 +1,26 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Hand Keypoints dataset by Ultralytics
4
+ # Documentation: https://docs.ultralytics.com/datasets/pose/hand-keypoints/
5
+ # Example usage: yolo train data=hand-keypoints.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── hand-keypoints ← downloads here (369 MB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: ../datasets/hand-keypoints # dataset root dir
13
+ train: train # train images (relative to 'path') 18776 images
14
+ val: val # val images (relative to 'path') 7992 images
15
+
16
+ # Keypoints
17
+ kpt_shape: [21, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
18
+ flip_idx:
19
+ [0, 1, 2, 4, 3, 10, 11, 12, 13, 14, 5, 6, 7, 8, 9, 15, 16, 17, 18, 19, 20]
20
+
21
+ # Classes
22
+ names:
23
+ 0: hand
24
+
25
+ # Download script/URL (optional)
26
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/hand-keypoints.zip