ultralytics 8.1.29__py3-none-any.whl → 8.3.63__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (247) hide show
  1. tests/__init__.py +22 -0
  2. tests/conftest.py +83 -0
  3. tests/test_cli.py +122 -0
  4. tests/test_cuda.py +155 -0
  5. tests/test_engine.py +131 -0
  6. tests/test_exports.py +216 -0
  7. tests/test_integrations.py +150 -0
  8. tests/test_python.py +615 -0
  9. tests/test_solutions.py +94 -0
  10. ultralytics/__init__.py +11 -8
  11. ultralytics/cfg/__init__.py +569 -131
  12. ultralytics/cfg/datasets/Argoverse.yaml +2 -1
  13. ultralytics/cfg/datasets/DOTAv1.5.yaml +3 -2
  14. ultralytics/cfg/datasets/DOTAv1.yaml +3 -2
  15. ultralytics/cfg/datasets/GlobalWheat2020.yaml +3 -2
  16. ultralytics/cfg/datasets/ImageNet.yaml +2 -1
  17. ultralytics/cfg/datasets/Objects365.yaml +5 -4
  18. ultralytics/cfg/datasets/SKU-110K.yaml +2 -1
  19. ultralytics/cfg/datasets/VOC.yaml +3 -2
  20. ultralytics/cfg/datasets/VisDrone.yaml +6 -5
  21. ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
  22. ultralytics/cfg/datasets/brain-tumor.yaml +23 -0
  23. ultralytics/cfg/datasets/carparts-seg.yaml +3 -2
  24. ultralytics/cfg/datasets/coco-pose.yaml +7 -6
  25. ultralytics/cfg/datasets/coco.yaml +3 -2
  26. ultralytics/cfg/datasets/coco128-seg.yaml +4 -3
  27. ultralytics/cfg/datasets/coco128.yaml +4 -3
  28. ultralytics/cfg/datasets/coco8-pose.yaml +3 -2
  29. ultralytics/cfg/datasets/coco8-seg.yaml +3 -2
  30. ultralytics/cfg/datasets/coco8.yaml +3 -2
  31. ultralytics/cfg/datasets/crack-seg.yaml +3 -2
  32. ultralytics/cfg/datasets/dog-pose.yaml +24 -0
  33. ultralytics/cfg/datasets/dota8.yaml +3 -2
  34. ultralytics/cfg/datasets/hand-keypoints.yaml +26 -0
  35. ultralytics/cfg/datasets/lvis.yaml +1236 -0
  36. ultralytics/cfg/datasets/medical-pills.yaml +22 -0
  37. ultralytics/cfg/datasets/open-images-v7.yaml +2 -1
  38. ultralytics/cfg/datasets/package-seg.yaml +5 -4
  39. ultralytics/cfg/datasets/signature.yaml +21 -0
  40. ultralytics/cfg/datasets/tiger-pose.yaml +3 -2
  41. ultralytics/cfg/datasets/xView.yaml +2 -1
  42. ultralytics/cfg/default.yaml +14 -11
  43. ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +24 -0
  44. ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
  45. ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
  46. ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
  47. ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
  48. ultralytics/cfg/models/11/yolo11.yaml +50 -0
  49. ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +5 -2
  50. ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +5 -2
  51. ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +5 -2
  52. ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +5 -2
  53. ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
  54. ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
  55. ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
  56. ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
  57. ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
  58. ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
  59. ultralytics/cfg/models/v3/yolov3-spp.yaml +5 -2
  60. ultralytics/cfg/models/v3/yolov3-tiny.yaml +5 -2
  61. ultralytics/cfg/models/v3/yolov3.yaml +5 -2
  62. ultralytics/cfg/models/v5/yolov5-p6.yaml +5 -2
  63. ultralytics/cfg/models/v5/yolov5.yaml +5 -2
  64. ultralytics/cfg/models/v6/yolov6.yaml +5 -2
  65. ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +5 -2
  66. ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +5 -2
  67. ultralytics/cfg/models/v8/yolov8-cls.yaml +5 -2
  68. ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +6 -2
  69. ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +6 -2
  70. ultralytics/cfg/models/v8/yolov8-ghost.yaml +5 -2
  71. ultralytics/cfg/models/v8/yolov8-obb.yaml +5 -2
  72. ultralytics/cfg/models/v8/yolov8-p2.yaml +5 -2
  73. ultralytics/cfg/models/v8/yolov8-p6.yaml +10 -7
  74. ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +5 -2
  75. ultralytics/cfg/models/v8/yolov8-pose.yaml +5 -2
  76. ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +5 -2
  77. ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +5 -2
  78. ultralytics/cfg/models/v8/yolov8-seg.yaml +5 -2
  79. ultralytics/cfg/models/v8/yolov8-world.yaml +5 -2
  80. ultralytics/cfg/models/v8/yolov8-worldv2.yaml +5 -2
  81. ultralytics/cfg/models/v8/yolov8.yaml +5 -2
  82. ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
  83. ultralytics/cfg/models/v9/yolov9c.yaml +30 -25
  84. ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
  85. ultralytics/cfg/models/v9/yolov9e.yaml +46 -42
  86. ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
  87. ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
  88. ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
  89. ultralytics/cfg/solutions/default.yaml +24 -0
  90. ultralytics/cfg/trackers/botsort.yaml +8 -5
  91. ultralytics/cfg/trackers/bytetrack.yaml +8 -5
  92. ultralytics/data/__init__.py +14 -3
  93. ultralytics/data/annotator.py +37 -15
  94. ultralytics/data/augment.py +1783 -289
  95. ultralytics/data/base.py +62 -27
  96. ultralytics/data/build.py +37 -8
  97. ultralytics/data/converter.py +196 -36
  98. ultralytics/data/dataset.py +233 -94
  99. ultralytics/data/loaders.py +199 -96
  100. ultralytics/data/split_dota.py +39 -29
  101. ultralytics/data/utils.py +111 -41
  102. ultralytics/engine/__init__.py +1 -1
  103. ultralytics/engine/exporter.py +579 -244
  104. ultralytics/engine/model.py +604 -252
  105. ultralytics/engine/predictor.py +22 -11
  106. ultralytics/engine/results.py +1228 -218
  107. ultralytics/engine/trainer.py +191 -129
  108. ultralytics/engine/tuner.py +18 -18
  109. ultralytics/engine/validator.py +18 -15
  110. ultralytics/hub/__init__.py +31 -13
  111. ultralytics/hub/auth.py +11 -7
  112. ultralytics/hub/google/__init__.py +159 -0
  113. ultralytics/hub/session.py +128 -94
  114. ultralytics/hub/utils.py +20 -21
  115. ultralytics/models/__init__.py +4 -2
  116. ultralytics/models/fastsam/__init__.py +2 -3
  117. ultralytics/models/fastsam/model.py +26 -4
  118. ultralytics/models/fastsam/predict.py +127 -63
  119. ultralytics/models/fastsam/utils.py +1 -44
  120. ultralytics/models/fastsam/val.py +1 -1
  121. ultralytics/models/nas/__init__.py +1 -1
  122. ultralytics/models/nas/model.py +21 -10
  123. ultralytics/models/nas/predict.py +3 -6
  124. ultralytics/models/nas/val.py +4 -4
  125. ultralytics/models/rtdetr/__init__.py +1 -1
  126. ultralytics/models/rtdetr/model.py +1 -1
  127. ultralytics/models/rtdetr/predict.py +6 -8
  128. ultralytics/models/rtdetr/train.py +6 -2
  129. ultralytics/models/rtdetr/val.py +3 -3
  130. ultralytics/models/sam/__init__.py +3 -3
  131. ultralytics/models/sam/amg.py +29 -23
  132. ultralytics/models/sam/build.py +211 -13
  133. ultralytics/models/sam/model.py +91 -30
  134. ultralytics/models/sam/modules/__init__.py +1 -1
  135. ultralytics/models/sam/modules/blocks.py +1129 -0
  136. ultralytics/models/sam/modules/decoders.py +381 -53
  137. ultralytics/models/sam/modules/encoders.py +515 -324
  138. ultralytics/models/sam/modules/memory_attention.py +237 -0
  139. ultralytics/models/sam/modules/sam.py +969 -21
  140. ultralytics/models/sam/modules/tiny_encoder.py +425 -154
  141. ultralytics/models/sam/modules/transformer.py +159 -60
  142. ultralytics/models/sam/modules/utils.py +293 -0
  143. ultralytics/models/sam/predict.py +1263 -132
  144. ultralytics/models/utils/__init__.py +1 -1
  145. ultralytics/models/utils/loss.py +36 -24
  146. ultralytics/models/utils/ops.py +3 -7
  147. ultralytics/models/yolo/__init__.py +3 -3
  148. ultralytics/models/yolo/classify/__init__.py +1 -1
  149. ultralytics/models/yolo/classify/predict.py +7 -8
  150. ultralytics/models/yolo/classify/train.py +17 -22
  151. ultralytics/models/yolo/classify/val.py +8 -4
  152. ultralytics/models/yolo/detect/__init__.py +1 -1
  153. ultralytics/models/yolo/detect/predict.py +3 -5
  154. ultralytics/models/yolo/detect/train.py +11 -4
  155. ultralytics/models/yolo/detect/val.py +90 -52
  156. ultralytics/models/yolo/model.py +14 -9
  157. ultralytics/models/yolo/obb/__init__.py +1 -1
  158. ultralytics/models/yolo/obb/predict.py +2 -2
  159. ultralytics/models/yolo/obb/train.py +5 -3
  160. ultralytics/models/yolo/obb/val.py +41 -23
  161. ultralytics/models/yolo/pose/__init__.py +1 -1
  162. ultralytics/models/yolo/pose/predict.py +3 -5
  163. ultralytics/models/yolo/pose/train.py +2 -2
  164. ultralytics/models/yolo/pose/val.py +51 -17
  165. ultralytics/models/yolo/segment/__init__.py +1 -1
  166. ultralytics/models/yolo/segment/predict.py +3 -5
  167. ultralytics/models/yolo/segment/train.py +2 -2
  168. ultralytics/models/yolo/segment/val.py +60 -19
  169. ultralytics/models/yolo/world/__init__.py +5 -0
  170. ultralytics/models/yolo/world/train.py +92 -0
  171. ultralytics/models/yolo/world/train_world.py +109 -0
  172. ultralytics/nn/__init__.py +1 -1
  173. ultralytics/nn/autobackend.py +228 -93
  174. ultralytics/nn/modules/__init__.py +39 -14
  175. ultralytics/nn/modules/activation.py +21 -0
  176. ultralytics/nn/modules/block.py +526 -66
  177. ultralytics/nn/modules/conv.py +24 -7
  178. ultralytics/nn/modules/head.py +177 -34
  179. ultralytics/nn/modules/transformer.py +6 -5
  180. ultralytics/nn/modules/utils.py +1 -2
  181. ultralytics/nn/tasks.py +226 -82
  182. ultralytics/solutions/__init__.py +30 -1
  183. ultralytics/solutions/ai_gym.py +96 -143
  184. ultralytics/solutions/analytics.py +247 -0
  185. ultralytics/solutions/distance_calculation.py +78 -135
  186. ultralytics/solutions/heatmap.py +93 -247
  187. ultralytics/solutions/object_counter.py +184 -259
  188. ultralytics/solutions/parking_management.py +246 -0
  189. ultralytics/solutions/queue_management.py +112 -0
  190. ultralytics/solutions/region_counter.py +116 -0
  191. ultralytics/solutions/security_alarm.py +144 -0
  192. ultralytics/solutions/solutions.py +178 -0
  193. ultralytics/solutions/speed_estimation.py +86 -174
  194. ultralytics/solutions/streamlit_inference.py +190 -0
  195. ultralytics/solutions/trackzone.py +68 -0
  196. ultralytics/trackers/__init__.py +1 -1
  197. ultralytics/trackers/basetrack.py +32 -13
  198. ultralytics/trackers/bot_sort.py +61 -28
  199. ultralytics/trackers/byte_tracker.py +83 -51
  200. ultralytics/trackers/track.py +21 -6
  201. ultralytics/trackers/utils/__init__.py +1 -1
  202. ultralytics/trackers/utils/gmc.py +62 -48
  203. ultralytics/trackers/utils/kalman_filter.py +166 -35
  204. ultralytics/trackers/utils/matching.py +40 -21
  205. ultralytics/utils/__init__.py +511 -239
  206. ultralytics/utils/autobatch.py +40 -22
  207. ultralytics/utils/benchmarks.py +266 -85
  208. ultralytics/utils/callbacks/__init__.py +1 -1
  209. ultralytics/utils/callbacks/base.py +1 -3
  210. ultralytics/utils/callbacks/clearml.py +7 -6
  211. ultralytics/utils/callbacks/comet.py +39 -17
  212. ultralytics/utils/callbacks/dvc.py +1 -1
  213. ultralytics/utils/callbacks/hub.py +16 -16
  214. ultralytics/utils/callbacks/mlflow.py +28 -24
  215. ultralytics/utils/callbacks/neptune.py +6 -2
  216. ultralytics/utils/callbacks/raytune.py +3 -4
  217. ultralytics/utils/callbacks/tensorboard.py +18 -18
  218. ultralytics/utils/callbacks/wb.py +27 -20
  219. ultralytics/utils/checks.py +172 -100
  220. ultralytics/utils/dist.py +2 -1
  221. ultralytics/utils/downloads.py +40 -34
  222. ultralytics/utils/errors.py +1 -1
  223. ultralytics/utils/files.py +72 -38
  224. ultralytics/utils/instance.py +41 -19
  225. ultralytics/utils/loss.py +83 -55
  226. ultralytics/utils/metrics.py +61 -56
  227. ultralytics/utils/ops.py +94 -89
  228. ultralytics/utils/patches.py +30 -14
  229. ultralytics/utils/plotting.py +600 -269
  230. ultralytics/utils/tal.py +67 -26
  231. ultralytics/utils/torch_utils.py +305 -112
  232. ultralytics/utils/triton.py +2 -1
  233. ultralytics/utils/tuner.py +21 -12
  234. ultralytics-8.3.63.dist-info/METADATA +370 -0
  235. ultralytics-8.3.63.dist-info/RECORD +241 -0
  236. {ultralytics-8.1.29.dist-info → ultralytics-8.3.63.dist-info}/WHEEL +1 -1
  237. ultralytics/data/explorer/__init__.py +0 -5
  238. ultralytics/data/explorer/explorer.py +0 -472
  239. ultralytics/data/explorer/gui/__init__.py +0 -1
  240. ultralytics/data/explorer/gui/dash.py +0 -268
  241. ultralytics/data/explorer/utils.py +0 -166
  242. ultralytics/models/fastsam/prompt.py +0 -357
  243. ultralytics-8.1.29.dist-info/METADATA +0 -373
  244. ultralytics-8.1.29.dist-info/RECORD +0 -197
  245. {ultralytics-8.1.29.dist-info → ultralytics-8.3.63.dist-info}/LICENSE +0 -0
  246. {ultralytics-8.1.29.dist-info → ultralytics-8.3.63.dist-info}/entry_points.txt +0 -0
  247. {ultralytics-8.1.29.dist-info → ultralytics-8.3.63.dist-info}/top_level.txt +0 -0
@@ -1,22 +1,23 @@
1
- # Ultralytics YOLO 🚀, AGPL-3.0 license
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- from typing import List, Tuple, Type
3
+ from typing import List, Optional, Tuple, Type
4
4
 
5
5
  import torch
6
6
  from torch import nn
7
- from torch.nn import functional as F
8
7
 
9
- from ultralytics.nn.modules import LayerNorm2d
8
+ from ultralytics.nn.modules import MLP, LayerNorm2d
10
9
 
11
10
 
12
11
  class MaskDecoder(nn.Module):
13
12
  """
14
- Decoder module for generating masks and their associated quality scores, using a transformer architecture to predict
15
- masks given image and prompt embeddings.
13
+ Decoder module for generating masks and their associated quality scores using a transformer architecture.
14
+
15
+ This class predicts masks given image and prompt embeddings, utilizing a transformer to process the inputs and
16
+ generate mask predictions along with their quality scores.
16
17
 
17
18
  Attributes:
18
19
  transformer_dim (int): Channel dimension for the transformer module.
19
- transformer (nn.Module): The transformer module used for mask prediction.
20
+ transformer (nn.Module): Transformer module used for mask prediction.
20
21
  num_multimask_outputs (int): Number of masks to predict for disambiguating masks.
21
22
  iou_token (nn.Embedding): Embedding for the IoU token.
22
23
  num_mask_tokens (int): Number of mask tokens.
@@ -24,11 +25,21 @@ class MaskDecoder(nn.Module):
24
25
  output_upscaling (nn.Sequential): Neural network sequence for upscaling the output.
25
26
  output_hypernetworks_mlps (nn.ModuleList): Hypernetwork MLPs for generating masks.
26
27
  iou_prediction_head (nn.Module): MLP for predicting mask quality.
28
+
29
+ Methods:
30
+ forward: Predicts masks given image and prompt embeddings.
31
+ predict_masks: Internal method for mask prediction.
32
+
33
+ Examples:
34
+ >>> decoder = MaskDecoder(transformer_dim=256, transformer=transformer_module)
35
+ >>> masks, iou_pred = decoder(
36
+ ... image_embeddings, image_pe, sparse_prompt_embeddings, dense_prompt_embeddings, multimask_output=True
37
+ ... )
38
+ >>> print(f"Predicted masks shape: {masks.shape}, IoU predictions shape: {iou_pred.shape}")
27
39
  """
28
40
 
29
41
  def __init__(
30
42
  self,
31
- *,
32
43
  transformer_dim: int,
33
44
  transformer: nn.Module,
34
45
  num_multimask_outputs: int = 3,
@@ -37,15 +48,20 @@ class MaskDecoder(nn.Module):
37
48
  iou_head_hidden_dim: int = 256,
38
49
  ) -> None:
39
50
  """
40
- Predicts masks given an image and prompt embeddings, using a transformer architecture.
51
+ Initializes the MaskDecoder module for generating masks and their quality scores.
41
52
 
42
53
  Args:
43
- transformer_dim (int): the channel dimension of the transformer module
44
- transformer (nn.Module): the transformer used to predict masks
45
- num_multimask_outputs (int): the number of masks to predict when disambiguating masks
46
- activation (nn.Module): the type of activation to use when upscaling masks
47
- iou_head_depth (int): the depth of the MLP used to predict mask quality
48
- iou_head_hidden_dim (int): the hidden dimension of the MLP used to predict mask quality
54
+ transformer_dim (int): Channel dimension for the transformer module.
55
+ transformer (nn.Module): Transformer module used for mask prediction.
56
+ num_multimask_outputs (int): Number of masks to predict for disambiguating masks.
57
+ activation (Type[nn.Module]): Type of activation to use when upscaling masks.
58
+ iou_head_depth (int): Depth of the MLP used to predict mask quality.
59
+ iou_head_hidden_dim (int): Hidden dimension of the MLP used to predict mask quality.
60
+
61
+ Examples:
62
+ >>> transformer = nn.TransformerEncoder(nn.TransformerEncoderLayer(d_model=256, nhead=8), num_layers=6)
63
+ >>> decoder = MaskDecoder(transformer_dim=256, transformer=transformer)
64
+ >>> print(decoder)
49
65
  """
50
66
  super().__init__()
51
67
  self.transformer_dim = transformer_dim
@@ -79,18 +95,28 @@ class MaskDecoder(nn.Module):
79
95
  multimask_output: bool,
80
96
  ) -> Tuple[torch.Tensor, torch.Tensor]:
81
97
  """
82
- Predict masks given image and prompt embeddings.
98
+ Predicts masks given image and prompt embeddings.
83
99
 
84
100
  Args:
85
- image_embeddings (torch.Tensor): the embeddings from the image encoder
86
- image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
87
- sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
88
- dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
101
+ image_embeddings (torch.Tensor): Embeddings from the image encoder.
102
+ image_pe (torch.Tensor): Positional encoding with the shape of image_embeddings.
103
+ sparse_prompt_embeddings (torch.Tensor): Embeddings of the points and boxes.
104
+ dense_prompt_embeddings (torch.Tensor): Embeddings of the mask inputs.
89
105
  multimask_output (bool): Whether to return multiple masks or a single mask.
90
106
 
91
107
  Returns:
92
- torch.Tensor: batched predicted masks
93
- torch.Tensor: batched predictions of mask quality
108
+ (Tuple[torch.Tensor, torch.Tensor]): A tuple containing:
109
+ - masks (torch.Tensor): Batched predicted masks.
110
+ - iou_pred (torch.Tensor): Batched predictions of mask quality.
111
+
112
+ Examples:
113
+ >>> decoder = MaskDecoder(transformer_dim=256, transformer=transformer_module)
114
+ >>> image_emb = torch.rand(1, 256, 64, 64)
115
+ >>> image_pe = torch.rand(1, 256, 64, 64)
116
+ >>> sparse_emb = torch.rand(1, 2, 256)
117
+ >>> dense_emb = torch.rand(1, 256, 64, 64)
118
+ >>> masks, iou_pred = decoder(image_emb, image_pe, sparse_emb, dense_emb, multimask_output=True)
119
+ >>> print(f"Masks shape: {masks.shape}, IoU predictions shape: {iou_pred.shape}")
94
120
  """
95
121
  masks, iou_pred = self.predict_masks(
96
122
  image_embeddings=image_embeddings,
@@ -114,11 +140,7 @@ class MaskDecoder(nn.Module):
114
140
  sparse_prompt_embeddings: torch.Tensor,
115
141
  dense_prompt_embeddings: torch.Tensor,
116
142
  ) -> Tuple[torch.Tensor, torch.Tensor]:
117
- """
118
- Predicts masks.
119
-
120
- See 'forward' for more details.
121
- """
143
+ """Predicts masks and quality scores using image and prompt embeddings via transformer architecture."""
122
144
  # Concatenate output tokens
123
145
  output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
124
146
  output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.shape[0], -1, -1)
@@ -151,40 +173,346 @@ class MaskDecoder(nn.Module):
151
173
  return masks, iou_pred
152
174
 
153
175
 
154
- class MLP(nn.Module):
176
+ class SAM2MaskDecoder(nn.Module):
155
177
  """
156
- MLP (Multi-Layer Perceptron) model lightly adapted from
157
- https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py
178
+ Transformer-based decoder for predicting instance segmentation masks from image and prompt embeddings.
179
+
180
+ This class extends the functionality of the MaskDecoder, incorporating additional features such as
181
+ high-resolution feature processing, dynamic multimask output, and object score prediction.
182
+
183
+ Attributes:
184
+ transformer_dim (int): Channel dimension of the transformer.
185
+ transformer (nn.Module): Transformer used to predict masks.
186
+ num_multimask_outputs (int): Number of masks to predict when disambiguating masks.
187
+ iou_token (nn.Embedding): Embedding for IOU token.
188
+ num_mask_tokens (int): Total number of mask tokens.
189
+ mask_tokens (nn.Embedding): Embedding for mask tokens.
190
+ pred_obj_scores (bool): Whether to predict object scores.
191
+ obj_score_token (nn.Embedding): Embedding for object score token.
192
+ use_multimask_token_for_obj_ptr (bool): Whether to use multimask token for object pointer.
193
+ output_upscaling (nn.Sequential): Upscaling layers for output.
194
+ use_high_res_features (bool): Whether to use high-resolution features.
195
+ conv_s0 (nn.Conv2d): Convolutional layer for high-resolution features (s0).
196
+ conv_s1 (nn.Conv2d): Convolutional layer for high-resolution features (s1).
197
+ output_hypernetworks_mlps (nn.ModuleList): List of MLPs for output hypernetworks.
198
+ iou_prediction_head (MLP): MLP for IOU prediction.
199
+ pred_obj_score_head (nn.Linear | MLP): Linear layer or MLP for object score prediction.
200
+ dynamic_multimask_via_stability (bool): Whether to use dynamic multimask via stability.
201
+ dynamic_multimask_stability_delta (float): Delta value for dynamic multimask stability.
202
+ dynamic_multimask_stability_thresh (float): Threshold for dynamic multimask stability.
203
+
204
+ Methods:
205
+ forward: Predicts masks given image and prompt embeddings.
206
+ predict_masks: Predicts instance segmentation masks from image and prompt embeddings.
207
+ _get_stability_scores: Computes mask stability scores based on IoU between thresholds.
208
+ _dynamic_multimask_via_stability: Dynamically selects the most stable mask output.
209
+
210
+ Examples:
211
+ >>> image_embeddings = torch.rand(1, 256, 64, 64)
212
+ >>> image_pe = torch.rand(1, 256, 64, 64)
213
+ >>> sparse_prompt_embeddings = torch.rand(1, 2, 256)
214
+ >>> dense_prompt_embeddings = torch.rand(1, 256, 64, 64)
215
+ >>> decoder = SAM2MaskDecoder(256, transformer)
216
+ >>> masks, iou_pred, sam_tokens_out, obj_score_logits = decoder.forward(
217
+ ... image_embeddings, image_pe, sparse_prompt_embeddings, dense_prompt_embeddings, True, False
218
+ ... )
158
219
  """
159
220
 
160
221
  def __init__(
161
222
  self,
162
- input_dim: int,
163
- hidden_dim: int,
164
- output_dim: int,
165
- num_layers: int,
166
- sigmoid_output: bool = False,
223
+ transformer_dim: int,
224
+ transformer: nn.Module,
225
+ num_multimask_outputs: int = 3,
226
+ activation: Type[nn.Module] = nn.GELU,
227
+ iou_head_depth: int = 3,
228
+ iou_head_hidden_dim: int = 256,
229
+ use_high_res_features: bool = False,
230
+ iou_prediction_use_sigmoid=False,
231
+ dynamic_multimask_via_stability=False,
232
+ dynamic_multimask_stability_delta=0.05,
233
+ dynamic_multimask_stability_thresh=0.98,
234
+ pred_obj_scores: bool = False,
235
+ pred_obj_scores_mlp: bool = False,
236
+ use_multimask_token_for_obj_ptr: bool = False,
167
237
  ) -> None:
168
238
  """
169
- Initializes the MLP (Multi-Layer Perceptron) model.
239
+ Initializes the SAM2MaskDecoder module for predicting instance segmentation masks.
240
+
241
+ This decoder extends the functionality of MaskDecoder, incorporating additional features such as
242
+ high-resolution feature processing, dynamic multimask output, and object score prediction.
170
243
 
171
244
  Args:
172
- input_dim (int): The dimensionality of the input features.
173
- hidden_dim (int): The dimensionality of the hidden layers.
174
- output_dim (int): The dimensionality of the output layer.
175
- num_layers (int): The number of hidden layers.
176
- sigmoid_output (bool, optional): Apply a sigmoid activation to the output layer. Defaults to False.
245
+ transformer_dim (int): Channel dimension of the transformer.
246
+ transformer (nn.Module): Transformer used to predict masks.
247
+ num_multimask_outputs (int): Number of masks to predict when disambiguating masks.
248
+ activation (Type[nn.Module]): Type of activation to use when upscaling masks.
249
+ iou_head_depth (int): Depth of the MLP used to predict mask quality.
250
+ iou_head_hidden_dim (int): Hidden dimension of the MLP used to predict mask quality.
251
+ use_high_res_features (bool): Whether to use high-resolution features.
252
+ iou_prediction_use_sigmoid (bool): Whether to use sigmoid for IOU prediction.
253
+ dynamic_multimask_via_stability (bool): Whether to use dynamic multimask via stability.
254
+ dynamic_multimask_stability_delta (float): Delta value for dynamic multimask stability.
255
+ dynamic_multimask_stability_thresh (float): Threshold for dynamic multimask stability.
256
+ pred_obj_scores (bool): Whether to predict object scores.
257
+ pred_obj_scores_mlp (bool): Whether to use MLP for object score prediction.
258
+ use_multimask_token_for_obj_ptr (bool): Whether to use multimask token for object pointer.
259
+
260
+ Examples:
261
+ >>> transformer = nn.TransformerEncoder(nn.TransformerEncoderLayer(d_model=256, nhead=8), num_layers=6)
262
+ >>> decoder = SAM2MaskDecoder(transformer_dim=256, transformer=transformer)
263
+ >>> print(decoder)
177
264
  """
178
265
  super().__init__()
179
- self.num_layers = num_layers
180
- h = [hidden_dim] * (num_layers - 1)
181
- self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
182
- self.sigmoid_output = sigmoid_output
183
-
184
- def forward(self, x):
185
- """Executes feedforward within the neural network module and applies activation."""
186
- for i, layer in enumerate(self.layers):
187
- x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
188
- if self.sigmoid_output:
189
- x = torch.sigmoid(x)
190
- return x
266
+ self.transformer_dim = transformer_dim
267
+ self.transformer = transformer
268
+
269
+ self.num_multimask_outputs = num_multimask_outputs
270
+
271
+ self.iou_token = nn.Embedding(1, transformer_dim)
272
+ self.num_mask_tokens = num_multimask_outputs + 1
273
+ self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
274
+
275
+ self.pred_obj_scores = pred_obj_scores
276
+ if self.pred_obj_scores:
277
+ self.obj_score_token = nn.Embedding(1, transformer_dim)
278
+ self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
279
+
280
+ self.output_upscaling = nn.Sequential(
281
+ nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
282
+ LayerNorm2d(transformer_dim // 4),
283
+ activation(),
284
+ nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
285
+ activation(),
286
+ )
287
+ self.use_high_res_features = use_high_res_features
288
+ if use_high_res_features:
289
+ self.conv_s0 = nn.Conv2d(transformer_dim, transformer_dim // 8, kernel_size=1, stride=1)
290
+ self.conv_s1 = nn.Conv2d(transformer_dim, transformer_dim // 4, kernel_size=1, stride=1)
291
+
292
+ self.output_hypernetworks_mlps = nn.ModuleList(
293
+ [MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for _ in range(self.num_mask_tokens)]
294
+ )
295
+
296
+ self.iou_prediction_head = MLP(
297
+ transformer_dim,
298
+ iou_head_hidden_dim,
299
+ self.num_mask_tokens,
300
+ iou_head_depth,
301
+ sigmoid=iou_prediction_use_sigmoid,
302
+ )
303
+ if self.pred_obj_scores:
304
+ self.pred_obj_score_head = nn.Linear(transformer_dim, 1)
305
+ if pred_obj_scores_mlp:
306
+ self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3)
307
+
308
+ # When outputting a single mask, optionally we can dynamically fall back to the best
309
+ # multimask output token if the single mask output token gives low stability scores.
310
+ self.dynamic_multimask_via_stability = dynamic_multimask_via_stability
311
+ self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta
312
+ self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh
313
+
314
+ def forward(
315
+ self,
316
+ image_embeddings: torch.Tensor,
317
+ image_pe: torch.Tensor,
318
+ sparse_prompt_embeddings: torch.Tensor,
319
+ dense_prompt_embeddings: torch.Tensor,
320
+ multimask_output: bool,
321
+ repeat_image: bool,
322
+ high_res_features: Optional[List[torch.Tensor]] = None,
323
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
324
+ """
325
+ Predicts masks given image and prompt embeddings.
326
+
327
+ Args:
328
+ image_embeddings (torch.Tensor): Embeddings from the image encoder with shape (B, C, H, W).
329
+ image_pe (torch.Tensor): Positional encoding with the shape of image_embeddings (B, C, H, W).
330
+ sparse_prompt_embeddings (torch.Tensor): Embeddings of the points and boxes with shape (B, N, C).
331
+ dense_prompt_embeddings (torch.Tensor): Embeddings of the mask inputs with shape (B, C, H, W).
332
+ multimask_output (bool): Whether to return multiple masks or a single mask.
333
+ repeat_image (bool): Flag to repeat the image embeddings.
334
+ high_res_features (List[torch.Tensor] | None): Optional high-resolution features.
335
+
336
+ Returns:
337
+ (Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]): A tuple containing:
338
+ - masks (torch.Tensor): Batched predicted masks with shape (B, N, H, W).
339
+ - iou_pred (torch.Tensor): Batched predictions of mask quality with shape (B, N).
340
+ - sam_tokens_out (torch.Tensor): Batched SAM token for mask output with shape (B, N, C).
341
+ - object_score_logits (torch.Tensor): Batched object score logits with shape (B, 1).
342
+
343
+ Examples:
344
+ >>> image_embeddings = torch.rand(1, 256, 64, 64)
345
+ >>> image_pe = torch.rand(1, 256, 64, 64)
346
+ >>> sparse_prompt_embeddings = torch.rand(1, 2, 256)
347
+ >>> dense_prompt_embeddings = torch.rand(1, 256, 64, 64)
348
+ >>> decoder = SAM2MaskDecoder(256, transformer)
349
+ >>> masks, iou_pred, sam_tokens_out, obj_score_logits = decoder.forward(
350
+ ... image_embeddings, image_pe, sparse_prompt_embeddings, dense_prompt_embeddings, True, False
351
+ ... )
352
+ """
353
+ masks, iou_pred, mask_tokens_out, object_score_logits = self.predict_masks(
354
+ image_embeddings=image_embeddings,
355
+ image_pe=image_pe,
356
+ sparse_prompt_embeddings=sparse_prompt_embeddings,
357
+ dense_prompt_embeddings=dense_prompt_embeddings,
358
+ repeat_image=repeat_image,
359
+ high_res_features=high_res_features,
360
+ )
361
+
362
+ # Select the correct mask or masks for output
363
+ if multimask_output:
364
+ masks = masks[:, 1:, :, :]
365
+ iou_pred = iou_pred[:, 1:]
366
+ elif self.dynamic_multimask_via_stability and not self.training:
367
+ masks, iou_pred = self._dynamic_multimask_via_stability(masks, iou_pred)
368
+ else:
369
+ masks = masks[:, 0:1, :, :]
370
+ iou_pred = iou_pred[:, 0:1]
371
+
372
+ if multimask_output and self.use_multimask_token_for_obj_ptr:
373
+ sam_tokens_out = mask_tokens_out[:, 1:] # [b, 3, c] shape
374
+ else:
375
+ # Take the mask output token. Here we *always* use the token for single mask output.
376
+ # At test time, even if we track after 1-click (and using multimask_output=True),
377
+ # we still take the single mask token here. The rationale is that we always track
378
+ # after multiple clicks during training, so the past tokens seen during training
379
+ # are always the single mask token (and we'll let it be the object-memory token).
380
+ sam_tokens_out = mask_tokens_out[:, 0:1] # [b, 1, c] shape
381
+
382
+ # Prepare output
383
+ return masks, iou_pred, sam_tokens_out, object_score_logits
384
+
385
+ def predict_masks(
386
+ self,
387
+ image_embeddings: torch.Tensor,
388
+ image_pe: torch.Tensor,
389
+ sparse_prompt_embeddings: torch.Tensor,
390
+ dense_prompt_embeddings: torch.Tensor,
391
+ repeat_image: bool,
392
+ high_res_features: Optional[List[torch.Tensor]] = None,
393
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
394
+ """Predicts instance segmentation masks from image and prompt embeddings using a transformer."""
395
+ # Concatenate output tokens
396
+ s = 0
397
+ if self.pred_obj_scores:
398
+ output_tokens = torch.cat(
399
+ [
400
+ self.obj_score_token.weight,
401
+ self.iou_token.weight,
402
+ self.mask_tokens.weight,
403
+ ],
404
+ dim=0,
405
+ )
406
+ s = 1
407
+ else:
408
+ output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
409
+ output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
410
+ tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
411
+
412
+ # Expand per-image data in batch direction to be per-mask
413
+ if repeat_image:
414
+ src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
415
+ else:
416
+ assert image_embeddings.shape[0] == tokens.shape[0]
417
+ src = image_embeddings
418
+ src = src + dense_prompt_embeddings
419
+ assert image_pe.size(0) == 1, "image_pe should have size 1 in batch dim (from `get_dense_pe()`)"
420
+ pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
421
+ b, c, h, w = src.shape
422
+
423
+ # Run the transformer
424
+ hs, src = self.transformer(src, pos_src, tokens)
425
+ iou_token_out = hs[:, s, :]
426
+ mask_tokens_out = hs[:, s + 1 : (s + 1 + self.num_mask_tokens), :]
427
+
428
+ # Upscale mask embeddings and predict masks using the mask tokens
429
+ src = src.transpose(1, 2).view(b, c, h, w)
430
+ if not self.use_high_res_features:
431
+ upscaled_embedding = self.output_upscaling(src)
432
+ else:
433
+ dc1, ln1, act1, dc2, act2 = self.output_upscaling
434
+ feat_s0, feat_s1 = high_res_features
435
+ upscaled_embedding = act1(ln1(dc1(src) + feat_s1))
436
+ upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0)
437
+
438
+ hyper_in_list: List[torch.Tensor] = [
439
+ self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) for i in range(self.num_mask_tokens)
440
+ ]
441
+ hyper_in = torch.stack(hyper_in_list, dim=1)
442
+ b, c, h, w = upscaled_embedding.shape
443
+ masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
444
+
445
+ # Generate mask quality predictions
446
+ iou_pred = self.iou_prediction_head(iou_token_out)
447
+ if self.pred_obj_scores:
448
+ assert s == 1
449
+ object_score_logits = self.pred_obj_score_head(hs[:, 0, :])
450
+ else:
451
+ # Obj scores logits - default to 10.0, i.e. assuming the object is present, sigmoid(10)=1
452
+ object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1)
453
+
454
+ return masks, iou_pred, mask_tokens_out, object_score_logits
455
+
456
+ def _get_stability_scores(self, mask_logits):
457
+ """Computes mask stability scores based on IoU between upper and lower thresholds."""
458
+ mask_logits = mask_logits.flatten(-2)
459
+ stability_delta = self.dynamic_multimask_stability_delta
460
+ area_i = torch.sum(mask_logits > stability_delta, dim=-1).float()
461
+ area_u = torch.sum(mask_logits > -stability_delta, dim=-1).float()
462
+ return torch.where(area_u > 0, area_i / area_u, 1.0)
463
+
464
+ def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores):
465
+ """
466
+ Dynamically selects the most stable mask output based on stability scores and IoU predictions.
467
+
468
+ This method is used when outputting a single mask. If the stability score from the current single-mask
469
+ output (based on output token 0) falls below a threshold, it instead selects from multi-mask outputs
470
+ (based on output tokens 1-3) the mask with the highest predicted IoU score. This ensures a valid mask
471
+ for both clicking and tracking scenarios.
472
+
473
+ Args:
474
+ all_mask_logits (torch.Tensor): Logits for all predicted masks, shape (B, N, H, W) where B is
475
+ batch size, N is number of masks (typically 4), and H, W are mask dimensions.
476
+ all_iou_scores (torch.Tensor): Predicted IoU scores for all masks, shape (B, N).
477
+
478
+ Returns:
479
+ (Tuple[torch.Tensor, torch.Tensor]):
480
+ - mask_logits_out (torch.Tensor): Selected mask logits, shape (B, 1, H, W).
481
+ - iou_scores_out (torch.Tensor): Selected IoU scores, shape (B, 1).
482
+
483
+ Examples:
484
+ >>> decoder = SAM2MaskDecoder(...)
485
+ >>> all_mask_logits = torch.rand(2, 4, 256, 256) # 2 images, 4 masks each
486
+ >>> all_iou_scores = torch.rand(2, 4)
487
+ >>> mask_logits, iou_scores = decoder._dynamic_multimask_via_stability(all_mask_logits, all_iou_scores)
488
+ >>> print(mask_logits.shape, iou_scores.shape)
489
+ torch.Size([2, 1, 256, 256]) torch.Size([2, 1])
490
+ """
491
+ # The best mask from multimask output tokens (1~3)
492
+ multimask_logits = all_mask_logits[:, 1:, :, :]
493
+ multimask_iou_scores = all_iou_scores[:, 1:]
494
+ best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1)
495
+ batch_inds = torch.arange(multimask_iou_scores.size(0), device=all_iou_scores.device)
496
+ best_multimask_logits = multimask_logits[batch_inds, best_scores_inds]
497
+ best_multimask_logits = best_multimask_logits.unsqueeze(1)
498
+ best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds]
499
+ best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1)
500
+
501
+ # The mask from singlemask output token 0 and its stability score
502
+ singlemask_logits = all_mask_logits[:, 0:1, :, :]
503
+ singlemask_iou_scores = all_iou_scores[:, 0:1]
504
+ stability_scores = self._get_stability_scores(singlemask_logits)
505
+ is_stable = stability_scores >= self.dynamic_multimask_stability_thresh
506
+
507
+ # Dynamically fall back to best multimask output upon low stability scores.
508
+ mask_logits_out = torch.where(
509
+ is_stable[..., None, None].expand_as(singlemask_logits),
510
+ singlemask_logits,
511
+ best_multimask_logits,
512
+ )
513
+ iou_scores_out = torch.where(
514
+ is_stable.expand_as(singlemask_iou_scores),
515
+ singlemask_iou_scores,
516
+ best_multimask_iou_scores,
517
+ )
518
+ return mask_logits_out, iou_scores_out