ultralytics 8.1.28__py3-none-any.whl → 8.3.62__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (247) hide show
  1. tests/__init__.py +22 -0
  2. tests/conftest.py +83 -0
  3. tests/test_cli.py +122 -0
  4. tests/test_cuda.py +155 -0
  5. tests/test_engine.py +131 -0
  6. tests/test_exports.py +216 -0
  7. tests/test_integrations.py +150 -0
  8. tests/test_python.py +615 -0
  9. tests/test_solutions.py +94 -0
  10. ultralytics/__init__.py +11 -8
  11. ultralytics/cfg/__init__.py +569 -131
  12. ultralytics/cfg/datasets/Argoverse.yaml +2 -1
  13. ultralytics/cfg/datasets/DOTAv1.5.yaml +3 -2
  14. ultralytics/cfg/datasets/DOTAv1.yaml +3 -2
  15. ultralytics/cfg/datasets/GlobalWheat2020.yaml +3 -2
  16. ultralytics/cfg/datasets/ImageNet.yaml +2 -1
  17. ultralytics/cfg/datasets/Objects365.yaml +5 -4
  18. ultralytics/cfg/datasets/SKU-110K.yaml +2 -1
  19. ultralytics/cfg/datasets/VOC.yaml +3 -2
  20. ultralytics/cfg/datasets/VisDrone.yaml +6 -5
  21. ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
  22. ultralytics/cfg/datasets/brain-tumor.yaml +23 -0
  23. ultralytics/cfg/datasets/carparts-seg.yaml +3 -2
  24. ultralytics/cfg/datasets/coco-pose.yaml +7 -6
  25. ultralytics/cfg/datasets/coco.yaml +3 -2
  26. ultralytics/cfg/datasets/coco128-seg.yaml +4 -3
  27. ultralytics/cfg/datasets/coco128.yaml +4 -3
  28. ultralytics/cfg/datasets/coco8-pose.yaml +3 -2
  29. ultralytics/cfg/datasets/coco8-seg.yaml +3 -2
  30. ultralytics/cfg/datasets/coco8.yaml +3 -2
  31. ultralytics/cfg/datasets/crack-seg.yaml +3 -2
  32. ultralytics/cfg/datasets/dog-pose.yaml +24 -0
  33. ultralytics/cfg/datasets/dota8.yaml +3 -2
  34. ultralytics/cfg/datasets/hand-keypoints.yaml +26 -0
  35. ultralytics/cfg/datasets/lvis.yaml +1236 -0
  36. ultralytics/cfg/datasets/medical-pills.yaml +22 -0
  37. ultralytics/cfg/datasets/open-images-v7.yaml +2 -1
  38. ultralytics/cfg/datasets/package-seg.yaml +5 -4
  39. ultralytics/cfg/datasets/signature.yaml +21 -0
  40. ultralytics/cfg/datasets/tiger-pose.yaml +3 -2
  41. ultralytics/cfg/datasets/xView.yaml +2 -1
  42. ultralytics/cfg/default.yaml +14 -11
  43. ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +24 -0
  44. ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
  45. ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
  46. ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
  47. ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
  48. ultralytics/cfg/models/11/yolo11.yaml +50 -0
  49. ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +5 -2
  50. ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +5 -2
  51. ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +5 -2
  52. ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +5 -2
  53. ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
  54. ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
  55. ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
  56. ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
  57. ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
  58. ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
  59. ultralytics/cfg/models/v3/yolov3-spp.yaml +5 -2
  60. ultralytics/cfg/models/v3/yolov3-tiny.yaml +5 -2
  61. ultralytics/cfg/models/v3/yolov3.yaml +5 -2
  62. ultralytics/cfg/models/v5/yolov5-p6.yaml +5 -2
  63. ultralytics/cfg/models/v5/yolov5.yaml +5 -2
  64. ultralytics/cfg/models/v6/yolov6.yaml +5 -2
  65. ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +5 -2
  66. ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +5 -2
  67. ultralytics/cfg/models/v8/yolov8-cls.yaml +5 -2
  68. ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +6 -2
  69. ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +6 -2
  70. ultralytics/cfg/models/v8/yolov8-ghost.yaml +5 -2
  71. ultralytics/cfg/models/v8/yolov8-obb.yaml +5 -2
  72. ultralytics/cfg/models/v8/yolov8-p2.yaml +5 -2
  73. ultralytics/cfg/models/v8/yolov8-p6.yaml +10 -7
  74. ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +5 -2
  75. ultralytics/cfg/models/v8/yolov8-pose.yaml +5 -2
  76. ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +5 -2
  77. ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +5 -2
  78. ultralytics/cfg/models/v8/yolov8-seg.yaml +5 -2
  79. ultralytics/cfg/models/v8/yolov8-world.yaml +5 -2
  80. ultralytics/cfg/models/v8/yolov8-worldv2.yaml +5 -2
  81. ultralytics/cfg/models/v8/yolov8.yaml +5 -2
  82. ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
  83. ultralytics/cfg/models/v9/yolov9c.yaml +30 -25
  84. ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
  85. ultralytics/cfg/models/v9/yolov9e.yaml +46 -42
  86. ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
  87. ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
  88. ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
  89. ultralytics/cfg/solutions/default.yaml +24 -0
  90. ultralytics/cfg/trackers/botsort.yaml +8 -5
  91. ultralytics/cfg/trackers/bytetrack.yaml +8 -5
  92. ultralytics/data/__init__.py +14 -3
  93. ultralytics/data/annotator.py +37 -15
  94. ultralytics/data/augment.py +1783 -289
  95. ultralytics/data/base.py +62 -27
  96. ultralytics/data/build.py +36 -8
  97. ultralytics/data/converter.py +196 -36
  98. ultralytics/data/dataset.py +233 -94
  99. ultralytics/data/loaders.py +199 -96
  100. ultralytics/data/split_dota.py +39 -29
  101. ultralytics/data/utils.py +110 -40
  102. ultralytics/engine/__init__.py +1 -1
  103. ultralytics/engine/exporter.py +569 -242
  104. ultralytics/engine/model.py +604 -252
  105. ultralytics/engine/predictor.py +22 -11
  106. ultralytics/engine/results.py +1228 -218
  107. ultralytics/engine/trainer.py +190 -129
  108. ultralytics/engine/tuner.py +18 -18
  109. ultralytics/engine/validator.py +18 -15
  110. ultralytics/hub/__init__.py +31 -13
  111. ultralytics/hub/auth.py +11 -7
  112. ultralytics/hub/google/__init__.py +159 -0
  113. ultralytics/hub/session.py +128 -94
  114. ultralytics/hub/utils.py +20 -21
  115. ultralytics/models/__init__.py +4 -2
  116. ultralytics/models/fastsam/__init__.py +2 -3
  117. ultralytics/models/fastsam/model.py +26 -4
  118. ultralytics/models/fastsam/predict.py +127 -63
  119. ultralytics/models/fastsam/utils.py +1 -44
  120. ultralytics/models/fastsam/val.py +1 -1
  121. ultralytics/models/nas/__init__.py +1 -1
  122. ultralytics/models/nas/model.py +21 -10
  123. ultralytics/models/nas/predict.py +3 -6
  124. ultralytics/models/nas/val.py +4 -4
  125. ultralytics/models/rtdetr/__init__.py +1 -1
  126. ultralytics/models/rtdetr/model.py +1 -1
  127. ultralytics/models/rtdetr/predict.py +6 -8
  128. ultralytics/models/rtdetr/train.py +6 -2
  129. ultralytics/models/rtdetr/val.py +3 -3
  130. ultralytics/models/sam/__init__.py +3 -3
  131. ultralytics/models/sam/amg.py +29 -23
  132. ultralytics/models/sam/build.py +211 -13
  133. ultralytics/models/sam/model.py +91 -30
  134. ultralytics/models/sam/modules/__init__.py +1 -1
  135. ultralytics/models/sam/modules/blocks.py +1129 -0
  136. ultralytics/models/sam/modules/decoders.py +381 -53
  137. ultralytics/models/sam/modules/encoders.py +515 -324
  138. ultralytics/models/sam/modules/memory_attention.py +237 -0
  139. ultralytics/models/sam/modules/sam.py +969 -21
  140. ultralytics/models/sam/modules/tiny_encoder.py +425 -154
  141. ultralytics/models/sam/modules/transformer.py +159 -60
  142. ultralytics/models/sam/modules/utils.py +293 -0
  143. ultralytics/models/sam/predict.py +1263 -132
  144. ultralytics/models/utils/__init__.py +1 -1
  145. ultralytics/models/utils/loss.py +36 -24
  146. ultralytics/models/utils/ops.py +3 -7
  147. ultralytics/models/yolo/__init__.py +3 -3
  148. ultralytics/models/yolo/classify/__init__.py +1 -1
  149. ultralytics/models/yolo/classify/predict.py +7 -8
  150. ultralytics/models/yolo/classify/train.py +17 -22
  151. ultralytics/models/yolo/classify/val.py +8 -4
  152. ultralytics/models/yolo/detect/__init__.py +1 -1
  153. ultralytics/models/yolo/detect/predict.py +3 -5
  154. ultralytics/models/yolo/detect/train.py +11 -4
  155. ultralytics/models/yolo/detect/val.py +90 -52
  156. ultralytics/models/yolo/model.py +14 -9
  157. ultralytics/models/yolo/obb/__init__.py +1 -1
  158. ultralytics/models/yolo/obb/predict.py +2 -2
  159. ultralytics/models/yolo/obb/train.py +5 -3
  160. ultralytics/models/yolo/obb/val.py +41 -23
  161. ultralytics/models/yolo/pose/__init__.py +1 -1
  162. ultralytics/models/yolo/pose/predict.py +3 -5
  163. ultralytics/models/yolo/pose/train.py +2 -2
  164. ultralytics/models/yolo/pose/val.py +51 -17
  165. ultralytics/models/yolo/segment/__init__.py +1 -1
  166. ultralytics/models/yolo/segment/predict.py +3 -5
  167. ultralytics/models/yolo/segment/train.py +2 -2
  168. ultralytics/models/yolo/segment/val.py +60 -19
  169. ultralytics/models/yolo/world/__init__.py +5 -0
  170. ultralytics/models/yolo/world/train.py +92 -0
  171. ultralytics/models/yolo/world/train_world.py +109 -0
  172. ultralytics/nn/__init__.py +1 -1
  173. ultralytics/nn/autobackend.py +228 -93
  174. ultralytics/nn/modules/__init__.py +39 -14
  175. ultralytics/nn/modules/activation.py +21 -0
  176. ultralytics/nn/modules/block.py +527 -67
  177. ultralytics/nn/modules/conv.py +24 -7
  178. ultralytics/nn/modules/head.py +177 -34
  179. ultralytics/nn/modules/transformer.py +6 -5
  180. ultralytics/nn/modules/utils.py +1 -2
  181. ultralytics/nn/tasks.py +225 -77
  182. ultralytics/solutions/__init__.py +30 -1
  183. ultralytics/solutions/ai_gym.py +96 -143
  184. ultralytics/solutions/analytics.py +247 -0
  185. ultralytics/solutions/distance_calculation.py +78 -135
  186. ultralytics/solutions/heatmap.py +93 -247
  187. ultralytics/solutions/object_counter.py +184 -259
  188. ultralytics/solutions/parking_management.py +246 -0
  189. ultralytics/solutions/queue_management.py +112 -0
  190. ultralytics/solutions/region_counter.py +116 -0
  191. ultralytics/solutions/security_alarm.py +144 -0
  192. ultralytics/solutions/solutions.py +178 -0
  193. ultralytics/solutions/speed_estimation.py +86 -174
  194. ultralytics/solutions/streamlit_inference.py +190 -0
  195. ultralytics/solutions/trackzone.py +68 -0
  196. ultralytics/trackers/__init__.py +1 -1
  197. ultralytics/trackers/basetrack.py +32 -13
  198. ultralytics/trackers/bot_sort.py +61 -28
  199. ultralytics/trackers/byte_tracker.py +83 -51
  200. ultralytics/trackers/track.py +21 -6
  201. ultralytics/trackers/utils/__init__.py +1 -1
  202. ultralytics/trackers/utils/gmc.py +62 -48
  203. ultralytics/trackers/utils/kalman_filter.py +166 -35
  204. ultralytics/trackers/utils/matching.py +40 -21
  205. ultralytics/utils/__init__.py +511 -239
  206. ultralytics/utils/autobatch.py +40 -22
  207. ultralytics/utils/benchmarks.py +266 -85
  208. ultralytics/utils/callbacks/__init__.py +1 -1
  209. ultralytics/utils/callbacks/base.py +1 -3
  210. ultralytics/utils/callbacks/clearml.py +7 -6
  211. ultralytics/utils/callbacks/comet.py +39 -17
  212. ultralytics/utils/callbacks/dvc.py +1 -1
  213. ultralytics/utils/callbacks/hub.py +16 -16
  214. ultralytics/utils/callbacks/mlflow.py +28 -24
  215. ultralytics/utils/callbacks/neptune.py +6 -2
  216. ultralytics/utils/callbacks/raytune.py +3 -4
  217. ultralytics/utils/callbacks/tensorboard.py +18 -18
  218. ultralytics/utils/callbacks/wb.py +27 -20
  219. ultralytics/utils/checks.py +160 -100
  220. ultralytics/utils/dist.py +2 -1
  221. ultralytics/utils/downloads.py +44 -37
  222. ultralytics/utils/errors.py +1 -1
  223. ultralytics/utils/files.py +72 -38
  224. ultralytics/utils/instance.py +41 -19
  225. ultralytics/utils/loss.py +84 -56
  226. ultralytics/utils/metrics.py +61 -56
  227. ultralytics/utils/ops.py +94 -89
  228. ultralytics/utils/patches.py +30 -14
  229. ultralytics/utils/plotting.py +600 -269
  230. ultralytics/utils/tal.py +67 -26
  231. ultralytics/utils/torch_utils.py +302 -102
  232. ultralytics/utils/triton.py +2 -1
  233. ultralytics/utils/tuner.py +21 -12
  234. ultralytics-8.3.62.dist-info/METADATA +370 -0
  235. ultralytics-8.3.62.dist-info/RECORD +241 -0
  236. {ultralytics-8.1.28.dist-info → ultralytics-8.3.62.dist-info}/WHEEL +1 -1
  237. ultralytics/data/explorer/__init__.py +0 -5
  238. ultralytics/data/explorer/explorer.py +0 -472
  239. ultralytics/data/explorer/gui/__init__.py +0 -1
  240. ultralytics/data/explorer/gui/dash.py +0 -268
  241. ultralytics/data/explorer/utils.py +0 -166
  242. ultralytics/models/fastsam/prompt.py +0 -357
  243. ultralytics-8.1.28.dist-info/METADATA +0 -373
  244. ultralytics-8.1.28.dist-info/RECORD +0 -197
  245. {ultralytics-8.1.28.dist-info → ultralytics-8.3.62.dist-info}/LICENSE +0 -0
  246. {ultralytics-8.1.28.dist-info → ultralytics-8.3.62.dist-info}/entry_points.txt +0 -0
  247. {ultralytics-8.1.28.dist-info → ultralytics-8.3.62.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,4 @@
1
- # Ultralytics YOLO 🚀, AGPL-3.0 license
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
  """
3
3
  Generate predictions using the Segment Anything Model (SAM).
4
4
 
@@ -8,16 +8,18 @@ using SAM. It forms an integral part of the Ultralytics framework and is designe
8
8
  segmentation tasks.
9
9
  """
10
10
 
11
+ from collections import OrderedDict
12
+
11
13
  import numpy as np
12
14
  import torch
13
15
  import torch.nn.functional as F
14
- import torchvision
15
16
 
16
17
  from ultralytics.data.augment import LetterBox
17
18
  from ultralytics.engine.predictor import BasePredictor
18
19
  from ultralytics.engine.results import Results
19
20
  from ultralytics.utils import DEFAULT_CFG, ops
20
- from ultralytics.utils.torch_utils import select_device
21
+ from ultralytics.utils.torch_utils import select_device, smart_inference_mode
22
+
21
23
  from .amg import (
22
24
  batch_iterator,
23
25
  batched_mask_to_box,
@@ -34,39 +36,68 @@ from .build import build_sam
34
36
 
35
37
  class Predictor(BasePredictor):
36
38
  """
37
- Predictor class for the Segment Anything Model (SAM), extending BasePredictor.
39
+ Predictor class for SAM, enabling real-time image segmentation with promptable capabilities.
38
40
 
39
- The class provides an interface for model inference tailored to image segmentation tasks.
40
- With advanced architecture and promptable segmentation capabilities, it facilitates flexible and real-time
41
- mask generation. The class is capable of working with various types of prompts such as bounding boxes,
42
- points, and low-resolution masks.
41
+ This class extends BasePredictor and implements the Segment Anything Model (SAM) for advanced image
42
+ segmentation tasks. It supports various input prompts like points, bounding boxes, and masks for
43
+ fine-grained control over segmentation results.
43
44
 
44
45
  Attributes:
45
- cfg (dict): Configuration dictionary specifying model and task-related parameters.
46
- overrides (dict): Dictionary containing values that override the default configuration.
47
- _callbacks (dict): Dictionary of user-defined callback functions to augment behavior.
48
- args (namespace): Namespace to hold command-line arguments or other operational variables.
49
- im (torch.Tensor): Preprocessed input image tensor.
50
- features (torch.Tensor): Extracted image features used for inference.
51
- prompts (dict): Collection of various prompt types, such as bounding boxes and points.
52
- segment_all (bool): Flag to control whether to segment all objects in the image or only specified ones.
46
+ args (SimpleNamespace): Configuration arguments for the predictor.
47
+ model (torch.nn.Module): The loaded SAM model.
48
+ device (torch.device): The device (CPU or GPU) on which the model is loaded.
49
+ im (torch.Tensor): The preprocessed input image.
50
+ features (torch.Tensor): Extracted image features.
51
+ prompts (Dict): Dictionary to store various types of prompts (e.g., bboxes, points, masks).
52
+ segment_all (bool): Flag to indicate if full image segmentation should be performed.
53
+ mean (torch.Tensor): Mean values for image normalization.
54
+ std (torch.Tensor): Standard deviation values for image normalization.
55
+
56
+ Methods:
57
+ preprocess: Prepares input images for model inference.
58
+ pre_transform: Performs initial transformations on the input image.
59
+ inference: Performs segmentation inference based on input prompts.
60
+ prompt_inference: Internal function for prompt-based segmentation inference.
61
+ generate: Generates segmentation masks for an entire image.
62
+ setup_model: Initializes the SAM model for inference.
63
+ get_model: Builds and returns a SAM model.
64
+ postprocess: Post-processes model outputs to generate final results.
65
+ setup_source: Sets up the data source for inference.
66
+ set_image: Sets and preprocesses a single image for inference.
67
+ get_im_features: Extracts image features using the SAM image encoder.
68
+ set_prompts: Sets prompts for subsequent inference.
69
+ reset_image: Resets the current image and its features.
70
+ remove_small_regions: Removes small disconnected regions and holes from masks.
71
+
72
+ Examples:
73
+ >>> predictor = Predictor()
74
+ >>> predictor.setup_model(model_path="sam_model.pt")
75
+ >>> predictor.set_image("image.jpg")
76
+ >>> bboxes = [[100, 100, 200, 200]]
77
+ >>> results = predictor(bboxes=bboxes)
53
78
  """
54
79
 
55
80
  def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
56
81
  """
57
82
  Initialize the Predictor with configuration, overrides, and callbacks.
58
83
 
59
- The method sets up the Predictor object and applies any configuration overrides or callbacks provided. It
60
- initializes task-specific settings for SAM, such as retina_masks being set to True for optimal results.
84
+ Sets up the Predictor object for SAM (Segment Anything Model) and applies any configuration overrides or
85
+ callbacks provided. Initializes task-specific settings for SAM, such as retina_masks being set to True
86
+ for optimal results.
61
87
 
62
88
  Args:
63
- cfg (dict): Configuration dictionary.
64
- overrides (dict, optional): Dictionary of values to override default configuration.
65
- _callbacks (dict, optional): Dictionary of callback functions to customize behavior.
89
+ cfg (Dict): Configuration dictionary containing default settings.
90
+ overrides (Dict | None): Dictionary of values to override default configuration.
91
+ _callbacks (Dict | None): Dictionary of callback functions to customize behavior.
92
+
93
+ Examples:
94
+ >>> predictor_example = Predictor(cfg=DEFAULT_CFG)
95
+ >>> predictor_example_with_imgsz = Predictor(overrides={"imgsz": 640})
96
+ >>> predictor_example_with_callback = Predictor(_callbacks={"on_predict_start": custom_callback})
66
97
  """
67
98
  if overrides is None:
68
99
  overrides = {}
69
- overrides.update(dict(task="segment", mode="predict", imgsz=1024))
100
+ overrides.update(dict(task="segment", mode="predict", batch=1))
70
101
  super().__init__(cfg, overrides, _callbacks)
71
102
  self.args.retina_masks = True
72
103
  self.im = None
@@ -78,14 +109,19 @@ class Predictor(BasePredictor):
78
109
  """
79
110
  Preprocess the input image for model inference.
80
111
 
81
- The method prepares the input image by applying transformations and normalization.
82
- It supports both torch.Tensor and list of np.ndarray as input formats.
112
+ This method prepares the input image by applying transformations and normalization. It supports both
113
+ torch.Tensor and list of np.ndarray as input formats.
83
114
 
84
115
  Args:
85
- im (torch.Tensor | List[np.ndarray]): BCHW tensor format or list of HWC numpy arrays.
116
+ im (torch.Tensor | List[np.ndarray]): Input image(s) in BCHW tensor format or list of HWC numpy arrays.
86
117
 
87
118
  Returns:
88
- (torch.Tensor): The preprocessed image tensor.
119
+ im (torch.Tensor): The preprocessed image tensor, normalized and converted to the appropriate dtype.
120
+
121
+ Examples:
122
+ >>> predictor = Predictor()
123
+ >>> image = torch.rand(1, 3, 640, 640)
124
+ >>> preprocessed_image = predictor.preprocess(image)
89
125
  """
90
126
  if self.im is not None:
91
127
  return self.im
@@ -106,14 +142,24 @@ class Predictor(BasePredictor):
106
142
  """
107
143
  Perform initial transformations on the input image for preprocessing.
108
144
 
109
- The method applies transformations such as resizing to prepare the image for further preprocessing.
145
+ This method applies transformations such as resizing to prepare the image for further preprocessing.
110
146
  Currently, batched inference is not supported; hence the list length should be 1.
111
147
 
112
148
  Args:
113
- im (List[np.ndarray]): List containing images in HWC numpy array format.
149
+ im (List[np.ndarray]): List containing a single image in HWC numpy array format.
114
150
 
115
151
  Returns:
116
- (List[np.ndarray]): List of transformed images.
152
+ (List[np.ndarray]): List containing the transformed image.
153
+
154
+ Raises:
155
+ AssertionError: If the input list contains more than one image.
156
+
157
+ Examples:
158
+ >>> predictor = Predictor()
159
+ >>> image = np.random.rand(480, 640, 3) # Single HWC image
160
+ >>> transformed = predictor.pre_transform([image])
161
+ >>> print(len(transformed))
162
+ 1
117
163
  """
118
164
  assert len(im) == 1, "SAM model does not currently support batched inference"
119
165
  letterbox = LetterBox(self.args.imgsz, auto=False, center=False)
@@ -121,28 +167,37 @@ class Predictor(BasePredictor):
121
167
 
122
168
  def inference(self, im, bboxes=None, points=None, labels=None, masks=None, multimask_output=False, *args, **kwargs):
123
169
  """
124
- Perform image segmentation inference based on the given input cues, using the currently loaded image. This
125
- method leverages SAM's (Segment Anything Model) architecture consisting of image encoder, prompt encoder, and
126
- mask decoder for real-time and promptable segmentation tasks.
170
+ Perform image segmentation inference based on the given input cues, using the currently loaded image.
171
+
172
+ This method leverages SAM's (Segment Anything Model) architecture consisting of image encoder, prompt
173
+ encoder, and mask decoder for real-time and promptable segmentation tasks.
127
174
 
128
175
  Args:
129
176
  im (torch.Tensor): The preprocessed input image in tensor format, with shape (N, C, H, W).
130
- bboxes (np.ndarray | List, optional): Bounding boxes with shape (N, 4), in XYXY format.
131
- points (np.ndarray | List, optional): Points indicating object locations with shape (N, 2), in pixel coordinates.
132
- labels (np.ndarray | List, optional): Labels for point prompts, shape (N, ). 1 for foreground and 0 for background.
133
- masks (np.ndarray, optional): Low-resolution masks from previous predictions. Shape should be (N, H, W). For SAM, H=W=256.
134
- multimask_output (bool, optional): Flag to return multiple masks. Helpful for ambiguous prompts. Defaults to False.
177
+ bboxes (np.ndarray | List | None): Bounding boxes with shape (N, 4), in XYXY format.
178
+ points (np.ndarray | List | None): Points indicating object locations with shape (N, 2), in pixels.
179
+ labels (np.ndarray | List | None): Labels for point prompts, shape (N,). 1 = foreground, 0 = background.
180
+ masks (np.ndarray | None): Low-resolution masks from previous predictions, shape (N, H, W). For SAM H=W=256.
181
+ multimask_output (bool): Flag to return multiple masks. Helpful for ambiguous prompts.
182
+ *args (Any): Additional positional arguments.
183
+ **kwargs (Any): Additional keyword arguments.
135
184
 
136
185
  Returns:
137
- (tuple): Contains the following three elements.
138
- - np.ndarray: The output masks in shape CxHxW, where C is the number of generated masks.
139
- - np.ndarray: An array of length C containing quality scores predicted by the model for each mask.
140
- - np.ndarray: Low-resolution logits of shape CxHxW for subsequent inference, where H=W=256.
186
+ (np.ndarray): The output masks in shape (C, H, W), where C is the number of generated masks.
187
+ (np.ndarray): An array of length C containing quality scores predicted by the model for each mask.
188
+ (np.ndarray): Low-resolution logits of shape (C, H, W) for subsequent inference, where H=W=256.
189
+
190
+ Examples:
191
+ >>> predictor = Predictor()
192
+ >>> predictor.setup_model(model_path="sam_model.pt")
193
+ >>> predictor.set_image("image.jpg")
194
+ >>> results = predictor(bboxes=[[0, 0, 100, 100]])
141
195
  """
142
196
  # Override prompts if any stored in self.prompts
143
197
  bboxes = self.prompts.pop("bboxes", bboxes)
144
198
  points = self.prompts.pop("points", points)
145
199
  masks = self.prompts.pop("masks", masks)
200
+ labels = self.prompts.pop("labels", labels)
146
201
 
147
202
  if all(i is None for i in [bboxes, points, masks]):
148
203
  return self.generate(im, *args, **kwargs)
@@ -151,45 +206,35 @@ class Predictor(BasePredictor):
151
206
 
152
207
  def prompt_inference(self, im, bboxes=None, points=None, labels=None, masks=None, multimask_output=False):
153
208
  """
154
- Internal function for image segmentation inference based on cues like bounding boxes, points, and masks.
155
- Leverages SAM's specialized architecture for prompt-based, real-time segmentation.
209
+ Performs image segmentation inference based on input cues using SAM's specialized architecture.
210
+
211
+ This internal function leverages the Segment Anything Model (SAM) for prompt-based, real-time segmentation.
212
+ It processes various input prompts such as bounding boxes, points, and masks to generate segmentation masks.
156
213
 
157
214
  Args:
158
- im (torch.Tensor): The preprocessed input image in tensor format, with shape (N, C, H, W).
159
- bboxes (np.ndarray | List, optional): Bounding boxes with shape (N, 4), in XYXY format.
160
- points (np.ndarray | List, optional): Points indicating object locations with shape (N, 2), in pixel coordinates.
161
- labels (np.ndarray | List, optional): Labels for point prompts, shape (N, ). 1 for foreground and 0 for background.
162
- masks (np.ndarray, optional): Low-resolution masks from previous predictions. Shape should be (N, H, W). For SAM, H=W=256.
163
- multimask_output (bool, optional): Flag to return multiple masks. Helpful for ambiguous prompts. Defaults to False.
215
+ im (torch.Tensor): Preprocessed input image tensor with shape (N, C, H, W).
216
+ bboxes (np.ndarray | List | None): Bounding boxes in XYXY format with shape (N, 4).
217
+ points (np.ndarray | List | None): Points indicating object locations with shape (N, 2) or (N, num_points, 2), in pixels.
218
+ labels (np.ndarray | List | None): Point prompt labels with shape (N) or (N, num_points). 1 for foreground, 0 for background.
219
+ masks (np.ndarray | None): Low-res masks from previous predictions with shape (N, H, W). For SAM, H=W=256.
220
+ multimask_output (bool): Flag to return multiple masks for ambiguous prompts.
221
+
222
+ Raises:
223
+ AssertionError: If the number of points don't match the number of labels, in case labels were passed.
164
224
 
165
225
  Returns:
166
- (tuple): Contains the following three elements.
167
- - np.ndarray: The output masks in shape CxHxW, where C is the number of generated masks.
168
- - np.ndarray: An array of length C containing quality scores predicted by the model for each mask.
169
- - np.ndarray: Low-resolution logits of shape CxHxW for subsequent inference, where H=W=256.
226
+ (np.ndarray): Output masks with shape (C, H, W), where C is the number of generated masks.
227
+ (np.ndarray): Quality scores predicted by the model for each mask, with length C.
228
+
229
+ Examples:
230
+ >>> predictor = Predictor()
231
+ >>> im = torch.rand(1, 3, 1024, 1024)
232
+ >>> bboxes = [[100, 100, 200, 200]]
233
+ >>> masks, scores, logits = predictor.prompt_inference(im, bboxes=bboxes)
170
234
  """
171
- features = self.model.image_encoder(im) if self.features is None else self.features
172
-
173
- src_shape, dst_shape = self.batch[1][0].shape[:2], im.shape[2:]
174
- r = 1.0 if self.segment_all else min(dst_shape[0] / src_shape[0], dst_shape[1] / src_shape[1])
175
- # Transform input prompts
176
- if points is not None:
177
- points = torch.as_tensor(points, dtype=torch.float32, device=self.device)
178
- points = points[None] if points.ndim == 1 else points
179
- # Assuming labels are all positive if users don't pass labels.
180
- if labels is None:
181
- labels = np.ones(points.shape[0])
182
- labels = torch.as_tensor(labels, dtype=torch.int32, device=self.device)
183
- points *= r
184
- # (N, 2) --> (N, 1, 2), (N, ) --> (N, 1)
185
- points, labels = points[:, None, :], labels[:, None]
186
- if bboxes is not None:
187
- bboxes = torch.as_tensor(bboxes, dtype=torch.float32, device=self.device)
188
- bboxes = bboxes[None] if bboxes.ndim == 1 else bboxes
189
- bboxes *= r
190
- if masks is not None:
191
- masks = torch.as_tensor(masks, dtype=torch.float32, device=self.device).unsqueeze(1)
235
+ features = self.get_im_features(im) if self.features is None else self.features
192
236
 
237
+ bboxes, points, labels, masks = self._prepare_prompts(im.shape[2:], bboxes, points, labels, masks)
193
238
  points = (points, labels) if points is not None else None
194
239
  # Embed prompts
195
240
  sparse_embeddings, dense_embeddings = self.model.prompt_encoder(points=points, boxes=bboxes, masks=masks)
@@ -207,6 +252,48 @@ class Predictor(BasePredictor):
207
252
  # `d` could be 1 or 3 depends on `multimask_output`.
208
253
  return pred_masks.flatten(0, 1), pred_scores.flatten(0, 1)
209
254
 
255
+ def _prepare_prompts(self, dst_shape, bboxes=None, points=None, labels=None, masks=None):
256
+ """
257
+ Prepares and transforms the input prompts for processing based on the destination shape.
258
+
259
+ Args:
260
+ dst_shape (tuple): The target shape (height, width) for the prompts.
261
+ bboxes (np.ndarray | List | None): Bounding boxes in XYXY format with shape (N, 4).
262
+ points (np.ndarray | List | None): Points indicating object locations with shape (N, 2) or (N, num_points, 2), in pixels.
263
+ labels (np.ndarray | List | None): Point prompt labels with shape (N) or (N, num_points). 1 for foreground, 0 for background.
264
+ masks (List | np.ndarray, Optional): Masks for the objects, where each mask is a 2D array.
265
+
266
+ Raises:
267
+ AssertionError: If the number of points don't match the number of labels, in case labels were passed.
268
+
269
+ Returns:
270
+ (tuple): A tuple containing transformed bounding boxes, points, labels, and masks.
271
+ """
272
+ src_shape = self.batch[1][0].shape[:2]
273
+ r = 1.0 if self.segment_all else min(dst_shape[0] / src_shape[0], dst_shape[1] / src_shape[1])
274
+ # Transform input prompts
275
+ if points is not None:
276
+ points = torch.as_tensor(points, dtype=torch.float32, device=self.device)
277
+ points = points[None] if points.ndim == 1 else points
278
+ # Assuming labels are all positive if users don't pass labels.
279
+ if labels is None:
280
+ labels = np.ones(points.shape[:-1])
281
+ labels = torch.as_tensor(labels, dtype=torch.int32, device=self.device)
282
+ assert points.shape[-2] == labels.shape[-1], (
283
+ f"Number of points {points.shape[-2]} should match number of labels {labels.shape[-1]}."
284
+ )
285
+ points *= r
286
+ if points.ndim == 2:
287
+ # (N, 2) --> (N, 1, 2), (N, ) --> (N, 1)
288
+ points, labels = points[:, None, :], labels[:, None]
289
+ if bboxes is not None:
290
+ bboxes = torch.as_tensor(bboxes, dtype=torch.float32, device=self.device)
291
+ bboxes = bboxes[None] if bboxes.ndim == 1 else bboxes
292
+ bboxes *= r
293
+ if masks is not None:
294
+ masks = torch.as_tensor(masks, dtype=torch.float32, device=self.device).unsqueeze(1)
295
+ return bboxes, points, labels, masks
296
+
210
297
  def generate(
211
298
  self,
212
299
  im,
@@ -224,28 +311,34 @@ class Predictor(BasePredictor):
224
311
  """
225
312
  Perform image segmentation using the Segment Anything Model (SAM).
226
313
 
227
- This function segments an entire image into constituent parts by leveraging SAM's advanced architecture
314
+ This method segments an entire image into constituent parts by leveraging SAM's advanced architecture
228
315
  and real-time performance capabilities. It can optionally work on image crops for finer segmentation.
229
316
 
230
317
  Args:
231
- im (torch.Tensor): Input tensor representing the preprocessed image with dimensions (N, C, H, W).
232
- crop_n_layers (int): Specifies the number of layers for additional mask predictions on image crops.
233
- Each layer produces 2**i_layer number of image crops.
234
- crop_overlap_ratio (float): Determines the extent of overlap between crops. Scaled down in subsequent layers.
235
- crop_downscale_factor (int): Scaling factor for the number of sampled points-per-side in each layer.
236
- point_grids (list[np.ndarray], optional): Custom grids for point sampling normalized to [0,1].
237
- Used in the nth crop layer.
238
- points_stride (int, optional): Number of points to sample along each side of the image.
239
- Exclusive with 'point_grids'.
318
+ im (torch.Tensor): Input tensor representing the preprocessed image with shape (N, C, H, W).
319
+ crop_n_layers (int): Number of layers for additional mask predictions on image crops.
320
+ crop_overlap_ratio (float): Overlap between crops, scaled down in subsequent layers.
321
+ crop_downscale_factor (int): Scaling factor for sampled points-per-side in each layer.
322
+ point_grids (List[np.ndarray] | None): Custom grids for point sampling normalized to [0,1].
323
+ points_stride (int): Number of points to sample along each side of the image.
240
324
  points_batch_size (int): Batch size for the number of points processed simultaneously.
241
- conf_thres (float): Confidence threshold [0,1] for filtering based on the model's mask quality prediction.
242
- stability_score_thresh (float): Stability threshold [0,1] for mask filtering based on mask stability.
325
+ conf_thres (float): Confidence threshold [0,1] for filtering based on mask quality prediction.
326
+ stability_score_thresh (float): Stability threshold [0,1] for mask filtering based on stability.
243
327
  stability_score_offset (float): Offset value for calculating stability score.
244
- crop_nms_thresh (float): IoU cutoff for Non-Maximum Suppression (NMS) to remove duplicate masks between crops.
328
+ crop_nms_thresh (float): IoU cutoff for NMS to remove duplicate masks between crops.
245
329
 
246
330
  Returns:
247
- (tuple): A tuple containing segmented masks, confidence scores, and bounding boxes.
331
+ pred_masks (torch.Tensor): Segmented masks with shape (N, H, W).
332
+ pred_scores (torch.Tensor): Confidence scores for each mask with shape (N,).
333
+ pred_bboxes (torch.Tensor): Bounding boxes for each mask with shape (N, 4).
334
+
335
+ Examples:
336
+ >>> predictor = Predictor()
337
+ >>> im = torch.rand(1, 3, 1024, 1024) # Example input image
338
+ >>> masks, scores, boxes = predictor.generate(im)
248
339
  """
340
+ import torchvision # scope for faster 'import ultralytics'
341
+
249
342
  self.segment_all = True
250
343
  ih, iw = im.shape[2:]
251
344
  crop_regions, layer_idxs = generate_crop_boxes((ih, iw), crop_n_layers, crop_overlap_ratio)
@@ -313,7 +406,7 @@ class Predictor(BasePredictor):
313
406
 
314
407
  return pred_masks, pred_scores, pred_bboxes
315
408
 
316
- def setup_model(self, model, verbose=True):
409
+ def setup_model(self, model=None, verbose=True):
317
410
  """
318
411
  Initializes the Segment Anything Model (SAM) for inference.
319
412
 
@@ -321,18 +414,16 @@ class Predictor(BasePredictor):
321
414
  parameters for image normalization and other Ultralytics compatibility settings.
322
415
 
323
416
  Args:
324
- model (torch.nn.Module): A pre-trained SAM model. If None, a model will be built based on configuration.
417
+ model (torch.nn.Module | None): A pretrained SAM model. If None, a new model is built based on config.
325
418
  verbose (bool): If True, prints selected device information.
326
419
 
327
- Attributes:
328
- model (torch.nn.Module): The SAM model allocated to the chosen device for inference.
329
- device (torch.device): The device to which the model and tensors are allocated.
330
- mean (torch.Tensor): The mean values for image normalization.
331
- std (torch.Tensor): The standard deviation values for image normalization.
420
+ Examples:
421
+ >>> predictor = Predictor()
422
+ >>> predictor.setup_model(model=sam_model, verbose=True)
332
423
  """
333
424
  device = select_device(self.args.device, verbose=verbose)
334
425
  if model is None:
335
- model = build_sam(self.args.model)
426
+ model = self.get_model()
336
427
  model.eval()
337
428
  self.model = model.to(device)
338
429
  self.device = device
@@ -346,20 +437,33 @@ class Predictor(BasePredictor):
346
437
  self.model.fp16 = False
347
438
  self.done_warmup = True
348
439
 
440
+ def get_model(self):
441
+ """Retrieves or builds the Segment Anything Model (SAM) for image segmentation tasks."""
442
+ return build_sam(self.args.model)
443
+
349
444
  def postprocess(self, preds, img, orig_imgs):
350
445
  """
351
446
  Post-processes SAM's inference outputs to generate object detection masks and bounding boxes.
352
447
 
353
- The method scales masks and boxes to the original image size and applies a threshold to the mask predictions. The
354
- SAM model uses advanced architecture and promptable segmentation tasks to achieve real-time performance.
448
+ This method scales masks and boxes to the original image size and applies a threshold to the mask
449
+ predictions. It leverages SAM's advanced architecture for real-time, promptable segmentation tasks.
355
450
 
356
451
  Args:
357
- preds (tuple): The output from SAM model inference, containing masks, scores, and optional bounding boxes.
358
- img (torch.Tensor): The processed input image tensor.
359
- orig_imgs (list | torch.Tensor): The original, unprocessed images.
452
+ preds (Tuple[torch.Tensor]): The output from SAM model inference, containing:
453
+ - pred_masks (torch.Tensor): Predicted masks with shape (N, 1, H, W).
454
+ - pred_scores (torch.Tensor): Confidence scores for each mask with shape (N, 1).
455
+ - pred_bboxes (torch.Tensor, optional): Predicted bounding boxes if segment_all is True.
456
+ img (torch.Tensor): The processed input image tensor with shape (C, H, W).
457
+ orig_imgs (List[np.ndarray] | torch.Tensor): The original, unprocessed images.
360
458
 
361
459
  Returns:
362
- (list): List of Results objects containing detection masks, bounding boxes, and other metadata.
460
+ results (List[Results]): List of Results objects containing detection masks, bounding boxes, and other
461
+ metadata for each processed image.
462
+
463
+ Examples:
464
+ >>> predictor = Predictor()
465
+ >>> preds = predictor.inference(img)
466
+ >>> results = predictor.postprocess(preds, img, orig_imgs)
363
467
  """
364
468
  # (N, 1, H, W), (N, 1)
365
469
  pred_masks, pred_scores = preds[:2]
@@ -370,16 +474,19 @@ class Predictor(BasePredictor):
370
474
  orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
371
475
 
372
476
  results = []
373
- for i, masks in enumerate([pred_masks]):
374
- orig_img = orig_imgs[i]
375
- if pred_bboxes is not None:
376
- pred_bboxes = ops.scale_boxes(img.shape[2:], pred_bboxes.float(), orig_img.shape, padding=False)
477
+ for masks, orig_img, img_path in zip([pred_masks], orig_imgs, self.batch[0]):
478
+ if len(masks) == 0:
479
+ masks, pred_bboxes = None, torch.zeros((0, 6), device=pred_masks.device)
480
+ else:
481
+ masks = ops.scale_masks(masks[None].float(), orig_img.shape[:2], padding=False)[0]
482
+ masks = masks > self.model.mask_threshold # to bool
483
+ if pred_bboxes is not None:
484
+ pred_bboxes = ops.scale_boxes(img.shape[2:], pred_bboxes.float(), orig_img.shape, padding=False)
485
+ else:
486
+ pred_bboxes = batched_mask_to_box(masks)
487
+ # NOTE: SAM models do not return cls info. This `cls` here is just a placeholder for consistency.
377
488
  cls = torch.arange(len(pred_masks), dtype=torch.int32, device=pred_masks.device)
378
489
  pred_bboxes = torch.cat([pred_bboxes, pred_scores[:, None], cls[:, None]], dim=-1)
379
-
380
- masks = ops.scale_masks(masks[None].float(), orig_img.shape[:2], padding=False)[0]
381
- masks = masks > self.model.mask_threshold # to bool
382
- img_path = self.batch[0][i]
383
490
  results.append(Results(orig_img, path=img_path, names=names, masks=masks, boxes=pred_bboxes))
384
491
  # Reset segment-all mode.
385
492
  self.segment_all = False
@@ -389,11 +496,23 @@ class Predictor(BasePredictor):
389
496
  """
390
497
  Sets up the data source for inference.
391
498
 
392
- This method configures the data source from which images will be fetched for inference. The source could be a
393
- directory, a video file, or other types of image data sources.
499
+ This method configures the data source from which images will be fetched for inference. It supports
500
+ various input types such as image files, directories, video files, and other compatible data sources.
394
501
 
395
502
  Args:
396
- source (str | Path): The path to the image data source for inference.
503
+ source (str | Path | None): The path or identifier for the image data source. Can be a file path,
504
+ directory path, URL, or other supported source types.
505
+
506
+ Examples:
507
+ >>> predictor = Predictor()
508
+ >>> predictor.setup_source("path/to/images")
509
+ >>> predictor.setup_source("video.mp4")
510
+ >>> predictor.setup_source(None) # Uses default source if available
511
+
512
+ Notes:
513
+ - If source is None, the method may use a default source if configured.
514
+ - The method adapts to different source types and prepares them for subsequent inference steps.
515
+ - Supported source types may include local files, directories, URLs, and video streams.
397
516
  """
398
517
  if source is not None:
399
518
  super().setup_source(source)
@@ -402,53 +521,80 @@ class Predictor(BasePredictor):
402
521
  """
403
522
  Preprocesses and sets a single image for inference.
404
523
 
405
- This function sets up the model if not already initialized, configures the data source to the specified image,
406
- and preprocesses the image for feature extraction. Only one image can be set at a time.
524
+ This method prepares the model for inference on a single image by setting up the model if not already
525
+ initialized, configuring the data source, and preprocessing the image for feature extraction. It
526
+ ensures that only one image is set at a time and extracts image features for subsequent use.
407
527
 
408
528
  Args:
409
- image (str | np.ndarray): Image file path as a string, or a np.ndarray image read by cv2.
529
+ image (str | np.ndarray): Path to the image file as a string, or a numpy array representing
530
+ an image read by cv2.
410
531
 
411
532
  Raises:
412
- AssertionError: If more than one image is set.
533
+ AssertionError: If more than one image is attempted to be set.
534
+
535
+ Examples:
536
+ >>> predictor = Predictor()
537
+ >>> predictor.set_image("path/to/image.jpg")
538
+ >>> predictor.set_image(cv2.imread("path/to/image.jpg"))
539
+
540
+ Notes:
541
+ - This method should be called before performing inference on a new image.
542
+ - The extracted features are stored in the `self.features` attribute for later use.
413
543
  """
414
544
  if self.model is None:
415
- model = build_sam(self.args.model)
416
- self.setup_model(model)
545
+ self.setup_model(model=None)
417
546
  self.setup_source(image)
418
547
  assert len(self.dataset) == 1, "`set_image` only supports setting one image!"
419
548
  for batch in self.dataset:
420
549
  im = self.preprocess(batch[1])
421
- self.features = self.model.image_encoder(im)
422
- self.im = im
550
+ self.features = self.get_im_features(im)
423
551
  break
424
552
 
553
+ def get_im_features(self, im):
554
+ """Extracts image features using the SAM model's image encoder for subsequent mask prediction."""
555
+ assert isinstance(self.imgsz, (tuple, list)) and self.imgsz[0] == self.imgsz[1], (
556
+ f"SAM models only support square image size, but got {self.imgsz}."
557
+ )
558
+ self.model.set_imgsz(self.imgsz)
559
+ return self.model.image_encoder(im)
560
+
425
561
  def set_prompts(self, prompts):
426
- """Set prompts in advance."""
562
+ """Sets prompts for subsequent inference operations."""
427
563
  self.prompts = prompts
428
564
 
429
565
  def reset_image(self):
430
- """Resets the image and its features to None."""
566
+ """Resets the current image and its features, clearing them for subsequent inference."""
431
567
  self.im = None
432
568
  self.features = None
433
569
 
434
570
  @staticmethod
435
571
  def remove_small_regions(masks, min_area=0, nms_thresh=0.7):
436
572
  """
437
- Perform post-processing on segmentation masks generated by the Segment Anything Model (SAM). Specifically, this
438
- function removes small disconnected regions and holes from the input masks, and then performs Non-Maximum
573
+ Remove small disconnected regions and holes from segmentation masks.
574
+
575
+ This function performs post-processing on segmentation masks generated by the Segment Anything Model (SAM).
576
+ It removes small disconnected regions and holes from the input masks, and then performs Non-Maximum
439
577
  Suppression (NMS) to eliminate any newly created duplicate boxes.
440
578
 
441
579
  Args:
442
- masks (torch.Tensor): A tensor containing the masks to be processed. Shape should be (N, H, W), where N is
443
- the number of masks, H is height, and W is width.
444
- min_area (int): The minimum area below which disconnected regions and holes will be removed. Defaults to 0.
445
- nms_thresh (float): The IoU threshold for the NMS algorithm. Defaults to 0.7.
580
+ masks (torch.Tensor): Segmentation masks to be processed, with shape (N, H, W) where N is the number of
581
+ masks, H is height, and W is width.
582
+ min_area (int): Minimum area threshold for removing disconnected regions and holes. Regions smaller than
583
+ this will be removed.
584
+ nms_thresh (float): IoU threshold for the NMS algorithm to remove duplicate boxes.
446
585
 
447
586
  Returns:
448
- (tuple([torch.Tensor, List[int]])):
449
- - new_masks (torch.Tensor): The processed masks with small regions removed. Shape is (N, H, W).
450
- - keep (List[int]): The indices of the remaining masks post-NMS, which can be used to filter the boxes.
587
+ new_masks (torch.Tensor): Processed masks with small regions removed, shape (N, H, W).
588
+ keep (List[int]): Indices of remaining masks after NMS, for filtering corresponding boxes.
589
+
590
+ Examples:
591
+ >>> masks = torch.rand(5, 640, 640) > 0.5 # 5 random binary masks
592
+ >>> new_masks, keep = remove_small_regions(masks, min_area=100, nms_thresh=0.7)
593
+ >>> print(f"Original masks: {masks.shape}, Processed masks: {new_masks.shape}")
594
+ >>> print(f"Indices of kept masks: {keep}")
451
595
  """
596
+ import torchvision # scope for faster 'import ultralytics'
597
+
452
598
  if len(masks) == 0:
453
599
  return masks
454
600
 
@@ -472,3 +618,988 @@ class Predictor(BasePredictor):
472
618
  keep = torchvision.ops.nms(boxes.float(), torch.as_tensor(scores), nms_thresh)
473
619
 
474
620
  return new_masks[keep].to(device=masks.device, dtype=masks.dtype), keep
621
+
622
+
623
+ class SAM2Predictor(Predictor):
624
+ """
625
+ SAM2Predictor class for advanced image segmentation using Segment Anything Model 2 architecture.
626
+
627
+ This class extends the base Predictor class to implement SAM2-specific functionality for image
628
+ segmentation tasks. It provides methods for model initialization, feature extraction, and
629
+ prompt-based inference.
630
+
631
+ Attributes:
632
+ _bb_feat_sizes (List[Tuple[int, int]]): Feature sizes for different backbone levels.
633
+ model (torch.nn.Module): The loaded SAM2 model.
634
+ device (torch.device): The device (CPU or GPU) on which the model is loaded.
635
+ features (Dict[str, torch.Tensor]): Cached image features for efficient inference.
636
+ segment_all (bool): Flag to indicate if all segments should be predicted.
637
+ prompts (Dict): Dictionary to store various types of prompts for inference.
638
+
639
+ Methods:
640
+ get_model: Retrieves and initializes the SAM2 model.
641
+ prompt_inference: Performs image segmentation inference based on various prompts.
642
+ set_image: Preprocesses and sets a single image for inference.
643
+ get_im_features: Extracts and processes image features using SAM2's image encoder.
644
+
645
+ Examples:
646
+ >>> predictor = SAM2Predictor(cfg)
647
+ >>> predictor.set_image("path/to/image.jpg")
648
+ >>> bboxes = [[100, 100, 200, 200]]
649
+ >>> result = predictor(bboxes=bboxes)[0]
650
+ >>> print(f"Predicted {len(result.masks)} masks with average score {result.boxes.conf.mean():.2f}")
651
+ """
652
+
653
+ _bb_feat_sizes = [
654
+ (256, 256),
655
+ (128, 128),
656
+ (64, 64),
657
+ ]
658
+
659
+ def get_model(self):
660
+ """Retrieves and initializes the Segment Anything Model 2 (SAM2) for image segmentation tasks."""
661
+ return build_sam(self.args.model)
662
+
663
+ def prompt_inference(
664
+ self,
665
+ im,
666
+ bboxes=None,
667
+ points=None,
668
+ labels=None,
669
+ masks=None,
670
+ multimask_output=False,
671
+ img_idx=-1,
672
+ ):
673
+ """
674
+ Performs image segmentation inference based on various prompts using SAM2 architecture.
675
+
676
+ This method leverages the Segment Anything Model 2 (SAM2) to generate segmentation masks for input images
677
+ based on provided prompts such as bounding boxes, points, or existing masks. It supports both single and
678
+ multi-object prediction scenarios.
679
+
680
+ Args:
681
+ im (torch.Tensor): Preprocessed input image tensor with shape (N, C, H, W).
682
+ bboxes (np.ndarray | List[List[float]] | None): Bounding boxes in XYXY format with shape (N, 4).
683
+ points (np.ndarray | List[List[float]] | None): Object location points with shape (N, 2), in pixels.
684
+ labels (np.ndarray | List[int] | None): Point prompt labels with shape (N,). 1 = foreground, 0 = background.
685
+ masks (np.ndarray | None): Low-resolution masks from previous predictions with shape (N, H, W).
686
+ multimask_output (bool): Flag to return multiple masks for ambiguous prompts.
687
+ img_idx (int): Index of the image in the batch to process.
688
+
689
+ Returns:
690
+ (np.ndarray): Output masks with shape (C, H, W), where C is the number of generated masks.
691
+ (np.ndarray): Quality scores for each mask, with length C.
692
+
693
+ Examples:
694
+ >>> predictor = SAM2Predictor(cfg)
695
+ >>> image = torch.rand(1, 3, 640, 640)
696
+ >>> bboxes = [[100, 100, 200, 200]]
697
+ >>> result = predictor(image, bboxes=bboxes)[0]
698
+ >>> print(f"Generated {result.masks.shape[0]} masks with average score {result.boxes.conf.mean():.2f}")
699
+
700
+ Notes:
701
+ - The method supports batched inference for multiple objects when points or bboxes are provided.
702
+ - Input prompts (bboxes, points) are automatically scaled to match the input image dimensions.
703
+ - When both bboxes and points are provided, they are merged into a single 'points' input for the model.
704
+
705
+ References:
706
+ - SAM2 Paper: [Add link to SAM2 paper when available]
707
+ """
708
+ features = self.get_im_features(im) if self.features is None else self.features
709
+
710
+ points, labels, masks = self._prepare_prompts(im.shape[2:], bboxes, points, labels, masks)
711
+ points = (points, labels) if points is not None else None
712
+
713
+ sparse_embeddings, dense_embeddings = self.model.sam_prompt_encoder(
714
+ points=points,
715
+ boxes=None,
716
+ masks=masks,
717
+ )
718
+ # Predict masks
719
+ batched_mode = points is not None and points[0].shape[0] > 1 # multi object prediction
720
+ high_res_features = [feat_level[img_idx].unsqueeze(0) for feat_level in features["high_res_feats"]]
721
+ pred_masks, pred_scores, _, _ = self.model.sam_mask_decoder(
722
+ image_embeddings=features["image_embed"][img_idx].unsqueeze(0),
723
+ image_pe=self.model.sam_prompt_encoder.get_dense_pe(),
724
+ sparse_prompt_embeddings=sparse_embeddings,
725
+ dense_prompt_embeddings=dense_embeddings,
726
+ multimask_output=multimask_output,
727
+ repeat_image=batched_mode,
728
+ high_res_features=high_res_features,
729
+ )
730
+ # (N, d, H, W) --> (N*d, H, W), (N, d) --> (N*d, )
731
+ # `d` could be 1 or 3 depends on `multimask_output`.
732
+ return pred_masks.flatten(0, 1), pred_scores.flatten(0, 1)
733
+
734
+ def _prepare_prompts(self, dst_shape, bboxes=None, points=None, labels=None, masks=None):
735
+ """
736
+ Prepares and transforms the input prompts for processing based on the destination shape.
737
+
738
+ Args:
739
+ dst_shape (tuple): The target shape (height, width) for the prompts.
740
+ bboxes (np.ndarray | List | None): Bounding boxes in XYXY format with shape (N, 4).
741
+ points (np.ndarray | List | None): Points indicating object locations with shape (N, 2) or (N, num_points, 2), in pixels.
742
+ labels (np.ndarray | List | None): Point prompt labels with shape (N,) or (N, num_points). 1 for foreground, 0 for background.
743
+ masks (List | np.ndarray, Optional): Masks for the objects, where each mask is a 2D array.
744
+
745
+ Raises:
746
+ AssertionError: If the number of points don't match the number of labels, in case labels were passed.
747
+
748
+ Returns:
749
+ (tuple): A tuple containing transformed points, labels, and masks.
750
+ """
751
+ bboxes, points, labels, masks = super()._prepare_prompts(dst_shape, bboxes, points, labels, masks)
752
+ if bboxes is not None:
753
+ bboxes = bboxes.view(-1, 2, 2)
754
+ bbox_labels = torch.tensor([[2, 3]], dtype=torch.int32, device=bboxes.device).expand(len(bboxes), -1)
755
+ # NOTE: merge "boxes" and "points" into a single "points" input
756
+ # (where boxes are added at the beginning) to model.sam_prompt_encoder
757
+ if points is not None:
758
+ points = torch.cat([bboxes, points], dim=1)
759
+ labels = torch.cat([bbox_labels, labels], dim=1)
760
+ else:
761
+ points, labels = bboxes, bbox_labels
762
+ return points, labels, masks
763
+
764
+ def set_image(self, image):
765
+ """
766
+ Preprocesses and sets a single image for inference using the SAM2 model.
767
+
768
+ This method initializes the model if not already done, configures the data source to the specified image,
769
+ and preprocesses the image for feature extraction. It supports setting only one image at a time.
770
+
771
+ Args:
772
+ image (str | np.ndarray): Path to the image file as a string, or a numpy array representing the image.
773
+
774
+ Raises:
775
+ AssertionError: If more than one image is attempted to be set.
776
+
777
+ Examples:
778
+ >>> predictor = SAM2Predictor()
779
+ >>> predictor.set_image("path/to/image.jpg")
780
+ >>> predictor.set_image(np.array([...])) # Using a numpy array
781
+
782
+ Notes:
783
+ - This method must be called before performing any inference on a new image.
784
+ - The method caches the extracted features for efficient subsequent inferences on the same image.
785
+ - Only one image can be set at a time. To process multiple images, call this method for each new image.
786
+ """
787
+ if self.model is None:
788
+ self.setup_model(model=None)
789
+ self.setup_source(image)
790
+ assert len(self.dataset) == 1, "`set_image` only supports setting one image!"
791
+ for batch in self.dataset:
792
+ im = self.preprocess(batch[1])
793
+ self.features = self.get_im_features(im)
794
+ break
795
+
796
+ def get_im_features(self, im):
797
+ """Extracts image features from the SAM image encoder for subsequent processing."""
798
+ assert isinstance(self.imgsz, (tuple, list)) and self.imgsz[0] == self.imgsz[1], (
799
+ f"SAM 2 models only support square image size, but got {self.imgsz}."
800
+ )
801
+ self.model.set_imgsz(self.imgsz)
802
+ self._bb_feat_sizes = [[x // (4 * i) for x in self.imgsz] for i in [1, 2, 4]]
803
+
804
+ backbone_out = self.model.forward_image(im)
805
+ _, vision_feats, _, _ = self.model._prepare_backbone_features(backbone_out)
806
+ if self.model.directly_add_no_mem_embed:
807
+ vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed
808
+ feats = [
809
+ feat.permute(1, 2, 0).view(1, -1, *feat_size)
810
+ for feat, feat_size in zip(vision_feats[::-1], self._bb_feat_sizes[::-1])
811
+ ][::-1]
812
+ return {"image_embed": feats[-1], "high_res_feats": feats[:-1]}
813
+
814
+
815
+ class SAM2VideoPredictor(SAM2Predictor):
816
+ """
817
+ SAM2VideoPredictor to handle user interactions with videos and manage inference states.
818
+
819
+ This class extends the functionality of SAM2Predictor to support video processing and maintains
820
+ the state of inference operations. It includes configurations for managing non-overlapping masks,
821
+ clearing memory for non-conditional inputs, and setting up callbacks for prediction events.
822
+
823
+ Attributes:
824
+ inference_state (Dict): A dictionary to store the current state of inference operations.
825
+ non_overlap_masks (bool): A flag indicating whether masks should be non-overlapping.
826
+ clear_non_cond_mem_around_input (bool): A flag to control clearing non-conditional memory around inputs.
827
+ clear_non_cond_mem_for_multi_obj (bool): A flag to control clearing non-conditional memory for multi-object scenarios.
828
+ callbacks (Dict): A dictionary of callbacks for various prediction lifecycle events.
829
+
830
+ Args:
831
+ cfg (Dict, Optional): Configuration settings for the predictor. Defaults to DEFAULT_CFG.
832
+ overrides (Dict, Optional): Additional configuration overrides. Defaults to None.
833
+ _callbacks (List, Optional): Custom callbacks to be added. Defaults to None.
834
+
835
+ Note:
836
+ The `fill_hole_area` attribute is defined but not used in the current implementation.
837
+ """
838
+
839
+ # fill_hole_area = 8 # not used
840
+
841
+ def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
842
+ """
843
+ Initialize the predictor with configuration and optional overrides.
844
+
845
+ This constructor initializes the SAM2VideoPredictor with a given configuration, applies any
846
+ specified overrides, and sets up the inference state along with certain flags
847
+ that control the behavior of the predictor.
848
+
849
+ Args:
850
+ cfg (Dict): Configuration dictionary containing default settings.
851
+ overrides (Dict | None): Dictionary of values to override default configuration.
852
+ _callbacks (Dict | None): Dictionary of callback functions to customize behavior.
853
+
854
+ Examples:
855
+ >>> predictor = SAM2VideoPredictor(cfg=DEFAULT_CFG)
856
+ >>> predictor_example_with_imgsz = SAM2VideoPredictor(overrides={"imgsz": 640})
857
+ >>> predictor_example_with_callback = SAM2VideoPredictor(_callbacks={"on_predict_start": custom_callback})
858
+ """
859
+ super().__init__(cfg, overrides, _callbacks)
860
+ self.inference_state = {}
861
+ self.non_overlap_masks = True
862
+ self.clear_non_cond_mem_around_input = False
863
+ self.clear_non_cond_mem_for_multi_obj = False
864
+ self.callbacks["on_predict_start"].append(self.init_state)
865
+
866
+ def get_model(self):
867
+ """
868
+ Retrieves and configures the model with binarization enabled.
869
+
870
+ Note:
871
+ This method overrides the base class implementation to set the binarize flag to True.
872
+ """
873
+ model = super().get_model()
874
+ model.set_binarize(True)
875
+ return model
876
+
877
+ def inference(self, im, bboxes=None, points=None, labels=None, masks=None):
878
+ """
879
+ Perform image segmentation inference based on the given input cues, using the currently loaded image. This
880
+ method leverages SAM's (Segment Anything Model) architecture consisting of image encoder, prompt encoder, and
881
+ mask decoder for real-time and promptable segmentation tasks.
882
+
883
+ Args:
884
+ im (torch.Tensor): The preprocessed input image in tensor format, with shape (N, C, H, W).
885
+ bboxes (np.ndarray | List, optional): Bounding boxes with shape (N, 4), in XYXY format.
886
+ points (np.ndarray | List, optional): Points indicating object locations with shape (N, 2), in pixels.
887
+ labels (np.ndarray | List, optional): Labels for point prompts, shape (N, ). 1 = foreground, 0 = background.
888
+ masks (np.ndarray, optional): Low-resolution masks from previous predictions shape (N,H,W). For SAM H=W=256.
889
+
890
+ Returns:
891
+ (np.ndarray): The output masks in shape CxHxW, where C is the number of generated masks.
892
+ (np.ndarray): An array of length C containing quality scores predicted by the model for each mask.
893
+ """
894
+ # Override prompts if any stored in self.prompts
895
+ bboxes = self.prompts.pop("bboxes", bboxes)
896
+ points = self.prompts.pop("points", points)
897
+ masks = self.prompts.pop("masks", masks)
898
+
899
+ frame = self.dataset.frame
900
+ self.inference_state["im"] = im
901
+ output_dict = self.inference_state["output_dict"]
902
+ if len(output_dict["cond_frame_outputs"]) == 0: # initialize prompts
903
+ points, labels, masks = self._prepare_prompts(im.shape[2:], bboxes, points, labels, masks)
904
+ if points is not None:
905
+ for i in range(len(points)):
906
+ self.add_new_prompts(obj_id=i, points=points[[i]], labels=labels[[i]], frame_idx=frame)
907
+ elif masks is not None:
908
+ for i in range(len(masks)):
909
+ self.add_new_prompts(obj_id=i, masks=masks[[i]], frame_idx=frame)
910
+ self.propagate_in_video_preflight()
911
+
912
+ consolidated_frame_inds = self.inference_state["consolidated_frame_inds"]
913
+ batch_size = len(self.inference_state["obj_idx_to_id"])
914
+ if len(output_dict["cond_frame_outputs"]) == 0:
915
+ raise RuntimeError("No points are provided; please add points first")
916
+
917
+ if frame in consolidated_frame_inds["cond_frame_outputs"]:
918
+ storage_key = "cond_frame_outputs"
919
+ current_out = output_dict[storage_key][frame]
920
+ if self.clear_non_cond_mem_around_input and (self.clear_non_cond_mem_for_multi_obj or batch_size <= 1):
921
+ # clear non-conditioning memory of the surrounding frames
922
+ self._clear_non_cond_mem_around_input(frame)
923
+ elif frame in consolidated_frame_inds["non_cond_frame_outputs"]:
924
+ storage_key = "non_cond_frame_outputs"
925
+ current_out = output_dict[storage_key][frame]
926
+ else:
927
+ storage_key = "non_cond_frame_outputs"
928
+ current_out = self._run_single_frame_inference(
929
+ output_dict=output_dict,
930
+ frame_idx=frame,
931
+ batch_size=batch_size,
932
+ is_init_cond_frame=False,
933
+ point_inputs=None,
934
+ mask_inputs=None,
935
+ reverse=False,
936
+ run_mem_encoder=True,
937
+ )
938
+ output_dict[storage_key][frame] = current_out
939
+ # Create slices of per-object outputs for subsequent interaction with each
940
+ # individual object after tracking.
941
+ self._add_output_per_object(frame, current_out, storage_key)
942
+ self.inference_state["frames_already_tracked"].append(frame)
943
+ pred_masks = current_out["pred_masks"].flatten(0, 1)
944
+ pred_masks = pred_masks[(pred_masks > self.model.mask_threshold).sum((1, 2)) > 0] # filter blank masks
945
+
946
+ return pred_masks, torch.ones(len(pred_masks), dtype=pred_masks.dtype, device=pred_masks.device)
947
+
948
+ def postprocess(self, preds, img, orig_imgs):
949
+ """
950
+ Post-processes the predictions to apply non-overlapping constraints if required.
951
+
952
+ This method extends the post-processing functionality by applying non-overlapping constraints
953
+ to the predicted masks if the `non_overlap_masks` flag is set to True. This ensures that
954
+ the masks do not overlap, which can be useful for certain applications.
955
+
956
+ Args:
957
+ preds (Tuple[torch.Tensor]): The predictions from the model.
958
+ img (torch.Tensor): The processed image tensor.
959
+ orig_imgs (List[np.ndarray]): The original images before processing.
960
+
961
+ Returns:
962
+ results (list): The post-processed predictions.
963
+
964
+ Note:
965
+ If `non_overlap_masks` is True, the method applies constraints to ensure non-overlapping masks.
966
+ """
967
+ results = super().postprocess(preds, img, orig_imgs)
968
+ if self.non_overlap_masks:
969
+ for result in results:
970
+ if result.masks is None or len(result.masks) == 0:
971
+ continue
972
+ result.masks.data = self.model._apply_non_overlapping_constraints(result.masks.data.unsqueeze(0))[0]
973
+ return results
974
+
975
+ @smart_inference_mode()
976
+ def add_new_prompts(
977
+ self,
978
+ obj_id,
979
+ points=None,
980
+ labels=None,
981
+ masks=None,
982
+ frame_idx=0,
983
+ ):
984
+ """
985
+ Adds new points or masks to a specific frame for a given object ID.
986
+
987
+ This method updates the inference state with new prompts (points or masks) for a specified
988
+ object and frame index. It ensures that the prompts are either points or masks, but not both,
989
+ and updates the internal state accordingly. It also handles the generation of new segmentations
990
+ based on the provided prompts and the existing state.
991
+
992
+ Args:
993
+ obj_id (int): The ID of the object to which the prompts are associated.
994
+ points (torch.Tensor, Optional): The coordinates of the points of interest. Defaults to None.
995
+ labels (torch.Tensor, Optional): The labels corresponding to the points. Defaults to None.
996
+ masks (torch.Tensor, optional): Binary masks for the object. Defaults to None.
997
+ frame_idx (int, optional): The index of the frame to which the prompts are applied. Defaults to 0.
998
+
999
+ Returns:
1000
+ (tuple): A tuple containing the flattened predicted masks and a tensor of ones indicating the number of objects.
1001
+
1002
+ Raises:
1003
+ AssertionError: If both `masks` and `points` are provided, or neither is provided.
1004
+
1005
+ Note:
1006
+ - Only one type of prompt (either points or masks) can be added per call.
1007
+ - If the frame is being tracked for the first time, it is treated as an initial conditioning frame.
1008
+ - The method handles the consolidation of outputs and resizing of masks to the original video resolution.
1009
+ """
1010
+ assert (masks is None) ^ (points is None), "'masks' and 'points' prompts are not compatible with each other."
1011
+ obj_idx = self._obj_id_to_idx(obj_id)
1012
+
1013
+ point_inputs = None
1014
+ pop_key = "point_inputs_per_obj"
1015
+ if points is not None:
1016
+ point_inputs = {"point_coords": points, "point_labels": labels}
1017
+ self.inference_state["point_inputs_per_obj"][obj_idx][frame_idx] = point_inputs
1018
+ pop_key = "mask_inputs_per_obj"
1019
+ self.inference_state["mask_inputs_per_obj"][obj_idx][frame_idx] = masks
1020
+ self.inference_state[pop_key][obj_idx].pop(frame_idx, None)
1021
+ # If this frame hasn't been tracked before, we treat it as an initial conditioning
1022
+ # frame, meaning that the inputs points are to generate segments on this frame without
1023
+ # using any memory from other frames, like in SAM. Otherwise (if it has been tracked),
1024
+ # the input points will be used to correct the already tracked masks.
1025
+ is_init_cond_frame = frame_idx not in self.inference_state["frames_already_tracked"]
1026
+ obj_output_dict = self.inference_state["output_dict_per_obj"][obj_idx]
1027
+ obj_temp_output_dict = self.inference_state["temp_output_dict_per_obj"][obj_idx]
1028
+ # Add a frame to conditioning output if it's an initial conditioning frame or
1029
+ # if the model sees all frames receiving clicks/mask as conditioning frames.
1030
+ is_cond = is_init_cond_frame or self.model.add_all_frames_to_correct_as_cond
1031
+ storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
1032
+
1033
+ # Get any previously predicted mask logits on this object and feed it along with
1034
+ # the new clicks into the SAM mask decoder.
1035
+ prev_sam_mask_logits = None
1036
+ # lookup temporary output dict first, which contains the most recent output
1037
+ # (if not found, then lookup conditioning and non-conditioning frame output)
1038
+ if point_inputs is not None:
1039
+ prev_out = (
1040
+ obj_temp_output_dict[storage_key].get(frame_idx)
1041
+ or obj_output_dict["cond_frame_outputs"].get(frame_idx)
1042
+ or obj_output_dict["non_cond_frame_outputs"].get(frame_idx)
1043
+ )
1044
+
1045
+ if prev_out is not None and prev_out.get("pred_masks") is not None:
1046
+ prev_sam_mask_logits = prev_out["pred_masks"].to(device=self.device, non_blocking=True)
1047
+ # Clamp the scale of prev_sam_mask_logits to avoid rare numerical issues.
1048
+ prev_sam_mask_logits.clamp_(-32.0, 32.0)
1049
+ current_out = self._run_single_frame_inference(
1050
+ output_dict=obj_output_dict, # run on the slice of a single object
1051
+ frame_idx=frame_idx,
1052
+ batch_size=1, # run on the slice of a single object
1053
+ is_init_cond_frame=is_init_cond_frame,
1054
+ point_inputs=point_inputs,
1055
+ mask_inputs=masks,
1056
+ reverse=False,
1057
+ # Skip the memory encoder when adding clicks or mask. We execute the memory encoder
1058
+ # at the beginning of `propagate_in_video` (after user finalize their clicks). This
1059
+ # allows us to enforce non-overlapping constraints on all objects before encoding
1060
+ # them into memory.
1061
+ run_mem_encoder=False,
1062
+ prev_sam_mask_logits=prev_sam_mask_logits,
1063
+ )
1064
+ # Add the output to the output dict (to be used as future memory)
1065
+ obj_temp_output_dict[storage_key][frame_idx] = current_out
1066
+
1067
+ # Resize the output mask to the original video resolution
1068
+ consolidated_out = self._consolidate_temp_output_across_obj(
1069
+ frame_idx,
1070
+ is_cond=is_cond,
1071
+ run_mem_encoder=False,
1072
+ )
1073
+ pred_masks = consolidated_out["pred_masks"].flatten(0, 1)
1074
+ return pred_masks.flatten(0, 1), torch.ones(1, dtype=pred_masks.dtype, device=pred_masks.device)
1075
+
1076
+ @smart_inference_mode()
1077
+ def propagate_in_video_preflight(self):
1078
+ """
1079
+ Prepare inference_state and consolidate temporary outputs before tracking.
1080
+
1081
+ This method marks the start of tracking, disallowing the addition of new objects until the session is reset.
1082
+ It consolidates temporary outputs from `temp_output_dict_per_obj` and merges them into `output_dict`.
1083
+ Additionally, it clears non-conditioning memory around input frames and ensures that the state is consistent
1084
+ with the provided inputs.
1085
+ """
1086
+ # Tracking has started and we don't allow adding new objects until session is reset.
1087
+ self.inference_state["tracking_has_started"] = True
1088
+ batch_size = len(self.inference_state["obj_idx_to_id"])
1089
+
1090
+ # Consolidate per-object temporary outputs in "temp_output_dict_per_obj" and
1091
+ # add them into "output_dict".
1092
+ temp_output_dict_per_obj = self.inference_state["temp_output_dict_per_obj"]
1093
+ output_dict = self.inference_state["output_dict"]
1094
+ # "consolidated_frame_inds" contains indices of those frames where consolidated
1095
+ # temporary outputs have been added (either in this call or any previous calls
1096
+ # to `propagate_in_video_preflight`).
1097
+ consolidated_frame_inds = self.inference_state["consolidated_frame_inds"]
1098
+ for is_cond in {False, True}:
1099
+ # Separately consolidate conditioning and non-conditioning temp outputs
1100
+ storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
1101
+ # Find all the frames that contain temporary outputs for any objects
1102
+ # (these should be the frames that have just received clicks for mask inputs
1103
+ # via `add_new_points` or `add_new_mask`)
1104
+ temp_frame_inds = set()
1105
+ for obj_temp_output_dict in temp_output_dict_per_obj.values():
1106
+ temp_frame_inds.update(obj_temp_output_dict[storage_key].keys())
1107
+ consolidated_frame_inds[storage_key].update(temp_frame_inds)
1108
+ # consolidate the temporary output across all objects on this frame
1109
+ for frame_idx in temp_frame_inds:
1110
+ consolidated_out = self._consolidate_temp_output_across_obj(
1111
+ frame_idx, is_cond=is_cond, run_mem_encoder=True
1112
+ )
1113
+ # merge them into "output_dict" and also create per-object slices
1114
+ output_dict[storage_key][frame_idx] = consolidated_out
1115
+ self._add_output_per_object(frame_idx, consolidated_out, storage_key)
1116
+ if self.clear_non_cond_mem_around_input and (self.clear_non_cond_mem_for_multi_obj or batch_size <= 1):
1117
+ # clear non-conditioning memory of the surrounding frames
1118
+ self._clear_non_cond_mem_around_input(frame_idx)
1119
+
1120
+ # clear temporary outputs in `temp_output_dict_per_obj`
1121
+ for obj_temp_output_dict in temp_output_dict_per_obj.values():
1122
+ obj_temp_output_dict[storage_key].clear()
1123
+
1124
+ # edge case: if an output is added to "cond_frame_outputs", we remove any prior
1125
+ # output on the same frame in "non_cond_frame_outputs"
1126
+ for frame_idx in output_dict["cond_frame_outputs"]:
1127
+ output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
1128
+ for obj_output_dict in self.inference_state["output_dict_per_obj"].values():
1129
+ for frame_idx in obj_output_dict["cond_frame_outputs"]:
1130
+ obj_output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
1131
+ for frame_idx in consolidated_frame_inds["cond_frame_outputs"]:
1132
+ assert frame_idx in output_dict["cond_frame_outputs"]
1133
+ consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx)
1134
+
1135
+ # Make sure that the frame indices in "consolidated_frame_inds" are exactly those frames
1136
+ # with either points or mask inputs (which should be true under a correct workflow).
1137
+ all_consolidated_frame_inds = (
1138
+ consolidated_frame_inds["cond_frame_outputs"] | consolidated_frame_inds["non_cond_frame_outputs"]
1139
+ )
1140
+ input_frames_inds = set()
1141
+ for point_inputs_per_frame in self.inference_state["point_inputs_per_obj"].values():
1142
+ input_frames_inds.update(point_inputs_per_frame.keys())
1143
+ for mask_inputs_per_frame in self.inference_state["mask_inputs_per_obj"].values():
1144
+ input_frames_inds.update(mask_inputs_per_frame.keys())
1145
+ assert all_consolidated_frame_inds == input_frames_inds
1146
+
1147
+ @staticmethod
1148
+ def init_state(predictor):
1149
+ """
1150
+ Initialize an inference state for the predictor.
1151
+
1152
+ This function sets up the initial state required for performing inference on video data.
1153
+ It includes initializing various dictionaries and ordered dictionaries that will store
1154
+ inputs, outputs, and other metadata relevant to the tracking process.
1155
+
1156
+ Args:
1157
+ predictor (SAM2VideoPredictor): The predictor object for which to initialize the state.
1158
+ """
1159
+ if len(predictor.inference_state) > 0: # means initialized
1160
+ return
1161
+ assert predictor.dataset is not None
1162
+ assert predictor.dataset.mode == "video"
1163
+
1164
+ inference_state = {
1165
+ "num_frames": predictor.dataset.frames,
1166
+ "point_inputs_per_obj": {}, # inputs points on each frame
1167
+ "mask_inputs_per_obj": {}, # inputs mask on each frame
1168
+ "constants": {}, # values that don't change across frames (so we only need to hold one copy of them)
1169
+ # mapping between client-side object id and model-side object index
1170
+ "obj_id_to_idx": OrderedDict(),
1171
+ "obj_idx_to_id": OrderedDict(),
1172
+ "obj_ids": [],
1173
+ # A storage to hold the model's tracking results and states on each frame
1174
+ "output_dict": {
1175
+ "cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
1176
+ "non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
1177
+ },
1178
+ # Slice (view) of each object tracking results, sharing the same memory with "output_dict"
1179
+ "output_dict_per_obj": {},
1180
+ # A temporary storage to hold new outputs when user interact with a frame
1181
+ # to add clicks or mask (it's merged into "output_dict" before propagation starts)
1182
+ "temp_output_dict_per_obj": {},
1183
+ # Frames that already holds consolidated outputs from click or mask inputs
1184
+ # (we directly use their consolidated outputs during tracking)
1185
+ "consolidated_frame_inds": {
1186
+ "cond_frame_outputs": set(), # set containing frame indices
1187
+ "non_cond_frame_outputs": set(), # set containing frame indices
1188
+ },
1189
+ # metadata for each tracking frame (e.g. which direction it's tracked)
1190
+ "tracking_has_started": False,
1191
+ "frames_already_tracked": [],
1192
+ }
1193
+ predictor.inference_state = inference_state
1194
+
1195
+ def get_im_features(self, im, batch=1):
1196
+ """
1197
+ Extracts and processes image features using SAM2's image encoder for subsequent segmentation tasks.
1198
+
1199
+ Args:
1200
+ im (torch.Tensor): The input image tensor.
1201
+ batch (int, optional): The batch size for expanding features if there are multiple prompts. Defaults to 1.
1202
+
1203
+ Returns:
1204
+ vis_feats (torch.Tensor): The visual features extracted from the image.
1205
+ vis_pos_embed (torch.Tensor): The positional embeddings for the visual features.
1206
+ feat_sizes (List(Tuple[int])): A list containing the sizes of the extracted features.
1207
+
1208
+ Note:
1209
+ - If `batch` is greater than 1, the features are expanded to fit the batch size.
1210
+ - The method leverages the model's `_prepare_backbone_features` method to prepare the backbone features.
1211
+ """
1212
+ backbone_out = self.model.forward_image(im)
1213
+ if batch > 1: # expand features if there's more than one prompt
1214
+ for i, feat in enumerate(backbone_out["backbone_fpn"]):
1215
+ backbone_out["backbone_fpn"][i] = feat.expand(batch, -1, -1, -1)
1216
+ for i, pos in enumerate(backbone_out["vision_pos_enc"]):
1217
+ pos = pos.expand(batch, -1, -1, -1)
1218
+ backbone_out["vision_pos_enc"][i] = pos
1219
+ _, vis_feats, vis_pos_embed, feat_sizes = self.model._prepare_backbone_features(backbone_out)
1220
+ return vis_feats, vis_pos_embed, feat_sizes
1221
+
1222
+ def _obj_id_to_idx(self, obj_id):
1223
+ """
1224
+ Map client-side object id to model-side object index.
1225
+
1226
+ Args:
1227
+ obj_id (int): The unique identifier of the object provided by the client side.
1228
+
1229
+ Returns:
1230
+ obj_idx (int): The index of the object on the model side.
1231
+
1232
+ Raises:
1233
+ RuntimeError: If an attempt is made to add a new object after tracking has started.
1234
+
1235
+ Note:
1236
+ - The method updates or retrieves mappings between object IDs and indices stored in
1237
+ `inference_state`.
1238
+ - It ensures that new objects can only be added before tracking commences.
1239
+ - It maintains two-way mappings between IDs and indices (`obj_id_to_idx` and `obj_idx_to_id`).
1240
+ - Additional data structures are initialized for the new object to store inputs and outputs.
1241
+ """
1242
+ obj_idx = self.inference_state["obj_id_to_idx"].get(obj_id, None)
1243
+ if obj_idx is not None:
1244
+ return obj_idx
1245
+
1246
+ # This is a new object id not sent to the server before. We only allow adding
1247
+ # new objects *before* the tracking starts.
1248
+ allow_new_object = not self.inference_state["tracking_has_started"]
1249
+ if allow_new_object:
1250
+ # get the next object slot
1251
+ obj_idx = len(self.inference_state["obj_id_to_idx"])
1252
+ self.inference_state["obj_id_to_idx"][obj_id] = obj_idx
1253
+ self.inference_state["obj_idx_to_id"][obj_idx] = obj_id
1254
+ self.inference_state["obj_ids"] = list(self.inference_state["obj_id_to_idx"])
1255
+ # set up input and output structures for this object
1256
+ self.inference_state["point_inputs_per_obj"][obj_idx] = {}
1257
+ self.inference_state["mask_inputs_per_obj"][obj_idx] = {}
1258
+ self.inference_state["output_dict_per_obj"][obj_idx] = {
1259
+ "cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
1260
+ "non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
1261
+ }
1262
+ self.inference_state["temp_output_dict_per_obj"][obj_idx] = {
1263
+ "cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
1264
+ "non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
1265
+ }
1266
+ return obj_idx
1267
+ else:
1268
+ raise RuntimeError(
1269
+ f"Cannot add new object id {obj_id} after tracking starts. "
1270
+ f"All existing object ids: {self.inference_state['obj_ids']}. "
1271
+ f"Please call 'reset_state' to restart from scratch."
1272
+ )
1273
+
1274
+ def _run_single_frame_inference(
1275
+ self,
1276
+ output_dict,
1277
+ frame_idx,
1278
+ batch_size,
1279
+ is_init_cond_frame,
1280
+ point_inputs,
1281
+ mask_inputs,
1282
+ reverse,
1283
+ run_mem_encoder,
1284
+ prev_sam_mask_logits=None,
1285
+ ):
1286
+ """
1287
+ Run tracking on a single frame based on current inputs and previous memory.
1288
+
1289
+ Args:
1290
+ output_dict (Dict): The dictionary containing the output states of the tracking process.
1291
+ frame_idx (int): The index of the current frame.
1292
+ batch_size (int): The batch size for processing the frame.
1293
+ is_init_cond_frame (bool): Indicates if the current frame is an initial conditioning frame.
1294
+ point_inputs (Dict, Optional): Input points and their labels. Defaults to None.
1295
+ mask_inputs (torch.Tensor, Optional): Input binary masks. Defaults to None.
1296
+ reverse (bool): Indicates if the tracking should be performed in reverse order.
1297
+ run_mem_encoder (bool): Indicates if the memory encoder should be executed.
1298
+ prev_sam_mask_logits (torch.Tensor, Optional): Previous mask logits for the current object. Defaults to None.
1299
+
1300
+ Returns:
1301
+ current_out (dict): A dictionary containing the output of the tracking step, including updated features and predictions.
1302
+
1303
+ Raises:
1304
+ AssertionError: If both `point_inputs` and `mask_inputs` are provided, or neither is provided.
1305
+
1306
+ Note:
1307
+ - The method assumes that `point_inputs` and `mask_inputs` are mutually exclusive.
1308
+ - The method retrieves image features using the `get_im_features` method.
1309
+ - The `maskmem_pos_enc` is assumed to be constant across frames, hence only one copy is stored.
1310
+ - The `fill_holes_in_mask_scores` function is commented out and currently unsupported due to CUDA extension requirements.
1311
+ """
1312
+ # Retrieve correct image features
1313
+ current_vision_feats, current_vision_pos_embeds, feat_sizes = self.get_im_features(
1314
+ self.inference_state["im"], batch_size
1315
+ )
1316
+
1317
+ # point and mask should not appear as input simultaneously on the same frame
1318
+ assert point_inputs is None or mask_inputs is None
1319
+ current_out = self.model.track_step(
1320
+ frame_idx=frame_idx,
1321
+ is_init_cond_frame=is_init_cond_frame,
1322
+ current_vision_feats=current_vision_feats,
1323
+ current_vision_pos_embeds=current_vision_pos_embeds,
1324
+ feat_sizes=feat_sizes,
1325
+ point_inputs=point_inputs,
1326
+ mask_inputs=mask_inputs,
1327
+ output_dict=output_dict,
1328
+ num_frames=self.inference_state["num_frames"],
1329
+ track_in_reverse=reverse,
1330
+ run_mem_encoder=run_mem_encoder,
1331
+ prev_sam_mask_logits=prev_sam_mask_logits,
1332
+ )
1333
+
1334
+ maskmem_features = current_out["maskmem_features"]
1335
+ if maskmem_features is not None:
1336
+ current_out["maskmem_features"] = maskmem_features.to(
1337
+ dtype=torch.float16, device=self.device, non_blocking=True
1338
+ )
1339
+ # NOTE: Do not support the `fill_holes_in_mask_scores` function since it needs cuda extensions
1340
+ # potentially fill holes in the predicted masks
1341
+ # if self.fill_hole_area > 0:
1342
+ # pred_masks = current_out["pred_masks"].to(self.device, non_blocking=True)
1343
+ # pred_masks = fill_holes_in_mask_scores(pred_masks, self.fill_hole_area)
1344
+
1345
+ # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
1346
+ current_out["maskmem_pos_enc"] = self._get_maskmem_pos_enc(current_out["maskmem_pos_enc"])
1347
+ return current_out
1348
+
1349
+ def _get_maskmem_pos_enc(self, out_maskmem_pos_enc):
1350
+ """
1351
+ Caches and manages the positional encoding for mask memory across frames and objects.
1352
+
1353
+ This method optimizes storage by caching the positional encoding (`maskmem_pos_enc`) for
1354
+ mask memory, which is constant across frames and objects, thus reducing the amount of
1355
+ redundant information stored during an inference session. It checks if the positional
1356
+ encoding has already been cached; if not, it caches a slice of the provided encoding.
1357
+ If the batch size is greater than one, it expands the cached positional encoding to match
1358
+ the current batch size.
1359
+
1360
+ Args:
1361
+ out_maskmem_pos_enc (List[torch.Tensor] or None): The positional encoding for mask memory.
1362
+ Should be a list of tensors or None.
1363
+
1364
+ Returns:
1365
+ out_maskmem_pos_enc (List[torch.Tensor]): The positional encoding for mask memory, either cached or expanded.
1366
+
1367
+ Note:
1368
+ - The method assumes that `out_maskmem_pos_enc` is a list of tensors or None.
1369
+ - Only a single object's slice is cached since the encoding is the same across objects.
1370
+ - The method checks if the positional encoding has already been cached in the session's constants.
1371
+ - If the batch size is greater than one, the cached encoding is expanded to fit the batch size.
1372
+ """
1373
+ model_constants = self.inference_state["constants"]
1374
+ # "out_maskmem_pos_enc" should be either a list of tensors or None
1375
+ if out_maskmem_pos_enc is not None:
1376
+ if "maskmem_pos_enc" not in model_constants:
1377
+ assert isinstance(out_maskmem_pos_enc, list)
1378
+ # only take the slice for one object, since it's same across objects
1379
+ maskmem_pos_enc = [x[:1].clone() for x in out_maskmem_pos_enc]
1380
+ model_constants["maskmem_pos_enc"] = maskmem_pos_enc
1381
+ else:
1382
+ maskmem_pos_enc = model_constants["maskmem_pos_enc"]
1383
+ # expand the cached maskmem_pos_enc to the actual batch size
1384
+ batch_size = out_maskmem_pos_enc[0].size(0)
1385
+ if batch_size > 1:
1386
+ out_maskmem_pos_enc = [x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc]
1387
+ return out_maskmem_pos_enc
1388
+
1389
+ def _consolidate_temp_output_across_obj(
1390
+ self,
1391
+ frame_idx,
1392
+ is_cond=False,
1393
+ run_mem_encoder=False,
1394
+ ):
1395
+ """
1396
+ Consolidates per-object temporary outputs into a single output for all objects.
1397
+
1398
+ This method combines the temporary outputs for each object on a given frame into a unified
1399
+ output. It fills in any missing objects either from the main output dictionary or leaves
1400
+ placeholders if they do not exist in the main output. Optionally, it can re-run the memory
1401
+ encoder after applying non-overlapping constraints to the object scores.
1402
+
1403
+ Args:
1404
+ frame_idx (int): The index of the frame for which to consolidate outputs.
1405
+ is_cond (bool, Optional): Indicates if the frame is considered a conditioning frame.
1406
+ Defaults to False.
1407
+ run_mem_encoder (bool, Optional): Specifies whether to run the memory encoder after
1408
+ consolidating the outputs. Defaults to False.
1409
+
1410
+ Returns:
1411
+ consolidated_out (dict): A consolidated output dictionary containing the combined results for all objects.
1412
+
1413
+ Note:
1414
+ - The method initializes the consolidated output with placeholder values for missing objects.
1415
+ - It searches for outputs in both the temporary and main output dictionaries.
1416
+ - If `run_mem_encoder` is True, it applies non-overlapping constraints and re-runs the memory encoder.
1417
+ - The `maskmem_features` and `maskmem_pos_enc` are only populated when `run_mem_encoder` is True.
1418
+ """
1419
+ batch_size = len(self.inference_state["obj_idx_to_id"])
1420
+ storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
1421
+
1422
+ # Initialize `consolidated_out`. Its "maskmem_features" and "maskmem_pos_enc"
1423
+ # will be added when rerunning the memory encoder after applying non-overlapping
1424
+ # constraints to object scores. Its "pred_masks" are prefilled with a large
1425
+ # negative value (NO_OBJ_SCORE) to represent missing objects.
1426
+ consolidated_out = {
1427
+ "maskmem_features": None,
1428
+ "maskmem_pos_enc": None,
1429
+ "pred_masks": torch.full(
1430
+ size=(batch_size, 1, self.imgsz[0] // 4, self.imgsz[1] // 4),
1431
+ fill_value=-1024.0,
1432
+ dtype=torch.float32,
1433
+ device=self.device,
1434
+ ),
1435
+ "obj_ptr": torch.full(
1436
+ size=(batch_size, self.model.hidden_dim),
1437
+ fill_value=-1024.0,
1438
+ dtype=torch.float32,
1439
+ device=self.device,
1440
+ ),
1441
+ "object_score_logits": torch.full(
1442
+ size=(batch_size, 1),
1443
+ # default to 10.0 for object_score_logits, i.e. assuming the object is
1444
+ # present as sigmoid(10)=1, same as in `predict_masks` of `MaskDecoder`
1445
+ fill_value=10.0,
1446
+ dtype=torch.float32,
1447
+ device=self.device,
1448
+ ),
1449
+ }
1450
+ for obj_idx in range(batch_size):
1451
+ obj_temp_output_dict = self.inference_state["temp_output_dict_per_obj"][obj_idx]
1452
+ obj_output_dict = self.inference_state["output_dict_per_obj"][obj_idx]
1453
+ out = (
1454
+ obj_temp_output_dict[storage_key].get(frame_idx)
1455
+ # If the object doesn't appear in "temp_output_dict_per_obj" on this frame,
1456
+ # we fall back and look up its previous output in "output_dict_per_obj".
1457
+ # We look up both "cond_frame_outputs" and "non_cond_frame_outputs" in
1458
+ # "output_dict_per_obj" to find a previous output for this object.
1459
+ or obj_output_dict["cond_frame_outputs"].get(frame_idx)
1460
+ or obj_output_dict["non_cond_frame_outputs"].get(frame_idx)
1461
+ )
1462
+ # If the object doesn't appear in "output_dict_per_obj" either, we skip it
1463
+ # and leave its mask scores to the default scores (i.e. the NO_OBJ_SCORE
1464
+ # placeholder above) and set its object pointer to be a dummy pointer.
1465
+ if out is None:
1466
+ # Fill in dummy object pointers for those objects without any inputs or
1467
+ # tracking outcomes on this frame (only do it under `run_mem_encoder=True`,
1468
+ # i.e. when we need to build the memory for tracking).
1469
+ if run_mem_encoder:
1470
+ # fill object pointer with a dummy pointer (based on an empty mask)
1471
+ consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = self._get_empty_mask_ptr(frame_idx)
1472
+ continue
1473
+ # Add the temporary object output mask to consolidated output mask
1474
+ consolidated_out["pred_masks"][obj_idx : obj_idx + 1] = out["pred_masks"]
1475
+ consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = out["obj_ptr"]
1476
+
1477
+ # Optionally, apply non-overlapping constraints on the consolidated scores and rerun the memory encoder
1478
+ if run_mem_encoder:
1479
+ high_res_masks = F.interpolate(
1480
+ consolidated_out["pred_masks"],
1481
+ size=self.imgsz,
1482
+ mode="bilinear",
1483
+ align_corners=False,
1484
+ )
1485
+ if self.model.non_overlap_masks_for_mem_enc:
1486
+ high_res_masks = self.model._apply_non_overlapping_constraints(high_res_masks)
1487
+ consolidated_out["maskmem_features"], consolidated_out["maskmem_pos_enc"] = self._run_memory_encoder(
1488
+ batch_size=batch_size,
1489
+ high_res_masks=high_res_masks,
1490
+ is_mask_from_pts=True, # these frames are what the user interacted with
1491
+ object_score_logits=consolidated_out["object_score_logits"],
1492
+ )
1493
+
1494
+ return consolidated_out
1495
+
1496
+ def _get_empty_mask_ptr(self, frame_idx):
1497
+ """
1498
+ Get a dummy object pointer based on an empty mask on the current frame.
1499
+
1500
+ Args:
1501
+ frame_idx (int): The index of the current frame for which to generate the dummy object pointer.
1502
+
1503
+ Returns:
1504
+ (torch.Tensor): A tensor representing the dummy object pointer generated from the empty mask.
1505
+ """
1506
+ # Retrieve correct image features
1507
+ current_vision_feats, current_vision_pos_embeds, feat_sizes = self.get_im_features(self.inference_state["im"])
1508
+
1509
+ # Feed the empty mask and image feature above to get a dummy object pointer
1510
+ current_out = self.model.track_step(
1511
+ frame_idx=frame_idx,
1512
+ is_init_cond_frame=True,
1513
+ current_vision_feats=current_vision_feats,
1514
+ current_vision_pos_embeds=current_vision_pos_embeds,
1515
+ feat_sizes=feat_sizes,
1516
+ point_inputs=None,
1517
+ # A dummy (empty) mask with a single object
1518
+ mask_inputs=torch.zeros((1, 1, *self.imgsz), dtype=torch.float32, device=self.device),
1519
+ output_dict={},
1520
+ num_frames=self.inference_state["num_frames"],
1521
+ track_in_reverse=False,
1522
+ run_mem_encoder=False,
1523
+ prev_sam_mask_logits=None,
1524
+ )
1525
+ return current_out["obj_ptr"]
1526
+
1527
+ def _run_memory_encoder(self, batch_size, high_res_masks, object_score_logits, is_mask_from_pts):
1528
+ """
1529
+ Run the memory encoder on masks.
1530
+
1531
+ This is usually after applying non-overlapping constraints to object scores. Since their scores changed, their
1532
+ memory also needs to be computed again with the memory encoder.
1533
+
1534
+ Args:
1535
+ batch_size (int): The batch size for processing the frame.
1536
+ high_res_masks (torch.Tensor): High-resolution masks for which to compute the memory.
1537
+ object_score_logits (torch.Tensor): Logits representing the object scores.
1538
+ is_mask_from_pts (bool): Indicates if the mask is derived from point interactions.
1539
+
1540
+ Returns:
1541
+ (tuple[torch.Tensor, torch.Tensor]): A tuple containing the encoded mask features and positional encoding.
1542
+ """
1543
+ # Retrieve correct image features
1544
+ current_vision_feats, _, feat_sizes = self.get_im_features(self.inference_state["im"], batch_size)
1545
+ maskmem_features, maskmem_pos_enc = self.model._encode_new_memory(
1546
+ current_vision_feats=current_vision_feats,
1547
+ feat_sizes=feat_sizes,
1548
+ pred_masks_high_res=high_res_masks,
1549
+ is_mask_from_pts=is_mask_from_pts,
1550
+ object_score_logits=object_score_logits,
1551
+ )
1552
+
1553
+ # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
1554
+ maskmem_pos_enc = self._get_maskmem_pos_enc(maskmem_pos_enc)
1555
+ return maskmem_features.to(dtype=torch.float16, device=self.device, non_blocking=True), maskmem_pos_enc
1556
+
1557
+ def _add_output_per_object(self, frame_idx, current_out, storage_key):
1558
+ """
1559
+ Split a multi-object output into per-object output slices and add them into Output_Dict_Per_Obj.
1560
+
1561
+ The resulting slices share the same tensor storage.
1562
+
1563
+ Args:
1564
+ frame_idx (int): The index of the current frame.
1565
+ current_out (Dict): The current output dictionary containing multi-object outputs.
1566
+ storage_key (str): The key used to store the output in the per-object output dictionary.
1567
+ """
1568
+ maskmem_features = current_out["maskmem_features"]
1569
+ assert maskmem_features is None or isinstance(maskmem_features, torch.Tensor)
1570
+
1571
+ maskmem_pos_enc = current_out["maskmem_pos_enc"]
1572
+ assert maskmem_pos_enc is None or isinstance(maskmem_pos_enc, list)
1573
+
1574
+ for obj_idx, obj_output_dict in self.inference_state["output_dict_per_obj"].items():
1575
+ obj_slice = slice(obj_idx, obj_idx + 1)
1576
+ obj_out = {
1577
+ "maskmem_features": None,
1578
+ "maskmem_pos_enc": None,
1579
+ "pred_masks": current_out["pred_masks"][obj_slice],
1580
+ "obj_ptr": current_out["obj_ptr"][obj_slice],
1581
+ }
1582
+ if maskmem_features is not None:
1583
+ obj_out["maskmem_features"] = maskmem_features[obj_slice]
1584
+ if maskmem_pos_enc is not None:
1585
+ obj_out["maskmem_pos_enc"] = [x[obj_slice] for x in maskmem_pos_enc]
1586
+ obj_output_dict[storage_key][frame_idx] = obj_out
1587
+
1588
+ def _clear_non_cond_mem_around_input(self, frame_idx):
1589
+ """
1590
+ Remove the non-conditioning memory around the input frame.
1591
+
1592
+ When users provide correction clicks, the surrounding frames' non-conditioning memories can still contain outdated
1593
+ object appearance information and could confuse the model. This method clears those non-conditioning memories
1594
+ surrounding the interacted frame to avoid giving the model both old and new information about the object.
1595
+
1596
+ Args:
1597
+ frame_idx (int): The index of the current frame where user interaction occurred.
1598
+ """
1599
+ r = self.model.memory_temporal_stride_for_eval
1600
+ frame_idx_begin = frame_idx - r * self.model.num_maskmem
1601
+ frame_idx_end = frame_idx + r * self.model.num_maskmem
1602
+ for t in range(frame_idx_begin, frame_idx_end + 1):
1603
+ self.inference_state["output_dict"]["non_cond_frame_outputs"].pop(t, None)
1604
+ for obj_output_dict in self.inference_state["output_dict_per_obj"].values():
1605
+ obj_output_dict["non_cond_frame_outputs"].pop(t, None)