ultralytics 8.1.28__py3-none-any.whl → 8.3.62__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (247) hide show
  1. tests/__init__.py +22 -0
  2. tests/conftest.py +83 -0
  3. tests/test_cli.py +122 -0
  4. tests/test_cuda.py +155 -0
  5. tests/test_engine.py +131 -0
  6. tests/test_exports.py +216 -0
  7. tests/test_integrations.py +150 -0
  8. tests/test_python.py +615 -0
  9. tests/test_solutions.py +94 -0
  10. ultralytics/__init__.py +11 -8
  11. ultralytics/cfg/__init__.py +569 -131
  12. ultralytics/cfg/datasets/Argoverse.yaml +2 -1
  13. ultralytics/cfg/datasets/DOTAv1.5.yaml +3 -2
  14. ultralytics/cfg/datasets/DOTAv1.yaml +3 -2
  15. ultralytics/cfg/datasets/GlobalWheat2020.yaml +3 -2
  16. ultralytics/cfg/datasets/ImageNet.yaml +2 -1
  17. ultralytics/cfg/datasets/Objects365.yaml +5 -4
  18. ultralytics/cfg/datasets/SKU-110K.yaml +2 -1
  19. ultralytics/cfg/datasets/VOC.yaml +3 -2
  20. ultralytics/cfg/datasets/VisDrone.yaml +6 -5
  21. ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
  22. ultralytics/cfg/datasets/brain-tumor.yaml +23 -0
  23. ultralytics/cfg/datasets/carparts-seg.yaml +3 -2
  24. ultralytics/cfg/datasets/coco-pose.yaml +7 -6
  25. ultralytics/cfg/datasets/coco.yaml +3 -2
  26. ultralytics/cfg/datasets/coco128-seg.yaml +4 -3
  27. ultralytics/cfg/datasets/coco128.yaml +4 -3
  28. ultralytics/cfg/datasets/coco8-pose.yaml +3 -2
  29. ultralytics/cfg/datasets/coco8-seg.yaml +3 -2
  30. ultralytics/cfg/datasets/coco8.yaml +3 -2
  31. ultralytics/cfg/datasets/crack-seg.yaml +3 -2
  32. ultralytics/cfg/datasets/dog-pose.yaml +24 -0
  33. ultralytics/cfg/datasets/dota8.yaml +3 -2
  34. ultralytics/cfg/datasets/hand-keypoints.yaml +26 -0
  35. ultralytics/cfg/datasets/lvis.yaml +1236 -0
  36. ultralytics/cfg/datasets/medical-pills.yaml +22 -0
  37. ultralytics/cfg/datasets/open-images-v7.yaml +2 -1
  38. ultralytics/cfg/datasets/package-seg.yaml +5 -4
  39. ultralytics/cfg/datasets/signature.yaml +21 -0
  40. ultralytics/cfg/datasets/tiger-pose.yaml +3 -2
  41. ultralytics/cfg/datasets/xView.yaml +2 -1
  42. ultralytics/cfg/default.yaml +14 -11
  43. ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +24 -0
  44. ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
  45. ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
  46. ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
  47. ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
  48. ultralytics/cfg/models/11/yolo11.yaml +50 -0
  49. ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +5 -2
  50. ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +5 -2
  51. ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +5 -2
  52. ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +5 -2
  53. ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
  54. ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
  55. ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
  56. ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
  57. ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
  58. ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
  59. ultralytics/cfg/models/v3/yolov3-spp.yaml +5 -2
  60. ultralytics/cfg/models/v3/yolov3-tiny.yaml +5 -2
  61. ultralytics/cfg/models/v3/yolov3.yaml +5 -2
  62. ultralytics/cfg/models/v5/yolov5-p6.yaml +5 -2
  63. ultralytics/cfg/models/v5/yolov5.yaml +5 -2
  64. ultralytics/cfg/models/v6/yolov6.yaml +5 -2
  65. ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +5 -2
  66. ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +5 -2
  67. ultralytics/cfg/models/v8/yolov8-cls.yaml +5 -2
  68. ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +6 -2
  69. ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +6 -2
  70. ultralytics/cfg/models/v8/yolov8-ghost.yaml +5 -2
  71. ultralytics/cfg/models/v8/yolov8-obb.yaml +5 -2
  72. ultralytics/cfg/models/v8/yolov8-p2.yaml +5 -2
  73. ultralytics/cfg/models/v8/yolov8-p6.yaml +10 -7
  74. ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +5 -2
  75. ultralytics/cfg/models/v8/yolov8-pose.yaml +5 -2
  76. ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +5 -2
  77. ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +5 -2
  78. ultralytics/cfg/models/v8/yolov8-seg.yaml +5 -2
  79. ultralytics/cfg/models/v8/yolov8-world.yaml +5 -2
  80. ultralytics/cfg/models/v8/yolov8-worldv2.yaml +5 -2
  81. ultralytics/cfg/models/v8/yolov8.yaml +5 -2
  82. ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
  83. ultralytics/cfg/models/v9/yolov9c.yaml +30 -25
  84. ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
  85. ultralytics/cfg/models/v9/yolov9e.yaml +46 -42
  86. ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
  87. ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
  88. ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
  89. ultralytics/cfg/solutions/default.yaml +24 -0
  90. ultralytics/cfg/trackers/botsort.yaml +8 -5
  91. ultralytics/cfg/trackers/bytetrack.yaml +8 -5
  92. ultralytics/data/__init__.py +14 -3
  93. ultralytics/data/annotator.py +37 -15
  94. ultralytics/data/augment.py +1783 -289
  95. ultralytics/data/base.py +62 -27
  96. ultralytics/data/build.py +36 -8
  97. ultralytics/data/converter.py +196 -36
  98. ultralytics/data/dataset.py +233 -94
  99. ultralytics/data/loaders.py +199 -96
  100. ultralytics/data/split_dota.py +39 -29
  101. ultralytics/data/utils.py +110 -40
  102. ultralytics/engine/__init__.py +1 -1
  103. ultralytics/engine/exporter.py +569 -242
  104. ultralytics/engine/model.py +604 -252
  105. ultralytics/engine/predictor.py +22 -11
  106. ultralytics/engine/results.py +1228 -218
  107. ultralytics/engine/trainer.py +190 -129
  108. ultralytics/engine/tuner.py +18 -18
  109. ultralytics/engine/validator.py +18 -15
  110. ultralytics/hub/__init__.py +31 -13
  111. ultralytics/hub/auth.py +11 -7
  112. ultralytics/hub/google/__init__.py +159 -0
  113. ultralytics/hub/session.py +128 -94
  114. ultralytics/hub/utils.py +20 -21
  115. ultralytics/models/__init__.py +4 -2
  116. ultralytics/models/fastsam/__init__.py +2 -3
  117. ultralytics/models/fastsam/model.py +26 -4
  118. ultralytics/models/fastsam/predict.py +127 -63
  119. ultralytics/models/fastsam/utils.py +1 -44
  120. ultralytics/models/fastsam/val.py +1 -1
  121. ultralytics/models/nas/__init__.py +1 -1
  122. ultralytics/models/nas/model.py +21 -10
  123. ultralytics/models/nas/predict.py +3 -6
  124. ultralytics/models/nas/val.py +4 -4
  125. ultralytics/models/rtdetr/__init__.py +1 -1
  126. ultralytics/models/rtdetr/model.py +1 -1
  127. ultralytics/models/rtdetr/predict.py +6 -8
  128. ultralytics/models/rtdetr/train.py +6 -2
  129. ultralytics/models/rtdetr/val.py +3 -3
  130. ultralytics/models/sam/__init__.py +3 -3
  131. ultralytics/models/sam/amg.py +29 -23
  132. ultralytics/models/sam/build.py +211 -13
  133. ultralytics/models/sam/model.py +91 -30
  134. ultralytics/models/sam/modules/__init__.py +1 -1
  135. ultralytics/models/sam/modules/blocks.py +1129 -0
  136. ultralytics/models/sam/modules/decoders.py +381 -53
  137. ultralytics/models/sam/modules/encoders.py +515 -324
  138. ultralytics/models/sam/modules/memory_attention.py +237 -0
  139. ultralytics/models/sam/modules/sam.py +969 -21
  140. ultralytics/models/sam/modules/tiny_encoder.py +425 -154
  141. ultralytics/models/sam/modules/transformer.py +159 -60
  142. ultralytics/models/sam/modules/utils.py +293 -0
  143. ultralytics/models/sam/predict.py +1263 -132
  144. ultralytics/models/utils/__init__.py +1 -1
  145. ultralytics/models/utils/loss.py +36 -24
  146. ultralytics/models/utils/ops.py +3 -7
  147. ultralytics/models/yolo/__init__.py +3 -3
  148. ultralytics/models/yolo/classify/__init__.py +1 -1
  149. ultralytics/models/yolo/classify/predict.py +7 -8
  150. ultralytics/models/yolo/classify/train.py +17 -22
  151. ultralytics/models/yolo/classify/val.py +8 -4
  152. ultralytics/models/yolo/detect/__init__.py +1 -1
  153. ultralytics/models/yolo/detect/predict.py +3 -5
  154. ultralytics/models/yolo/detect/train.py +11 -4
  155. ultralytics/models/yolo/detect/val.py +90 -52
  156. ultralytics/models/yolo/model.py +14 -9
  157. ultralytics/models/yolo/obb/__init__.py +1 -1
  158. ultralytics/models/yolo/obb/predict.py +2 -2
  159. ultralytics/models/yolo/obb/train.py +5 -3
  160. ultralytics/models/yolo/obb/val.py +41 -23
  161. ultralytics/models/yolo/pose/__init__.py +1 -1
  162. ultralytics/models/yolo/pose/predict.py +3 -5
  163. ultralytics/models/yolo/pose/train.py +2 -2
  164. ultralytics/models/yolo/pose/val.py +51 -17
  165. ultralytics/models/yolo/segment/__init__.py +1 -1
  166. ultralytics/models/yolo/segment/predict.py +3 -5
  167. ultralytics/models/yolo/segment/train.py +2 -2
  168. ultralytics/models/yolo/segment/val.py +60 -19
  169. ultralytics/models/yolo/world/__init__.py +5 -0
  170. ultralytics/models/yolo/world/train.py +92 -0
  171. ultralytics/models/yolo/world/train_world.py +109 -0
  172. ultralytics/nn/__init__.py +1 -1
  173. ultralytics/nn/autobackend.py +228 -93
  174. ultralytics/nn/modules/__init__.py +39 -14
  175. ultralytics/nn/modules/activation.py +21 -0
  176. ultralytics/nn/modules/block.py +527 -67
  177. ultralytics/nn/modules/conv.py +24 -7
  178. ultralytics/nn/modules/head.py +177 -34
  179. ultralytics/nn/modules/transformer.py +6 -5
  180. ultralytics/nn/modules/utils.py +1 -2
  181. ultralytics/nn/tasks.py +225 -77
  182. ultralytics/solutions/__init__.py +30 -1
  183. ultralytics/solutions/ai_gym.py +96 -143
  184. ultralytics/solutions/analytics.py +247 -0
  185. ultralytics/solutions/distance_calculation.py +78 -135
  186. ultralytics/solutions/heatmap.py +93 -247
  187. ultralytics/solutions/object_counter.py +184 -259
  188. ultralytics/solutions/parking_management.py +246 -0
  189. ultralytics/solutions/queue_management.py +112 -0
  190. ultralytics/solutions/region_counter.py +116 -0
  191. ultralytics/solutions/security_alarm.py +144 -0
  192. ultralytics/solutions/solutions.py +178 -0
  193. ultralytics/solutions/speed_estimation.py +86 -174
  194. ultralytics/solutions/streamlit_inference.py +190 -0
  195. ultralytics/solutions/trackzone.py +68 -0
  196. ultralytics/trackers/__init__.py +1 -1
  197. ultralytics/trackers/basetrack.py +32 -13
  198. ultralytics/trackers/bot_sort.py +61 -28
  199. ultralytics/trackers/byte_tracker.py +83 -51
  200. ultralytics/trackers/track.py +21 -6
  201. ultralytics/trackers/utils/__init__.py +1 -1
  202. ultralytics/trackers/utils/gmc.py +62 -48
  203. ultralytics/trackers/utils/kalman_filter.py +166 -35
  204. ultralytics/trackers/utils/matching.py +40 -21
  205. ultralytics/utils/__init__.py +511 -239
  206. ultralytics/utils/autobatch.py +40 -22
  207. ultralytics/utils/benchmarks.py +266 -85
  208. ultralytics/utils/callbacks/__init__.py +1 -1
  209. ultralytics/utils/callbacks/base.py +1 -3
  210. ultralytics/utils/callbacks/clearml.py +7 -6
  211. ultralytics/utils/callbacks/comet.py +39 -17
  212. ultralytics/utils/callbacks/dvc.py +1 -1
  213. ultralytics/utils/callbacks/hub.py +16 -16
  214. ultralytics/utils/callbacks/mlflow.py +28 -24
  215. ultralytics/utils/callbacks/neptune.py +6 -2
  216. ultralytics/utils/callbacks/raytune.py +3 -4
  217. ultralytics/utils/callbacks/tensorboard.py +18 -18
  218. ultralytics/utils/callbacks/wb.py +27 -20
  219. ultralytics/utils/checks.py +160 -100
  220. ultralytics/utils/dist.py +2 -1
  221. ultralytics/utils/downloads.py +44 -37
  222. ultralytics/utils/errors.py +1 -1
  223. ultralytics/utils/files.py +72 -38
  224. ultralytics/utils/instance.py +41 -19
  225. ultralytics/utils/loss.py +84 -56
  226. ultralytics/utils/metrics.py +61 -56
  227. ultralytics/utils/ops.py +94 -89
  228. ultralytics/utils/patches.py +30 -14
  229. ultralytics/utils/plotting.py +600 -269
  230. ultralytics/utils/tal.py +67 -26
  231. ultralytics/utils/torch_utils.py +302 -102
  232. ultralytics/utils/triton.py +2 -1
  233. ultralytics/utils/tuner.py +21 -12
  234. ultralytics-8.3.62.dist-info/METADATA +370 -0
  235. ultralytics-8.3.62.dist-info/RECORD +241 -0
  236. {ultralytics-8.1.28.dist-info → ultralytics-8.3.62.dist-info}/WHEEL +1 -1
  237. ultralytics/data/explorer/__init__.py +0 -5
  238. ultralytics/data/explorer/explorer.py +0 -472
  239. ultralytics/data/explorer/gui/__init__.py +0 -1
  240. ultralytics/data/explorer/gui/dash.py +0 -268
  241. ultralytics/data/explorer/utils.py +0 -166
  242. ultralytics/models/fastsam/prompt.py +0 -357
  243. ultralytics-8.1.28.dist-info/METADATA +0 -373
  244. ultralytics-8.1.28.dist-info/RECORD +0 -197
  245. {ultralytics-8.1.28.dist-info → ultralytics-8.3.62.dist-info}/LICENSE +0 -0
  246. {ultralytics-8.1.28.dist-info → ultralytics-8.3.62.dist-info}/entry_points.txt +0 -0
  247. {ultralytics-8.1.28.dist-info → ultralytics-8.3.62.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,4 @@
1
- # Ultralytics YOLO 🚀, AGPL-3.0 license
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
3
  # Copyright (c) Meta Platforms, Inc. and affiliates.
4
4
  # All rights reserved.
@@ -9,30 +9,49 @@
9
9
  from typing import List
10
10
 
11
11
  import torch
12
+ import torch.nn.functional as F
12
13
  from torch import nn
14
+ from torch.nn.init import trunc_normal_
13
15
 
14
- from .decoders import MaskDecoder
16
+ from ultralytics.nn.modules import MLP
17
+
18
+ from .blocks import SAM2TwoWayTransformer
19
+ from .decoders import MaskDecoder, SAM2MaskDecoder
15
20
  from .encoders import ImageEncoderViT, PromptEncoder
21
+ from .utils import get_1d_sine_pe, select_closest_cond_frames
22
+
23
+ # a large negative value as a placeholder score for missing objects
24
+ NO_OBJ_SCORE = -1024.0
16
25
 
17
26
 
18
- class Sam(nn.Module):
27
+ class SAMModel(nn.Module):
19
28
  """
20
- Sam (Segment Anything Model) is designed for object segmentation tasks. It uses image encoders to generate image
21
- embeddings, and prompt encoders to encode various types of input prompts. These embeddings are then used by the mask
22
- decoder to predict object masks.
29
+ Segment Anything Model (SAM) for object segmentation tasks.
30
+
31
+ This class combines image encoders, prompt encoders, and mask decoders to predict object masks from images
32
+ and input prompts.
23
33
 
24
34
  Attributes:
25
35
  mask_threshold (float): Threshold value for mask prediction.
26
- image_format (str): Format of the input image, default is 'RGB'.
27
- image_encoder (ImageEncoderViT): The backbone used to encode the image into embeddings.
28
- prompt_encoder (PromptEncoder): Encodes various types of input prompts.
29
- mask_decoder (MaskDecoder): Predicts object masks from the image and prompt embeddings.
30
- pixel_mean (List[float]): Mean pixel values for image normalization.
31
- pixel_std (List[float]): Standard deviation values for image normalization.
36
+ image_encoder (ImageEncoderViT): Backbone for encoding images into embeddings.
37
+ prompt_encoder (PromptEncoder): Encoder for various types of input prompts.
38
+ mask_decoder (MaskDecoder): Predicts object masks from image and prompt embeddings.
39
+
40
+ Methods:
41
+ __init__: Initializes the SAMModel with encoders, decoder, and normalization parameters.
42
+
43
+ Examples:
44
+ >>> image_encoder = ImageEncoderViT(...)
45
+ >>> prompt_encoder = PromptEncoder(...)
46
+ >>> mask_decoder = MaskDecoder(...)
47
+ >>> sam_model = SAMModel(image_encoder, prompt_encoder, mask_decoder)
48
+ >>> # Further usage depends on SAMPredictor class
49
+
50
+ Notes:
51
+ All forward() operations are implemented in the SAMPredictor class.
32
52
  """
33
53
 
34
54
  mask_threshold: float = 0.0
35
- image_format: str = "RGB"
36
55
 
37
56
  def __init__(
38
57
  self,
@@ -43,19 +62,24 @@ class Sam(nn.Module):
43
62
  pixel_std: List[float] = (58.395, 57.12, 57.375),
44
63
  ) -> None:
45
64
  """
46
- Initialize the Sam class to predict object masks from an image and input prompts.
47
-
48
- Note:
49
- All forward() operations moved to SAMPredictor.
65
+ Initialize the SAMModel class to predict object masks from an image and input prompts.
50
66
 
51
67
  Args:
52
68
  image_encoder (ImageEncoderViT): The backbone used to encode the image into image embeddings.
53
69
  prompt_encoder (PromptEncoder): Encodes various types of input prompts.
54
70
  mask_decoder (MaskDecoder): Predicts masks from the image embeddings and encoded prompts.
55
- pixel_mean (List[float], optional): Mean values for normalizing pixels in the input image. Defaults to
56
- (123.675, 116.28, 103.53).
57
- pixel_std (List[float], optional): Std values for normalizing pixels in the input image. Defaults to
58
- (58.395, 57.12, 57.375).
71
+ pixel_mean (List[float]): Mean values for normalizing pixels in the input image.
72
+ pixel_std (List[float]): Std values for normalizing pixels in the input image.
73
+
74
+ Examples:
75
+ >>> image_encoder = ImageEncoderViT(...)
76
+ >>> prompt_encoder = PromptEncoder(...)
77
+ >>> mask_decoder = MaskDecoder(...)
78
+ >>> sam_model = SAMModel(image_encoder, prompt_encoder, mask_decoder)
79
+ >>> # Further usage depends on SAMPredictor class
80
+
81
+ Notes:
82
+ All forward() operations moved to SAMPredictor.
59
83
  """
60
84
  super().__init__()
61
85
  self.image_encoder = image_encoder
@@ -63,3 +87,927 @@ class Sam(nn.Module):
63
87
  self.mask_decoder = mask_decoder
64
88
  self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
65
89
  self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
90
+
91
+ def set_imgsz(self, imgsz):
92
+ """
93
+ Set image size to make model compatible with different image sizes.
94
+
95
+ Args:
96
+ imgsz (Tuple[int, int]): The size of the input image.
97
+ """
98
+ if hasattr(self.image_encoder, "set_imgsz"):
99
+ self.image_encoder.set_imgsz(imgsz)
100
+ self.prompt_encoder.input_image_size = imgsz
101
+ self.prompt_encoder.image_embedding_size = [x // 16 for x in imgsz] # 16 is fixed as patch size of ViT model
102
+ self.image_encoder.img_size = imgsz[0]
103
+
104
+
105
+ class SAM2Model(torch.nn.Module):
106
+ """
107
+ SAM2Model class for Segment Anything Model 2 with memory-based video object segmentation capabilities.
108
+
109
+ This class extends the functionality of SAM to handle video sequences, incorporating memory mechanisms
110
+ for temporal consistency and efficient tracking of objects across frames.
111
+
112
+ Attributes:
113
+ mask_threshold (float): Threshold value for mask prediction.
114
+ image_encoder (ImageEncoderViT): Visual encoder for extracting image features.
115
+ memory_attention (nn.Module): Module for attending to memory features.
116
+ memory_encoder (nn.Module): Encoder for generating memory representations.
117
+ num_maskmem (int): Number of accessible memory frames.
118
+ image_size (int): Size of input images.
119
+ backbone_stride (int): Stride of the backbone network output.
120
+ sam_prompt_embed_dim (int): Dimension of SAM prompt embeddings.
121
+ sam_image_embedding_size (int): Size of SAM image embeddings.
122
+ sam_prompt_encoder (PromptEncoder): Encoder for processing input prompts.
123
+ sam_mask_decoder (SAM2MaskDecoder): Decoder for generating object masks.
124
+ obj_ptr_proj (nn.Module): Projection layer for object pointers.
125
+ obj_ptr_tpos_proj (nn.Module): Projection for temporal positional encoding in object pointers.
126
+
127
+ Methods:
128
+ forward_image: Processes image batch through encoder to extract multi-level features.
129
+ track_step: Performs a single tracking step, updating object masks and memory features.
130
+
131
+ Examples:
132
+ >>> model = SAM2Model(image_encoder, memory_attention, memory_encoder)
133
+ >>> image_batch = torch.rand(1, 3, 512, 512)
134
+ >>> features = model.forward_image(image_batch)
135
+ >>> track_results = model.track_step(0, True, features, None, None, None, {})
136
+ """
137
+
138
+ mask_threshold: float = 0.0
139
+
140
+ def __init__(
141
+ self,
142
+ image_encoder,
143
+ memory_attention,
144
+ memory_encoder,
145
+ num_maskmem=7,
146
+ image_size=512,
147
+ backbone_stride=16,
148
+ sigmoid_scale_for_mem_enc=1.0,
149
+ sigmoid_bias_for_mem_enc=0.0,
150
+ binarize_mask_from_pts_for_mem_enc=False,
151
+ use_mask_input_as_output_without_sam=False,
152
+ max_cond_frames_in_attn=-1,
153
+ directly_add_no_mem_embed=False,
154
+ use_high_res_features_in_sam=False,
155
+ multimask_output_in_sam=False,
156
+ multimask_min_pt_num=1,
157
+ multimask_max_pt_num=1,
158
+ multimask_output_for_tracking=False,
159
+ use_multimask_token_for_obj_ptr: bool = False,
160
+ iou_prediction_use_sigmoid=False,
161
+ memory_temporal_stride_for_eval=1,
162
+ non_overlap_masks_for_mem_enc=False,
163
+ use_obj_ptrs_in_encoder=False,
164
+ max_obj_ptrs_in_encoder=16,
165
+ add_tpos_enc_to_obj_ptrs=True,
166
+ proj_tpos_enc_in_obj_ptrs=False,
167
+ use_signed_tpos_enc_to_obj_ptrs=False,
168
+ only_obj_ptrs_in_the_past_for_eval=False,
169
+ pred_obj_scores: bool = False,
170
+ pred_obj_scores_mlp: bool = False,
171
+ fixed_no_obj_ptr: bool = False,
172
+ soft_no_obj_ptr: bool = False,
173
+ use_mlp_for_obj_ptr_proj: bool = False,
174
+ no_obj_embed_spatial: bool = False,
175
+ sam_mask_decoder_extra_args=None,
176
+ compile_image_encoder: bool = False,
177
+ ):
178
+ """
179
+ Initializes the SAM2Model for video object segmentation with memory-based tracking.
180
+
181
+ Args:
182
+ image_encoder (nn.Module): Visual encoder for extracting image features.
183
+ memory_attention (nn.Module): Module for attending to memory features.
184
+ memory_encoder (nn.Module): Encoder for generating memory representations.
185
+ num_maskmem (int): Number of accessible memory frames. Default is 7 (1 input frame + 6 previous frames).
186
+ image_size (int): Size of input images.
187
+ backbone_stride (int): Stride of the image backbone output.
188
+ sigmoid_scale_for_mem_enc (float): Scale factor for mask sigmoid probability.
189
+ sigmoid_bias_for_mem_enc (float): Bias factor for mask sigmoid probability.
190
+ binarize_mask_from_pts_for_mem_enc (bool): Whether to binarize sigmoid mask logits on interacted frames
191
+ with clicks during evaluation.
192
+ use_mask_input_as_output_without_sam (bool): Whether to directly output the input mask without using SAM
193
+ prompt encoder and mask decoder on frames with mask input.
194
+ max_cond_frames_in_attn (int): Maximum number of conditioning frames to participate in memory attention.
195
+ -1 means no limit.
196
+ directly_add_no_mem_embed (bool): Whether to directly add no-memory embedding to image feature on the
197
+ first frame.
198
+ use_high_res_features_in_sam (bool): Whether to use high-resolution feature maps in the SAM mask decoder.
199
+ multimask_output_in_sam (bool): Whether to output multiple (3) masks for the first click on initial
200
+ conditioning frames.
201
+ multimask_min_pt_num (int): Minimum number of clicks to use multimask output in SAM.
202
+ multimask_max_pt_num (int): Maximum number of clicks to use multimask output in SAM.
203
+ multimask_output_for_tracking (bool): Whether to use multimask output for tracking.
204
+ use_multimask_token_for_obj_ptr (bool): Whether to use multimask tokens for object pointers.
205
+ iou_prediction_use_sigmoid (bool): Whether to use sigmoid to restrict IoU prediction to [0-1].
206
+ memory_temporal_stride_for_eval (int): Memory bank's temporal stride during evaluation.
207
+ non_overlap_masks_for_mem_enc (bool): Whether to apply non-overlapping constraints on object masks in
208
+ memory encoder during evaluation.
209
+ use_obj_ptrs_in_encoder (bool): Whether to cross-attend to object pointers from other frames in the encoder.
210
+ max_obj_ptrs_in_encoder (int): Maximum number of object pointers from other frames in encoder
211
+ cross-attention.
212
+ add_tpos_enc_to_obj_ptrs (bool): Whether to add temporal positional encoding to object pointers in
213
+ the encoder.
214
+ proj_tpos_enc_in_obj_ptrs (bool): Whether to add an extra linear projection layer for temporal positional
215
+ encoding in object pointers.
216
+ use_signed_tpos_enc_to_obj_ptrs (bool): whether to use signed distance (instead of unsigned absolute distance)
217
+ in the temporal positional encoding in the object pointers, only relevant when both `use_obj_ptrs_in_encoder=True`
218
+ and `add_tpos_enc_to_obj_ptrs=True`.
219
+ only_obj_ptrs_in_the_past_for_eval (bool): Whether to only attend to object pointers in the past
220
+ during evaluation.
221
+ pred_obj_scores (bool): Whether to predict if there is an object in the frame.
222
+ pred_obj_scores_mlp (bool): Whether to use an MLP to predict object scores.
223
+ fixed_no_obj_ptr (bool): Whether to have a fixed no-object pointer when there is no object present.
224
+ soft_no_obj_ptr (bool): Whether to mix in no-object pointer softly for easier recovery and error mitigation.
225
+ use_mlp_for_obj_ptr_proj (bool): Whether to use MLP for object pointer projection.
226
+ no_obj_embed_spatial (bool): Whether add no obj embedding to spatial frames.
227
+ sam_mask_decoder_extra_args (Dict | None): Extra arguments for constructing the SAM mask decoder.
228
+ compile_image_encoder (bool): Whether to compile the image encoder for faster inference.
229
+
230
+ Examples:
231
+ >>> image_encoder = ImageEncoderViT(...)
232
+ >>> memory_attention = SAM2TwoWayTransformer(...)
233
+ >>> memory_encoder = nn.Sequential(...)
234
+ >>> model = SAM2Model(image_encoder, memory_attention, memory_encoder)
235
+ >>> image_batch = torch.rand(1, 3, 512, 512)
236
+ >>> features = model.forward_image(image_batch)
237
+ >>> track_results = model.track_step(0, True, features, None, None, None, {})
238
+ """
239
+ super().__init__()
240
+
241
+ # Part 1: the image backbone
242
+ self.image_encoder = image_encoder
243
+ # Use level 0, 1, 2 for high-res setting, or just level 2 for the default setting
244
+ self.use_high_res_features_in_sam = use_high_res_features_in_sam
245
+ self.num_feature_levels = 3 if use_high_res_features_in_sam else 1
246
+ self.use_obj_ptrs_in_encoder = use_obj_ptrs_in_encoder
247
+ self.max_obj_ptrs_in_encoder = max_obj_ptrs_in_encoder
248
+ if use_obj_ptrs_in_encoder:
249
+ # A conv layer to downsample the mask prompt to stride 4 (the same stride as
250
+ # low-res SAM mask logits) and to change its scales from 0~1 to SAM logit scale,
251
+ # so that it can be fed into the SAM mask decoder to generate a pointer.
252
+ self.mask_downsample = torch.nn.Conv2d(1, 1, kernel_size=4, stride=4)
253
+ self.add_tpos_enc_to_obj_ptrs = add_tpos_enc_to_obj_ptrs
254
+ if proj_tpos_enc_in_obj_ptrs:
255
+ assert add_tpos_enc_to_obj_ptrs # these options need to be used together
256
+ self.proj_tpos_enc_in_obj_ptrs = proj_tpos_enc_in_obj_ptrs
257
+ self.use_signed_tpos_enc_to_obj_ptrs = use_signed_tpos_enc_to_obj_ptrs
258
+ self.only_obj_ptrs_in_the_past_for_eval = only_obj_ptrs_in_the_past_for_eval
259
+
260
+ # Part 2: memory attention to condition current frame's visual features
261
+ # with memories (and obj ptrs) from past frames
262
+ self.memory_attention = memory_attention
263
+ self.hidden_dim = memory_attention.d_model
264
+
265
+ # Part 3: memory encoder for the previous frame's outputs
266
+ self.memory_encoder = memory_encoder
267
+ self.mem_dim = self.hidden_dim
268
+ if hasattr(self.memory_encoder, "out_proj") and hasattr(self.memory_encoder.out_proj, "weight"):
269
+ # if there is compression of memories along channel dim
270
+ self.mem_dim = self.memory_encoder.out_proj.weight.shape[0]
271
+ self.num_maskmem = num_maskmem # Number of memories accessible
272
+ # Temporal encoding of the memories
273
+ self.maskmem_tpos_enc = torch.nn.Parameter(torch.zeros(num_maskmem, 1, 1, self.mem_dim))
274
+ trunc_normal_(self.maskmem_tpos_enc, std=0.02)
275
+ # a single token to indicate no memory embedding from previous frames
276
+ self.no_mem_embed = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
277
+ self.no_mem_pos_enc = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
278
+ trunc_normal_(self.no_mem_embed, std=0.02)
279
+ trunc_normal_(self.no_mem_pos_enc, std=0.02)
280
+ self.directly_add_no_mem_embed = directly_add_no_mem_embed
281
+ # Apply sigmoid to the output raw mask logits (to turn them from
282
+ # range (-inf, +inf) to range (0, 1)) before feeding them into the memory encoder
283
+ self.sigmoid_scale_for_mem_enc = sigmoid_scale_for_mem_enc
284
+ self.sigmoid_bias_for_mem_enc = sigmoid_bias_for_mem_enc
285
+ self.binarize_mask_from_pts_for_mem_enc = binarize_mask_from_pts_for_mem_enc
286
+ self.non_overlap_masks_for_mem_enc = non_overlap_masks_for_mem_enc
287
+ self.memory_temporal_stride_for_eval = memory_temporal_stride_for_eval
288
+ # On frames with mask input, whether to directly output the input mask without
289
+ # using a SAM prompt encoder + mask decoder
290
+ self.use_mask_input_as_output_without_sam = use_mask_input_as_output_without_sam
291
+ self.multimask_output_in_sam = multimask_output_in_sam
292
+ self.multimask_min_pt_num = multimask_min_pt_num
293
+ self.multimask_max_pt_num = multimask_max_pt_num
294
+ self.multimask_output_for_tracking = multimask_output_for_tracking
295
+ self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
296
+ self.iou_prediction_use_sigmoid = iou_prediction_use_sigmoid
297
+
298
+ # Part 4: SAM-style prompt encoder (for both mask and point inputs)
299
+ # and SAM-style mask decoder for the final mask output
300
+ self.image_size = image_size
301
+ self.backbone_stride = backbone_stride
302
+ self.sam_mask_decoder_extra_args = sam_mask_decoder_extra_args
303
+ self.pred_obj_scores = pred_obj_scores
304
+ self.pred_obj_scores_mlp = pred_obj_scores_mlp
305
+ self.fixed_no_obj_ptr = fixed_no_obj_ptr
306
+ self.soft_no_obj_ptr = soft_no_obj_ptr
307
+ if self.fixed_no_obj_ptr:
308
+ assert self.pred_obj_scores
309
+ assert self.use_obj_ptrs_in_encoder
310
+ if self.pred_obj_scores and self.use_obj_ptrs_in_encoder:
311
+ self.no_obj_ptr = torch.nn.Parameter(torch.zeros(1, self.hidden_dim))
312
+ trunc_normal_(self.no_obj_ptr, std=0.02)
313
+ self.use_mlp_for_obj_ptr_proj = use_mlp_for_obj_ptr_proj
314
+ self.no_obj_embed_spatial = None
315
+ if no_obj_embed_spatial:
316
+ self.no_obj_embed_spatial = torch.nn.Parameter(torch.zeros(1, self.mem_dim))
317
+ trunc_normal_(self.no_obj_embed_spatial, std=0.02)
318
+
319
+ self._build_sam_heads()
320
+ self.max_cond_frames_in_attn = max_cond_frames_in_attn
321
+
322
+ # Model compilation
323
+ if compile_image_encoder:
324
+ # Compile the forward function (not the full module) to allow loading checkpoints.
325
+ print("Image encoder compilation is enabled. First forward pass will be slow.")
326
+ self.image_encoder.forward = torch.compile(
327
+ self.image_encoder.forward,
328
+ mode="max-autotune",
329
+ fullgraph=True,
330
+ dynamic=False,
331
+ )
332
+
333
+ @property
334
+ def device(self):
335
+ """Returns the device on which the model's parameters are stored."""
336
+ return next(self.parameters()).device
337
+
338
+ def forward(self, *args, **kwargs):
339
+ """Processes image and prompt inputs to generate object masks and scores in video sequences."""
340
+ raise NotImplementedError(
341
+ "Please use the corresponding methods in SAM2VideoPredictor for inference."
342
+ "See notebooks/video_predictor_example.ipynb for an example."
343
+ )
344
+
345
+ def _build_sam_heads(self):
346
+ """Builds SAM-style prompt encoder and mask decoder for image segmentation tasks."""
347
+ self.sam_prompt_embed_dim = self.hidden_dim
348
+ self.sam_image_embedding_size = self.image_size // self.backbone_stride
349
+
350
+ # Build PromptEncoder and MaskDecoder from SAM (hyperparameters like `mask_in_chans=16` are from SAM code)
351
+ self.sam_prompt_encoder = PromptEncoder(
352
+ embed_dim=self.sam_prompt_embed_dim,
353
+ image_embedding_size=(
354
+ self.sam_image_embedding_size,
355
+ self.sam_image_embedding_size,
356
+ ),
357
+ input_image_size=(self.image_size, self.image_size),
358
+ mask_in_chans=16,
359
+ )
360
+ self.sam_mask_decoder = SAM2MaskDecoder(
361
+ num_multimask_outputs=3,
362
+ transformer=SAM2TwoWayTransformer(
363
+ depth=2,
364
+ embedding_dim=self.sam_prompt_embed_dim,
365
+ mlp_dim=2048,
366
+ num_heads=8,
367
+ ),
368
+ transformer_dim=self.sam_prompt_embed_dim,
369
+ iou_head_depth=3,
370
+ iou_head_hidden_dim=256,
371
+ use_high_res_features=self.use_high_res_features_in_sam,
372
+ iou_prediction_use_sigmoid=self.iou_prediction_use_sigmoid,
373
+ pred_obj_scores=self.pred_obj_scores,
374
+ pred_obj_scores_mlp=self.pred_obj_scores_mlp,
375
+ use_multimask_token_for_obj_ptr=self.use_multimask_token_for_obj_ptr,
376
+ **(self.sam_mask_decoder_extra_args or {}),
377
+ )
378
+ if self.use_obj_ptrs_in_encoder:
379
+ # a linear projection on SAM output tokens to turn them into object pointers
380
+ self.obj_ptr_proj = torch.nn.Linear(self.hidden_dim, self.hidden_dim)
381
+ if self.use_mlp_for_obj_ptr_proj:
382
+ self.obj_ptr_proj = MLP(self.hidden_dim, self.hidden_dim, self.hidden_dim, 3)
383
+ else:
384
+ self.obj_ptr_proj = torch.nn.Identity()
385
+ if self.proj_tpos_enc_in_obj_ptrs:
386
+ # a linear projection on temporal positional encoding in object pointers to
387
+ # avoid potential interference with spatial positional encoding
388
+ self.obj_ptr_tpos_proj = torch.nn.Linear(self.hidden_dim, self.mem_dim)
389
+ else:
390
+ self.obj_ptr_tpos_proj = torch.nn.Identity()
391
+
392
+ def _forward_sam_heads(
393
+ self,
394
+ backbone_features,
395
+ point_inputs=None,
396
+ mask_inputs=None,
397
+ high_res_features=None,
398
+ multimask_output=False,
399
+ ):
400
+ """
401
+ Forward pass through SAM prompt encoders and mask heads.
402
+
403
+ This method processes image features and optional point/mask inputs to generate object masks and scores.
404
+
405
+ Args:
406
+ backbone_features (torch.Tensor): Image features with shape (B, C, H, W).
407
+ point_inputs (Dict[str, torch.Tensor] | None): Dictionary containing point prompts.
408
+ 'point_coords': Tensor of shape (B, P, 2) with float32 dtype, containing absolute
409
+ pixel-unit coordinates in (x, y) format for P input points.
410
+ 'point_labels': Tensor of shape (B, P) with int32 dtype, where 1 means positive clicks,
411
+ 0 means negative clicks, and -1 means padding.
412
+ mask_inputs (torch.Tensor | None): Mask of shape (B, 1, H*16, W*16), float or bool, with the
413
+ same spatial size as the image.
414
+ high_res_features (List[torch.Tensor] | None): List of two feature maps with shapes
415
+ (B, C, 4*H, 4*W) and (B, C, 2*H, 2*W) respectively, used as high-resolution feature maps
416
+ for SAM decoder.
417
+ multimask_output (bool): If True, output 3 candidate masks and their IoU estimates; if False,
418
+ output only 1 mask and its IoU estimate.
419
+
420
+ Returns:
421
+ (Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]):
422
+ low_res_multimasks: Tensor of shape (B, M, H*4, W*4) with SAM output mask logits.
423
+ high_res_multimasks: Tensor of shape (B, M, H*16, W*16) with upsampled mask logits.
424
+ ious: Tensor of shape (B, M) with estimated IoU for each output mask.
425
+ low_res_masks: Tensor of shape (B, 1, H*4, W*4) with the best low-resolution mask.
426
+ high_res_masks: Tensor of shape (B, 1, H*16, W*16) with the best high-resolution mask.
427
+ obj_ptr: Tensor of shape (B, C) with object pointer vector for the output mask.
428
+ object_score_logits: Tensor of shape (B) with object score logits.
429
+
430
+ Where M is 3 if multimask_output=True, and 1 if multimask_output=False.
431
+
432
+ Examples:
433
+ >>> backbone_features = torch.rand(1, 256, 32, 32)
434
+ >>> point_inputs = {"point_coords": torch.rand(1, 2, 2), "point_labels": torch.tensor([[1, 0]])}
435
+ >>> mask_inputs = torch.rand(1, 1, 512, 512)
436
+ >>> results = model._forward_sam_heads(backbone_features, point_inputs, mask_inputs)
437
+ >>> (
438
+ ... low_res_multimasks,
439
+ ... high_res_multimasks,
440
+ ... ious,
441
+ ... low_res_masks,
442
+ ... high_res_masks,
443
+ ... obj_ptr,
444
+ ... object_score_logits,
445
+ ... ) = results
446
+ """
447
+ B = backbone_features.size(0)
448
+ device = backbone_features.device
449
+ assert backbone_features.size(1) == self.sam_prompt_embed_dim
450
+ assert backbone_features.size(2) == self.sam_image_embedding_size
451
+ assert backbone_features.size(3) == self.sam_image_embedding_size
452
+
453
+ # a) Handle point prompts
454
+ if point_inputs is not None:
455
+ sam_point_coords = point_inputs["point_coords"]
456
+ sam_point_labels = point_inputs["point_labels"]
457
+ assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B
458
+ else:
459
+ # If no points are provide, pad with an empty point (with label -1)
460
+ sam_point_coords = torch.zeros(B, 1, 2, device=device)
461
+ sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device)
462
+
463
+ # b) Handle mask prompts
464
+ if mask_inputs is not None:
465
+ # If mask_inputs is provided, downsize it into low-res mask input if needed
466
+ # and feed it as a dense mask prompt into the SAM mask encoder
467
+ assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1)
468
+ if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size:
469
+ sam_mask_prompt = F.interpolate(
470
+ mask_inputs.float(),
471
+ size=self.sam_prompt_encoder.mask_input_size,
472
+ align_corners=False,
473
+ mode="bilinear",
474
+ antialias=True, # use antialias for downsampling
475
+ )
476
+ else:
477
+ sam_mask_prompt = mask_inputs
478
+ else:
479
+ # Otherwise, simply feed None (and SAM's prompt encoder will add
480
+ # a learned `no_mask_embed` to indicate no mask input in this case).
481
+ sam_mask_prompt = None
482
+
483
+ sparse_embeddings, dense_embeddings = self.sam_prompt_encoder(
484
+ points=(sam_point_coords, sam_point_labels),
485
+ boxes=None,
486
+ masks=sam_mask_prompt,
487
+ )
488
+ low_res_multimasks, ious, sam_output_tokens, object_score_logits = self.sam_mask_decoder(
489
+ image_embeddings=backbone_features,
490
+ image_pe=self.sam_prompt_encoder.get_dense_pe(),
491
+ sparse_prompt_embeddings=sparse_embeddings,
492
+ dense_prompt_embeddings=dense_embeddings,
493
+ multimask_output=multimask_output,
494
+ repeat_image=False, # the image is already batched
495
+ high_res_features=high_res_features,
496
+ )
497
+ if self.pred_obj_scores:
498
+ is_obj_appearing = object_score_logits > 0
499
+
500
+ # Spatial memory mask is a *hard* choice between obj and no obj, consistent with actual mask prediction
501
+ low_res_multimasks = torch.where(is_obj_appearing[:, None, None], low_res_multimasks, NO_OBJ_SCORE)
502
+
503
+ # convert masks from possibly bfloat16 (or float16) to float32
504
+ # (older PyTorch versions before 2.1 don't support `interpolate` on bf16)
505
+ low_res_multimasks = low_res_multimasks.float()
506
+ high_res_multimasks = F.interpolate(
507
+ low_res_multimasks,
508
+ size=(self.image_size, self.image_size),
509
+ mode="bilinear",
510
+ align_corners=False,
511
+ )
512
+
513
+ sam_output_token = sam_output_tokens[:, 0]
514
+ if multimask_output:
515
+ # take the best mask prediction (with the highest IoU estimation)
516
+ best_iou_inds = torch.argmax(ious, dim=-1)
517
+ batch_inds = torch.arange(B, device=device)
518
+ low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
519
+ high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
520
+ if sam_output_tokens.size(1) > 1:
521
+ sam_output_token = sam_output_tokens[batch_inds, best_iou_inds]
522
+ else:
523
+ low_res_masks, high_res_masks = low_res_multimasks, high_res_multimasks
524
+
525
+ # Extract object pointer from the SAM output token (with occlusion handling)
526
+ obj_ptr = self.obj_ptr_proj(sam_output_token)
527
+ if self.pred_obj_scores:
528
+ # Allow *soft* no obj ptr, unlike for masks
529
+ if self.soft_no_obj_ptr:
530
+ lambda_is_obj_appearing = object_score_logits.sigmoid()
531
+ else:
532
+ lambda_is_obj_appearing = is_obj_appearing.float()
533
+
534
+ if self.fixed_no_obj_ptr:
535
+ obj_ptr = lambda_is_obj_appearing * obj_ptr
536
+ obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
537
+
538
+ return (
539
+ low_res_multimasks,
540
+ high_res_multimasks,
541
+ ious,
542
+ low_res_masks,
543
+ high_res_masks,
544
+ obj_ptr,
545
+ object_score_logits,
546
+ )
547
+
548
+ def _use_mask_as_output(self, backbone_features, high_res_features, mask_inputs):
549
+ """Processes mask inputs directly as output, bypassing SAM encoder/decoder."""
550
+ # Use -10/+10 as logits for neg/pos pixels (very close to 0/1 in prob after sigmoid).
551
+ out_scale, out_bias = 20.0, -10.0 # sigmoid(-10.0)=4.5398e-05
552
+ mask_inputs_float = mask_inputs.float()
553
+ high_res_masks = mask_inputs_float * out_scale + out_bias
554
+ low_res_masks = F.interpolate(
555
+ high_res_masks,
556
+ size=(high_res_masks.size(-2) // 4, high_res_masks.size(-1) // 4),
557
+ align_corners=False,
558
+ mode="bilinear",
559
+ antialias=True, # use antialias for downsampling
560
+ )
561
+ # a dummy IoU prediction of all 1's under mask input
562
+ ious = mask_inputs.new_ones(mask_inputs.size(0), 1).float()
563
+ if not self.use_obj_ptrs_in_encoder:
564
+ # all zeros as a dummy object pointer (of shape [B, C])
565
+ obj_ptr = torch.zeros(mask_inputs.size(0), self.hidden_dim, device=mask_inputs.device)
566
+ else:
567
+ # produce an object pointer using the SAM decoder from the mask input
568
+ _, _, _, _, _, obj_ptr, _ = self._forward_sam_heads(
569
+ backbone_features=backbone_features,
570
+ mask_inputs=self.mask_downsample(mask_inputs_float),
571
+ high_res_features=high_res_features,
572
+ )
573
+ # In this method, we are treating mask_input as output, e.g. using it directly to create spatial mem;
574
+ # Below, we follow the same design axiom to use mask_input to decide if obj appears or not instead of relying
575
+ # on the object_scores from the SAM decoder.
576
+ is_obj_appearing = torch.any(mask_inputs.flatten(1).float() > 0.0, dim=1)
577
+ is_obj_appearing = is_obj_appearing[..., None]
578
+ lambda_is_obj_appearing = is_obj_appearing.float()
579
+ object_score_logits = out_scale * lambda_is_obj_appearing + out_bias
580
+ if self.pred_obj_scores:
581
+ if self.fixed_no_obj_ptr:
582
+ obj_ptr = lambda_is_obj_appearing * obj_ptr
583
+ obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
584
+
585
+ return (
586
+ low_res_masks,
587
+ high_res_masks,
588
+ ious,
589
+ low_res_masks,
590
+ high_res_masks,
591
+ obj_ptr,
592
+ object_score_logits,
593
+ )
594
+
595
+ def forward_image(self, img_batch: torch.Tensor):
596
+ """Processes image batch through encoder to extract multi-level features for SAM model."""
597
+ backbone_out = self.image_encoder(img_batch)
598
+ if self.use_high_res_features_in_sam:
599
+ # precompute projected level 0 and level 1 features in SAM decoder
600
+ # to avoid running it again on every SAM click
601
+ backbone_out["backbone_fpn"][0] = self.sam_mask_decoder.conv_s0(backbone_out["backbone_fpn"][0])
602
+ backbone_out["backbone_fpn"][1] = self.sam_mask_decoder.conv_s1(backbone_out["backbone_fpn"][1])
603
+ return backbone_out
604
+
605
+ def _prepare_backbone_features(self, backbone_out):
606
+ """Prepares and flattens visual features from the image backbone output for further processing."""
607
+ assert len(backbone_out["backbone_fpn"]) == len(backbone_out["vision_pos_enc"])
608
+ assert len(backbone_out["backbone_fpn"]) >= self.num_feature_levels
609
+
610
+ feature_maps = backbone_out["backbone_fpn"][-self.num_feature_levels :]
611
+ vision_pos_embeds = backbone_out["vision_pos_enc"][-self.num_feature_levels :]
612
+
613
+ feat_sizes = [(x.shape[-2], x.shape[-1]) for x in vision_pos_embeds]
614
+ # flatten NxCxHxW to HWxNxC
615
+ vision_feats = [x.flatten(2).permute(2, 0, 1) for x in feature_maps]
616
+ vision_pos_embeds = [x.flatten(2).permute(2, 0, 1) for x in vision_pos_embeds]
617
+
618
+ return backbone_out, vision_feats, vision_pos_embeds, feat_sizes
619
+
620
+ def _prepare_memory_conditioned_features(
621
+ self,
622
+ frame_idx,
623
+ is_init_cond_frame,
624
+ current_vision_feats,
625
+ current_vision_pos_embeds,
626
+ feat_sizes,
627
+ output_dict,
628
+ num_frames,
629
+ track_in_reverse=False, # tracking in reverse time order (for demo usage)
630
+ ):
631
+ """Prepares memory-conditioned features by fusing current frame's visual features with previous memories."""
632
+ B = current_vision_feats[-1].size(1) # batch size on this frame
633
+ C = self.hidden_dim
634
+ H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size
635
+ device = current_vision_feats[-1].device
636
+ # The case of `self.num_maskmem == 0` below is primarily used for reproducing SAM on images.
637
+ # In this case, we skip the fusion with any memory.
638
+ if self.num_maskmem == 0: # Disable memory and skip fusion
639
+ return current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
640
+ num_obj_ptr_tokens = 0
641
+ tpos_sign_mul = -1 if track_in_reverse else 1
642
+ # Step 1: condition the visual features of the current frame on previous memories
643
+ if not is_init_cond_frame:
644
+ # Retrieve the memories encoded with the maskmem backbone
645
+ to_cat_memory, to_cat_memory_pos_embed = [], []
646
+ # Add conditioning frame's output first (all cond frames have t_pos=0 for
647
+ # when getting temporal positional embedding below)
648
+ assert len(output_dict["cond_frame_outputs"]) > 0
649
+ # Select a maximum number of temporally closest cond frames for cross attention
650
+ cond_outputs = output_dict["cond_frame_outputs"]
651
+ selected_cond_outputs, unselected_cond_outputs = select_closest_cond_frames(
652
+ frame_idx, cond_outputs, self.max_cond_frames_in_attn
653
+ )
654
+ t_pos_and_prevs = [(0, out) for out in selected_cond_outputs.values()]
655
+ # Add last (self.num_maskmem - 1) frames before current frame for non-conditioning memory
656
+ # the earliest one has t_pos=1 and the latest one has t_pos=self.num_maskmem-1
657
+ # We also allow taking the memory frame non-consecutively (with r>1), in which case
658
+ # we take (self.num_maskmem - 2) frames among every r-th frames plus the last frame.
659
+ r = 1 if self.training else self.memory_temporal_stride_for_eval
660
+ for t_pos in range(1, self.num_maskmem):
661
+ t_rel = self.num_maskmem - t_pos # how many frames before current frame
662
+ if t_rel == 1:
663
+ # for t_rel == 1, we take the last frame (regardless of r)
664
+ prev_frame_idx = frame_idx + t_rel if track_in_reverse else frame_idx - t_rel
665
+ elif not track_in_reverse:
666
+ # first find the nearest frame among every r-th frames before this frame
667
+ # for r=1, this would be (frame_idx - 2)
668
+ prev_frame_idx = ((frame_idx - 2) // r) * r
669
+ # then seek further among every r-th frames
670
+ prev_frame_idx = prev_frame_idx - (t_rel - 2) * r
671
+ else:
672
+ # first find the nearest frame among every r-th frames after this frame
673
+ # for r=1, this would be (frame_idx + 2)
674
+ prev_frame_idx = -(-(frame_idx + 2) // r) * r
675
+ # then seek further among every r-th frames
676
+ prev_frame_idx = prev_frame_idx + (t_rel - 2) * r
677
+ out = output_dict["non_cond_frame_outputs"].get(prev_frame_idx, None)
678
+ if out is None:
679
+ # If an unselected conditioning frame is among the last (self.num_maskmem - 1)
680
+ # frames, we still attend to it as if it's a non-conditioning frame.
681
+ out = unselected_cond_outputs.get(prev_frame_idx, None)
682
+ t_pos_and_prevs.append((t_pos, out))
683
+
684
+ for t_pos, prev in t_pos_and_prevs:
685
+ if prev is None:
686
+ continue # skip padding frames
687
+ # "maskmem_features" might have been offloaded to CPU in demo use cases,
688
+ # so we load it back to inference device (it's a no-op if it's already on device).
689
+ feats = prev["maskmem_features"].to(device=device, non_blocking=True)
690
+ to_cat_memory.append(feats.flatten(2).permute(2, 0, 1))
691
+ # Spatial positional encoding (it might have been offloaded to CPU in eval)
692
+ maskmem_enc = prev["maskmem_pos_enc"][-1].to(device=device)
693
+ maskmem_enc = maskmem_enc.flatten(2).permute(2, 0, 1)
694
+ # Temporal positional encoding
695
+ maskmem_enc = maskmem_enc + self.maskmem_tpos_enc[self.num_maskmem - t_pos - 1]
696
+ to_cat_memory_pos_embed.append(maskmem_enc)
697
+
698
+ # Construct the list of past object pointers
699
+ if self.use_obj_ptrs_in_encoder:
700
+ max_obj_ptrs_in_encoder = min(num_frames, self.max_obj_ptrs_in_encoder)
701
+ # First add those object pointers from selected conditioning frames
702
+ # (optionally, only include object pointers in the past during evaluation)
703
+ if not self.training and self.only_obj_ptrs_in_the_past_for_eval:
704
+ ptr_cond_outputs = {
705
+ t: out
706
+ for t, out in selected_cond_outputs.items()
707
+ if (t >= frame_idx if track_in_reverse else t <= frame_idx)
708
+ }
709
+ else:
710
+ ptr_cond_outputs = selected_cond_outputs
711
+ pos_and_ptrs = [
712
+ # Temporal pos encoding contains how far away each pointer is from current frame
713
+ (
714
+ (
715
+ (frame_idx - t) * tpos_sign_mul
716
+ if self.use_signed_tpos_enc_to_obj_ptrs
717
+ else abs(frame_idx - t)
718
+ ),
719
+ out["obj_ptr"],
720
+ )
721
+ for t, out in ptr_cond_outputs.items()
722
+ ]
723
+ # Add up to (max_obj_ptrs_in_encoder - 1) non-conditioning frames before current frame
724
+ for t_diff in range(1, max_obj_ptrs_in_encoder):
725
+ t = frame_idx + t_diff if track_in_reverse else frame_idx - t_diff
726
+ if t < 0 or (num_frames is not None and t >= num_frames):
727
+ break
728
+ out = output_dict["non_cond_frame_outputs"].get(t, unselected_cond_outputs.get(t, None))
729
+ if out is not None:
730
+ pos_and_ptrs.append((t_diff, out["obj_ptr"]))
731
+ # If we have at least one object pointer, add them to the across attention
732
+ if pos_and_ptrs:
733
+ pos_list, ptrs_list = zip(*pos_and_ptrs)
734
+ # stack object pointers along dim=0 into [ptr_seq_len, B, C] shape
735
+ obj_ptrs = torch.stack(ptrs_list, dim=0)
736
+ # a temporal positional embedding based on how far each object pointer is from
737
+ # the current frame (sine embedding normalized by the max pointer num).
738
+ if self.add_tpos_enc_to_obj_ptrs:
739
+ t_diff_max = max_obj_ptrs_in_encoder - 1
740
+ tpos_dim = C if self.proj_tpos_enc_in_obj_ptrs else self.mem_dim
741
+ obj_pos = torch.tensor(pos_list, device=device)
742
+ obj_pos = get_1d_sine_pe(obj_pos / t_diff_max, dim=tpos_dim)
743
+ obj_pos = self.obj_ptr_tpos_proj(obj_pos)
744
+ obj_pos = obj_pos.unsqueeze(1).expand(-1, B, self.mem_dim)
745
+ else:
746
+ obj_pos = obj_ptrs.new_zeros(len(pos_list), B, self.mem_dim)
747
+ if self.mem_dim < C:
748
+ # split a pointer into (C // self.mem_dim) tokens for self.mem_dim < C
749
+ obj_ptrs = obj_ptrs.reshape(-1, B, C // self.mem_dim, self.mem_dim)
750
+ obj_ptrs = obj_ptrs.permute(0, 2, 1, 3).flatten(0, 1)
751
+ obj_pos = obj_pos.repeat_interleave(C // self.mem_dim, dim=0)
752
+ to_cat_memory.append(obj_ptrs)
753
+ to_cat_memory_pos_embed.append(obj_pos)
754
+ num_obj_ptr_tokens = obj_ptrs.shape[0]
755
+ else:
756
+ num_obj_ptr_tokens = 0
757
+ else:
758
+ # for initial conditioning frames, encode them without using any previous memory
759
+ if self.directly_add_no_mem_embed:
760
+ # directly add no-mem embedding (instead of using the transformer encoder)
761
+ pix_feat_with_mem = current_vision_feats[-1] + self.no_mem_embed
762
+ pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
763
+ return pix_feat_with_mem
764
+
765
+ # Use a dummy token on the first frame (to avoid empty memory input to transformer encoder)
766
+ to_cat_memory = [self.no_mem_embed.expand(1, B, self.mem_dim)]
767
+ to_cat_memory_pos_embed = [self.no_mem_pos_enc.expand(1, B, self.mem_dim)]
768
+
769
+ # Step 2: Concatenate the memories and forward through the transformer encoder
770
+ memory = torch.cat(to_cat_memory, dim=0)
771
+ memory_pos_embed = torch.cat(to_cat_memory_pos_embed, dim=0)
772
+
773
+ pix_feat_with_mem = self.memory_attention(
774
+ curr=current_vision_feats,
775
+ curr_pos=current_vision_pos_embeds,
776
+ memory=memory,
777
+ memory_pos=memory_pos_embed,
778
+ num_obj_ptr_tokens=num_obj_ptr_tokens,
779
+ )
780
+ # reshape the output (HW)BC => BCHW
781
+ pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
782
+ return pix_feat_with_mem
783
+
784
+ def _encode_new_memory(
785
+ self,
786
+ current_vision_feats,
787
+ feat_sizes,
788
+ pred_masks_high_res,
789
+ object_score_logits,
790
+ is_mask_from_pts,
791
+ ):
792
+ """Encodes frame features and masks into a new memory representation for video segmentation."""
793
+ B = current_vision_feats[-1].size(1) # batch size on this frame
794
+ C = self.hidden_dim
795
+ H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size
796
+ # top-level feature, (HW)BC => BCHW
797
+ pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
798
+ if self.non_overlap_masks_for_mem_enc and not self.training:
799
+ # optionally, apply non-overlapping constraints to the masks (it's applied
800
+ # in the batch dimension and should only be used during eval, where all
801
+ # the objects come from the same video under batch size 1).
802
+ pred_masks_high_res = self._apply_non_overlapping_constraints(pred_masks_high_res)
803
+ # scale the raw mask logits with a temperature before applying sigmoid
804
+ binarize = self.binarize_mask_from_pts_for_mem_enc and is_mask_from_pts
805
+ if binarize and not self.training:
806
+ mask_for_mem = (pred_masks_high_res > 0).float()
807
+ else:
808
+ # apply sigmoid on the raw mask logits to turn them into range (0, 1)
809
+ mask_for_mem = torch.sigmoid(pred_masks_high_res)
810
+ # apply scale and bias terms to the sigmoid probabilities
811
+ if self.sigmoid_scale_for_mem_enc != 1.0:
812
+ mask_for_mem = mask_for_mem * self.sigmoid_scale_for_mem_enc
813
+ if self.sigmoid_bias_for_mem_enc != 0.0:
814
+ mask_for_mem = mask_for_mem + self.sigmoid_bias_for_mem_enc
815
+ maskmem_out = self.memory_encoder(pix_feat, mask_for_mem, skip_mask_sigmoid=True) # sigmoid already applied
816
+ maskmem_features = maskmem_out["vision_features"]
817
+ maskmem_pos_enc = maskmem_out["vision_pos_enc"]
818
+ # add a no-object embedding to the spatial memory to indicate that the frame
819
+ # is predicted to be occluded (i.e. no object is appearing in the frame)
820
+ if self.no_obj_embed_spatial is not None:
821
+ is_obj_appearing = (object_score_logits > 0).float()
822
+ maskmem_features += (1 - is_obj_appearing[..., None, None]) * self.no_obj_embed_spatial[
823
+ ..., None, None
824
+ ].expand(*maskmem_features.shape)
825
+
826
+ return maskmem_features, maskmem_pos_enc
827
+
828
+ def _track_step(
829
+ self,
830
+ frame_idx,
831
+ is_init_cond_frame,
832
+ current_vision_feats,
833
+ current_vision_pos_embeds,
834
+ feat_sizes,
835
+ point_inputs,
836
+ mask_inputs,
837
+ output_dict,
838
+ num_frames,
839
+ track_in_reverse,
840
+ prev_sam_mask_logits,
841
+ ):
842
+ """Performs a single tracking step, updating object masks and memory features based on current frame inputs."""
843
+ current_out = {"point_inputs": point_inputs, "mask_inputs": mask_inputs}
844
+ # High-resolution feature maps for the SAM head, reshape (HW)BC => BCHW
845
+ if len(current_vision_feats) > 1:
846
+ high_res_features = [
847
+ x.permute(1, 2, 0).view(x.size(1), x.size(2), *s)
848
+ for x, s in zip(current_vision_feats[:-1], feat_sizes[:-1])
849
+ ]
850
+ else:
851
+ high_res_features = None
852
+ if mask_inputs is not None and self.use_mask_input_as_output_without_sam:
853
+ # When use_mask_input_as_output_without_sam=True, we directly output the mask input
854
+ # (see it as a GT mask) without using a SAM prompt encoder + mask decoder.
855
+ pix_feat = current_vision_feats[-1].permute(1, 2, 0)
856
+ pix_feat = pix_feat.view(-1, self.hidden_dim, *feat_sizes[-1])
857
+ sam_outputs = self._use_mask_as_output(pix_feat, high_res_features, mask_inputs)
858
+ else:
859
+ # fused the visual feature with previous memory features in the memory bank
860
+ pix_feat = self._prepare_memory_conditioned_features(
861
+ frame_idx=frame_idx,
862
+ is_init_cond_frame=is_init_cond_frame,
863
+ current_vision_feats=current_vision_feats[-1:],
864
+ current_vision_pos_embeds=current_vision_pos_embeds[-1:],
865
+ feat_sizes=feat_sizes[-1:],
866
+ output_dict=output_dict,
867
+ num_frames=num_frames,
868
+ track_in_reverse=track_in_reverse,
869
+ )
870
+ # apply SAM-style segmentation head
871
+ # here we might feed previously predicted low-res SAM mask logits into the SAM mask decoder,
872
+ # e.g. in demo where such logits come from earlier interaction instead of correction sampling
873
+ # (in this case, any `mask_inputs` shouldn't reach here as they are sent to _use_mask_as_output instead)
874
+ if prev_sam_mask_logits is not None:
875
+ assert point_inputs is not None and mask_inputs is None
876
+ mask_inputs = prev_sam_mask_logits
877
+ multimask_output = self._use_multimask(is_init_cond_frame, point_inputs)
878
+ sam_outputs = self._forward_sam_heads(
879
+ backbone_features=pix_feat,
880
+ point_inputs=point_inputs,
881
+ mask_inputs=mask_inputs,
882
+ high_res_features=high_res_features,
883
+ multimask_output=multimask_output,
884
+ )
885
+ return current_out, sam_outputs, high_res_features, pix_feat
886
+
887
+ def _encode_memory_in_output(
888
+ self,
889
+ current_vision_feats,
890
+ feat_sizes,
891
+ point_inputs,
892
+ run_mem_encoder,
893
+ high_res_masks,
894
+ object_score_logits,
895
+ current_out,
896
+ ):
897
+ """Finally run the memory encoder on the predicted mask to encode, it into a new memory feature (that can be
898
+ used in future frames).
899
+ """
900
+ if run_mem_encoder and self.num_maskmem > 0:
901
+ high_res_masks_for_mem_enc = high_res_masks
902
+ maskmem_features, maskmem_pos_enc = self._encode_new_memory(
903
+ current_vision_feats=current_vision_feats,
904
+ feat_sizes=feat_sizes,
905
+ pred_masks_high_res=high_res_masks_for_mem_enc,
906
+ object_score_logits=object_score_logits,
907
+ is_mask_from_pts=(point_inputs is not None),
908
+ )
909
+ current_out["maskmem_features"] = maskmem_features
910
+ current_out["maskmem_pos_enc"] = maskmem_pos_enc
911
+ else:
912
+ current_out["maskmem_features"] = None
913
+ current_out["maskmem_pos_enc"] = None
914
+
915
+ def track_step(
916
+ self,
917
+ frame_idx,
918
+ is_init_cond_frame,
919
+ current_vision_feats,
920
+ current_vision_pos_embeds,
921
+ feat_sizes,
922
+ point_inputs,
923
+ mask_inputs,
924
+ output_dict,
925
+ num_frames,
926
+ track_in_reverse=False, # tracking in reverse time order (for demo usage)
927
+ # Whether to run the memory encoder on the predicted masks. Sometimes we might want
928
+ # to skip the memory encoder with `run_mem_encoder=False`. For example,
929
+ # in demo we might call `track_step` multiple times for each user click,
930
+ # and only encode the memory when the user finalizes their clicks. And in ablation
931
+ # settings like SAM training on static images, we don't need the memory encoder.
932
+ run_mem_encoder=True,
933
+ # The previously predicted SAM mask logits (which can be fed together with new clicks in demo).
934
+ prev_sam_mask_logits=None,
935
+ ):
936
+ """Performs a single tracking step, updating object masks and memory features based on current frame inputs."""
937
+ current_out, sam_outputs, _, _ = self._track_step(
938
+ frame_idx,
939
+ is_init_cond_frame,
940
+ current_vision_feats,
941
+ current_vision_pos_embeds,
942
+ feat_sizes,
943
+ point_inputs,
944
+ mask_inputs,
945
+ output_dict,
946
+ num_frames,
947
+ track_in_reverse,
948
+ prev_sam_mask_logits,
949
+ )
950
+ _, _, _, low_res_masks, high_res_masks, obj_ptr, object_score_logits = sam_outputs
951
+
952
+ current_out["pred_masks"] = low_res_masks
953
+ current_out["pred_masks_high_res"] = high_res_masks
954
+ current_out["obj_ptr"] = obj_ptr
955
+ if not self.training:
956
+ # Only add this in inference (to avoid unused param in activation checkpointing;
957
+ # it's mainly used in the demo to encode spatial memories w/ consolidated masks)
958
+ current_out["object_score_logits"] = object_score_logits
959
+
960
+ # Run memory encoder on the predicted mask to encode it into a new memory feature (for use in future frames)
961
+ self._encode_memory_in_output(
962
+ current_vision_feats,
963
+ feat_sizes,
964
+ point_inputs,
965
+ run_mem_encoder,
966
+ high_res_masks,
967
+ object_score_logits,
968
+ current_out,
969
+ )
970
+
971
+ return current_out
972
+
973
+ def _use_multimask(self, is_init_cond_frame, point_inputs):
974
+ """Determines whether to use multiple mask outputs in the SAM head based on configuration and inputs."""
975
+ num_pts = 0 if point_inputs is None else point_inputs["point_labels"].size(1)
976
+ return (
977
+ self.multimask_output_in_sam
978
+ and (is_init_cond_frame or self.multimask_output_for_tracking)
979
+ and (self.multimask_min_pt_num <= num_pts <= self.multimask_max_pt_num)
980
+ )
981
+
982
+ @staticmethod
983
+ def _apply_non_overlapping_constraints(pred_masks):
984
+ """Applies non-overlapping constraints to masks, keeping the highest scoring object per location."""
985
+ batch_size = pred_masks.size(0)
986
+ if batch_size == 1:
987
+ return pred_masks
988
+
989
+ device = pred_masks.device
990
+ # "max_obj_inds": object index of the object with the highest score at each location
991
+ max_obj_inds = torch.argmax(pred_masks, dim=0, keepdim=True)
992
+ # "batch_obj_inds": object index of each object slice (along dim 0) in `pred_masks`
993
+ batch_obj_inds = torch.arange(batch_size, device=device)[:, None, None, None]
994
+ keep = max_obj_inds == batch_obj_inds
995
+ # suppress overlapping regions' scores below -10.0 so that the foreground regions
996
+ # don't overlap (here sigmoid(-10.0)=4.5398e-05)
997
+ pred_masks = torch.where(keep, pred_masks, torch.clamp(pred_masks, max=-10.0))
998
+ return pred_masks
999
+
1000
+ def set_binarize(self, binarize=False):
1001
+ """Set binarize for VideoPredictor."""
1002
+ self.binarize_mask_from_pts_for_mem_enc = binarize
1003
+
1004
+ def set_imgsz(self, imgsz):
1005
+ """
1006
+ Set image size to make model compatible with different image sizes.
1007
+
1008
+ Args:
1009
+ imgsz (Tuple[int, int]): The size of the input image.
1010
+ """
1011
+ self.image_size = imgsz[0]
1012
+ self.sam_prompt_encoder.input_image_size = imgsz
1013
+ self.sam_prompt_encoder.image_embedding_size = [x // 16 for x in imgsz] # fixed ViT patch size of 16