tsadmetrics 0.1.17__py3-none-any.whl → 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {docs_manual → docs/api_doc}/conf.py +3 -26
- docs/{conf.py → full_doc/conf.py} +1 -1
- {docs_api → docs/manual_doc}/conf.py +3 -26
- examples/example_direct_data.py +28 -0
- examples/example_direct_single_data.py +25 -0
- examples/example_file_reference.py +24 -0
- examples/example_global_config_file.py +13 -0
- examples/example_metric_config_file.py +19 -0
- examples/example_simple_metric.py +8 -0
- examples/specific_examples/AbsoluteDetectionDistance_example.py +24 -0
- examples/specific_examples/AffiliationbasedFScore_example.py +24 -0
- examples/specific_examples/AverageDetectionCount_example.py +24 -0
- examples/specific_examples/CompositeFScore_example.py +24 -0
- examples/specific_examples/DelayThresholdedPointadjustedFScore_example.py +24 -0
- examples/specific_examples/DetectionAccuracyInRange_example.py +24 -0
- examples/specific_examples/EnhancedTimeseriesAwareFScore_example.py +24 -0
- examples/specific_examples/LatencySparsityawareFScore_example.py +24 -0
- examples/specific_examples/MeanTimeToDetect_example.py +24 -0
- examples/specific_examples/NabScore_example.py +24 -0
- examples/specific_examples/PateFScore_example.py +24 -0
- examples/specific_examples/Pate_example.py +24 -0
- examples/specific_examples/PointadjustedAtKFScore_example.py +24 -0
- examples/specific_examples/PointadjustedAucPr_example.py +24 -0
- examples/specific_examples/PointadjustedAucRoc_example.py +24 -0
- examples/specific_examples/PointadjustedFScore_example.py +24 -0
- examples/specific_examples/RangebasedFScore_example.py +24 -0
- examples/specific_examples/SegmentwiseFScore_example.py +24 -0
- examples/specific_examples/TemporalDistance_example.py +24 -0
- examples/specific_examples/TimeTolerantFScore_example.py +24 -0
- examples/specific_examples/TimeseriesAwareFScore_example.py +24 -0
- examples/specific_examples/TotalDetectedInRange_example.py +24 -0
- examples/specific_examples/VusPr_example.py +24 -0
- examples/specific_examples/VusRoc_example.py +24 -0
- examples/specific_examples/WeightedDetectionDifference_example.py +24 -0
- tests/test_dpm.py +212 -0
- tests/test_ptdm.py +366 -0
- tests/test_registry.py +58 -0
- tests/test_runner.py +185 -0
- tests/test_spm.py +213 -0
- tests/test_tmem.py +198 -0
- tests/test_tpdm.py +369 -0
- tests/test_tstm.py +338 -0
- tsadmetrics/__init__.py +0 -21
- tsadmetrics/base/Metric.py +188 -0
- tsadmetrics/evaluation/Report.py +25 -0
- tsadmetrics/evaluation/Runner.py +253 -0
- tsadmetrics/metrics/Registry.py +141 -0
- tsadmetrics/metrics/__init__.py +2 -0
- tsadmetrics/metrics/spm/PointwiseAucPr.py +62 -0
- tsadmetrics/metrics/spm/PointwiseAucRoc.py +63 -0
- tsadmetrics/metrics/spm/PointwiseFScore.py +86 -0
- tsadmetrics/metrics/spm/PrecisionAtK.py +81 -0
- tsadmetrics/metrics/spm/__init__.py +9 -0
- tsadmetrics/metrics/tem/dpm/DelayThresholdedPointadjustedFScore.py +83 -0
- tsadmetrics/metrics/tem/dpm/LatencySparsityawareFScore.py +76 -0
- tsadmetrics/metrics/tem/dpm/MeanTimeToDetect.py +47 -0
- tsadmetrics/metrics/tem/dpm/NabScore.py +60 -0
- tsadmetrics/metrics/tem/dpm/__init__.py +11 -0
- tsadmetrics/metrics/tem/ptdm/AverageDetectionCount.py +53 -0
- tsadmetrics/metrics/tem/ptdm/DetectionAccuracyInRange.py +66 -0
- tsadmetrics/metrics/tem/ptdm/PointadjustedAtKFScore.py +80 -0
- tsadmetrics/metrics/tem/ptdm/TimeseriesAwareFScore.py +248 -0
- tsadmetrics/metrics/tem/ptdm/TotalDetectedInRange.py +65 -0
- tsadmetrics/metrics/tem/ptdm/WeightedDetectionDifference.py +97 -0
- tsadmetrics/metrics/tem/ptdm/__init__.py +12 -0
- tsadmetrics/metrics/tem/tmem/AbsoluteDetectionDistance.py +48 -0
- tsadmetrics/metrics/tem/tmem/EnhancedTimeseriesAwareFScore.py +252 -0
- tsadmetrics/metrics/tem/tmem/TemporalDistance.py +68 -0
- tsadmetrics/metrics/tem/tmem/__init__.py +9 -0
- tsadmetrics/metrics/tem/tpdm/CompositeFScore.py +104 -0
- tsadmetrics/metrics/tem/tpdm/PointadjustedAucPr.py +123 -0
- tsadmetrics/metrics/tem/tpdm/PointadjustedAucRoc.py +119 -0
- tsadmetrics/metrics/tem/tpdm/PointadjustedFScore.py +96 -0
- tsadmetrics/metrics/tem/tpdm/RangebasedFScore.py +236 -0
- tsadmetrics/metrics/tem/tpdm/SegmentwiseFScore.py +73 -0
- tsadmetrics/metrics/tem/tpdm/__init__.py +12 -0
- tsadmetrics/metrics/tem/tstm/AffiliationbasedFScore.py +68 -0
- tsadmetrics/metrics/tem/tstm/Pate.py +62 -0
- tsadmetrics/metrics/tem/tstm/PateFScore.py +61 -0
- tsadmetrics/metrics/tem/tstm/TimeTolerantFScore.py +85 -0
- tsadmetrics/metrics/tem/tstm/VusPr.py +51 -0
- tsadmetrics/metrics/tem/tstm/VusRoc.py +55 -0
- tsadmetrics/metrics/tem/tstm/__init__.py +15 -0
- tsadmetrics/{_tsadeval/affiliation/_integral_interval.py → utils/functions_affiliation.py} +377 -9
- tsadmetrics/utils/functions_auc.py +393 -0
- tsadmetrics/utils/functions_conversion.py +63 -0
- tsadmetrics/utils/functions_counting_metrics.py +26 -0
- tsadmetrics/{_tsadeval/latency_sparsity_aware.py → utils/functions_latency_sparsity_aware.py} +1 -1
- tsadmetrics/{_tsadeval/nabscore.py → utils/functions_nabscore.py} +15 -1
- tsadmetrics-1.0.0.dist-info/METADATA +69 -0
- tsadmetrics-1.0.0.dist-info/RECORD +99 -0
- tsadmetrics-1.0.0.dist-info/top_level.txt +4 -0
- entorno/bin/activate_this.py +0 -32
- entorno/bin/rst2html.py +0 -23
- entorno/bin/rst2html4.py +0 -26
- entorno/bin/rst2html5.py +0 -33
- entorno/bin/rst2latex.py +0 -26
- entorno/bin/rst2man.py +0 -27
- entorno/bin/rst2odt.py +0 -28
- entorno/bin/rst2odt_prepstyles.py +0 -20
- entorno/bin/rst2pseudoxml.py +0 -23
- entorno/bin/rst2s5.py +0 -24
- entorno/bin/rst2xetex.py +0 -27
- entorno/bin/rst2xml.py +0 -23
- entorno/bin/rstpep2html.py +0 -25
- tests/test_binary.py +0 -946
- tests/test_non_binary.py +0 -450
- tests/test_utils.py +0 -49
- tsadmetrics/_tsadeval/affiliation/_affiliation_zone.py +0 -86
- tsadmetrics/_tsadeval/affiliation/_single_ground_truth_event.py +0 -68
- tsadmetrics/_tsadeval/affiliation/generics.py +0 -135
- tsadmetrics/_tsadeval/affiliation/metrics.py +0 -114
- tsadmetrics/_tsadeval/auc_roc_pr_plot.py +0 -295
- tsadmetrics/_tsadeval/discontinuity_graph.py +0 -109
- tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/File_IO.py +0 -175
- tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/Range.py +0 -50
- tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/Time_Plot.py +0 -184
- tsadmetrics/_tsadeval/eTaPR_pkg/__init__.py +0 -0
- tsadmetrics/_tsadeval/eTaPR_pkg/etapr.py +0 -386
- tsadmetrics/_tsadeval/eTaPR_pkg/tapr.py +0 -362
- tsadmetrics/_tsadeval/metrics.py +0 -698
- tsadmetrics/_tsadeval/prts/__init__.py +0 -0
- tsadmetrics/_tsadeval/prts/base/__init__.py +0 -0
- tsadmetrics/_tsadeval/prts/base/time_series_metrics.py +0 -165
- tsadmetrics/_tsadeval/prts/basic_metrics_ts.py +0 -121
- tsadmetrics/_tsadeval/prts/time_series_metrics/__init__.py +0 -0
- tsadmetrics/_tsadeval/prts/time_series_metrics/fscore.py +0 -61
- tsadmetrics/_tsadeval/prts/time_series_metrics/precision.py +0 -86
- tsadmetrics/_tsadeval/prts/time_series_metrics/precision_recall.py +0 -21
- tsadmetrics/_tsadeval/prts/time_series_metrics/recall.py +0 -85
- tsadmetrics/_tsadeval/tests.py +0 -376
- tsadmetrics/_tsadeval/threshold_plt.py +0 -30
- tsadmetrics/_tsadeval/time_tolerant.py +0 -33
- tsadmetrics/binary_metrics.py +0 -1652
- tsadmetrics/metric_utils.py +0 -98
- tsadmetrics/non_binary_metrics.py +0 -372
- tsadmetrics/scripts/__init__.py +0 -0
- tsadmetrics/scripts/compute_metrics.py +0 -42
- tsadmetrics/utils.py +0 -124
- tsadmetrics/validation.py +0 -35
- tsadmetrics-0.1.17.dist-info/METADATA +0 -54
- tsadmetrics-0.1.17.dist-info/RECORD +0 -66
- tsadmetrics-0.1.17.dist-info/entry_points.txt +0 -2
- tsadmetrics-0.1.17.dist-info/top_level.txt +0 -6
- /tsadmetrics/{_tsadeval → base}/__init__.py +0 -0
- /tsadmetrics/{_tsadeval/affiliation → evaluation}/__init__.py +0 -0
- /tsadmetrics/{_tsadeval/eTaPR_pkg/DataManage → metrics/tem}/__init__.py +0 -0
- /tsadmetrics/{_tsadeval/vus_utils.py → utils/functions_vus.py} +0 -0
- {tsadmetrics-0.1.17.dist-info → tsadmetrics-1.0.0.dist-info}/WHEEL +0 -0
tsadmetrics/_tsadeval/tests.py
DELETED
@@ -1,376 +0,0 @@
|
|
1
|
-
from .metrics import *
|
2
|
-
|
3
|
-
import unittest
|
4
|
-
|
5
|
-
|
6
|
-
class Binary_detection_tester(unittest.TestCase):
|
7
|
-
def test_unsorted(self):
|
8
|
-
self.assertRaises(AssertionError, Binary_detection, 10, [2, 3, 4], [3, 4, 2])
|
9
|
-
self.assertRaises(AssertionError, Binary_detection, 10, [3, 4, 2], [2, 3, 4])
|
10
|
-
self.assertRaises(AssertionError, Binary_detection, 10, [[1, 8]], [[5, 6], [1, 2]])
|
11
|
-
self.assertRaises(AssertionError, Binary_detection, 10, [[5, 6], [1, 2]], [[1, 8]])
|
12
|
-
|
13
|
-
def test_nonunique(self):
|
14
|
-
self.assertRaises(AssertionError, Binary_detection, 10, [2, 4, 4], [2, 3, 4])
|
15
|
-
self.assertRaises(AssertionError, Binary_detection, 10, [2, 3, 4], [2, 4, 4])
|
16
|
-
|
17
|
-
def test_long_anom(self):
|
18
|
-
self.assertRaises(AssertionError, Binary_detection, 4, [1], [2, 3, 4])
|
19
|
-
self.assertRaises(AssertionError, Binary_detection, 4, [[2, 4]], [1])
|
20
|
-
self.assertRaises(AssertionError, Binary_detection, 4, [-1], [1])
|
21
|
-
|
22
|
-
def test_point_to_seq(self):
|
23
|
-
anom1 = [3, 4, 5, 7, 8, 11]
|
24
|
-
anom2 = [[3, 5], [7, 8], [11, 11]]
|
25
|
-
d = Binary_detection(12, anom1, anom2)
|
26
|
-
|
27
|
-
self.assertTrue(np.array_equal(np.array(anom1), d.get_predicted_anomalies_ptwise()))
|
28
|
-
self.assertTrue(np.array_equal(np.array(anom2), d.get_gt_anomalies_segmentwise()))
|
29
|
-
|
30
|
-
def test_anomaly_full_seires(self):
|
31
|
-
anom1 = [3, 4, 5, 7, 8, 11]
|
32
|
-
d = Binary_detection(12, anom1, anom1)
|
33
|
-
|
34
|
-
self.assertTrue(
|
35
|
-
np.array_equal(d.get_gt_anomalies_full_series(), np.array([0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1]))
|
36
|
-
)
|
37
|
-
self.assertTrue(
|
38
|
-
np.array_equal(d.get_predicted_anomalies_full_series(), np.array([0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1]))
|
39
|
-
)
|
40
|
-
|
41
|
-
def test_empty_anom(self):
|
42
|
-
anom1 = [3, 4, 5, 7, 8]
|
43
|
-
anom2 = []
|
44
|
-
|
45
|
-
d = Binary_detection(12, anom1, anom2)
|
46
|
-
self.assertEqual(0, len(d.get_predicted_anomalies_ptwise()))
|
47
|
-
self.assertEqual(0, len(d.get_predicted_anomalies_segmentwise()))
|
48
|
-
|
49
|
-
|
50
|
-
class Confusion_metrics_tester(unittest.TestCase):
|
51
|
-
def test_metrics(self):
|
52
|
-
self.assertEqual(0.75, recall(tp=3, fn=1))
|
53
|
-
self.assertEqual(0.75, precision(tp=3, fp=1))
|
54
|
-
self.assertEqual(0.6, f1_score(tp=3, fn=1, fp=3))
|
55
|
-
self.assertEqual(0.625, f1_from_pr(p=1, r=0.25, beta=0.5))
|
56
|
-
self.assertAlmostEqual(5 / 9, f1_from_pr(p=1, r=0.5, beta=2))
|
57
|
-
|
58
|
-
def test_requires_names(self):
|
59
|
-
self.assertRaises(TypeError, recall, 3, 4)
|
60
|
-
self.assertRaises(TypeError, precision, 3, 4)
|
61
|
-
self.assertRaises(TypeError, f1_score, 3, 4, 5)
|
62
|
-
|
63
|
-
def test_zerodivision(self):
|
64
|
-
self.assertEqual(0, recall(tp=0, fn=0))
|
65
|
-
self.assertEqual(0, precision(tp=0, fp=0))
|
66
|
-
self.assertEqual(0, f1_score(tp=0, fp=1, fn=1))
|
67
|
-
|
68
|
-
|
69
|
-
class Metrics_tester(unittest.TestCase):
|
70
|
-
def test_PW(self):
|
71
|
-
pw = Pointwise_metrics(10, [1, 2, 3, 4], [4, 5, 6])
|
72
|
-
|
73
|
-
self.assertEqual(pw.tp, 1)
|
74
|
-
self.assertEqual(pw.fp, 2)
|
75
|
-
self.assertEqual(pw.fn, 3)
|
76
|
-
|
77
|
-
def test_PA(self):
|
78
|
-
pa = PointAdjust(10, [1, 2, 3, 4, 9], [4, 5, 6])
|
79
|
-
self.assertEqual(pa.tp, 4)
|
80
|
-
self.assertEqual(pa.fp, 2)
|
81
|
-
self.assertEqual(pa.fn, 1)
|
82
|
-
|
83
|
-
pa = PointAdjust(10, [1, 2, 3, 4, 5, 6, 7], [4])
|
84
|
-
self.assertEqual(pa.get_score(), 1)
|
85
|
-
|
86
|
-
pa = PointAdjust(10, [1, 2, 3, 4, 5, 6, 7], [9])
|
87
|
-
self.assertEqual(pa.get_score(), 0)
|
88
|
-
|
89
|
-
def test_dtPA(self):
|
90
|
-
pa = DelayThresholdedPointAdjust(10, [1, 2, 3, 4, 9], [4, 5, 6], k=3)
|
91
|
-
self.assertEqual(pa.tp, 4)
|
92
|
-
self.assertEqual(pa.fp, 2)
|
93
|
-
self.assertEqual(pa.fn, 1)
|
94
|
-
|
95
|
-
pa = DelayThresholdedPointAdjust(10, [1, 2, 3, 4, 9], [4, 5, 6], k=2)
|
96
|
-
self.assertEqual(pa.tp, 0)
|
97
|
-
self.assertEqual(pa.fp, 2)
|
98
|
-
self.assertEqual(pa.fn, 5)
|
99
|
-
|
100
|
-
pa = DelayThresholdedPointAdjust(10, [1, 2, 3, 4, 5, 6, 7], [4], k=3)
|
101
|
-
self.assertEqual(pa.get_score(), 1)
|
102
|
-
|
103
|
-
pa = DelayThresholdedPointAdjust(10, [1, 2, 3, 4, 5, 6, 7], [4], k=2)
|
104
|
-
self.assertEqual(pa.get_score(), 0)
|
105
|
-
|
106
|
-
def test_pakf(self):
|
107
|
-
pa = PointAdjustKPercent(10, [1, 2, 3, 4, 9], [4, 5, 6], k=0.5)
|
108
|
-
self.assertEqual(pa.tp, 1)
|
109
|
-
self.assertEqual(pa.fp, 2)
|
110
|
-
self.assertEqual(pa.fn, 4)
|
111
|
-
|
112
|
-
pa = PointAdjustKPercent(10, [1, 2, 3, 4, 9], [4, 5, 6], k=0.1)
|
113
|
-
self.assertEqual(pa.tp, 4)
|
114
|
-
self.assertEqual(pa.fp, 2)
|
115
|
-
self.assertEqual(pa.fn, 1)
|
116
|
-
|
117
|
-
def test_lspa(self):
|
118
|
-
pa = LatencySparsityAware(10, [2, 3, 4, 5, 9], [4, 7], tw=1)
|
119
|
-
self.assertAlmostEqual(pa.get_score(), f1_score(tp=pa.tp, fn=pa.fn, fp=pa.fp), 4)
|
120
|
-
self.assertEqual(pa.tp, 2)
|
121
|
-
self.assertEqual(pa.fp, 1)
|
122
|
-
self.assertEqual(pa.fn, 3)
|
123
|
-
|
124
|
-
pa = LatencySparsityAware(10, [2, 3, 4, 5, 9], [4, 7], tw=2)
|
125
|
-
self.assertAlmostEqual(pa.get_score(), f1_score(tp=pa.tp, fn=pa.fn, fp=pa.fp), 4)
|
126
|
-
self.assertEqual(pa.tp, 1)
|
127
|
-
self.assertEqual(pa.fp, 1)
|
128
|
-
self.assertEqual(pa.fn, 2)
|
129
|
-
|
130
|
-
def test_Segment(self):
|
131
|
-
s = Segmentwise_metrics(10, [[1, 2], [4, 4], [7, 9]], [[0, 6]])
|
132
|
-
self.assertEqual(s.tp, 2)
|
133
|
-
self.assertEqual(s.fp, 0)
|
134
|
-
self.assertEqual(s.fn, 1)
|
135
|
-
|
136
|
-
s = Segmentwise_metrics(10, [[1, 2], [4, 4], [7, 9]], [[6, 6], [8, 8]])
|
137
|
-
self.assertEqual(s.tp, 1)
|
138
|
-
self.assertEqual(s.fp, 1)
|
139
|
-
self.assertEqual(s.fn, 2)
|
140
|
-
|
141
|
-
s = Segmentwise_metrics(10, [[1, 2], [4, 4], [7, 9]], [])
|
142
|
-
self.assertEqual(s.tp, 0)
|
143
|
-
self.assertEqual(s.fp, 0)
|
144
|
-
self.assertEqual(s.fn, 3)
|
145
|
-
|
146
|
-
s = Segmentwise_metrics(10, [[1, 2], [4, 4], [7, 9]], [[0, 9]])
|
147
|
-
self.assertEqual(s.tp, 3)
|
148
|
-
self.assertEqual(s.fp, 0)
|
149
|
-
self.assertEqual(s.fn, 0)
|
150
|
-
|
151
|
-
def test_CF(self):
|
152
|
-
c = Composite_f(10, [0, 2, 3, 5, 7, 9], [3, 6])
|
153
|
-
f = c.get_score()
|
154
|
-
self.assertEqual(c.p, 0.5)
|
155
|
-
self.assertEqual(c.r, 0.2)
|
156
|
-
|
157
|
-
def test_affiliation(self):
|
158
|
-
a = Affiliation(10, [2, 3], [2])
|
159
|
-
f = a.get_score()
|
160
|
-
self.assertEqual(a.p, 1)
|
161
|
-
self.assertTrue(a.r < 1)
|
162
|
-
|
163
|
-
a = Affiliation(10, [2, 3], [2, 3, 4])
|
164
|
-
f = a.get_score()
|
165
|
-
self.assertTrue(a.p < 1)
|
166
|
-
self.assertEqual(a.r, 1)
|
167
|
-
|
168
|
-
def test_range_pr(self):
|
169
|
-
r = Range_PR(10, [2, 3], [2])
|
170
|
-
f = r.get_score()
|
171
|
-
self.assertEqual(r.p, 1)
|
172
|
-
self.assertTrue(r.r < 1)
|
173
|
-
|
174
|
-
r2 = Range_PR(10, [2, 3], [2, 3])
|
175
|
-
f2 = r2.get_score()
|
176
|
-
self.assertTrue(f2 > f)
|
177
|
-
|
178
|
-
r = Range_PR(10, [2, 3], [2, 3, 4])
|
179
|
-
f = r.get_score()
|
180
|
-
self.assertTrue(r.p < 1)
|
181
|
-
self.assertEqual(r.r, 1)
|
182
|
-
|
183
|
-
def test_NAB(self):
|
184
|
-
n = NAB_score(10, [[3, 6]], [3])
|
185
|
-
self.assertAlmostEqual(n.get_score(), 100)
|
186
|
-
|
187
|
-
n = NAB_score(10, [[3, 6]], [])
|
188
|
-
self.assertAlmostEqual(n.get_score(), 0)
|
189
|
-
|
190
|
-
n = NAB_score(10, [[3, 6]], [1])
|
191
|
-
self.assertAlmostEqual(n.get_score(), -100 * 0.11 / 2)
|
192
|
-
|
193
|
-
n = NAB_score(10, [3, 6], [1])
|
194
|
-
self.assertTrue(np.isnan(n.get_score()))
|
195
|
-
|
196
|
-
def test_ttol(self):
|
197
|
-
t = Time_Tolerant(10, [3, 4, 8], [1, 2, 3], d=2)
|
198
|
-
self.assertAlmostEqual(t.recall(), 2 / 3)
|
199
|
-
self.assertAlmostEqual(t.precision(), 1)
|
200
|
-
|
201
|
-
t = Time_Tolerant(10, [4, 5], [6], d=1)
|
202
|
-
self.assertAlmostEqual(t.recall(), 1 / 2)
|
203
|
-
self.assertAlmostEqual(t.precision(), 1)
|
204
|
-
|
205
|
-
def test_TaF(self):
|
206
|
-
t = TaF(10, [4, 5, 6], [4, 5, 6])
|
207
|
-
self.assertEqual(t.get_score(), 1)
|
208
|
-
|
209
|
-
t = TaF(10, [4, 5, 6], [1, 2, 3])
|
210
|
-
self.assertEqual(t.get_score(), 0)
|
211
|
-
|
212
|
-
t = TaF(10, [4, 5, 6], [7, 8, 9])
|
213
|
-
self.assertEqual(t.get_score(), 0)
|
214
|
-
t = TaF(10, [4, 5, 6], [7, 8, 9], delta=1)
|
215
|
-
self.assertTrue(t.get_score() > 0)
|
216
|
-
|
217
|
-
t1 = TaF(10, [4, 5, 8, 9], [4, 5])
|
218
|
-
t2 = TaF(10, [4, 5, 8, 9], [5, 8])
|
219
|
-
self.assertTrue(t1.get_score() < t2.get_score())
|
220
|
-
|
221
|
-
def test_eTaF(self):
|
222
|
-
t = eTaF(10, [4, 5, 6], [4, 5, 6])
|
223
|
-
self.assertEqual(t.get_score(), 1)
|
224
|
-
|
225
|
-
t = eTaF(10, [4, 5, 6], [1, 2, 3])
|
226
|
-
self.assertEqual(t.get_score(), 0)
|
227
|
-
|
228
|
-
t = eTaF(10, [4, 5, 6], [7, 8, 9])
|
229
|
-
self.assertTrue(t.get_score() == 0)
|
230
|
-
|
231
|
-
t1 = eTaF(10, [4, 5, 8, 9], [4, 5])
|
232
|
-
t2 = eTaF(10, [4, 5, 8, 9], [5, 8])
|
233
|
-
self.assertTrue(t1.get_score() < t2.get_score())
|
234
|
-
|
235
|
-
def test_temp_dist(self):
|
236
|
-
t = Temporal_Distance(10, [4, 5, 6], [4, 5, 6])
|
237
|
-
self.assertEqual(t.get_score(), 0)
|
238
|
-
|
239
|
-
t = Temporal_Distance(10, [4, 6], [4, 5, 6])
|
240
|
-
self.assertEqual(t.get_score(), 1)
|
241
|
-
|
242
|
-
t = Temporal_Distance(10, [4], [4, 5, 6])
|
243
|
-
self.assertEqual(t.get_score(), 3)
|
244
|
-
|
245
|
-
t = Temporal_Distance(10, [4, 5, 6], [8])
|
246
|
-
self.assertEqual(t.get_score(), 11)
|
247
|
-
|
248
|
-
t = Temporal_Distance(10, [4, 5, 6], [])
|
249
|
-
self.assertEqual(t.get_score(), 30)
|
250
|
-
|
251
|
-
|
252
|
-
class Threshold_metric_tester(unittest.TestCase):
|
253
|
-
# def test_roc(self):
|
254
|
-
# a = aucroc(true = [0,0,1,1], score = [0.1,0.4,0.35,0.8])
|
255
|
-
def test_auc_pr(self):
|
256
|
-
gt = [[2, 3]]
|
257
|
-
anomaly_score = [1, 3, 2, 4]
|
258
|
-
auc_pr = AUC_PR_pw(gt, anomaly_score)
|
259
|
-
|
260
|
-
score = auc_pr.get_score()
|
261
|
-
self.assertAlmostEqual(score, 0.83, 2)
|
262
|
-
|
263
|
-
anomaly_score = [1, 2, 3, 4]
|
264
|
-
auc_pr = AUC_PR_pw(gt, anomaly_score)
|
265
|
-
score = auc_pr.get_score()
|
266
|
-
self.assertEqual(score, 1)
|
267
|
-
|
268
|
-
anomaly_score = [4, 3, 1, 1]
|
269
|
-
auc_pr = AUC_PR_pw(gt, anomaly_score)
|
270
|
-
score = auc_pr.get_score()
|
271
|
-
self.assertEqual(score, 0.5)
|
272
|
-
|
273
|
-
def test_auc_roc(self):
|
274
|
-
gt = [[2, 3]]
|
275
|
-
anomaly_score = [1, 3, 2, 4]
|
276
|
-
auc_roc = AUC_ROC(gt, anomaly_score)
|
277
|
-
|
278
|
-
score = auc_roc.get_score()
|
279
|
-
self.assertAlmostEqual(score, 0.75, 2)
|
280
|
-
|
281
|
-
anomaly_score = [1, 2, 3, 4]
|
282
|
-
auc_roc = AUC_ROC(gt, anomaly_score)
|
283
|
-
score = auc_roc.get_score()
|
284
|
-
self.assertEqual(score, 1)
|
285
|
-
|
286
|
-
anomaly_score = [4, 4, 4, 4]
|
287
|
-
auc_roc = AUC_ROC(gt, anomaly_score)
|
288
|
-
score = auc_roc.get_score()
|
289
|
-
self.assertEqual(score, 0.5)
|
290
|
-
|
291
|
-
def test_vus_pr(self):
|
292
|
-
gt = [[0, 1]]
|
293
|
-
anomaly_score = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
|
294
|
-
vus_pr = VUS_PR(gt, anomaly_score, max_window=4)
|
295
|
-
|
296
|
-
score = vus_pr.get_score()
|
297
|
-
self.assertTrue(score <= 0.2)
|
298
|
-
|
299
|
-
gt = [[1, 3]]
|
300
|
-
anomaly_score = [8, 0, 9, 1, 7, 2, 3, 4, 5, 6]
|
301
|
-
vus_pr = VUS_PR(gt, anomaly_score, max_window=4)
|
302
|
-
score = vus_pr.get_score()
|
303
|
-
self.assertTrue(score > 0.5)
|
304
|
-
vus_pr = VUS_PR(gt, anomaly_score, max_window=0)
|
305
|
-
score = vus_pr.get_score()
|
306
|
-
self.assertTrue(score < 0.5)
|
307
|
-
|
308
|
-
def test_vus_roc(self):
|
309
|
-
gt = [[0, 1]]
|
310
|
-
anomaly_score = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
|
311
|
-
vus = VUS_ROC(gt, anomaly_score, max_window=4)
|
312
|
-
|
313
|
-
score = vus.get_score()
|
314
|
-
self.assertTrue(score <= 0.1)
|
315
|
-
|
316
|
-
gt = [[1, 3]]
|
317
|
-
anomaly_score = [8, 0, 9, 1, 7, 2, 3, 4, 5, 6]
|
318
|
-
vus = VUS_ROC(gt, anomaly_score, max_window=4)
|
319
|
-
score = vus.get_score()
|
320
|
-
self.assertTrue(score > 0.4)
|
321
|
-
vus = VUS_ROC(gt, anomaly_score, max_window=0)
|
322
|
-
score = vus.get_score()
|
323
|
-
self.assertTrue(score < 0.4)
|
324
|
-
|
325
|
-
def test_PatK(self):
|
326
|
-
gt = [[2, 3]]
|
327
|
-
|
328
|
-
anomaly_score = [1, 4, 2, 3]
|
329
|
-
patk = PatK_pw(gt, anomaly_score)
|
330
|
-
score = patk.get_score()
|
331
|
-
self.assertEqual(score, 0.5)
|
332
|
-
|
333
|
-
anomaly_score = [1, 2, 3, 4]
|
334
|
-
patk = PatK_pw(gt, anomaly_score)
|
335
|
-
score = patk.get_score()
|
336
|
-
self.assertEqual(score, 1)
|
337
|
-
|
338
|
-
anomaly_score = [3, 4, 1, 2]
|
339
|
-
patk = PatK_pw(gt, anomaly_score)
|
340
|
-
score = patk.get_score()
|
341
|
-
self.assertEqual(score, 0)
|
342
|
-
|
343
|
-
anomaly_score = [3, 4, 1, 2]
|
344
|
-
patk = PatK_pw([1, 2, 3], anomaly_score)
|
345
|
-
score = patk.get_score()
|
346
|
-
self.assertAlmostEqual(score, 2 / 3)
|
347
|
-
|
348
|
-
anomaly_score = [2, 1, 1, 0]
|
349
|
-
patk = PatK_pw([0, 1], anomaly_score)
|
350
|
-
score = patk.get_score()
|
351
|
-
self.assertAlmostEqual(score, 2 / 3)
|
352
|
-
|
353
|
-
patk = PatK_pw([], [0, 1, 2, 4])
|
354
|
-
self.assertRaises(AssertionError, patk.get_score)
|
355
|
-
|
356
|
-
def test_best_threshold_pw(self):
|
357
|
-
gt = [[2, 3]]
|
358
|
-
|
359
|
-
anomaly_score = [1, 3, 2, 4]
|
360
|
-
metric = Best_threshold_pw(gt, anomaly_score)
|
361
|
-
score = metric.get_score()
|
362
|
-
self.assertAlmostEqual(score, 2 * 2 / 3 * 1 / (1 + 2 / 3))
|
363
|
-
|
364
|
-
anomaly_score = [2, 3, 1, 4]
|
365
|
-
metric = Best_threshold_pw(gt, anomaly_score)
|
366
|
-
score = metric.get_score()
|
367
|
-
self.assertAlmostEqual(score, 2 * 1 / 2 * 1 / (1 + 1 / 2))
|
368
|
-
|
369
|
-
anomaly_score = [4, 3, 1, 2]
|
370
|
-
metric = Best_threshold_pw(gt, anomaly_score)
|
371
|
-
score = metric.get_score()
|
372
|
-
self.assertAlmostEqual(score, 2 * 1 / 2 * 1 / (1 + 1 / 2))
|
373
|
-
|
374
|
-
|
375
|
-
if __name__ == "__main__":
|
376
|
-
unittest.main()
|
@@ -1,30 +0,0 @@
|
|
1
|
-
# import numpy as np
|
2
|
-
# from matplotlib import pyplot as plt
|
3
|
-
|
4
|
-
|
5
|
-
# x = np.arange(48)
|
6
|
-
|
7
|
-
# y = np.sin(0.7 + x / 12) + np.sin(x / 4 + 29) + 0.1 * np.sin(1.25 * x) * (np.cos(np.sqrt(1.25 * x) + 2)) + x / 32 + 0.12
|
8
|
-
|
9
|
-
|
10
|
-
# figsize = (3.4, 2)
|
11
|
-
# plt.figure(figsize=figsize)
|
12
|
-
|
13
|
-
# plt.plot(x, y)
|
14
|
-
|
15
|
-
# for t in [0.5, 1, 1.5, 2, 2.5]:
|
16
|
-
# plt.plot(x, x + t - x, ".", color="dimgray")
|
17
|
-
# for i in range(len(x)):
|
18
|
-
# if t < y[i]:
|
19
|
-
# plt.plot([x[i]], [t], ".r")
|
20
|
-
# plt.plot([x[i]], [t], "xw", markersize=2)
|
21
|
-
|
22
|
-
# fs = 7
|
23
|
-
# plt.xlabel("Time", fontsize=fs)
|
24
|
-
# plt.ylabel("Anomaly score / Threshold", fontsize=fs)
|
25
|
-
# plt.xticks(fontsize=fs)
|
26
|
-
# plt.yticks(fontsize=fs)
|
27
|
-
|
28
|
-
# plt.tight_layout()
|
29
|
-
# plt.savefig("thr2.pdf")
|
30
|
-
# plt.show()
|
@@ -1,33 +0,0 @@
|
|
1
|
-
# MIT License
|
2
|
-
#
|
3
|
-
# Copyright (c) 2020 Erik Scharwächter
|
4
|
-
#
|
5
|
-
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6
|
-
# of this software and associated documentation files (the "Software"), to deal
|
7
|
-
# in the Software without restriction, including without limitation the rights
|
8
|
-
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9
|
-
# copies of the Software, and to permit persons to whom the Software is
|
10
|
-
# furnished to do so, subject to the following conditions:
|
11
|
-
#
|
12
|
-
# The above copyright notice and this permission notice shall be included in all
|
13
|
-
# copies or substantial portions of the Software.
|
14
|
-
#
|
15
|
-
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16
|
-
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17
|
-
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18
|
-
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19
|
-
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20
|
-
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21
|
-
# SOFTWARE.
|
22
|
-
|
23
|
-
import numpy as np
|
24
|
-
|
25
|
-
def time_tolerant_recall_(A, E, d):
|
26
|
-
N_E = float(E.sum())
|
27
|
-
T = len(E)
|
28
|
-
return len([t for t in range(d, T-d) if (E[t] == 1) and np.sum(A[(t-d):(t+d)+1]) >= 1])/N_E
|
29
|
-
|
30
|
-
def time_tolerant_precision_(A, E, d):
|
31
|
-
N_A = float(A.sum())
|
32
|
-
T = len(E)
|
33
|
-
return len([t for t in range(d, T-d) if (A[t] == 1) and np.sum(E[(t-d):(t+d)+1]) >= 1])/N_A
|