tsadmetrics 0.1.17__py3-none-any.whl → 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {docs_manual → docs/api_doc}/conf.py +3 -26
- docs/{conf.py → full_doc/conf.py} +1 -1
- {docs_api → docs/manual_doc}/conf.py +3 -26
- examples/example_direct_data.py +28 -0
- examples/example_direct_single_data.py +25 -0
- examples/example_file_reference.py +24 -0
- examples/example_global_config_file.py +13 -0
- examples/example_metric_config_file.py +19 -0
- examples/example_simple_metric.py +8 -0
- examples/specific_examples/AbsoluteDetectionDistance_example.py +24 -0
- examples/specific_examples/AffiliationbasedFScore_example.py +24 -0
- examples/specific_examples/AverageDetectionCount_example.py +24 -0
- examples/specific_examples/CompositeFScore_example.py +24 -0
- examples/specific_examples/DelayThresholdedPointadjustedFScore_example.py +24 -0
- examples/specific_examples/DetectionAccuracyInRange_example.py +24 -0
- examples/specific_examples/EnhancedTimeseriesAwareFScore_example.py +24 -0
- examples/specific_examples/LatencySparsityawareFScore_example.py +24 -0
- examples/specific_examples/MeanTimeToDetect_example.py +24 -0
- examples/specific_examples/NabScore_example.py +24 -0
- examples/specific_examples/PateFScore_example.py +24 -0
- examples/specific_examples/Pate_example.py +24 -0
- examples/specific_examples/PointadjustedAtKFScore_example.py +24 -0
- examples/specific_examples/PointadjustedAucPr_example.py +24 -0
- examples/specific_examples/PointadjustedAucRoc_example.py +24 -0
- examples/specific_examples/PointadjustedFScore_example.py +24 -0
- examples/specific_examples/RangebasedFScore_example.py +24 -0
- examples/specific_examples/SegmentwiseFScore_example.py +24 -0
- examples/specific_examples/TemporalDistance_example.py +24 -0
- examples/specific_examples/TimeTolerantFScore_example.py +24 -0
- examples/specific_examples/TimeseriesAwareFScore_example.py +24 -0
- examples/specific_examples/TotalDetectedInRange_example.py +24 -0
- examples/specific_examples/VusPr_example.py +24 -0
- examples/specific_examples/VusRoc_example.py +24 -0
- examples/specific_examples/WeightedDetectionDifference_example.py +24 -0
- tests/test_dpm.py +212 -0
- tests/test_ptdm.py +366 -0
- tests/test_registry.py +58 -0
- tests/test_runner.py +185 -0
- tests/test_spm.py +213 -0
- tests/test_tmem.py +198 -0
- tests/test_tpdm.py +369 -0
- tests/test_tstm.py +338 -0
- tsadmetrics/__init__.py +0 -21
- tsadmetrics/base/Metric.py +188 -0
- tsadmetrics/evaluation/Report.py +25 -0
- tsadmetrics/evaluation/Runner.py +253 -0
- tsadmetrics/metrics/Registry.py +141 -0
- tsadmetrics/metrics/__init__.py +2 -0
- tsadmetrics/metrics/spm/PointwiseAucPr.py +62 -0
- tsadmetrics/metrics/spm/PointwiseAucRoc.py +63 -0
- tsadmetrics/metrics/spm/PointwiseFScore.py +86 -0
- tsadmetrics/metrics/spm/PrecisionAtK.py +81 -0
- tsadmetrics/metrics/spm/__init__.py +9 -0
- tsadmetrics/metrics/tem/dpm/DelayThresholdedPointadjustedFScore.py +83 -0
- tsadmetrics/metrics/tem/dpm/LatencySparsityawareFScore.py +76 -0
- tsadmetrics/metrics/tem/dpm/MeanTimeToDetect.py +47 -0
- tsadmetrics/metrics/tem/dpm/NabScore.py +60 -0
- tsadmetrics/metrics/tem/dpm/__init__.py +11 -0
- tsadmetrics/metrics/tem/ptdm/AverageDetectionCount.py +53 -0
- tsadmetrics/metrics/tem/ptdm/DetectionAccuracyInRange.py +66 -0
- tsadmetrics/metrics/tem/ptdm/PointadjustedAtKFScore.py +80 -0
- tsadmetrics/metrics/tem/ptdm/TimeseriesAwareFScore.py +248 -0
- tsadmetrics/metrics/tem/ptdm/TotalDetectedInRange.py +65 -0
- tsadmetrics/metrics/tem/ptdm/WeightedDetectionDifference.py +97 -0
- tsadmetrics/metrics/tem/ptdm/__init__.py +12 -0
- tsadmetrics/metrics/tem/tmem/AbsoluteDetectionDistance.py +48 -0
- tsadmetrics/metrics/tem/tmem/EnhancedTimeseriesAwareFScore.py +252 -0
- tsadmetrics/metrics/tem/tmem/TemporalDistance.py +68 -0
- tsadmetrics/metrics/tem/tmem/__init__.py +9 -0
- tsadmetrics/metrics/tem/tpdm/CompositeFScore.py +104 -0
- tsadmetrics/metrics/tem/tpdm/PointadjustedAucPr.py +123 -0
- tsadmetrics/metrics/tem/tpdm/PointadjustedAucRoc.py +119 -0
- tsadmetrics/metrics/tem/tpdm/PointadjustedFScore.py +96 -0
- tsadmetrics/metrics/tem/tpdm/RangebasedFScore.py +236 -0
- tsadmetrics/metrics/tem/tpdm/SegmentwiseFScore.py +73 -0
- tsadmetrics/metrics/tem/tpdm/__init__.py +12 -0
- tsadmetrics/metrics/tem/tstm/AffiliationbasedFScore.py +68 -0
- tsadmetrics/metrics/tem/tstm/Pate.py +62 -0
- tsadmetrics/metrics/tem/tstm/PateFScore.py +61 -0
- tsadmetrics/metrics/tem/tstm/TimeTolerantFScore.py +85 -0
- tsadmetrics/metrics/tem/tstm/VusPr.py +51 -0
- tsadmetrics/metrics/tem/tstm/VusRoc.py +55 -0
- tsadmetrics/metrics/tem/tstm/__init__.py +15 -0
- tsadmetrics/{_tsadeval/affiliation/_integral_interval.py → utils/functions_affiliation.py} +377 -9
- tsadmetrics/utils/functions_auc.py +393 -0
- tsadmetrics/utils/functions_conversion.py +63 -0
- tsadmetrics/utils/functions_counting_metrics.py +26 -0
- tsadmetrics/{_tsadeval/latency_sparsity_aware.py → utils/functions_latency_sparsity_aware.py} +1 -1
- tsadmetrics/{_tsadeval/nabscore.py → utils/functions_nabscore.py} +15 -1
- tsadmetrics-1.0.0.dist-info/METADATA +69 -0
- tsadmetrics-1.0.0.dist-info/RECORD +99 -0
- tsadmetrics-1.0.0.dist-info/top_level.txt +4 -0
- entorno/bin/activate_this.py +0 -32
- entorno/bin/rst2html.py +0 -23
- entorno/bin/rst2html4.py +0 -26
- entorno/bin/rst2html5.py +0 -33
- entorno/bin/rst2latex.py +0 -26
- entorno/bin/rst2man.py +0 -27
- entorno/bin/rst2odt.py +0 -28
- entorno/bin/rst2odt_prepstyles.py +0 -20
- entorno/bin/rst2pseudoxml.py +0 -23
- entorno/bin/rst2s5.py +0 -24
- entorno/bin/rst2xetex.py +0 -27
- entorno/bin/rst2xml.py +0 -23
- entorno/bin/rstpep2html.py +0 -25
- tests/test_binary.py +0 -946
- tests/test_non_binary.py +0 -450
- tests/test_utils.py +0 -49
- tsadmetrics/_tsadeval/affiliation/_affiliation_zone.py +0 -86
- tsadmetrics/_tsadeval/affiliation/_single_ground_truth_event.py +0 -68
- tsadmetrics/_tsadeval/affiliation/generics.py +0 -135
- tsadmetrics/_tsadeval/affiliation/metrics.py +0 -114
- tsadmetrics/_tsadeval/auc_roc_pr_plot.py +0 -295
- tsadmetrics/_tsadeval/discontinuity_graph.py +0 -109
- tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/File_IO.py +0 -175
- tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/Range.py +0 -50
- tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/Time_Plot.py +0 -184
- tsadmetrics/_tsadeval/eTaPR_pkg/__init__.py +0 -0
- tsadmetrics/_tsadeval/eTaPR_pkg/etapr.py +0 -386
- tsadmetrics/_tsadeval/eTaPR_pkg/tapr.py +0 -362
- tsadmetrics/_tsadeval/metrics.py +0 -698
- tsadmetrics/_tsadeval/prts/__init__.py +0 -0
- tsadmetrics/_tsadeval/prts/base/__init__.py +0 -0
- tsadmetrics/_tsadeval/prts/base/time_series_metrics.py +0 -165
- tsadmetrics/_tsadeval/prts/basic_metrics_ts.py +0 -121
- tsadmetrics/_tsadeval/prts/time_series_metrics/__init__.py +0 -0
- tsadmetrics/_tsadeval/prts/time_series_metrics/fscore.py +0 -61
- tsadmetrics/_tsadeval/prts/time_series_metrics/precision.py +0 -86
- tsadmetrics/_tsadeval/prts/time_series_metrics/precision_recall.py +0 -21
- tsadmetrics/_tsadeval/prts/time_series_metrics/recall.py +0 -85
- tsadmetrics/_tsadeval/tests.py +0 -376
- tsadmetrics/_tsadeval/threshold_plt.py +0 -30
- tsadmetrics/_tsadeval/time_tolerant.py +0 -33
- tsadmetrics/binary_metrics.py +0 -1652
- tsadmetrics/metric_utils.py +0 -98
- tsadmetrics/non_binary_metrics.py +0 -372
- tsadmetrics/scripts/__init__.py +0 -0
- tsadmetrics/scripts/compute_metrics.py +0 -42
- tsadmetrics/utils.py +0 -124
- tsadmetrics/validation.py +0 -35
- tsadmetrics-0.1.17.dist-info/METADATA +0 -54
- tsadmetrics-0.1.17.dist-info/RECORD +0 -66
- tsadmetrics-0.1.17.dist-info/entry_points.txt +0 -2
- tsadmetrics-0.1.17.dist-info/top_level.txt +0 -6
- /tsadmetrics/{_tsadeval → base}/__init__.py +0 -0
- /tsadmetrics/{_tsadeval/affiliation → evaluation}/__init__.py +0 -0
- /tsadmetrics/{_tsadeval/eTaPR_pkg/DataManage → metrics/tem}/__init__.py +0 -0
- /tsadmetrics/{_tsadeval/vus_utils.py → utils/functions_vus.py} +0 -0
- {tsadmetrics-0.1.17.dist-info → tsadmetrics-1.0.0.dist-info}/WHEEL +0 -0
@@ -1,386 +0,0 @@
|
|
1
|
-
from .tapr import *
|
2
|
-
import math
|
3
|
-
import argparse
|
4
|
-
from .DataManage import File_IO#, Time_Plot
|
5
|
-
import numpy as np
|
6
|
-
from .DataManage import Range as rng
|
7
|
-
|
8
|
-
class eTaPR(TaPR):
|
9
|
-
def __init__(self, theta_p, theta_r, delta=0.0):
|
10
|
-
super(eTaPR, self).__init__(0.0, 0)
|
11
|
-
self._predictions_weight = []
|
12
|
-
self._predictions_total_weight = 0.0
|
13
|
-
self._prune_predictions = []
|
14
|
-
|
15
|
-
self._theta_p = theta_p
|
16
|
-
self._theta_r = theta_r
|
17
|
-
self._delta_ratio = delta
|
18
|
-
|
19
|
-
self._overlap_score_mat_org = np.zeros(1)
|
20
|
-
self._overlap_score_mat_elm = np.zeros(1) #eleminate by prunning
|
21
|
-
self._max_anomaly_score = []
|
22
|
-
self._max_prediction_score = []
|
23
|
-
|
24
|
-
self._weight_func = math.sqrt
|
25
|
-
|
26
|
-
|
27
|
-
def _gen_ambiguous(self):
|
28
|
-
for i in range(len(self._anomalies)):
|
29
|
-
start_id = self._anomalies[i].get_time()[1] + 1
|
30
|
-
end_id = start_id + int(self._delta_ratio * (self._anomalies[i].get_time()[1] - self._anomalies[i].get_time()[0]))
|
31
|
-
|
32
|
-
# if the next anomaly occurs during the theta, update the end_id
|
33
|
-
if i + 1 < len(self._anomalies) and end_id > self._anomalies[i + 1].get_time()[0]:
|
34
|
-
end_id = self._anomalies[i + 1].get_time()[0] - 1
|
35
|
-
|
36
|
-
if start_id > end_id:
|
37
|
-
start_id = -2
|
38
|
-
end_id = -1
|
39
|
-
|
40
|
-
self._ambiguous_inst.append(rng.Range(start_id, end_id, str(i)))
|
41
|
-
|
42
|
-
#load data -> build the score matrix -> do pruning
|
43
|
-
def set(self, anomalies: list, predictions: list) -> None:
|
44
|
-
#loading data
|
45
|
-
self.set_anomalies(anomalies)
|
46
|
-
self.set_predictions(predictions)
|
47
|
-
|
48
|
-
#computing weights
|
49
|
-
for a_prediction in self._predictions:
|
50
|
-
first, last = a_prediction.get_time()
|
51
|
-
temp_weight = math.sqrt(last-first+1)
|
52
|
-
self._predictions_weight.append(temp_weight)
|
53
|
-
self._predictions_total_weight += temp_weight
|
54
|
-
|
55
|
-
#computing the score matrix
|
56
|
-
self._overlap_score_mat_org = np.zeros((self.get_n_anomalies(), self.get_n_predictions()))
|
57
|
-
for anomaly_id in range(self.get_n_anomalies()):
|
58
|
-
for prediction_id in range(self.get_n_predictions()):
|
59
|
-
self._overlap_score_mat_org[anomaly_id, prediction_id] = \
|
60
|
-
float(self._overlap_and_subsequent_score(self._anomalies[anomaly_id], self._ambiguous_inst[anomaly_id], self._predictions[prediction_id]))
|
61
|
-
|
62
|
-
#computing the maximum scores for each anomaly or prediction
|
63
|
-
for an_anomaly in self._anomalies:
|
64
|
-
start, end = an_anomaly.get_time()
|
65
|
-
self._max_anomaly_score.append(float(self._sum_of_func(start, end, start, end, self._uniform_func)))
|
66
|
-
for a_prediction in self._predictions:
|
67
|
-
self._max_prediction_score.append(a_prediction.get_len())
|
68
|
-
|
69
|
-
#pruning
|
70
|
-
self._pruning()
|
71
|
-
|
72
|
-
def _pruning(self):
|
73
|
-
self._overlap_score_mat_elm = self._overlap_score_mat_org.copy()
|
74
|
-
|
75
|
-
while True:
|
76
|
-
tars = self._overlap_score_mat_elm.sum(axis=1)/self._max_anomaly_score
|
77
|
-
elem_anomaly_ids = set(np.where(tars<self._theta_r)[0]) - set(np.where(tars==0.0)[0])
|
78
|
-
for id in elem_anomaly_ids:
|
79
|
-
self._overlap_score_mat_elm[id] = np.zeros(self.get_n_predictions())
|
80
|
-
taps = self._overlap_score_mat_elm.sum(axis=0)/self._max_prediction_score
|
81
|
-
elem_prediction_ids = set(np.where(taps<self._theta_p)[0]) - set(np.where(taps==0.0)[0])
|
82
|
-
for id in elem_prediction_ids:
|
83
|
-
self._overlap_score_mat_elm[:, id] = np.zeros(self.get_n_anomalies())
|
84
|
-
|
85
|
-
if len(elem_anomaly_ids) == 0 and len(elem_prediction_ids) == 0:
|
86
|
-
break
|
87
|
-
|
88
|
-
def _etar_d(self, theta: float) -> np.array and list:
|
89
|
-
if self.get_n_anomalies() == 0.0 or self.get_n_predictions() == 0.0:
|
90
|
-
return np.zeros(self.get_n_anomalies()), []
|
91
|
-
|
92
|
-
scores = self._overlap_score_mat_elm.sum(axis=1)/self._max_anomaly_score
|
93
|
-
scores = np.where(scores >= theta, 1.0, scores)
|
94
|
-
scores = np.where(scores < theta, 0.0, scores)
|
95
|
-
detected_id_list = np.where(scores >= theta)[0]
|
96
|
-
|
97
|
-
return scores, detected_id_list
|
98
|
-
|
99
|
-
def eTaR_d(self) -> float and list:
|
100
|
-
_, detected_id_list = self._etar_d(self._theta_r)
|
101
|
-
return len(detected_id_list)/self.get_n_anomalies(), detected_id_list
|
102
|
-
|
103
|
-
def _etar_p(self) -> np.array:
|
104
|
-
if self.get_n_anomalies() == 0.0 or self.get_n_predictions() == 0.0:
|
105
|
-
return 0.0
|
106
|
-
|
107
|
-
scores = self._overlap_score_mat_elm.sum(axis=1) / self._max_anomaly_score
|
108
|
-
scores = np.where(scores > 1.0, 1.0, scores)
|
109
|
-
return scores
|
110
|
-
|
111
|
-
def eTaR_p(self) -> float:
|
112
|
-
scores = self._etar_p()
|
113
|
-
return scores.mean()
|
114
|
-
|
115
|
-
def eTaR(self) -> float:
|
116
|
-
|
117
|
-
detection_scores, detected_id_list = self._etar_d(self._theta_r)
|
118
|
-
portion_scores = self._etar_p()
|
119
|
-
|
120
|
-
return ((detection_scores + detection_scores * portion_scores)/2).mean(), portion_scores.mean(), len(detected_id_list)/self.get_n_anomalies(), detected_id_list
|
121
|
-
|
122
|
-
def _etap_d(self, theta: float) -> np.array and list:
|
123
|
-
if self.get_n_anomalies() == 0.0 or self.get_n_predictions() == 0.0:
|
124
|
-
return 0.0, []
|
125
|
-
|
126
|
-
scores = self._overlap_score_mat_elm.sum(axis=0) / self._max_prediction_score
|
127
|
-
scores = np.where(scores >= theta, 1.0, scores)
|
128
|
-
scores = np.where(scores < theta, 0.0, scores)
|
129
|
-
correct_id_list = np.where(scores >= theta)[0]
|
130
|
-
|
131
|
-
return scores, correct_id_list
|
132
|
-
|
133
|
-
def eTaP_d(self) -> float and list:
|
134
|
-
_, correct_id_list = self._etap_d(self._theta_p)
|
135
|
-
|
136
|
-
tapd = 0.0
|
137
|
-
for correct_id in correct_id_list:
|
138
|
-
tapd += self._predictions_weight[correct_id]
|
139
|
-
tapd /= float(self._predictions_total_weight)
|
140
|
-
|
141
|
-
return tapd, correct_id_list
|
142
|
-
|
143
|
-
def _etap_p(self) -> np.array:
|
144
|
-
if self.get_n_anomalies() == 0.0 or self.get_n_predictions() == 0.0:
|
145
|
-
return 0.0
|
146
|
-
|
147
|
-
scores = self._overlap_score_mat_elm.sum(axis=0) / self._max_prediction_score
|
148
|
-
return scores
|
149
|
-
|
150
|
-
def eTaP_p(self) -> float:
|
151
|
-
scores = self._etap_p()
|
152
|
-
|
153
|
-
final_score = 0.0
|
154
|
-
for i in range(len(scores)):
|
155
|
-
final_score += float(self._predictions_weight[i]) * scores[i]
|
156
|
-
final_score /= float(self._predictions_total_weight)
|
157
|
-
return final_score
|
158
|
-
|
159
|
-
def eTaP(self) -> float:
|
160
|
-
#Computing etap_d and etap_p manually to optimize the performance
|
161
|
-
etap_d = 0
|
162
|
-
etap_p = 0
|
163
|
-
if self.get_n_anomalies() == 0.0 or self.get_n_predictions() == 0.0:
|
164
|
-
etap_d,etap_p = 0.0, 0.0
|
165
|
-
|
166
|
-
etap_d = self._overlap_score_mat_elm.sum(axis=0) / self._max_prediction_score
|
167
|
-
etap_p = etap_d
|
168
|
-
etap_d = np.where(etap_d >= self._theta_p, 1.0, etap_d)
|
169
|
-
etap_d = np.where(etap_d < self._theta_p, 0.0, etap_d)
|
170
|
-
corrected_id_list = np.where(etap_d >= self._theta_p)[0]
|
171
|
-
|
172
|
-
detection_scores = etap_d
|
173
|
-
portion_scores = etap_p
|
174
|
-
eTaP_d,eTaP_p = 0.0,0.0
|
175
|
-
|
176
|
-
|
177
|
-
scores = (detection_scores + detection_scores * portion_scores)/2
|
178
|
-
final_score = 0.0
|
179
|
-
for i in range(max(len(scores),len(etap_d),len(corrected_id_list))):
|
180
|
-
if i < len(scores):
|
181
|
-
final_score += float(self._predictions_weight[i]) * scores[i]
|
182
|
-
if i < len(etap_p):
|
183
|
-
eTaP_p += float(self._predictions_weight[i]) * etap_p[i]
|
184
|
-
if i < len(corrected_id_list):
|
185
|
-
eTaP_d += self._predictions_weight[corrected_id_list[i]]
|
186
|
-
|
187
|
-
final_score /= float(self._predictions_total_weight)
|
188
|
-
eTaP_d /= float(self._predictions_total_weight)
|
189
|
-
eTaP_p /= float(self._predictions_total_weight)
|
190
|
-
self.eTaP_d_value = eTaP_d
|
191
|
-
self.eTaP_p_value = eTaP_p
|
192
|
-
self.corrected_id_list = corrected_id_list
|
193
|
-
return final_score
|
194
|
-
|
195
|
-
# conventional precision
|
196
|
-
def precision(self) -> float:
|
197
|
-
if self.get_n_anomalies() == 0.0 or self.get_n_predictions() == 0.0:
|
198
|
-
return 0.0
|
199
|
-
|
200
|
-
return self._overlap_score_mat_org.sum() / sum(self._max_prediction_score)
|
201
|
-
|
202
|
-
# conventional recall
|
203
|
-
def recall(self) -> float:
|
204
|
-
if self.get_n_anomalies() == 0.0 or self.get_n_predictions() == 0.0:
|
205
|
-
return 0.0
|
206
|
-
|
207
|
-
return self._overlap_score_mat_org.sum() / sum(self._max_anomaly_score)
|
208
|
-
|
209
|
-
# point adjust precision
|
210
|
-
def point_adjust_precision(self, theta: float) -> float:
|
211
|
-
if self.get_n_anomalies() == 0.0 or self.get_n_predictions() == 0.0:
|
212
|
-
return 0.0
|
213
|
-
|
214
|
-
_, detected_id_list = self._TaR_d(self._anomalies, [ rng.Range(-2, -1, '' ) for i in range(len(self._anomalies)) ], self._predictions, theta)
|
215
|
-
|
216
|
-
hit_cnt = 0
|
217
|
-
for detected_id in detected_id_list:
|
218
|
-
hit_cnt += self._anomalies[detected_id].get_len()
|
219
|
-
|
220
|
-
extended_predictions_len = sum(self._max_prediction_score) + hit_cnt - self._overlap_score_mat_org.sum()
|
221
|
-
|
222
|
-
return hit_cnt / extended_predictions_len
|
223
|
-
|
224
|
-
def point_adjust_recall(self, theta: float) -> float:
|
225
|
-
if self.get_n_anomalies() == 0.0 or self.get_n_predictions() == 0.0:
|
226
|
-
return 0.0
|
227
|
-
|
228
|
-
_, detected_id_list = self._TaR_d(self._anomalies, [ rng.Range(-2, -1, '' ) for i in range(len(self._anomalies)) ], self._predictions, theta)
|
229
|
-
hit_cnt = 0
|
230
|
-
for detected_id in detected_id_list:
|
231
|
-
hit_cnt += self._anomalies[detected_id].get_len()
|
232
|
-
return hit_cnt / sum(self._max_anomaly_score)
|
233
|
-
|
234
|
-
import time
|
235
|
-
def evaluate_w_ranges(anomalies: list, predictions: list, theta_p: float, theta_r: float, delta: float = 0.0) -> dict:
|
236
|
-
assert(0.0 <= theta_p <= 1.0)
|
237
|
-
assert(0.0 <= theta_r <= 1.0)
|
238
|
-
assert(0.0 <= delta <= 1.0)
|
239
|
-
|
240
|
-
ev = eTaPR(theta_p, theta_r, delta)
|
241
|
-
ev.set(anomalies, predictions)
|
242
|
-
|
243
|
-
|
244
|
-
tar_value, tarp_value, tard_value, detected_id_list = ev.eTaR()
|
245
|
-
|
246
|
-
tap_value = ev.eTaP()
|
247
|
-
tapd_value = ev.eTaP_d_value
|
248
|
-
tapp_value = ev.eTaP_p_value
|
249
|
-
|
250
|
-
|
251
|
-
result = {}
|
252
|
-
result['eTaR'] = tar_value
|
253
|
-
result['eTaRd'] = tard_value
|
254
|
-
result['eTaRp'] = tarp_value
|
255
|
-
|
256
|
-
result['eTaP'] = tap_value
|
257
|
-
result['eTaPd'] = tapd_value
|
258
|
-
result['eTaPp'] = tapp_value
|
259
|
-
|
260
|
-
# detected_anomalies = []
|
261
|
-
# for id in detected_id_list:
|
262
|
-
# detected_anomalies.append(anomalies[id])
|
263
|
-
|
264
|
-
# correct_predictions = []
|
265
|
-
# for id in correct_id_list:
|
266
|
-
# correct_predictions.append(predictions[id])
|
267
|
-
|
268
|
-
# result['Detected_Anomalies'] = detected_anomalies
|
269
|
-
# result['Correct_Predictions'] = correct_predictions
|
270
|
-
|
271
|
-
if tar_value + tap_value == 0:
|
272
|
-
result['f1'] = 0.0
|
273
|
-
else:
|
274
|
-
result['f1'] = (2 * tar_value * tap_value) / (tar_value + tap_value)
|
275
|
-
|
276
|
-
# false_alarm = 0
|
277
|
-
# false_alarm_cnt = 0
|
278
|
-
# for id in range(len(predictions)):
|
279
|
-
# if id not in correct_id_list:
|
280
|
-
# false_alarm += predictions[id].get_len()
|
281
|
-
# false_alarm_cnt += 1
|
282
|
-
|
283
|
-
|
284
|
-
# result['False Alarm'] = false_alarm
|
285
|
-
# result['N False Alarm'] = false_alarm_cnt
|
286
|
-
|
287
|
-
# result['precision'] = ev.precision()
|
288
|
-
# result['recall'] = ev.recall()
|
289
|
-
# result['point_adjust_precision'] = ev.point_adjust_precision(1e-10)
|
290
|
-
# result['point_adjust_recall'] = ev.point_adjust_recall(1e-10)
|
291
|
-
return result
|
292
|
-
|
293
|
-
|
294
|
-
def evaluate_w_streams(anomalies: list, predictions: list, theta_p = 0.7, theta_r: float = 0.1, delta: float = 0.0) -> dict:
|
295
|
-
assert(0.0 <= theta_p <= 1.0)
|
296
|
-
assert(0.0 <= theta_r <= 1.0)
|
297
|
-
assert(0.0 <= delta <= 1.0)
|
298
|
-
|
299
|
-
anomalous_ranges = File_IO.load_stream_2_range(anomalies, 0, 1, True)
|
300
|
-
predicted_ranges = File_IO.load_stream_2_range(predictions, 0, 1, True)
|
301
|
-
|
302
|
-
return evaluate_w_ranges(anomalies =anomalous_ranges,
|
303
|
-
predictions =predicted_ranges,
|
304
|
-
theta_p=theta_p,
|
305
|
-
theta_r=theta_r,
|
306
|
-
delta=delta)
|
307
|
-
|
308
|
-
|
309
|
-
def evaluate_w_files(anomaly_file: str, prediction_file: str, file_type: str, theta_p: float, theta_r: float, delta: float = 0.0) -> dict:
|
310
|
-
assert(0.0 <= theta_p <= 1.0)
|
311
|
-
assert(0.0 <= theta_r <= 1.0)
|
312
|
-
assert(0.0 <= delta <= 1.0)
|
313
|
-
|
314
|
-
anomalies = File_IO.load_file(anomaly_file, file_type)
|
315
|
-
predictions = File_IO.load_file(prediction_file, file_type)
|
316
|
-
|
317
|
-
return evaluate_w_ranges(anomalies, predictions, theta_p, theta_r, delta)
|
318
|
-
|
319
|
-
|
320
|
-
def print_results(result: dict, verbose: bool) -> None:
|
321
|
-
print('\n[TaR]:', "%0.5f" % result['TaR'])
|
322
|
-
print("\t* Detection score:", "%0.5f" % result['TaRd'])
|
323
|
-
print("\t* Portion score:", "%0.5f" % result['TaRp'])
|
324
|
-
if verbose:
|
325
|
-
buf = '\t\tdetected anomalies: '
|
326
|
-
if len(result['Detected_Anomalies']) == 0:
|
327
|
-
buf += "None "
|
328
|
-
else:
|
329
|
-
for value in result['Detected_Anomalies']:
|
330
|
-
buf += value.get_name() + '(' + str(value.get_time()[0]) + ':' + str(value.get_time()[1]) + '), '
|
331
|
-
print(buf[:-2])
|
332
|
-
|
333
|
-
|
334
|
-
print('\n[TaP]:', "%0.5f" % result['TaP'])
|
335
|
-
print("\t* Detection score:", "%0.5f" % result['TaPd'])
|
336
|
-
print("\t* Portion score:", "%0.5f" % result['TaPp'])
|
337
|
-
if verbose:
|
338
|
-
buf = '\t\tcorrect predictions: '
|
339
|
-
if len(result['Correct_Predictions']) == 0:
|
340
|
-
buf += "None "
|
341
|
-
else:
|
342
|
-
for value in result['Correct_Predictions']:
|
343
|
-
buf += value.get_name() + '(' + str(value.get_time()[0]) + ':' + str(value.get_time()[1]) + '), '
|
344
|
-
print(buf[:-2])
|
345
|
-
|
346
|
-
|
347
|
-
def draw_graph(anomalies: list, predictions: list, graph_dst: str) -> None:
|
348
|
-
assert (graph_dst == 'screen' or graph_dst == 'file' or graph_dst == 'none' or graph_dst == 'all')
|
349
|
-
if graph_dst == 'screen' or graph_dst == 'file' or graph_dst == 'all':
|
350
|
-
Time_Plot.draw_graphs(anomalies, predictions, graph_dst)
|
351
|
-
|
352
|
-
|
353
|
-
if __name__ == '__main__':
|
354
|
-
argument_parser = argparse.ArgumentParser()
|
355
|
-
argument_parser.add_argument("--anomalies", help="anomaly file name (ground truth)", required=True)
|
356
|
-
argument_parser.add_argument("--predictions", help="prediction file name", required=True)
|
357
|
-
argument_parser.add_argument("--filetype", help="choose the file type between range and stream", required=True)
|
358
|
-
argument_parser.add_argument("--graph", help="show graph of results")
|
359
|
-
|
360
|
-
argument_parser.add_argument("--verbose", help="show detail results", action='store_true')
|
361
|
-
argument_parser.add_argument("--theta_r", help="set parameter theta_r")
|
362
|
-
argument_parser.add_argument("--theta_p", help="set parameter theta_p")
|
363
|
-
argument_parser.add_argument("--delta", help="set parameter delta")
|
364
|
-
# arguments = argument_parser.parse_args()
|
365
|
-
|
366
|
-
arguments = argument_parser.parse_args()
|
367
|
-
theta_p, theta_r, delta, graph = 0.5, 0.1, 0.0, 'none' #default values
|
368
|
-
if arguments.tp is not None:
|
369
|
-
theta_p = float(arguments.tp)
|
370
|
-
if arguments.tr is not None:
|
371
|
-
theta_r = float(arguments.tr)
|
372
|
-
if arguments.delta is not None:
|
373
|
-
delta = int(arguments.delta)
|
374
|
-
if arguments.graph is not None:
|
375
|
-
graph = arguments.graph
|
376
|
-
|
377
|
-
# assert(isinstance(delta, int))
|
378
|
-
assert(graph == 'screen' or graph == 'file' or graph == 'none' or graph == 'all')
|
379
|
-
|
380
|
-
anomalies = File_IO.load_file(arguments.anomalies, arguments.filetype)
|
381
|
-
predictions = File_IO.load_file(arguments.predictions, arguments.filetype)
|
382
|
-
results = evaluate_w_ranges(anomalies, predictions, theta_p, theta_r, delta)
|
383
|
-
|
384
|
-
print_results(results, arguments.verbose)
|
385
|
-
draw_graph(anomalies, predictions, graph)
|
386
|
-
|