tsadmetrics 0.1.16__py3-none-any.whl → 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- docs/api_doc/conf.py +67 -0
- docs/{conf.py → full_doc/conf.py} +1 -1
- docs/manual_doc/conf.py +67 -0
- examples/example_direct_data.py +28 -0
- examples/example_direct_single_data.py +25 -0
- examples/example_file_reference.py +24 -0
- examples/example_global_config_file.py +13 -0
- examples/example_metric_config_file.py +19 -0
- examples/example_simple_metric.py +8 -0
- examples/specific_examples/AbsoluteDetectionDistance_example.py +24 -0
- examples/specific_examples/AffiliationbasedFScore_example.py +24 -0
- examples/specific_examples/AverageDetectionCount_example.py +24 -0
- examples/specific_examples/CompositeFScore_example.py +24 -0
- examples/specific_examples/DelayThresholdedPointadjustedFScore_example.py +24 -0
- examples/specific_examples/DetectionAccuracyInRange_example.py +24 -0
- examples/specific_examples/EnhancedTimeseriesAwareFScore_example.py +24 -0
- examples/specific_examples/LatencySparsityawareFScore_example.py +24 -0
- examples/specific_examples/MeanTimeToDetect_example.py +24 -0
- examples/specific_examples/NabScore_example.py +24 -0
- examples/specific_examples/PateFScore_example.py +24 -0
- examples/specific_examples/Pate_example.py +24 -0
- examples/specific_examples/PointadjustedAtKFScore_example.py +24 -0
- examples/specific_examples/PointadjustedAucPr_example.py +24 -0
- examples/specific_examples/PointadjustedAucRoc_example.py +24 -0
- examples/specific_examples/PointadjustedFScore_example.py +24 -0
- examples/specific_examples/RangebasedFScore_example.py +24 -0
- examples/specific_examples/SegmentwiseFScore_example.py +24 -0
- examples/specific_examples/TemporalDistance_example.py +24 -0
- examples/specific_examples/TimeTolerantFScore_example.py +24 -0
- examples/specific_examples/TimeseriesAwareFScore_example.py +24 -0
- examples/specific_examples/TotalDetectedInRange_example.py +24 -0
- examples/specific_examples/VusPr_example.py +24 -0
- examples/specific_examples/VusRoc_example.py +24 -0
- examples/specific_examples/WeightedDetectionDifference_example.py +24 -0
- tests/test_dpm.py +212 -0
- tests/test_ptdm.py +366 -0
- tests/test_registry.py +58 -0
- tests/test_runner.py +185 -0
- tests/test_spm.py +213 -0
- tests/test_tmem.py +198 -0
- tests/test_tpdm.py +369 -0
- tests/test_tstm.py +338 -0
- tsadmetrics/__init__.py +0 -21
- tsadmetrics/base/Metric.py +188 -0
- tsadmetrics/evaluation/Report.py +25 -0
- tsadmetrics/evaluation/Runner.py +253 -0
- tsadmetrics/metrics/Registry.py +141 -0
- tsadmetrics/metrics/__init__.py +2 -0
- tsadmetrics/metrics/spm/PointwiseAucPr.py +62 -0
- tsadmetrics/metrics/spm/PointwiseAucRoc.py +63 -0
- tsadmetrics/metrics/spm/PointwiseFScore.py +86 -0
- tsadmetrics/metrics/spm/PrecisionAtK.py +81 -0
- tsadmetrics/metrics/spm/__init__.py +9 -0
- tsadmetrics/metrics/tem/dpm/DelayThresholdedPointadjustedFScore.py +83 -0
- tsadmetrics/metrics/tem/dpm/LatencySparsityawareFScore.py +76 -0
- tsadmetrics/metrics/tem/dpm/MeanTimeToDetect.py +47 -0
- tsadmetrics/metrics/tem/dpm/NabScore.py +60 -0
- tsadmetrics/metrics/tem/dpm/__init__.py +11 -0
- tsadmetrics/metrics/tem/ptdm/AverageDetectionCount.py +53 -0
- tsadmetrics/metrics/tem/ptdm/DetectionAccuracyInRange.py +66 -0
- tsadmetrics/metrics/tem/ptdm/PointadjustedAtKFScore.py +80 -0
- tsadmetrics/metrics/tem/ptdm/TimeseriesAwareFScore.py +248 -0
- tsadmetrics/metrics/tem/ptdm/TotalDetectedInRange.py +65 -0
- tsadmetrics/metrics/tem/ptdm/WeightedDetectionDifference.py +97 -0
- tsadmetrics/metrics/tem/ptdm/__init__.py +12 -0
- tsadmetrics/metrics/tem/tmem/AbsoluteDetectionDistance.py +48 -0
- tsadmetrics/metrics/tem/tmem/EnhancedTimeseriesAwareFScore.py +252 -0
- tsadmetrics/metrics/tem/tmem/TemporalDistance.py +68 -0
- tsadmetrics/metrics/tem/tmem/__init__.py +9 -0
- tsadmetrics/metrics/tem/tpdm/CompositeFScore.py +104 -0
- tsadmetrics/metrics/tem/tpdm/PointadjustedAucPr.py +123 -0
- tsadmetrics/metrics/tem/tpdm/PointadjustedAucRoc.py +119 -0
- tsadmetrics/metrics/tem/tpdm/PointadjustedFScore.py +96 -0
- tsadmetrics/metrics/tem/tpdm/RangebasedFScore.py +236 -0
- tsadmetrics/metrics/tem/tpdm/SegmentwiseFScore.py +73 -0
- tsadmetrics/metrics/tem/tpdm/__init__.py +12 -0
- tsadmetrics/metrics/tem/tstm/AffiliationbasedFScore.py +68 -0
- tsadmetrics/metrics/tem/tstm/Pate.py +62 -0
- tsadmetrics/metrics/tem/tstm/PateFScore.py +61 -0
- tsadmetrics/metrics/tem/tstm/TimeTolerantFScore.py +85 -0
- tsadmetrics/metrics/tem/tstm/VusPr.py +51 -0
- tsadmetrics/metrics/tem/tstm/VusRoc.py +55 -0
- tsadmetrics/metrics/tem/tstm/__init__.py +15 -0
- tsadmetrics/{_tsadeval/affiliation/_integral_interval.py → utils/functions_affiliation.py} +377 -9
- tsadmetrics/utils/functions_auc.py +393 -0
- tsadmetrics/utils/functions_conversion.py +63 -0
- tsadmetrics/utils/functions_counting_metrics.py +26 -0
- tsadmetrics/{_tsadeval/latency_sparsity_aware.py → utils/functions_latency_sparsity_aware.py} +1 -1
- tsadmetrics/{_tsadeval/nabscore.py → utils/functions_nabscore.py} +15 -1
- tsadmetrics-1.0.0.dist-info/METADATA +69 -0
- tsadmetrics-1.0.0.dist-info/RECORD +99 -0
- {tsadmetrics-0.1.16.dist-info → tsadmetrics-1.0.0.dist-info}/top_level.txt +1 -1
- entorno/bin/activate_this.py +0 -32
- entorno/bin/rst2html.py +0 -23
- entorno/bin/rst2html4.py +0 -26
- entorno/bin/rst2html5.py +0 -33
- entorno/bin/rst2latex.py +0 -26
- entorno/bin/rst2man.py +0 -27
- entorno/bin/rst2odt.py +0 -28
- entorno/bin/rst2odt_prepstyles.py +0 -20
- entorno/bin/rst2pseudoxml.py +0 -23
- entorno/bin/rst2s5.py +0 -24
- entorno/bin/rst2xetex.py +0 -27
- entorno/bin/rst2xml.py +0 -23
- entorno/bin/rstpep2html.py +0 -25
- tests/test_binary.py +0 -946
- tests/test_non_binary.py +0 -420
- tests/test_utils.py +0 -49
- tsadmetrics/_tsadeval/affiliation/_affiliation_zone.py +0 -86
- tsadmetrics/_tsadeval/affiliation/_single_ground_truth_event.py +0 -68
- tsadmetrics/_tsadeval/affiliation/generics.py +0 -135
- tsadmetrics/_tsadeval/affiliation/metrics.py +0 -114
- tsadmetrics/_tsadeval/auc_roc_pr_plot.py +0 -295
- tsadmetrics/_tsadeval/discontinuity_graph.py +0 -109
- tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/File_IO.py +0 -175
- tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/Range.py +0 -50
- tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/Time_Plot.py +0 -184
- tsadmetrics/_tsadeval/eTaPR_pkg/__init__.py +0 -0
- tsadmetrics/_tsadeval/eTaPR_pkg/etapr.py +0 -386
- tsadmetrics/_tsadeval/eTaPR_pkg/tapr.py +0 -362
- tsadmetrics/_tsadeval/metrics.py +0 -698
- tsadmetrics/_tsadeval/prts/__init__.py +0 -0
- tsadmetrics/_tsadeval/prts/base/__init__.py +0 -0
- tsadmetrics/_tsadeval/prts/base/time_series_metrics.py +0 -165
- tsadmetrics/_tsadeval/prts/basic_metrics_ts.py +0 -121
- tsadmetrics/_tsadeval/prts/time_series_metrics/__init__.py +0 -0
- tsadmetrics/_tsadeval/prts/time_series_metrics/fscore.py +0 -61
- tsadmetrics/_tsadeval/prts/time_series_metrics/precision.py +0 -86
- tsadmetrics/_tsadeval/prts/time_series_metrics/precision_recall.py +0 -21
- tsadmetrics/_tsadeval/prts/time_series_metrics/recall.py +0 -85
- tsadmetrics/_tsadeval/tests.py +0 -376
- tsadmetrics/_tsadeval/threshold_plt.py +0 -30
- tsadmetrics/_tsadeval/time_tolerant.py +0 -33
- tsadmetrics/binary_metrics.py +0 -1652
- tsadmetrics/metric_utils.py +0 -98
- tsadmetrics/non_binary_metrics.py +0 -398
- tsadmetrics/scripts/__init__.py +0 -0
- tsadmetrics/scripts/compute_metrics.py +0 -42
- tsadmetrics/utils.py +0 -122
- tsadmetrics/validation.py +0 -35
- tsadmetrics-0.1.16.dist-info/METADATA +0 -23
- tsadmetrics-0.1.16.dist-info/RECORD +0 -64
- tsadmetrics-0.1.16.dist-info/entry_points.txt +0 -2
- /tsadmetrics/{_tsadeval → base}/__init__.py +0 -0
- /tsadmetrics/{_tsadeval/affiliation → evaluation}/__init__.py +0 -0
- /tsadmetrics/{_tsadeval/eTaPR_pkg/DataManage → metrics/tem}/__init__.py +0 -0
- /tsadmetrics/{_tsadeval/vus_utils.py → utils/functions_vus.py} +0 -0
- {tsadmetrics-0.1.16.dist-info → tsadmetrics-1.0.0.dist-info}/WHEEL +0 -0
tests/test_spm.py
ADDED
@@ -0,0 +1,213 @@
|
|
1
|
+
import unittest
|
2
|
+
from tsadmetrics.metrics.spm import *
|
3
|
+
|
4
|
+
from sklearn.metrics import fbeta_score
|
5
|
+
import numpy as np
|
6
|
+
import random
|
7
|
+
|
8
|
+
class TestPointwiseFScore(unittest.TestCase):
|
9
|
+
|
10
|
+
def setUp(self):
|
11
|
+
"""
|
12
|
+
Configuración inicial para las pruebas.
|
13
|
+
"""
|
14
|
+
self.num_tests = 100
|
15
|
+
self.test_cases = []
|
16
|
+
for _ in range(self.num_tests):
|
17
|
+
y_true = np.random.choice([0, 1], size=(10000,))
|
18
|
+
y_pred = np.random.choice([0, 1], size=(10000,))
|
19
|
+
self.test_cases.append((y_true, y_pred))
|
20
|
+
|
21
|
+
y_true_perfect = np.random.choice([0, 1], size=(10000,))
|
22
|
+
y_pred_perfect = y_true_perfect.copy()
|
23
|
+
self.test_cases.append((y_true_perfect, y_pred_perfect))
|
24
|
+
|
25
|
+
y_true_all_zeros = np.random.choice([0, 1], size=(10000,))
|
26
|
+
y_pred_all_zeros = np.zeros(10000, dtype=int)
|
27
|
+
self.test_cases.append((y_true_all_zeros, y_pred_all_zeros))
|
28
|
+
|
29
|
+
|
30
|
+
|
31
|
+
|
32
|
+
def test(self):
|
33
|
+
|
34
|
+
for y_true, y_pred in self.test_cases:
|
35
|
+
with self.subTest(y_true=y_true, y_pred=y_pred):
|
36
|
+
beta = random.randint(0,1000000)
|
37
|
+
metric = PointwiseFScore(beta=beta)
|
38
|
+
f_score = metric.compute(y_true, y_pred)
|
39
|
+
expected_f_score = fbeta_score(y_true, y_pred, beta=beta)
|
40
|
+
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
41
|
+
|
42
|
+
class TestPrecisionAtK(unittest.TestCase):
|
43
|
+
|
44
|
+
def setUp(self):
|
45
|
+
|
46
|
+
|
47
|
+
self.y_true1 = np.array([0,0,1,1])
|
48
|
+
|
49
|
+
|
50
|
+
self.y_pred1 = np.array([0.2, 0.9, 0.3, 0.8])
|
51
|
+
|
52
|
+
self.y_pred2 = np.array([1, 2, 3, 4])
|
53
|
+
|
54
|
+
self.y_pred3 = np.array([3, 4, 1, 2])
|
55
|
+
|
56
|
+
self.y_true2 = np.array([1,1,1,0])
|
57
|
+
|
58
|
+
self.y_pred4 = np.array([3, 4, 1, 2])
|
59
|
+
|
60
|
+
self.y_pred5 = self.y_true1
|
61
|
+
self.y_pred6 = np.zeros(len(self.y_true1))
|
62
|
+
|
63
|
+
|
64
|
+
|
65
|
+
|
66
|
+
def test(self):
|
67
|
+
metric = PrecisionAtK()
|
68
|
+
score = round(metric.compute(self.y_true1, self.y_pred1),2)
|
69
|
+
expected_score = 0.5
|
70
|
+
self.assertAlmostEqual(score, expected_score, places=4)
|
71
|
+
|
72
|
+
score = round(metric.compute(self.y_true1, self.y_pred2),2)
|
73
|
+
expected_score = 1
|
74
|
+
self.assertAlmostEqual(score, expected_score, places=4)
|
75
|
+
|
76
|
+
score = round(metric.compute(self.y_true1, self.y_pred3),2)
|
77
|
+
expected_score = 0
|
78
|
+
self.assertAlmostEqual(score, expected_score, places=4)
|
79
|
+
|
80
|
+
score = round(metric.compute(self.y_true2, self.y_pred4),2)
|
81
|
+
expected_score = round(2/3,2)
|
82
|
+
self.assertAlmostEqual(score, expected_score, places=4)
|
83
|
+
|
84
|
+
score = round(metric.compute(self.y_true1, self.y_pred5),2)
|
85
|
+
expected_metric = 1.0
|
86
|
+
self.assertAlmostEqual(score, expected_metric, places=4)
|
87
|
+
|
88
|
+
score = round(metric.compute(self.y_true1, self.y_pred6),2)
|
89
|
+
expected_metric = 0.5
|
90
|
+
self.assertAlmostEqual(score, expected_metric, places=4)
|
91
|
+
|
92
|
+
def test_consistency(self):
|
93
|
+
try:
|
94
|
+
metric = PrecisionAtK()
|
95
|
+
for _ in range(100):
|
96
|
+
y_true = np.random.choice([0, 1], size=(100,))
|
97
|
+
y_pred = np.random.random( size=(100,))
|
98
|
+
|
99
|
+
score = metric.compute(y_true, y_pred)
|
100
|
+
except Exception as e:
|
101
|
+
self.fail(f"PrecisionAtK raised an exception {e}")
|
102
|
+
|
103
|
+
|
104
|
+
|
105
|
+
class TestPointwiseAucRoc(unittest.TestCase):
|
106
|
+
def setUp(self):
|
107
|
+
"""
|
108
|
+
Configuración inicial para las pruebas.
|
109
|
+
"""
|
110
|
+
|
111
|
+
self.y_true1 = np.array([0,0,1,1])
|
112
|
+
|
113
|
+
|
114
|
+
self.y_pred1 = np.array([1, 3, 2, 4])
|
115
|
+
|
116
|
+
self.y_pred2 = np.array([1, 2, 3, 4])
|
117
|
+
|
118
|
+
self.y_pred3 = np.array([4, 4, 4, 4])
|
119
|
+
|
120
|
+
self.y_pred4 = self.y_true1
|
121
|
+
self.y_pred5 = np.zeros(len(self.y_true1))
|
122
|
+
|
123
|
+
|
124
|
+
def test(self):
|
125
|
+
metric = PointwiseAucRoc()
|
126
|
+
score = round(metric.compute(self.y_true1, self.y_pred1),2)
|
127
|
+
expected_score = 0.75
|
128
|
+
self.assertAlmostEqual(score, expected_score, places=4)
|
129
|
+
|
130
|
+
score = round(metric.compute(self.y_true1, self.y_pred2),2)
|
131
|
+
expected_score = 1
|
132
|
+
self.assertAlmostEqual(score, expected_score, places=4)
|
133
|
+
|
134
|
+
score = round(metric.compute(self.y_true1, self.y_pred3),2)
|
135
|
+
expected_score = 0.5
|
136
|
+
self.assertAlmostEqual(score, expected_score, places=4)
|
137
|
+
|
138
|
+
score = round(metric.compute(self.y_true1, self.y_pred4),2)
|
139
|
+
expected_metric = 1.0
|
140
|
+
self.assertAlmostEqual(score, expected_metric, places=4)
|
141
|
+
|
142
|
+
score = round(metric.compute(self.y_true1, self.y_pred5),2)
|
143
|
+
expected_metric = 0.5
|
144
|
+
self.assertAlmostEqual(score, expected_metric, places=4)
|
145
|
+
|
146
|
+
|
147
|
+
def test_consistency(self):
|
148
|
+
try:
|
149
|
+
metric = PointwiseAucRoc()
|
150
|
+
for _ in range(100):
|
151
|
+
y_true = np.random.choice([0, 1], size=(100,))
|
152
|
+
y_pred = np.random.random( size=(100,))
|
153
|
+
|
154
|
+
score = metric.compute(y_true, y_pred)
|
155
|
+
except Exception as e:
|
156
|
+
self.fail(f"PointwiseAucRoc raised an exception {e}")
|
157
|
+
|
158
|
+
|
159
|
+
class TestPointwiseAucPr(unittest.TestCase):
|
160
|
+
def setUp(self):
|
161
|
+
"""
|
162
|
+
Configuración inicial para las pruebas.
|
163
|
+
"""
|
164
|
+
|
165
|
+
self.y_true1 = np.array([0,0,1,1])
|
166
|
+
|
167
|
+
|
168
|
+
self.y_pred1 = np.array([1, 3, 2, 4])
|
169
|
+
|
170
|
+
self.y_pred2 = np.array([1, 2, 3, 4])
|
171
|
+
|
172
|
+
self.y_pred3 = np.array([4, 4, 4, 4])
|
173
|
+
|
174
|
+
self.y_pred4 = self.y_true1
|
175
|
+
self.y_pred5 = np.zeros(len(self.y_true1))
|
176
|
+
|
177
|
+
|
178
|
+
def test(self):
|
179
|
+
"""
|
180
|
+
Prueba para la función metric.compute.
|
181
|
+
"""
|
182
|
+
metric = PointwiseAucPr()
|
183
|
+
score = round(metric.compute(self.y_true1, self.y_pred1),2)
|
184
|
+
expected_score = 0.83
|
185
|
+
self.assertAlmostEqual(score, expected_score, places=4)
|
186
|
+
|
187
|
+
score = round(metric.compute(self.y_true1, self.y_pred2),2)
|
188
|
+
expected_score = 1
|
189
|
+
self.assertAlmostEqual(score, expected_score, places=4)
|
190
|
+
|
191
|
+
score = round(metric.compute(self.y_true1, self.y_pred3),2)
|
192
|
+
expected_score = 0.5
|
193
|
+
self.assertAlmostEqual(score, expected_score, places=4)
|
194
|
+
|
195
|
+
score = round(metric.compute(self.y_true1, self.y_pred4),2)
|
196
|
+
expected_metric = 1.0
|
197
|
+
self.assertAlmostEqual(score, expected_metric, places=4)
|
198
|
+
|
199
|
+
score = round(metric.compute(self.y_true1, self.y_pred5),2)
|
200
|
+
expected_metric = 0.5
|
201
|
+
self.assertAlmostEqual(score, expected_metric, places=4)
|
202
|
+
|
203
|
+
|
204
|
+
def test_consistency(self):
|
205
|
+
try:
|
206
|
+
metric = PointwiseAucPr()
|
207
|
+
for _ in range(100):
|
208
|
+
y_true = np.random.choice([0, 1], size=(100,))
|
209
|
+
y_pred = np.random.random( size=(100,))
|
210
|
+
|
211
|
+
score = metric.compute(y_true, y_pred)
|
212
|
+
except Exception as e:
|
213
|
+
self.fail(f"auc_pr raised an exception {e}")
|
tests/test_tmem.py
ADDED
@@ -0,0 +1,198 @@
|
|
1
|
+
import unittest
|
2
|
+
|
3
|
+
import numpy as np
|
4
|
+
import random
|
5
|
+
|
6
|
+
import unittest
|
7
|
+
import numpy as np
|
8
|
+
from tsadmetrics.metrics.tem.tmem import *
|
9
|
+
|
10
|
+
class TestTemporalDistance(unittest.TestCase):
|
11
|
+
|
12
|
+
def setUp(self):
|
13
|
+
self.y_true1 = np.array([0, 0, 1, 1, 0, 0])
|
14
|
+
self.y_pred1 = np.array([0, 0, 1, 1, 0, 0])
|
15
|
+
|
16
|
+
self.y_true2 = np.array([0, 0, 0, 1, 1, 0])
|
17
|
+
self.y_pred2 = np.array([0, 1, 1, 0, 0, 0])
|
18
|
+
|
19
|
+
self.y_true3 = np.array([0, 0, 1, 1, 0, 0])
|
20
|
+
self.y_pred3 = np.array([1, 1, 0, 0, 0, 0])
|
21
|
+
|
22
|
+
self.y_pred4 = self.y_true1
|
23
|
+
self.y_pred5 = np.zeros(len(self.y_true1))
|
24
|
+
|
25
|
+
def test_temporal_distance_euclidean(self):
|
26
|
+
metric = TemporalDistance(distance=0)
|
27
|
+
|
28
|
+
td = metric.compute(self.y_true1, self.y_pred1)
|
29
|
+
expected = 0
|
30
|
+
self.assertEqual(td, expected)
|
31
|
+
|
32
|
+
td = metric.compute(self.y_true2, self.y_pred2)
|
33
|
+
expected = 6
|
34
|
+
self.assertEqual(td, expected)
|
35
|
+
|
36
|
+
td = metric.compute(self.y_true3, self.y_pred3)
|
37
|
+
expected = 6
|
38
|
+
self.assertEqual(td, expected)
|
39
|
+
|
40
|
+
score = round(metric.compute(self.y_true1, self.y_pred4),2)
|
41
|
+
expected_metric = 0
|
42
|
+
self.assertAlmostEqual(score, expected_metric, places=4)
|
43
|
+
|
44
|
+
score = round(metric.compute(self.y_true1, self.y_pred5),2)
|
45
|
+
expected_metric = 12
|
46
|
+
self.assertAlmostEqual(score, expected_metric, places=4)
|
47
|
+
|
48
|
+
def test_temporal_distance_squared(self):
|
49
|
+
metric = TemporalDistance(distance=1)
|
50
|
+
|
51
|
+
td = metric.compute(self.y_true1, self.y_pred1)
|
52
|
+
expected = 0
|
53
|
+
self.assertEqual(td, expected)
|
54
|
+
|
55
|
+
td = metric.compute(self.y_true2, self.y_pred2)
|
56
|
+
expected = 18
|
57
|
+
self.assertEqual(td, expected)
|
58
|
+
|
59
|
+
td = metric.compute(self.y_true3, self.y_pred3)
|
60
|
+
expected = 18
|
61
|
+
self.assertEqual(td, expected)
|
62
|
+
|
63
|
+
score = round(metric.compute(self.y_true1, self.y_pred4),2)
|
64
|
+
expected_metric = 0
|
65
|
+
self.assertAlmostEqual(score, expected_metric, places=4)
|
66
|
+
|
67
|
+
score = round(metric.compute(self.y_true1, self.y_pred5),2)
|
68
|
+
expected_metric = 144
|
69
|
+
self.assertAlmostEqual(score, expected_metric, places=4)
|
70
|
+
|
71
|
+
def test_consistency(self):
|
72
|
+
try:
|
73
|
+
|
74
|
+
for _ in range(100):
|
75
|
+
y_true = np.random.choice([0, 1], size=(100,))
|
76
|
+
y_pred = np.zeros(100)
|
77
|
+
metric=TemporalDistance(distance=random.choice([0, 1]))
|
78
|
+
metric.compute(y_true, y_pred)
|
79
|
+
except Exception as e:
|
80
|
+
self.fail(f"absolute_detection_distance raised an exception {e}")
|
81
|
+
|
82
|
+
|
83
|
+
class TestAbsoluteDetectionDistance(unittest.TestCase):
|
84
|
+
|
85
|
+
def setUp(self):
|
86
|
+
"""
|
87
|
+
Configuración inicial para las pruebas.
|
88
|
+
"""
|
89
|
+
self.y_true1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
|
90
|
+
self.y_pred1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
91
|
+
self.y_pred2 = np.array([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])
|
92
|
+
|
93
|
+
self.y_true2 = np.array([0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1])
|
94
|
+
self.y_pred21 = np.array([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1])
|
95
|
+
self.y_pred22 = np.array([0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
96
|
+
|
97
|
+
self.y_pred3 = self.y_true1
|
98
|
+
self.y_pred4 = np.zeros(len(self.y_true1))
|
99
|
+
|
100
|
+
def test(self):
|
101
|
+
metric = AbsoluteDetectionDistance()
|
102
|
+
score = round(metric.compute(self.y_true1, self.y_pred1),2)
|
103
|
+
expected_score = 0.25
|
104
|
+
self.assertAlmostEqual(score, expected_score, places=4)
|
105
|
+
|
106
|
+
score = round(metric.compute(self.y_true1, self.y_pred2),2)
|
107
|
+
expected_score = 0.25
|
108
|
+
self.assertAlmostEqual(score, expected_score, places=4)
|
109
|
+
|
110
|
+
score = round(metric.compute(self.y_true2, self.y_pred21),2)
|
111
|
+
expected_score = 0.06
|
112
|
+
self.assertAlmostEqual(score, expected_score, places=4)
|
113
|
+
|
114
|
+
score = round(metric.compute(self.y_true2, self.y_pred22),2)
|
115
|
+
expected_score = 0.12
|
116
|
+
self.assertAlmostEqual(score, expected_score, places=4)
|
117
|
+
|
118
|
+
score = round(metric.compute(self.y_true1, self.y_pred3),2)
|
119
|
+
expected_metric = 0.17 #The mean of the distances is never 0
|
120
|
+
self.assertAlmostEqual(score, expected_metric, places=4)
|
121
|
+
|
122
|
+
score = round(metric.compute(self.y_true1, self.y_pred4),2)
|
123
|
+
expected_metric = 0
|
124
|
+
self.assertAlmostEqual(score, expected_metric, places=4)
|
125
|
+
|
126
|
+
|
127
|
+
def testconsistency(self):
|
128
|
+
try:
|
129
|
+
y_true = np.random.choice([0, 1], size=(100,))
|
130
|
+
y_pred = np.zeros(100)
|
131
|
+
metric = AbsoluteDetectionDistance()
|
132
|
+
for _ in range(100):
|
133
|
+
y_true = np.random.choice([0, 1], size=(100,))
|
134
|
+
y_pred = np.random.choice([0, 1], size=(100,))
|
135
|
+
|
136
|
+
score = metric.compute(y_true, y_pred)
|
137
|
+
except Exception as e:
|
138
|
+
self.fail(f"AbsoluteDetectionDistance raised an exception {e}")
|
139
|
+
|
140
|
+
|
141
|
+
class TestEnhancedTimeseriesAwareFScore(unittest.TestCase):
|
142
|
+
|
143
|
+
def setUp(self):
|
144
|
+
|
145
|
+
self.y_true1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
|
146
|
+
self.y_pred1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
147
|
+
self.y_pred2 = np.array([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])
|
148
|
+
|
149
|
+
self.y_true2 = np.array([0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0])
|
150
|
+
self.y_pred21 = np.array([0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
151
|
+
self.y_pred22 = np.array([0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0])
|
152
|
+
|
153
|
+
self.y_pred3 = self.y_true1
|
154
|
+
self.y_pred4 = np.zeros(len(self.y_true1))
|
155
|
+
|
156
|
+
|
157
|
+
|
158
|
+
def test(self):
|
159
|
+
metric = EnhancedTimeseriesAwareFScore(theta_p=0.5, theta_r=0.1)
|
160
|
+
f_score = round(metric.compute(self.y_true1, self.y_pred1),2)
|
161
|
+
expected_f_score = 0.67
|
162
|
+
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
163
|
+
|
164
|
+
f_score = round(metric.compute(self.y_true1, self.y_pred2),2)
|
165
|
+
expected_f_score = 0.72
|
166
|
+
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
167
|
+
|
168
|
+
f_score = round(metric.compute(self.y_true2, self.y_pred21),2)
|
169
|
+
expected_f_score = 0.77
|
170
|
+
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
171
|
+
|
172
|
+
f_score = round(metric.compute(self.y_true2, self.y_pred22),2)
|
173
|
+
expected_f_score = 0.67
|
174
|
+
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
175
|
+
|
176
|
+
score = round(metric.compute(self.y_true1, self.y_pred3),2)
|
177
|
+
expected_metric = 1.0
|
178
|
+
self.assertAlmostEqual(score, expected_metric, places=4)
|
179
|
+
|
180
|
+
score = round(metric.compute(self.y_true1, self.y_pred4),2)
|
181
|
+
expected_metric = 0
|
182
|
+
self.assertAlmostEqual(score, expected_metric, places=4)
|
183
|
+
|
184
|
+
def test_consistency(self):
|
185
|
+
try:
|
186
|
+
y_true = np.random.choice([0, 1], size=(100,))
|
187
|
+
y_pred = np.zeros(100)
|
188
|
+
metric = EnhancedTimeseriesAwareFScore(theta_r=random.random(), theta_p=random.random())
|
189
|
+
metric.compute(y_true, y_pred)
|
190
|
+
for _ in range(100):
|
191
|
+
y_true = np.random.choice([0, 1], size=(100,))
|
192
|
+
y_pred = np.random.choice([0, 1], size=(100,))
|
193
|
+
|
194
|
+
f_score = metric.compute(y_true, y_pred)
|
195
|
+
except Exception as e:
|
196
|
+
self.fail(f"EnhancedTimeseriesAwareFScore raised an exception {e}")
|
197
|
+
|
198
|
+
|