tsadmetrics 0.1.16__py3-none-any.whl → 1.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (148) hide show
  1. docs/api_doc/conf.py +67 -0
  2. docs/{conf.py → full_doc/conf.py} +1 -1
  3. docs/manual_doc/conf.py +67 -0
  4. examples/example_direct_data.py +28 -0
  5. examples/example_direct_single_data.py +25 -0
  6. examples/example_file_reference.py +24 -0
  7. examples/example_global_config_file.py +13 -0
  8. examples/example_metric_config_file.py +19 -0
  9. examples/example_simple_metric.py +8 -0
  10. examples/specific_examples/AbsoluteDetectionDistance_example.py +24 -0
  11. examples/specific_examples/AffiliationbasedFScore_example.py +24 -0
  12. examples/specific_examples/AverageDetectionCount_example.py +24 -0
  13. examples/specific_examples/CompositeFScore_example.py +24 -0
  14. examples/specific_examples/DelayThresholdedPointadjustedFScore_example.py +24 -0
  15. examples/specific_examples/DetectionAccuracyInRange_example.py +24 -0
  16. examples/specific_examples/EnhancedTimeseriesAwareFScore_example.py +24 -0
  17. examples/specific_examples/LatencySparsityawareFScore_example.py +24 -0
  18. examples/specific_examples/MeanTimeToDetect_example.py +24 -0
  19. examples/specific_examples/NabScore_example.py +24 -0
  20. examples/specific_examples/PateFScore_example.py +24 -0
  21. examples/specific_examples/Pate_example.py +24 -0
  22. examples/specific_examples/PointadjustedAtKFScore_example.py +24 -0
  23. examples/specific_examples/PointadjustedAucPr_example.py +24 -0
  24. examples/specific_examples/PointadjustedAucRoc_example.py +24 -0
  25. examples/specific_examples/PointadjustedFScore_example.py +24 -0
  26. examples/specific_examples/RangebasedFScore_example.py +24 -0
  27. examples/specific_examples/SegmentwiseFScore_example.py +24 -0
  28. examples/specific_examples/TemporalDistance_example.py +24 -0
  29. examples/specific_examples/TimeTolerantFScore_example.py +24 -0
  30. examples/specific_examples/TimeseriesAwareFScore_example.py +24 -0
  31. examples/specific_examples/TotalDetectedInRange_example.py +24 -0
  32. examples/specific_examples/VusPr_example.py +24 -0
  33. examples/specific_examples/VusRoc_example.py +24 -0
  34. examples/specific_examples/WeightedDetectionDifference_example.py +24 -0
  35. tests/test_dpm.py +212 -0
  36. tests/test_ptdm.py +366 -0
  37. tests/test_registry.py +58 -0
  38. tests/test_runner.py +185 -0
  39. tests/test_spm.py +213 -0
  40. tests/test_tmem.py +198 -0
  41. tests/test_tpdm.py +369 -0
  42. tests/test_tstm.py +338 -0
  43. tsadmetrics/__init__.py +0 -21
  44. tsadmetrics/base/Metric.py +188 -0
  45. tsadmetrics/evaluation/Report.py +25 -0
  46. tsadmetrics/evaluation/Runner.py +253 -0
  47. tsadmetrics/metrics/Registry.py +141 -0
  48. tsadmetrics/metrics/__init__.py +2 -0
  49. tsadmetrics/metrics/spm/PointwiseAucPr.py +62 -0
  50. tsadmetrics/metrics/spm/PointwiseAucRoc.py +63 -0
  51. tsadmetrics/metrics/spm/PointwiseFScore.py +86 -0
  52. tsadmetrics/metrics/spm/PrecisionAtK.py +81 -0
  53. tsadmetrics/metrics/spm/__init__.py +9 -0
  54. tsadmetrics/metrics/tem/dpm/DelayThresholdedPointadjustedFScore.py +83 -0
  55. tsadmetrics/metrics/tem/dpm/LatencySparsityawareFScore.py +76 -0
  56. tsadmetrics/metrics/tem/dpm/MeanTimeToDetect.py +47 -0
  57. tsadmetrics/metrics/tem/dpm/NabScore.py +60 -0
  58. tsadmetrics/metrics/tem/dpm/__init__.py +11 -0
  59. tsadmetrics/metrics/tem/ptdm/AverageDetectionCount.py +53 -0
  60. tsadmetrics/metrics/tem/ptdm/DetectionAccuracyInRange.py +66 -0
  61. tsadmetrics/metrics/tem/ptdm/PointadjustedAtKFScore.py +80 -0
  62. tsadmetrics/metrics/tem/ptdm/TimeseriesAwareFScore.py +248 -0
  63. tsadmetrics/metrics/tem/ptdm/TotalDetectedInRange.py +65 -0
  64. tsadmetrics/metrics/tem/ptdm/WeightedDetectionDifference.py +97 -0
  65. tsadmetrics/metrics/tem/ptdm/__init__.py +12 -0
  66. tsadmetrics/metrics/tem/tmem/AbsoluteDetectionDistance.py +48 -0
  67. tsadmetrics/metrics/tem/tmem/EnhancedTimeseriesAwareFScore.py +252 -0
  68. tsadmetrics/metrics/tem/tmem/TemporalDistance.py +68 -0
  69. tsadmetrics/metrics/tem/tmem/__init__.py +9 -0
  70. tsadmetrics/metrics/tem/tpdm/CompositeFScore.py +104 -0
  71. tsadmetrics/metrics/tem/tpdm/PointadjustedAucPr.py +123 -0
  72. tsadmetrics/metrics/tem/tpdm/PointadjustedAucRoc.py +119 -0
  73. tsadmetrics/metrics/tem/tpdm/PointadjustedFScore.py +96 -0
  74. tsadmetrics/metrics/tem/tpdm/RangebasedFScore.py +236 -0
  75. tsadmetrics/metrics/tem/tpdm/SegmentwiseFScore.py +73 -0
  76. tsadmetrics/metrics/tem/tpdm/__init__.py +12 -0
  77. tsadmetrics/metrics/tem/tstm/AffiliationbasedFScore.py +68 -0
  78. tsadmetrics/metrics/tem/tstm/Pate.py +62 -0
  79. tsadmetrics/metrics/tem/tstm/PateFScore.py +61 -0
  80. tsadmetrics/metrics/tem/tstm/TimeTolerantFScore.py +85 -0
  81. tsadmetrics/metrics/tem/tstm/VusPr.py +51 -0
  82. tsadmetrics/metrics/tem/tstm/VusRoc.py +55 -0
  83. tsadmetrics/metrics/tem/tstm/__init__.py +15 -0
  84. tsadmetrics/{_tsadeval/affiliation/_integral_interval.py → utils/functions_affiliation.py} +377 -9
  85. tsadmetrics/utils/functions_auc.py +393 -0
  86. tsadmetrics/utils/functions_conversion.py +63 -0
  87. tsadmetrics/utils/functions_counting_metrics.py +26 -0
  88. tsadmetrics/{_tsadeval/latency_sparsity_aware.py → utils/functions_latency_sparsity_aware.py} +1 -1
  89. tsadmetrics/{_tsadeval/nabscore.py → utils/functions_nabscore.py} +15 -1
  90. tsadmetrics-1.0.0.dist-info/METADATA +69 -0
  91. tsadmetrics-1.0.0.dist-info/RECORD +99 -0
  92. {tsadmetrics-0.1.16.dist-info → tsadmetrics-1.0.0.dist-info}/top_level.txt +1 -1
  93. entorno/bin/activate_this.py +0 -32
  94. entorno/bin/rst2html.py +0 -23
  95. entorno/bin/rst2html4.py +0 -26
  96. entorno/bin/rst2html5.py +0 -33
  97. entorno/bin/rst2latex.py +0 -26
  98. entorno/bin/rst2man.py +0 -27
  99. entorno/bin/rst2odt.py +0 -28
  100. entorno/bin/rst2odt_prepstyles.py +0 -20
  101. entorno/bin/rst2pseudoxml.py +0 -23
  102. entorno/bin/rst2s5.py +0 -24
  103. entorno/bin/rst2xetex.py +0 -27
  104. entorno/bin/rst2xml.py +0 -23
  105. entorno/bin/rstpep2html.py +0 -25
  106. tests/test_binary.py +0 -946
  107. tests/test_non_binary.py +0 -420
  108. tests/test_utils.py +0 -49
  109. tsadmetrics/_tsadeval/affiliation/_affiliation_zone.py +0 -86
  110. tsadmetrics/_tsadeval/affiliation/_single_ground_truth_event.py +0 -68
  111. tsadmetrics/_tsadeval/affiliation/generics.py +0 -135
  112. tsadmetrics/_tsadeval/affiliation/metrics.py +0 -114
  113. tsadmetrics/_tsadeval/auc_roc_pr_plot.py +0 -295
  114. tsadmetrics/_tsadeval/discontinuity_graph.py +0 -109
  115. tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/File_IO.py +0 -175
  116. tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/Range.py +0 -50
  117. tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/Time_Plot.py +0 -184
  118. tsadmetrics/_tsadeval/eTaPR_pkg/__init__.py +0 -0
  119. tsadmetrics/_tsadeval/eTaPR_pkg/etapr.py +0 -386
  120. tsadmetrics/_tsadeval/eTaPR_pkg/tapr.py +0 -362
  121. tsadmetrics/_tsadeval/metrics.py +0 -698
  122. tsadmetrics/_tsadeval/prts/__init__.py +0 -0
  123. tsadmetrics/_tsadeval/prts/base/__init__.py +0 -0
  124. tsadmetrics/_tsadeval/prts/base/time_series_metrics.py +0 -165
  125. tsadmetrics/_tsadeval/prts/basic_metrics_ts.py +0 -121
  126. tsadmetrics/_tsadeval/prts/time_series_metrics/__init__.py +0 -0
  127. tsadmetrics/_tsadeval/prts/time_series_metrics/fscore.py +0 -61
  128. tsadmetrics/_tsadeval/prts/time_series_metrics/precision.py +0 -86
  129. tsadmetrics/_tsadeval/prts/time_series_metrics/precision_recall.py +0 -21
  130. tsadmetrics/_tsadeval/prts/time_series_metrics/recall.py +0 -85
  131. tsadmetrics/_tsadeval/tests.py +0 -376
  132. tsadmetrics/_tsadeval/threshold_plt.py +0 -30
  133. tsadmetrics/_tsadeval/time_tolerant.py +0 -33
  134. tsadmetrics/binary_metrics.py +0 -1652
  135. tsadmetrics/metric_utils.py +0 -98
  136. tsadmetrics/non_binary_metrics.py +0 -398
  137. tsadmetrics/scripts/__init__.py +0 -0
  138. tsadmetrics/scripts/compute_metrics.py +0 -42
  139. tsadmetrics/utils.py +0 -122
  140. tsadmetrics/validation.py +0 -35
  141. tsadmetrics-0.1.16.dist-info/METADATA +0 -23
  142. tsadmetrics-0.1.16.dist-info/RECORD +0 -64
  143. tsadmetrics-0.1.16.dist-info/entry_points.txt +0 -2
  144. /tsadmetrics/{_tsadeval → base}/__init__.py +0 -0
  145. /tsadmetrics/{_tsadeval/affiliation → evaluation}/__init__.py +0 -0
  146. /tsadmetrics/{_tsadeval/eTaPR_pkg/DataManage → metrics/tem}/__init__.py +0 -0
  147. /tsadmetrics/{_tsadeval/vus_utils.py → utils/functions_vus.py} +0 -0
  148. {tsadmetrics-0.1.16.dist-info → tsadmetrics-1.0.0.dist-info}/WHEEL +0 -0
docs/api_doc/conf.py ADDED
@@ -0,0 +1,67 @@
1
+ # Configuration file for the Sphinx documentation builder.
2
+ #
3
+
4
+ import os
5
+ import sys
6
+ sys.path.insert(0, os.path.abspath('../'))
7
+
8
+
9
+ project = 'TSADmetrics API Reference'
10
+ copyright = '2025, Pedro Rafael Velasco Priego'
11
+ author = 'Pedro Rafael Velasco Priego'
12
+ release = 'MIT'
13
+
14
+ # -- General configuration ---------------------------------------------------
15
+ # https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration
16
+
17
+
18
+ extensions = ['sphinx.ext.duration', 'sphinx.ext.doctest', 'sphinx.ext.autodoc','sphinx.ext.mathjax']
19
+
20
+
21
+
22
+ templates_path = ['_templates']
23
+ exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store']
24
+
25
+ html_theme = 'furo'
26
+ html_static_path = ['_static']
27
+ html_theme_options = {
28
+ #"sidebar_hide_name": True,
29
+ "light_css_variables": {
30
+ "color-brand-primary": "#2e5c7d",
31
+ "color-brand-content": "#2e5c7d",
32
+ "codebgcolor": "red",
33
+ "codetextcolor": "red",
34
+ },
35
+ "dark_css_variables": {
36
+ "color-brand-primary": "#6998b4",
37
+ "color-brand-content": "#6998b4",
38
+ "codebgcolor": "green",
39
+ "codetextcolor": "green",
40
+ },
41
+ "navigation_with_keys": True
42
+
43
+ }
44
+ html_baseurl = ''
45
+
46
+ html_css_files = [
47
+ 'css/custom.css',
48
+ ]
49
+
50
+ epub_show_urls = 'footnote'
51
+
52
+ # -- Options for HTML output -------------------------------------------------
53
+ # https://www.sphinx-doc.org/en/master/usage/configuration.html#options-for-html-output
54
+
55
+
56
+
57
+
58
+ ### -- LaTeX options -------------------------------------------------
59
+
60
+ # comando para compilar: make latexpdf LATEXMKOPTS="-xelatex"
61
+
62
+ latex_elements = {
63
+ 'maxlistdepth': '10', # Aumenta el límite de anidamiento
64
+ 'papersize': 'a4paper',
65
+ 'pointsize': '10pt',
66
+
67
+ }
@@ -15,7 +15,7 @@ release = 'MIT'
15
15
  # https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration
16
16
 
17
17
 
18
- extensions = ['sphinx.ext.duration', 'sphinx.ext.doctest', 'sphinx.ext.autodoc',]
18
+ extensions = ['sphinx.ext.duration', 'sphinx.ext.doctest', 'sphinx.ext.autodoc','sphinx.ext.mathjax']
19
19
 
20
20
 
21
21
 
@@ -0,0 +1,67 @@
1
+ # Configuration file for the Sphinx documentation builder.
2
+ #
3
+
4
+ import os
5
+ import sys
6
+ sys.path.insert(0, os.path.abspath('../'))
7
+
8
+
9
+ project = 'TSADmetrics User Manual'
10
+ copyright = '2025, Pedro Rafael Velasco Priego'
11
+ author = 'Pedro Rafael Velasco Priego'
12
+ release = 'MIT'
13
+
14
+ # -- General configuration ---------------------------------------------------
15
+ # https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration
16
+
17
+
18
+ extensions = ['sphinx.ext.duration', 'sphinx.ext.doctest', 'sphinx.ext.autodoc','sphinx.ext.mathjax']
19
+
20
+
21
+
22
+ templates_path = ['_templates']
23
+ exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store']
24
+
25
+ html_theme = 'furo'
26
+ html_static_path = ['_static']
27
+ html_theme_options = {
28
+ #"sidebar_hide_name": True,
29
+ "light_css_variables": {
30
+ "color-brand-primary": "#2e5c7d",
31
+ "color-brand-content": "#2e5c7d",
32
+ "codebgcolor": "red",
33
+ "codetextcolor": "red",
34
+ },
35
+ "dark_css_variables": {
36
+ "color-brand-primary": "#6998b4",
37
+ "color-brand-content": "#6998b4",
38
+ "codebgcolor": "green",
39
+ "codetextcolor": "green",
40
+ },
41
+ "navigation_with_keys": True
42
+
43
+ }
44
+ html_baseurl = ''
45
+
46
+ html_css_files = [
47
+ 'css/custom.css',
48
+ ]
49
+
50
+ epub_show_urls = 'footnote'
51
+
52
+ # -- Options for HTML output -------------------------------------------------
53
+ # https://www.sphinx-doc.org/en/master/usage/configuration.html#options-for-html-output
54
+
55
+
56
+
57
+
58
+ ### -- LaTeX options -------------------------------------------------
59
+
60
+ # comando para compilar: make latexpdf LATEXMKOPTS="-xelatex"
61
+
62
+ latex_elements = {
63
+ 'maxlistdepth': '10', # Aumenta el límite de anidamiento
64
+ 'papersize': 'a4paper',
65
+ 'pointsize': '10pt',
66
+
67
+ }
@@ -0,0 +1,28 @@
1
+ from tsadmetrics.evaluation.Runner import Runner
2
+
3
+
4
+ y_true1 = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
5
+ y_true2 = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
6
+ y_pred1 = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
7
+ y_pred1_cont = [0,0,0,0,0,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.99,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
8
+ y_pred2 = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
9
+ y_pred2_cont = [0,0,0,0,0,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.99,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
10
+
11
+ dataset_evaluations = [
12
+ ("dataset1", y_true1, (y_pred1, y_pred1_cont)),
13
+ ("dataset2", y_true2, (y_pred2, y_pred2_cont))
14
+
15
+ ]
16
+
17
+ metrics = [
18
+ ("adc",{}),
19
+ ("dair",{}),
20
+ ("pakf",{"k":0.2}),
21
+ ("pakf",{"k":0.4}),
22
+ ("pakf",{"k":0.5}),
23
+ ]
24
+
25
+ runner = Runner(dataset_evaluations, metrics)
26
+ results = runner.run(generate_report=True, report_file="./example_output/example_direct_data_report.csv")
27
+ print(results)
28
+
@@ -0,0 +1,25 @@
1
+ from tsadmetrics.evaluation.Runner import Runner
2
+
3
+
4
+ y_true1 = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
5
+ y_true2 = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
6
+ y_pred1 = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
7
+ y_pred2 = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
8
+
9
+ dataset_evaluations = [
10
+ ("dataset1", y_true1, (y_pred1, y_pred1)),
11
+ ("dataset2", y_true2, (y_pred2, y_pred2))
12
+
13
+ ]
14
+
15
+ metrics = [
16
+ ("adc",{}),
17
+ ("dair",{}),
18
+ ("pakf",{"k":0.2}),
19
+ ("pakf",{"k":0.4})
20
+ ]
21
+
22
+ runner = Runner(dataset_evaluations, metrics)
23
+ results = runner.run(generate_report=True, report_file="./example_output/example_direct_single_data_report.csv")
24
+ print(results)
25
+
@@ -0,0 +1,24 @@
1
+ from tsadmetrics.evaluation.Runner import Runner
2
+
3
+
4
+ y_true1 = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
5
+ y_true2 = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
6
+
7
+
8
+ dataset_evaluations = [
9
+ ("dataset1", "example_input/results1.csv"),
10
+ ("dataset2", "example_input/results2.csv")
11
+
12
+ ]
13
+
14
+ metrics = [
15
+ ("adc",{}),
16
+ ("dair",{}),
17
+ ("pakf",{"k":0.2}),
18
+ ("pakf",{"k":0.4})
19
+ ]
20
+
21
+ runner = Runner(dataset_evaluations, metrics)
22
+ results = runner.run(generate_report=True, report_file="./example_output/example_file_reference_report.csv")
23
+ print(results)
24
+
@@ -0,0 +1,13 @@
1
+ from tsadmetrics.evaluation.Runner import Runner
2
+ import numpy as np
3
+
4
+ y_true1 = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
5
+ y_true2 = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
6
+
7
+
8
+ global_config_file = "example_input/example_evaluation_config.yaml"
9
+
10
+ runner = Runner(global_config_file)
11
+ results = runner.run(generate_report=True, report_file="./example_output/example_global_config_file_report.csv")
12
+ print(results)
13
+
@@ -0,0 +1,19 @@
1
+ from tsadmetrics.evaluation.Runner import Runner
2
+
3
+
4
+ y_true1 = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
5
+ y_true2 = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
6
+
7
+
8
+ dataset_evaluations = [
9
+ ("dataset1", "example_input/results1.csv"),
10
+ ("dataset2", "example_input/results2.csv")
11
+
12
+ ]
13
+
14
+ metrics_file = "example_input/example_metrics_config.yaml"
15
+
16
+ runner = Runner(dataset_evaluations, metrics_file)
17
+ results = runner.run(generate_report=True, report_file="./example_output/example_metric_config_file_report.csv")
18
+ print(results)
19
+
@@ -0,0 +1,8 @@
1
+ from tsadmetrics.metrics.tem.mdpt import PointadjustedFScore
2
+
3
+ y_true = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
4
+ y_pred = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
5
+ metric = PointadjustedFScore()
6
+
7
+ result = metric.compute(y_true, y_pred)
8
+ print(f"PointadjustedFScore: {result}")
@@ -0,0 +1,24 @@
1
+ from tsadmetrics.metrics.tem.mect.AbsoluteDetectionDistance import AbsoluteDetectionDistance
2
+ from tsadmetrics.evaluation.Runner import Runner
3
+ import numpy as np
4
+
5
+ y_true = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
6
+ y_pred = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
7
+
8
+ # Direct usage
9
+ metric = AbsoluteDetectionDistance()
10
+ result = metric.compute(y_true, y_pred)
11
+ print("AbsoluteDetectionDistance:", result)
12
+
13
+ # Usage with Runner
14
+ dataset_evaluations = [
15
+ ("dataset1", y_true, (y_pred, y_pred))
16
+ ]
17
+
18
+ metrics = [
19
+ ("add", {})
20
+ ]
21
+
22
+ runner = Runner(dataset_evaluations, metrics)
23
+ results = runner.run()
24
+ print(results)
@@ -0,0 +1,24 @@
1
+ from tsadmetrics.metrics.tem.mtdt.AffiliationbasedFScore import AffiliationbasedFScore
2
+ from tsadmetrics.evaluation.Runner import Runner
3
+ import numpy as np
4
+
5
+ y_true = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
6
+ y_pred = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
7
+
8
+ # Direct usage
9
+ metric = AffiliationbasedFScore()
10
+ result = metric.compute(y_true, y_pred)
11
+ print("AffiliationbasedFScore:", result)
12
+
13
+ # Usage with Runner
14
+ dataset_evaluations = [
15
+ ("dataset1", y_true, (y_pred, y_pred))
16
+ ]
17
+
18
+ metrics = [
19
+ ("aff_f", {})
20
+ ]
21
+
22
+ runner = Runner(dataset_evaluations, metrics)
23
+ results = runner.run()
24
+ print(results)
@@ -0,0 +1,24 @@
1
+ from tsadmetrics.metrics.tem.mdtp.AverageDetectionCount import AverageDetectionCount
2
+ from tsadmetrics.evaluation.Runner import Runner
3
+ import numpy as np
4
+
5
+ y_true = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
6
+ y_pred = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
7
+
8
+ # Direct usage
9
+ metric = AverageDetectionCount()
10
+ result = metric.compute(y_true, y_pred)
11
+ print("AverageDetectionCount:", result)
12
+
13
+ # Usage with Runner
14
+ dataset_evaluations = [
15
+ ("dataset1", y_true, (y_pred, y_pred))
16
+ ]
17
+
18
+ metrics = [
19
+ ("adc", {})
20
+ ]
21
+
22
+ runner = Runner(dataset_evaluations, metrics)
23
+ results = runner.run()
24
+ print(results)
@@ -0,0 +1,24 @@
1
+ from tsadmetrics.metrics.tem.mdpt.CompositeFScore import CompositeFScore
2
+ from tsadmetrics.evaluation.Runner import Runner
3
+ import numpy as np
4
+
5
+ y_true = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
6
+ y_pred = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
7
+
8
+ # Direct usage
9
+ metric = CompositeFScore()
10
+ result = metric.compute(y_true, y_pred)
11
+ print("CompositeFScore:", result)
12
+
13
+ # Usage with Runner
14
+ dataset_evaluations = [
15
+ ("dataset1", y_true, (y_pred, y_pred))
16
+ ]
17
+
18
+ metrics = [
19
+ ("cf", {})
20
+ ]
21
+
22
+ runner = Runner(dataset_evaluations, metrics)
23
+ results = runner.run()
24
+ print(results)
@@ -0,0 +1,24 @@
1
+ from tsadmetrics.metrics.tem.mpr.DelayThresholdedPointadjustedFScore import DelayThresholdedPointadjustedFScore
2
+ from tsadmetrics.evaluation.Runner import Runner
3
+ import numpy as np
4
+
5
+ y_true = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
6
+ y_pred = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
7
+
8
+ # Direct usage
9
+ metric = DelayThresholdedPointadjustedFScore()
10
+ result = metric.compute(y_true, y_pred)
11
+ print("DelayThresholdedPointadjustedFScore:", result)
12
+
13
+ # Usage with Runner
14
+ dataset_evaluations = [
15
+ ("dataset1", y_true, (y_pred, y_pred))
16
+ ]
17
+
18
+ metrics = [
19
+ ("dtpaf", {})
20
+ ]
21
+
22
+ runner = Runner(dataset_evaluations, metrics)
23
+ results = runner.run()
24
+ print(results)
@@ -0,0 +1,24 @@
1
+ from tsadmetrics.metrics.tem.mdtp.DetectionAccuracyInRange import DetectionAccuracyInRange
2
+ from tsadmetrics.evaluation.Runner import Runner
3
+ import numpy as np
4
+
5
+ y_true = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
6
+ y_pred = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
7
+
8
+ # Direct usage
9
+ metric = DetectionAccuracyInRange()
10
+ result = metric.compute(y_true, y_pred)
11
+ print("DetectionAccuracyInRange:", result)
12
+
13
+ # Usage with Runner
14
+ dataset_evaluations = [
15
+ ("dataset1", y_true, (y_pred, y_pred))
16
+ ]
17
+
18
+ metrics = [
19
+ ("dair", {})
20
+ ]
21
+
22
+ runner = Runner(dataset_evaluations, metrics)
23
+ results = runner.run()
24
+ print(results)
@@ -0,0 +1,24 @@
1
+ from tsadmetrics.metrics.tem.mect.EnhancedTimeseriesAwareFScore import EnhancedTimeseriesAwareFScore
2
+ from tsadmetrics.evaluation.Runner import Runner
3
+ import numpy as np
4
+
5
+ y_true = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
6
+ y_pred = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
7
+
8
+ # Direct usage
9
+ metric = EnhancedTimeseriesAwareFScore()
10
+ result = metric.compute(y_true, y_pred)
11
+ print("EnhancedTimeseriesAwareFScore:", result)
12
+
13
+ # Usage with Runner
14
+ dataset_evaluations = [
15
+ ("dataset1", y_true, (y_pred, y_pred))
16
+ ]
17
+
18
+ metrics = [
19
+ ("etaf", {})
20
+ ]
21
+
22
+ runner = Runner(dataset_evaluations, metrics)
23
+ results = runner.run()
24
+ print(results)
@@ -0,0 +1,24 @@
1
+ from tsadmetrics.metrics.tem.mpr.LatencySparsityawareFScore import LatencySparsityawareFScore
2
+ from tsadmetrics.evaluation.Runner import Runner
3
+ import numpy as np
4
+
5
+ y_true = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
6
+ y_pred = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
7
+
8
+ # Direct usage
9
+ metric = LatencySparsityawareFScore()
10
+ result = metric.compute(y_true, y_pred)
11
+ print("LatencySparsityawareFScore:", result)
12
+
13
+ # Usage with Runner
14
+ dataset_evaluations = [
15
+ ("dataset1", y_true, (y_pred, y_pred))
16
+ ]
17
+
18
+ metrics = [
19
+ ("lsaf", {})
20
+ ]
21
+
22
+ runner = Runner(dataset_evaluations, metrics)
23
+ results = runner.run()
24
+ print(results)
@@ -0,0 +1,24 @@
1
+ from tsadmetrics.metrics.tem.mpr.MeanTimeToDetect import MeanTimeToDetect
2
+ from tsadmetrics.evaluation.Runner import Runner
3
+ import numpy as np
4
+
5
+ y_true = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
6
+ y_pred = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
7
+
8
+ # Direct usage
9
+ metric = MeanTimeToDetect()
10
+ result = metric.compute(y_true, y_pred)
11
+ print("MeanTimeToDetect:", result)
12
+
13
+ # Usage with Runner
14
+ dataset_evaluations = [
15
+ ("dataset1", y_true, (y_pred, y_pred))
16
+ ]
17
+
18
+ metrics = [
19
+ ("mttd", {})
20
+ ]
21
+
22
+ runner = Runner(dataset_evaluations, metrics)
23
+ results = runner.run()
24
+ print(results)
@@ -0,0 +1,24 @@
1
+ from tsadmetrics.metrics.tem.mpr.NabScore import NabScore
2
+ from tsadmetrics.evaluation.Runner import Runner
3
+ import numpy as np
4
+
5
+ y_true = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
6
+ y_pred = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
7
+
8
+ # Direct usage
9
+ metric = NabScore()
10
+ result = metric.compute(y_true, y_pred)
11
+ print("NabScore:", result)
12
+
13
+ # Usage with Runner
14
+ dataset_evaluations = [
15
+ ("dataset1", y_true, (y_pred, y_pred))
16
+ ]
17
+
18
+ metrics = [
19
+ ("nab_score", {})
20
+ ]
21
+
22
+ runner = Runner(dataset_evaluations, metrics)
23
+ results = runner.run()
24
+ print(results)
@@ -0,0 +1,24 @@
1
+ from tsadmetrics.metrics.tem.mtdt.PateFScore import PateFScore
2
+ from tsadmetrics.evaluation.Runner import Runner
3
+ import numpy as np
4
+
5
+ y_true = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
6
+ y_pred = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
7
+
8
+ # Direct usage
9
+ metric = PateFScore()
10
+ result = metric.compute(y_true, y_pred)
11
+ print("PateFScore:", result)
12
+
13
+ # Usage with Runner
14
+ dataset_evaluations = [
15
+ ("dataset1", y_true, (y_pred, y_pred))
16
+ ]
17
+
18
+ metrics = [
19
+ ("pate_f1", {})
20
+ ]
21
+
22
+ runner = Runner(dataset_evaluations, metrics)
23
+ results = runner.run()
24
+ print(results)
@@ -0,0 +1,24 @@
1
+ from tsadmetrics.metrics.tem.mtdt.Pate import Pate
2
+ from tsadmetrics.evaluation.Runner import Runner
3
+ import numpy as np
4
+
5
+ y_true = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
6
+ y_pred = [0,0,0,0,0,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.99,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
7
+
8
+ # Direct usage
9
+ metric = Pate()
10
+ result = metric.compute(y_true, y_pred)
11
+ print("Pate:", result)
12
+
13
+ # Usage with Runner
14
+ dataset_evaluations = [
15
+ ("dataset1", y_true, (y_pred, y_pred))
16
+ ]
17
+
18
+ metrics = [
19
+ ("pate", {})
20
+ ]
21
+
22
+ runner = Runner(dataset_evaluations, metrics)
23
+ results = runner.run()
24
+ print(results)
@@ -0,0 +1,24 @@
1
+ from tsadmetrics.metrics.tem.mdtp.PointadjustedAtKFScore import PointadjustedAtKFScore
2
+ from tsadmetrics.evaluation.Runner import Runner
3
+ import numpy as np
4
+
5
+ y_true = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
6
+ y_pred = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
7
+
8
+ # Direct usage
9
+ metric = PointadjustedAtKFScore()
10
+ result = metric.compute(y_true, y_pred)
11
+ print("PointadjustedAtKFScore:", result)
12
+
13
+ # Usage with Runner
14
+ dataset_evaluations = [
15
+ ("dataset1", y_true, (y_pred, y_pred))
16
+ ]
17
+
18
+ metrics = [
19
+ ("pakf", {})
20
+ ]
21
+
22
+ runner = Runner(dataset_evaluations, metrics)
23
+ results = runner.run()
24
+ print(results)
@@ -0,0 +1,24 @@
1
+ from tsadmetrics.metrics.tem.mdpt.PointadjustedAucPr import PointadjustedAucPr
2
+ from tsadmetrics.evaluation.Runner import Runner
3
+ import numpy as np
4
+
5
+ y_true = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
6
+ y_pred = [0,0,0,0,0,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.99,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
7
+
8
+ # Direct usage
9
+ metric = PointadjustedAucPr()
10
+ result = metric.compute(y_true, y_pred)
11
+ print("PointadjustedAucPr:", result)
12
+
13
+ # Usage with Runner
14
+ dataset_evaluations = [
15
+ ("dataset1", y_true, (y_pred, y_pred))
16
+ ]
17
+
18
+ metrics = [
19
+ ("pa_auc_pr", {})
20
+ ]
21
+
22
+ runner = Runner(dataset_evaluations, metrics)
23
+ results = runner.run()
24
+ print(results)
@@ -0,0 +1,24 @@
1
+ from tsadmetrics.metrics.tem.mdpt.PointadjustedAucRoc import PointadjustedAucRoc
2
+ from tsadmetrics.evaluation.Runner import Runner
3
+ import numpy as np
4
+
5
+ y_true = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
6
+ y_pred = [0,0,0,0,0,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.99,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
7
+
8
+ # Direct usage
9
+ metric = PointadjustedAucRoc()
10
+ result = metric.compute(y_true, y_pred)
11
+ print("PointadjustedAucRoc:", result)
12
+
13
+ # Usage with Runner
14
+ dataset_evaluations = [
15
+ ("dataset1", y_true, (y_pred, y_pred))
16
+ ]
17
+
18
+ metrics = [
19
+ ("pa_auc_roc", {})
20
+ ]
21
+
22
+ runner = Runner(dataset_evaluations, metrics)
23
+ results = runner.run()
24
+ print(results)
@@ -0,0 +1,24 @@
1
+ from tsadmetrics.metrics.tem.mdpt.PointadjustedFScore import PointadjustedFScore
2
+ from tsadmetrics.evaluation.Runner import Runner
3
+ import numpy as np
4
+
5
+ y_true = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
6
+ y_pred = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
7
+
8
+ # Direct usage
9
+ metric = PointadjustedFScore()
10
+ result = metric.compute(y_true, y_pred)
11
+ print("PointadjustedFScore:", result)
12
+
13
+ # Usage with Runner
14
+ dataset_evaluations = [
15
+ ("dataset1", y_true, (y_pred, y_pred))
16
+ ]
17
+
18
+ metrics = [
19
+ ("paf", {})
20
+ ]
21
+
22
+ runner = Runner(dataset_evaluations, metrics)
23
+ results = runner.run()
24
+ print(results)