tsadmetrics 0.1.16__py3-none-any.whl → 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- docs/api_doc/conf.py +67 -0
- docs/{conf.py → full_doc/conf.py} +1 -1
- docs/manual_doc/conf.py +67 -0
- examples/example_direct_data.py +28 -0
- examples/example_direct_single_data.py +25 -0
- examples/example_file_reference.py +24 -0
- examples/example_global_config_file.py +13 -0
- examples/example_metric_config_file.py +19 -0
- examples/example_simple_metric.py +8 -0
- examples/specific_examples/AbsoluteDetectionDistance_example.py +24 -0
- examples/specific_examples/AffiliationbasedFScore_example.py +24 -0
- examples/specific_examples/AverageDetectionCount_example.py +24 -0
- examples/specific_examples/CompositeFScore_example.py +24 -0
- examples/specific_examples/DelayThresholdedPointadjustedFScore_example.py +24 -0
- examples/specific_examples/DetectionAccuracyInRange_example.py +24 -0
- examples/specific_examples/EnhancedTimeseriesAwareFScore_example.py +24 -0
- examples/specific_examples/LatencySparsityawareFScore_example.py +24 -0
- examples/specific_examples/MeanTimeToDetect_example.py +24 -0
- examples/specific_examples/NabScore_example.py +24 -0
- examples/specific_examples/PateFScore_example.py +24 -0
- examples/specific_examples/Pate_example.py +24 -0
- examples/specific_examples/PointadjustedAtKFScore_example.py +24 -0
- examples/specific_examples/PointadjustedAucPr_example.py +24 -0
- examples/specific_examples/PointadjustedAucRoc_example.py +24 -0
- examples/specific_examples/PointadjustedFScore_example.py +24 -0
- examples/specific_examples/RangebasedFScore_example.py +24 -0
- examples/specific_examples/SegmentwiseFScore_example.py +24 -0
- examples/specific_examples/TemporalDistance_example.py +24 -0
- examples/specific_examples/TimeTolerantFScore_example.py +24 -0
- examples/specific_examples/TimeseriesAwareFScore_example.py +24 -0
- examples/specific_examples/TotalDetectedInRange_example.py +24 -0
- examples/specific_examples/VusPr_example.py +24 -0
- examples/specific_examples/VusRoc_example.py +24 -0
- examples/specific_examples/WeightedDetectionDifference_example.py +24 -0
- tests/test_dpm.py +212 -0
- tests/test_ptdm.py +366 -0
- tests/test_registry.py +58 -0
- tests/test_runner.py +185 -0
- tests/test_spm.py +213 -0
- tests/test_tmem.py +198 -0
- tests/test_tpdm.py +369 -0
- tests/test_tstm.py +338 -0
- tsadmetrics/__init__.py +0 -21
- tsadmetrics/base/Metric.py +188 -0
- tsadmetrics/evaluation/Report.py +25 -0
- tsadmetrics/evaluation/Runner.py +253 -0
- tsadmetrics/metrics/Registry.py +141 -0
- tsadmetrics/metrics/__init__.py +2 -0
- tsadmetrics/metrics/spm/PointwiseAucPr.py +62 -0
- tsadmetrics/metrics/spm/PointwiseAucRoc.py +63 -0
- tsadmetrics/metrics/spm/PointwiseFScore.py +86 -0
- tsadmetrics/metrics/spm/PrecisionAtK.py +81 -0
- tsadmetrics/metrics/spm/__init__.py +9 -0
- tsadmetrics/metrics/tem/dpm/DelayThresholdedPointadjustedFScore.py +83 -0
- tsadmetrics/metrics/tem/dpm/LatencySparsityawareFScore.py +76 -0
- tsadmetrics/metrics/tem/dpm/MeanTimeToDetect.py +47 -0
- tsadmetrics/metrics/tem/dpm/NabScore.py +60 -0
- tsadmetrics/metrics/tem/dpm/__init__.py +11 -0
- tsadmetrics/metrics/tem/ptdm/AverageDetectionCount.py +53 -0
- tsadmetrics/metrics/tem/ptdm/DetectionAccuracyInRange.py +66 -0
- tsadmetrics/metrics/tem/ptdm/PointadjustedAtKFScore.py +80 -0
- tsadmetrics/metrics/tem/ptdm/TimeseriesAwareFScore.py +248 -0
- tsadmetrics/metrics/tem/ptdm/TotalDetectedInRange.py +65 -0
- tsadmetrics/metrics/tem/ptdm/WeightedDetectionDifference.py +97 -0
- tsadmetrics/metrics/tem/ptdm/__init__.py +12 -0
- tsadmetrics/metrics/tem/tmem/AbsoluteDetectionDistance.py +48 -0
- tsadmetrics/metrics/tem/tmem/EnhancedTimeseriesAwareFScore.py +252 -0
- tsadmetrics/metrics/tem/tmem/TemporalDistance.py +68 -0
- tsadmetrics/metrics/tem/tmem/__init__.py +9 -0
- tsadmetrics/metrics/tem/tpdm/CompositeFScore.py +104 -0
- tsadmetrics/metrics/tem/tpdm/PointadjustedAucPr.py +123 -0
- tsadmetrics/metrics/tem/tpdm/PointadjustedAucRoc.py +119 -0
- tsadmetrics/metrics/tem/tpdm/PointadjustedFScore.py +96 -0
- tsadmetrics/metrics/tem/tpdm/RangebasedFScore.py +236 -0
- tsadmetrics/metrics/tem/tpdm/SegmentwiseFScore.py +73 -0
- tsadmetrics/metrics/tem/tpdm/__init__.py +12 -0
- tsadmetrics/metrics/tem/tstm/AffiliationbasedFScore.py +68 -0
- tsadmetrics/metrics/tem/tstm/Pate.py +62 -0
- tsadmetrics/metrics/tem/tstm/PateFScore.py +61 -0
- tsadmetrics/metrics/tem/tstm/TimeTolerantFScore.py +85 -0
- tsadmetrics/metrics/tem/tstm/VusPr.py +51 -0
- tsadmetrics/metrics/tem/tstm/VusRoc.py +55 -0
- tsadmetrics/metrics/tem/tstm/__init__.py +15 -0
- tsadmetrics/{_tsadeval/affiliation/_integral_interval.py → utils/functions_affiliation.py} +377 -9
- tsadmetrics/utils/functions_auc.py +393 -0
- tsadmetrics/utils/functions_conversion.py +63 -0
- tsadmetrics/utils/functions_counting_metrics.py +26 -0
- tsadmetrics/{_tsadeval/latency_sparsity_aware.py → utils/functions_latency_sparsity_aware.py} +1 -1
- tsadmetrics/{_tsadeval/nabscore.py → utils/functions_nabscore.py} +15 -1
- tsadmetrics-1.0.0.dist-info/METADATA +69 -0
- tsadmetrics-1.0.0.dist-info/RECORD +99 -0
- {tsadmetrics-0.1.16.dist-info → tsadmetrics-1.0.0.dist-info}/top_level.txt +1 -1
- entorno/bin/activate_this.py +0 -32
- entorno/bin/rst2html.py +0 -23
- entorno/bin/rst2html4.py +0 -26
- entorno/bin/rst2html5.py +0 -33
- entorno/bin/rst2latex.py +0 -26
- entorno/bin/rst2man.py +0 -27
- entorno/bin/rst2odt.py +0 -28
- entorno/bin/rst2odt_prepstyles.py +0 -20
- entorno/bin/rst2pseudoxml.py +0 -23
- entorno/bin/rst2s5.py +0 -24
- entorno/bin/rst2xetex.py +0 -27
- entorno/bin/rst2xml.py +0 -23
- entorno/bin/rstpep2html.py +0 -25
- tests/test_binary.py +0 -946
- tests/test_non_binary.py +0 -420
- tests/test_utils.py +0 -49
- tsadmetrics/_tsadeval/affiliation/_affiliation_zone.py +0 -86
- tsadmetrics/_tsadeval/affiliation/_single_ground_truth_event.py +0 -68
- tsadmetrics/_tsadeval/affiliation/generics.py +0 -135
- tsadmetrics/_tsadeval/affiliation/metrics.py +0 -114
- tsadmetrics/_tsadeval/auc_roc_pr_plot.py +0 -295
- tsadmetrics/_tsadeval/discontinuity_graph.py +0 -109
- tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/File_IO.py +0 -175
- tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/Range.py +0 -50
- tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/Time_Plot.py +0 -184
- tsadmetrics/_tsadeval/eTaPR_pkg/__init__.py +0 -0
- tsadmetrics/_tsadeval/eTaPR_pkg/etapr.py +0 -386
- tsadmetrics/_tsadeval/eTaPR_pkg/tapr.py +0 -362
- tsadmetrics/_tsadeval/metrics.py +0 -698
- tsadmetrics/_tsadeval/prts/__init__.py +0 -0
- tsadmetrics/_tsadeval/prts/base/__init__.py +0 -0
- tsadmetrics/_tsadeval/prts/base/time_series_metrics.py +0 -165
- tsadmetrics/_tsadeval/prts/basic_metrics_ts.py +0 -121
- tsadmetrics/_tsadeval/prts/time_series_metrics/__init__.py +0 -0
- tsadmetrics/_tsadeval/prts/time_series_metrics/fscore.py +0 -61
- tsadmetrics/_tsadeval/prts/time_series_metrics/precision.py +0 -86
- tsadmetrics/_tsadeval/prts/time_series_metrics/precision_recall.py +0 -21
- tsadmetrics/_tsadeval/prts/time_series_metrics/recall.py +0 -85
- tsadmetrics/_tsadeval/tests.py +0 -376
- tsadmetrics/_tsadeval/threshold_plt.py +0 -30
- tsadmetrics/_tsadeval/time_tolerant.py +0 -33
- tsadmetrics/binary_metrics.py +0 -1652
- tsadmetrics/metric_utils.py +0 -98
- tsadmetrics/non_binary_metrics.py +0 -398
- tsadmetrics/scripts/__init__.py +0 -0
- tsadmetrics/scripts/compute_metrics.py +0 -42
- tsadmetrics/utils.py +0 -122
- tsadmetrics/validation.py +0 -35
- tsadmetrics-0.1.16.dist-info/METADATA +0 -23
- tsadmetrics-0.1.16.dist-info/RECORD +0 -64
- tsadmetrics-0.1.16.dist-info/entry_points.txt +0 -2
- /tsadmetrics/{_tsadeval → base}/__init__.py +0 -0
- /tsadmetrics/{_tsadeval/affiliation → evaluation}/__init__.py +0 -0
- /tsadmetrics/{_tsadeval/eTaPR_pkg/DataManage → metrics/tem}/__init__.py +0 -0
- /tsadmetrics/{_tsadeval/vus_utils.py → utils/functions_vus.py} +0 -0
- {tsadmetrics-0.1.16.dist-info → tsadmetrics-1.0.0.dist-info}/WHEEL +0 -0
tests/test_ptdm.py
ADDED
@@ -0,0 +1,366 @@
|
|
1
|
+
import unittest
|
2
|
+
from tsadmetrics.metrics.tem.ptdm import *
|
3
|
+
|
4
|
+
import numpy as np
|
5
|
+
import random
|
6
|
+
|
7
|
+
class TestAverageDetectionCount(unittest.TestCase):
|
8
|
+
|
9
|
+
|
10
|
+
def setUp(self):
|
11
|
+
"""
|
12
|
+
Configuración inicial para las pruebas.
|
13
|
+
"""
|
14
|
+
self.y_true1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
|
15
|
+
self.y_pred1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
16
|
+
self.y_pred2 = np.array([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])
|
17
|
+
|
18
|
+
self.y_true2 = np.array([0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1])
|
19
|
+
self.y_pred21 = np.array([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1])
|
20
|
+
self.y_pred22 = np.array([0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
21
|
+
|
22
|
+
self.y_pred3 = self.y_true1
|
23
|
+
self.y_pred4 = np.zeros(len(self.y_true1))
|
24
|
+
|
25
|
+
|
26
|
+
|
27
|
+
def test(self):
|
28
|
+
metric = AverageDetectionCount()
|
29
|
+
score = round(metric.compute(self.y_true1, self.y_pred1),2)
|
30
|
+
expected_metric = 0.5
|
31
|
+
self.assertAlmostEqual(score, expected_metric, places=4)
|
32
|
+
|
33
|
+
score = round(metric.compute(self.y_true1, self.y_pred2),2)
|
34
|
+
expected_metric = 0.12
|
35
|
+
self.assertAlmostEqual(score, expected_metric, places=4)
|
36
|
+
|
37
|
+
score = round(metric.compute(self.y_true2, self.y_pred21),2)
|
38
|
+
expected_metric = 0.33
|
39
|
+
self.assertAlmostEqual(score, expected_metric, places=4)
|
40
|
+
|
41
|
+
score = round(metric.compute(self.y_true2, self.y_pred22),2)
|
42
|
+
expected_metric = 0.67
|
43
|
+
self.assertAlmostEqual(score, expected_metric, places=4)
|
44
|
+
|
45
|
+
score = round(metric.compute(self.y_true1, self.y_pred3),2)
|
46
|
+
expected_metric = 1.0
|
47
|
+
self.assertAlmostEqual(score, expected_metric, places=4)
|
48
|
+
|
49
|
+
score = round(metric.compute(self.y_true1, self.y_pred4),2)
|
50
|
+
expected_metric = 0
|
51
|
+
self.assertAlmostEqual(score, expected_metric, places=4)
|
52
|
+
|
53
|
+
|
54
|
+
def test_consistency(self):
|
55
|
+
metric = AverageDetectionCount()
|
56
|
+
try:
|
57
|
+
y_true = np.random.choice([0, 1], size=(100,))
|
58
|
+
y_pred = np.zeros(100)
|
59
|
+
metric.compute(y_true, y_pred)
|
60
|
+
for _ in range(100):
|
61
|
+
y_true = np.random.choice([0, 1], size=(100,))
|
62
|
+
y_pred = np.random.choice([0, 1], size=(100,))
|
63
|
+
|
64
|
+
score = metric.compute(y_true, y_pred)
|
65
|
+
except Exception as e:
|
66
|
+
self.fail(f"AverageDetectionCount raised an exception {e}")
|
67
|
+
|
68
|
+
|
69
|
+
class TestDetectionAccuracyInRange(unittest.TestCase):
|
70
|
+
|
71
|
+
def setUp(self):
|
72
|
+
"""
|
73
|
+
Configuración inicial para las pruebas.
|
74
|
+
"""
|
75
|
+
self.y_true1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
|
76
|
+
self.y_pred1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
77
|
+
self.y_pred2 = np.array([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])
|
78
|
+
|
79
|
+
self.y_true2 = np.array([0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1])
|
80
|
+
self.y_pred21 = np.array([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1])
|
81
|
+
self.y_pred22 = np.array([0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
82
|
+
|
83
|
+
self.y_pred3 = self.y_true1
|
84
|
+
self.y_pred4 = np.zeros(len(self.y_true1))
|
85
|
+
|
86
|
+
def test(self):
|
87
|
+
metric = DetectionAccuracyInRange(k=3)
|
88
|
+
score = round(metric.compute(self.y_true1, self.y_pred1),2)
|
89
|
+
expected_score = 1.0
|
90
|
+
self.assertAlmostEqual(score, expected_score, places=4)
|
91
|
+
|
92
|
+
score = round(metric.compute(self.y_true1, self.y_pred2),2)
|
93
|
+
expected_score = 1.0
|
94
|
+
self.assertAlmostEqual(score, expected_score, places=4)
|
95
|
+
|
96
|
+
score = round(metric.compute(self.y_true2, self.y_pred21),2)
|
97
|
+
expected_score = 1.0
|
98
|
+
self.assertAlmostEqual(score, expected_score, places=4)
|
99
|
+
|
100
|
+
score = round(metric.compute(self.y_true2, self.y_pred22),2)
|
101
|
+
expected_score = 1.0
|
102
|
+
self.assertAlmostEqual(score, expected_score, places=4)
|
103
|
+
|
104
|
+
score = round(metric.compute(self.y_true1, self.y_pred3),2)
|
105
|
+
expected_metric = 1.0
|
106
|
+
self.assertAlmostEqual(score, expected_metric, places=4)
|
107
|
+
|
108
|
+
score = round(metric.compute(self.y_true1, self.y_pred4),2)
|
109
|
+
expected_metric = 0
|
110
|
+
self.assertAlmostEqual(score, expected_metric, places=4)
|
111
|
+
|
112
|
+
|
113
|
+
|
114
|
+
|
115
|
+
def test_consistency(self):
|
116
|
+
metric = DetectionAccuracyInRange(k=4)
|
117
|
+
try:
|
118
|
+
y_true = np.random.choice([0, 1], size=(100,))
|
119
|
+
y_pred = np.zeros(100)
|
120
|
+
|
121
|
+
for _ in range(100):
|
122
|
+
y_true = np.random.choice([0, 1], size=(100,))
|
123
|
+
y_pred = np.random.choice([0, 1], size=(100,))
|
124
|
+
|
125
|
+
score = metric.compute(y_true, y_pred)
|
126
|
+
except Exception as e:
|
127
|
+
self.fail(f"DetectionAccuracyInRange raised an exception {e}")
|
128
|
+
|
129
|
+
|
130
|
+
|
131
|
+
|
132
|
+
|
133
|
+
|
134
|
+
class TestPointadjustedAtKFScore(unittest.TestCase):
|
135
|
+
|
136
|
+
def setUp(self):
|
137
|
+
"""
|
138
|
+
Configuración inicial para las pruebas.
|
139
|
+
"""
|
140
|
+
self.y_true = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
|
141
|
+
self.y_pred1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
142
|
+
self.y_pred2 = np.array([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])
|
143
|
+
|
144
|
+
self.y_pred3 = self.y_true
|
145
|
+
self.y_pred4 = np.zeros(len(self.y_true))
|
146
|
+
|
147
|
+
|
148
|
+
def test(self):
|
149
|
+
metric = PointadjustedAtKFScore(k=0.2)
|
150
|
+
f_score = round(metric.compute(self.y_true, self.y_pred1),2)
|
151
|
+
expected_f_score = 0.67
|
152
|
+
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
153
|
+
|
154
|
+
f_score = round(metric.compute(self.y_true, self.y_pred2),2)
|
155
|
+
expected_f_score = 0.22
|
156
|
+
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
157
|
+
|
158
|
+
score = round(metric.compute(self.y_true, self.y_pred3),2)
|
159
|
+
expected_metric = 1.0
|
160
|
+
self.assertAlmostEqual(score, expected_metric, places=4)
|
161
|
+
|
162
|
+
score = round(metric.compute(self.y_true, self.y_pred4),2)
|
163
|
+
expected_metric = 0
|
164
|
+
self.assertAlmostEqual(score, expected_metric, places=4)
|
165
|
+
|
166
|
+
def test_consistency(self):
|
167
|
+
metric = PointadjustedAtKFScore(k=0.3)
|
168
|
+
try:
|
169
|
+
y_true = np.random.choice([0, 1], size=(100,))
|
170
|
+
y_pred = np.zeros(100)
|
171
|
+
metric.compute(y_true, y_pred)
|
172
|
+
for _ in range(1000):
|
173
|
+
y_true = np.random.choice([0, 1], size=(100,))
|
174
|
+
y_pred = np.random.choice([0, 1], size=(100,))
|
175
|
+
f_score = metric.compute(y_true, y_pred)
|
176
|
+
except Exception as e:
|
177
|
+
self.fail(f"PointadjustedAtKFScore raised an exception {e}")
|
178
|
+
|
179
|
+
|
180
|
+
|
181
|
+
class TestTimeseriesAwareFScore(unittest.TestCase):
|
182
|
+
|
183
|
+
def setUp(self):
|
184
|
+
"""
|
185
|
+
Configuración inicial para las pruebas.
|
186
|
+
"""
|
187
|
+
self.y_true1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
|
188
|
+
self.y_pred1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
189
|
+
self.y_pred2 = np.array([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])
|
190
|
+
|
191
|
+
self.y_true2 = np.array([0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0])
|
192
|
+
self.y_pred21 = np.array([0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
193
|
+
self.y_pred22 = np.array([0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0])
|
194
|
+
|
195
|
+
self.y_pred3 = self.y_true1
|
196
|
+
self.y_pred4 = np.zeros(len(self.y_true1))
|
197
|
+
|
198
|
+
|
199
|
+
|
200
|
+
def test(self):
|
201
|
+
|
202
|
+
metric = TimeseriesAwareFScore(beta=1, alpha=0.5,delta=0, theta=0.5)
|
203
|
+
f_score = round(metric.compute(self.y_true1, self.y_pred1),2)
|
204
|
+
expected_f_score = 0.67
|
205
|
+
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
206
|
+
|
207
|
+
f_score = round(metric.compute(self.y_true1, self.y_pred2),2)
|
208
|
+
expected_f_score = 0.12
|
209
|
+
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
210
|
+
|
211
|
+
f_score = round(metric.compute(self.y_true2, self.y_pred21),2)
|
212
|
+
expected_f_score = 0.77
|
213
|
+
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
214
|
+
|
215
|
+
f_score = round(metric.compute(self.y_true2, self.y_pred22),2)
|
216
|
+
expected_f_score = 0.67
|
217
|
+
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
218
|
+
|
219
|
+
score = round(metric.compute(self.y_true1, self.y_pred3),2)
|
220
|
+
expected_metric = 1.0
|
221
|
+
self.assertAlmostEqual(score, expected_metric, places=4)
|
222
|
+
|
223
|
+
score = round(metric.compute(self.y_true1, self.y_pred4),2)
|
224
|
+
expected_metric = 0
|
225
|
+
self.assertAlmostEqual(score, expected_metric, places=4)
|
226
|
+
|
227
|
+
def test_consistency(self):
|
228
|
+
metric = TimeseriesAwareFScore(beta=1, alpha=0.5,delta=0, theta=0.5)
|
229
|
+
try:
|
230
|
+
y_true = np.random.choice([0, 1], size=(100,))
|
231
|
+
y_pred = np.zeros(100)
|
232
|
+
metric.compute(y_true, y_pred)
|
233
|
+
for _ in range(100):
|
234
|
+
y_true = np.random.choice([0, 1], size=(100,))
|
235
|
+
y_pred = np.random.choice([0, 1], size=(100,))
|
236
|
+
metric = TimeseriesAwareFScore(beta=1, alpha=random.random(),delta=0, theta=random.random())
|
237
|
+
f_score = metric.compute(y_true, y_pred)
|
238
|
+
except Exception as e:
|
239
|
+
self.fail(f"ts_aware_f_score raised an exception {e}")
|
240
|
+
|
241
|
+
|
242
|
+
|
243
|
+
|
244
|
+
class TestTotalDetectedInRange(unittest.TestCase):
|
245
|
+
|
246
|
+
def setUp(self):
|
247
|
+
"""
|
248
|
+
Configuración inicial para las pruebas.
|
249
|
+
"""
|
250
|
+
self.y_true1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
|
251
|
+
self.y_pred1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
252
|
+
self.y_pred2 = np.array([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])
|
253
|
+
|
254
|
+
self.y_true2 = np.array([0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1])
|
255
|
+
self.y_pred21 = np.array([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1])
|
256
|
+
self.y_pred22 = np.array([0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
257
|
+
|
258
|
+
self.y_pred3 = self.y_true1
|
259
|
+
self.y_pred4 = np.zeros(len(self.y_true1))
|
260
|
+
|
261
|
+
def test(self):
|
262
|
+
metric = TotalDetectedInRange(k=3)
|
263
|
+
score = round(metric.compute(self.y_true1, self.y_pred1),2)
|
264
|
+
expected_score = 0.5
|
265
|
+
self.assertAlmostEqual(score, expected_score, places=4)
|
266
|
+
|
267
|
+
score = round(metric.compute(self.y_true1, self.y_pred2),2)
|
268
|
+
expected_score = 0.5
|
269
|
+
self.assertAlmostEqual(score, expected_score, places=4)
|
270
|
+
|
271
|
+
score = round(metric.compute(self.y_true2, self.y_pred21),2)
|
272
|
+
expected_score = 0.56
|
273
|
+
self.assertAlmostEqual(score, expected_score, places=4)
|
274
|
+
|
275
|
+
score = round(metric.compute(self.y_true2, self.y_pred22),2)
|
276
|
+
expected_score = 0.44
|
277
|
+
self.assertAlmostEqual(score, expected_score, places=4)
|
278
|
+
|
279
|
+
score = round(metric.compute(self.y_true1, self.y_pred3),2)
|
280
|
+
expected_metric = 1.0
|
281
|
+
self.assertAlmostEqual(score, expected_metric, places=4)
|
282
|
+
|
283
|
+
score = round(metric.compute(self.y_true1, self.y_pred4),2)
|
284
|
+
expected_metric = 0
|
285
|
+
self.assertAlmostEqual(score, expected_metric, places=4)
|
286
|
+
|
287
|
+
|
288
|
+
|
289
|
+
|
290
|
+
def test_consistency(self):
|
291
|
+
metric = TotalDetectedInRange(k=4)
|
292
|
+
try:
|
293
|
+
y_true = np.random.choice([0, 1], size=(100,))
|
294
|
+
y_pred = np.zeros(100)
|
295
|
+
metric.compute(y_true, y_pred)
|
296
|
+
for _ in range(100):
|
297
|
+
y_true = np.random.choice([0, 1], size=(100,))
|
298
|
+
y_pred = np.random.choice([0, 1], size=(100,))
|
299
|
+
|
300
|
+
score = metric.compute(y_true, y_pred)
|
301
|
+
except Exception as e:
|
302
|
+
self.fail(f"TotalDetectedInRange raised an exception {e}")
|
303
|
+
|
304
|
+
|
305
|
+
|
306
|
+
|
307
|
+
|
308
|
+
class TestWeightedDetectionDifference(unittest.TestCase):
|
309
|
+
|
310
|
+
def setUp(self):
|
311
|
+
"""
|
312
|
+
Configuración inicial para las pruebas.
|
313
|
+
"""
|
314
|
+
self.y_true1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
|
315
|
+
self.y_pred1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
316
|
+
self.y_pred2 = np.array([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])
|
317
|
+
|
318
|
+
self.y_true2 = np.array([0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1])
|
319
|
+
self.y_pred21 = np.array([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1])
|
320
|
+
self.y_pred22 = np.array([0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
321
|
+
|
322
|
+
self.y_pred3 = self.y_true1
|
323
|
+
self.y_pred4 = np.zeros(len(self.y_true1))
|
324
|
+
|
325
|
+
def test(self):
|
326
|
+
metric = WeightedDetectionDifference(k=3)
|
327
|
+
score = round(metric.compute(self.y_true1, self.y_pred1),2)
|
328
|
+
expected_score = 18.89
|
329
|
+
self.assertAlmostEqual(score, expected_score, places=4)
|
330
|
+
|
331
|
+
score = round(metric.compute(self.y_true1, self.y_pred2),2)
|
332
|
+
expected_score = 24.89
|
333
|
+
self.assertAlmostEqual(score, expected_score, places=4)
|
334
|
+
|
335
|
+
score = round(metric.compute(self.y_true2, self.y_pred21),2)
|
336
|
+
expected_score = 15.73
|
337
|
+
self.assertAlmostEqual(score, expected_score, places=4)
|
338
|
+
|
339
|
+
score = round(metric.compute(self.y_true2, self.y_pred22),2)
|
340
|
+
expected_score = 16.73
|
341
|
+
self.assertAlmostEqual(score, expected_score, places=4)
|
342
|
+
|
343
|
+
score = round(metric.compute(self.y_true1, self.y_pred3),2)
|
344
|
+
expected_metric = 10
|
345
|
+
self.assertGreater(score, expected_metric)
|
346
|
+
|
347
|
+
score = round(metric.compute(self.y_true1, self.y_pred4),2)
|
348
|
+
expected_metric = 0
|
349
|
+
self.assertAlmostEqual(score, expected_metric, places=4)
|
350
|
+
|
351
|
+
|
352
|
+
|
353
|
+
|
354
|
+
def test_consistency(self):
|
355
|
+
metric = WeightedDetectionDifference(k=4)
|
356
|
+
try:
|
357
|
+
y_true = np.random.choice([0, 1], size=(100,))
|
358
|
+
y_pred = np.zeros(100)
|
359
|
+
metric.compute(y_true, y_pred)
|
360
|
+
for _ in range(100):
|
361
|
+
y_true = np.random.choice([0, 1], size=(100,))
|
362
|
+
y_pred = np.random.choice([0, 1], size=(100,))
|
363
|
+
|
364
|
+
score = metric.compute(y_true, y_pred)
|
365
|
+
except Exception as e:
|
366
|
+
self.fail(f"WeightedDetectionDifference raised an exception {e}")
|
tests/test_registry.py
ADDED
@@ -0,0 +1,58 @@
|
|
1
|
+
import unittest
|
2
|
+
from tsadmetrics.metrics.Registry import Registry
|
3
|
+
from sklearn.metrics import fbeta_score
|
4
|
+
import numpy as np
|
5
|
+
import random
|
6
|
+
class TestRegistry(unittest.TestCase):
|
7
|
+
def setUp(self):
|
8
|
+
"""
|
9
|
+
Configuración inicial para las pruebas.
|
10
|
+
"""
|
11
|
+
self.registry = Registry()
|
12
|
+
self.sample_metric = "pwf"
|
13
|
+
|
14
|
+
self.num_tests = 100
|
15
|
+
self.test_cases = []
|
16
|
+
for _ in range(self.num_tests):
|
17
|
+
y_true = np.random.choice([0, 1], size=(10000,))
|
18
|
+
y_pred = np.random.choice([0, 1], size=(10000,))
|
19
|
+
self.test_cases.append((y_true, y_pred))
|
20
|
+
|
21
|
+
y_true_perfect = np.random.choice([0, 1], size=(10000,))
|
22
|
+
y_pred_perfect = y_true_perfect.copy()
|
23
|
+
self.test_cases.append((y_true_perfect, y_pred_perfect))
|
24
|
+
|
25
|
+
y_true_all_zeros = np.random.choice([0, 1], size=(10000,))
|
26
|
+
y_pred_all_zeros = np.zeros(10000, dtype=int)
|
27
|
+
self.test_cases.append((y_true_all_zeros, y_pred_all_zeros))
|
28
|
+
|
29
|
+
def test(self):
|
30
|
+
|
31
|
+
for y_true, y_pred in self.test_cases:
|
32
|
+
|
33
|
+
with self.subTest(y_true=y_true, y_pred=y_pred):
|
34
|
+
beta = random.randint(0,1000000)
|
35
|
+
metric = self.registry.get_metric(self.sample_metric,beta=beta)
|
36
|
+
f_score = metric.compute(y_true, y_pred)
|
37
|
+
expected_f_score = fbeta_score(y_true, y_pred, beta=beta)
|
38
|
+
self.assertAlmostEqual(f_score, expected_f_score, places=4)
|
39
|
+
|
40
|
+
def test_load_metrics_from_file(self):
|
41
|
+
"""
|
42
|
+
Prueba que las métricas se pueden cargar desde un fichero.
|
43
|
+
"""
|
44
|
+
metrics_file = "tests/test_data/example_metrics_config.yaml"
|
45
|
+
|
46
|
+
|
47
|
+
loaded_metrics = self.registry.load_metrics_info_from_file(metrics_file)
|
48
|
+
|
49
|
+
expected_metrics = [
|
50
|
+
("adc", {}),
|
51
|
+
("dair", {}),
|
52
|
+
("pakf", {"k":0.2})
|
53
|
+
]
|
54
|
+
self.assertEqual(len(loaded_metrics), len(expected_metrics))
|
55
|
+
for (m1, p1), (m2, p2) in zip(loaded_metrics, expected_metrics):
|
56
|
+
self.assertEqual(m1, m2)
|
57
|
+
self.assertEqual(p1, p2)
|
58
|
+
|
tests/test_runner.py
ADDED
@@ -0,0 +1,185 @@
|
|
1
|
+
import unittest
|
2
|
+
|
3
|
+
from tsadmetrics.evaluation.Runner import Runner
|
4
|
+
import numpy as np
|
5
|
+
import os
|
6
|
+
|
7
|
+
class TestRunner(unittest.TestCase):
|
8
|
+
|
9
|
+
|
10
|
+
def setUp(self):
|
11
|
+
"""
|
12
|
+
Configuración inicial para las pruebas.
|
13
|
+
"""
|
14
|
+
self.y_true1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1])
|
15
|
+
self.y_pred1 = np.array([0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
|
16
|
+
self.y_pred2 = np.array([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])
|
17
|
+
|
18
|
+
|
19
|
+
|
20
|
+
|
21
|
+
|
22
|
+
def test_direct_data(self):
|
23
|
+
dataset_evaluations = [
|
24
|
+
("dataset1", self.y_true1, (self.y_pred1, self.y_pred1)),
|
25
|
+
("dataset2", self.y_true1, (self.y_pred2, self.y_pred2))
|
26
|
+
|
27
|
+
]
|
28
|
+
metrics = [
|
29
|
+
("adc",{}),
|
30
|
+
("dair",{}),
|
31
|
+
("pakf",{"k":0.2}),]
|
32
|
+
expected_score_d1 = {
|
33
|
+
"adc":0.5,
|
34
|
+
"dair":1.0,
|
35
|
+
"pakf":0.67
|
36
|
+
}
|
37
|
+
expected_score_d2 = {
|
38
|
+
"adc":0.12,
|
39
|
+
"dair":1.0,
|
40
|
+
"pakf":0.22
|
41
|
+
}
|
42
|
+
runnner = Runner(dataset_evaluations, metrics)
|
43
|
+
results = runnner.run()
|
44
|
+
for metric, expected in expected_score_d1.items():
|
45
|
+
params = {}
|
46
|
+
for p in metrics:
|
47
|
+
if p[0] == metric:
|
48
|
+
params = p[1]
|
49
|
+
print(metric)
|
50
|
+
self.assertAlmostEqual(round(results.loc["dataset1", f"{metric}"], 2), expected, places=4)
|
51
|
+
for metric, expected in expected_score_d2.items():
|
52
|
+
params = {}
|
53
|
+
for p in metrics:
|
54
|
+
if p[0] == metric:
|
55
|
+
params = p[1]
|
56
|
+
self.assertAlmostEqual(round(results.loc["dataset2", f"{metric}"],2), expected, places=4)
|
57
|
+
|
58
|
+
def test_file_reference(self):
|
59
|
+
dataset_evaluations = [
|
60
|
+
("dataset1", "tests/test_data/results1.csv"),
|
61
|
+
("dataset2", "tests/test_data/results2.csv")
|
62
|
+
|
63
|
+
]
|
64
|
+
metrics = [
|
65
|
+
("adc",{}),
|
66
|
+
("dair",{}),
|
67
|
+
("pakf",{"k":0.2})]
|
68
|
+
expected_score_d1 = {
|
69
|
+
"adc":0.5,
|
70
|
+
"dair":1.0,
|
71
|
+
"pakf":0.67
|
72
|
+
}
|
73
|
+
expected_score_d2 = {
|
74
|
+
"adc":0.12,
|
75
|
+
"dair":1.0,
|
76
|
+
"pakf":0.22
|
77
|
+
}
|
78
|
+
runnner = Runner(dataset_evaluations, metrics)
|
79
|
+
results = runnner.run()
|
80
|
+
for metric, expected in expected_score_d1.items():
|
81
|
+
params = {}
|
82
|
+
for p in metrics:
|
83
|
+
if p[0] == metric:
|
84
|
+
params = p[1]
|
85
|
+
self.assertAlmostEqual(round(results.loc["dataset1",f"{metric}"],2), expected, places=4)
|
86
|
+
for metric, expected in expected_score_d2.items():
|
87
|
+
params = {}
|
88
|
+
for p in metrics:
|
89
|
+
if p[0] == metric:
|
90
|
+
params = p[1]
|
91
|
+
self.assertAlmostEqual(round(results.loc["dataset2", f"{metric}"],2), expected, places=4)
|
92
|
+
|
93
|
+
def test_metrics_from_file(self):
|
94
|
+
dataset_evaluations = [
|
95
|
+
("dataset1", "tests/test_data/results1.csv"),
|
96
|
+
("dataset2", "tests/test_data/results2.csv")
|
97
|
+
|
98
|
+
]
|
99
|
+
metrics = [
|
100
|
+
("adc",{}),
|
101
|
+
("dair",{}),
|
102
|
+
("pakf",{"k":0.2})]
|
103
|
+
expected_score_d1 = {
|
104
|
+
"adc":0.5,
|
105
|
+
"dair":1.0,
|
106
|
+
"pakf":0.67
|
107
|
+
}
|
108
|
+
expected_score_d2 = {
|
109
|
+
"adc":0.12,
|
110
|
+
"dair":1.0,
|
111
|
+
"pakf":0.22
|
112
|
+
}
|
113
|
+
runnner = Runner(dataset_evaluations,"tests/test_data/example_metrics_config.yaml")
|
114
|
+
results = runnner.run()
|
115
|
+
for metric, expected in expected_score_d1.items():
|
116
|
+
params = {}
|
117
|
+
for p in metrics:
|
118
|
+
if p[0] == metric:
|
119
|
+
params = p[1]
|
120
|
+
self.assertAlmostEqual(round(results.loc["dataset1",f"{metric}"],2), expected, places=4)
|
121
|
+
for metric, expected in expected_score_d2.items():
|
122
|
+
params = {}
|
123
|
+
for p in metrics:
|
124
|
+
if p[0] == metric:
|
125
|
+
params = p[1]
|
126
|
+
self.assertAlmostEqual(round(results.loc["dataset2", f"{metric}"],2), expected, places=4)
|
127
|
+
|
128
|
+
def test_evaluation_from_file(self):
|
129
|
+
metrics = [
|
130
|
+
("adc",{}),
|
131
|
+
("dair",{}),
|
132
|
+
("pakf",{"k":0.2})]
|
133
|
+
expected_score_d1 = {
|
134
|
+
"adc":0.5,
|
135
|
+
"dair":1.0,
|
136
|
+
"pakf":0.67
|
137
|
+
}
|
138
|
+
expected_score_d2 = {
|
139
|
+
"adc":0.12,
|
140
|
+
"dair":1.0,
|
141
|
+
"pakf":0.22
|
142
|
+
}
|
143
|
+
runnner = Runner("tests/test_data/example_evaluation_config.yaml")
|
144
|
+
results = runnner.run()
|
145
|
+
print(results)
|
146
|
+
for metric, expected in expected_score_d1.items():
|
147
|
+
params = {}
|
148
|
+
for p in metrics:
|
149
|
+
if p[0] == metric:
|
150
|
+
params = p[1]
|
151
|
+
self.assertAlmostEqual(round(results.loc["dataset1", f"{metric}"],2), expected, places=4)
|
152
|
+
for metric, expected in expected_score_d2.items():
|
153
|
+
params = {}
|
154
|
+
for p in metrics:
|
155
|
+
if p[0] == metric:
|
156
|
+
params = p[1]
|
157
|
+
self.assertAlmostEqual(round(results.loc["dataset2",f"{metric}"],2), expected, places=4)
|
158
|
+
def test_report(self):
|
159
|
+
dataset_evaluations = [
|
160
|
+
("dataset1", "tests/test_data/results1.csv"),
|
161
|
+
("dataset2", "tests/test_data/results2.csv")
|
162
|
+
]
|
163
|
+
|
164
|
+
metrics = [
|
165
|
+
("adc",{}),
|
166
|
+
("dair",{}),
|
167
|
+
("pakf",{"k":0.2})]
|
168
|
+
expected_score_d1 = {
|
169
|
+
"adc":0.5,
|
170
|
+
"dair":1.0,
|
171
|
+
"pakf":0.67
|
172
|
+
}
|
173
|
+
expected_score_d2 = {
|
174
|
+
"adc":0.12,
|
175
|
+
"dair":1.0,
|
176
|
+
"pakf":0.22
|
177
|
+
}
|
178
|
+
runnner = Runner(dataset_evaluations, metrics)
|
179
|
+
results = runnner.run(generate_report=True, report_file="tests/evaluation_report.csv")
|
180
|
+
|
181
|
+
with open("tests/evaluation_report.csv", "r") as generated_file, open("tests/test_data/evaluation_report.csv", "r") as expected_file:
|
182
|
+
self.assertEqual(generated_file.read(), expected_file.read())
|
183
|
+
|
184
|
+
os.remove("tests/evaluation_report.csv")
|
185
|
+
|