tpu-inference 0.11.1.dev202511180814__py3-none-any.whl → 0.12.0.dev20251213__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of tpu-inference might be problematic. Click here for more details.

Files changed (76) hide show
  1. tests/kernels/fused_moe_v1_test.py +303 -34
  2. tests/kernels/mla_v1_test.py +129 -41
  3. tests/kernels/quantized_matmul_kernel_test.py +2 -34
  4. tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +3 -1
  5. tests/kernels/ragged_paged_attention_kernel_v3_test.py +3 -1
  6. tests/lora/test_layers.py +4 -7
  7. tests/lora/test_lora_perf.py +53 -0
  8. tests/lora/utils.py +0 -8
  9. tests/test_envs.py +110 -12
  10. tests/test_quantization.py +3 -0
  11. tests/test_utils.py +1 -2
  12. tpu_inference/__init__.py +22 -3
  13. tpu_inference/core/disagg_utils.py +6 -8
  14. tpu_inference/distributed/tpu_connector.py +3 -4
  15. tpu_inference/distributed/utils.py +3 -2
  16. tpu_inference/envs.py +93 -9
  17. tpu_inference/executors/ray_distributed_executor.py +9 -2
  18. tpu_inference/kernels/collectives/all_gather_matmul.py +12 -6
  19. tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +7 -2
  20. tpu_inference/kernels/fused_moe/v1/kernel.py +712 -143
  21. tpu_inference/kernels/mla/v1/kernel.py +98 -120
  22. tpu_inference/kernels/quantized_matmul/kernel.py +69 -8
  23. tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +2 -1
  24. tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +2 -1
  25. tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +140 -67
  26. tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +204 -120
  27. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +2 -1
  28. tpu_inference/kernels/ragged_paged_attention/v3/util.py +2 -1
  29. tpu_inference/layers/common/attention_interface.py +7 -1
  30. tpu_inference/layers/common/sharding.py +11 -7
  31. tpu_inference/layers/jax/attention/deepseek_v3_attention.py +232 -64
  32. tpu_inference/layers/jax/attention/gpt_oss_attention.py +5 -5
  33. tpu_inference/layers/vllm/fused_moe.py +170 -208
  34. tpu_inference/layers/vllm/linear_common.py +43 -21
  35. tpu_inference/layers/vllm/quantization/common.py +11 -6
  36. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +4 -3
  37. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +74 -65
  38. tpu_inference/layers/vllm/quantization/mxfp4.py +140 -94
  39. tpu_inference/layers/vllm/quantization/unquantized.py +103 -80
  40. tpu_inference/layers/vllm/sharding.py +2 -2
  41. tpu_inference/lora/torch_punica_tpu.py +1 -2
  42. tpu_inference/models/common/model_loader.py +84 -28
  43. tpu_inference/models/jax/deepseek_v3.py +185 -64
  44. tpu_inference/models/jax/gpt_oss.py +3 -3
  45. tpu_inference/models/jax/llama3.py +2 -1
  46. tpu_inference/models/jax/llama_eagle3.py +8 -5
  47. tpu_inference/models/jax/llama_guard_4.py +361 -0
  48. tpu_inference/models/jax/qwen2.py +2 -1
  49. tpu_inference/models/jax/qwen2_5_vl.py +163 -48
  50. tpu_inference/models/jax/qwen3.py +2 -1
  51. tpu_inference/models/jax/utils/quantization/quantization_utils.py +7 -8
  52. tpu_inference/models/jax/utils/weight_utils.py +205 -144
  53. tpu_inference/models/vllm/vllm_model_wrapper.py +14 -8
  54. tpu_inference/platforms/tpu_platform.py +34 -50
  55. tpu_inference/runner/compilation_manager.py +144 -60
  56. tpu_inference/runner/kv_cache.py +40 -20
  57. tpu_inference/runner/kv_cache_manager.py +48 -33
  58. tpu_inference/runner/persistent_batch_manager.py +40 -2
  59. tpu_inference/runner/structured_decoding_manager.py +2 -3
  60. tpu_inference/runner/tpu_runner.py +280 -149
  61. tpu_inference/runner/utils.py +2 -2
  62. tpu_inference/spec_decode/jax/eagle3.py +71 -21
  63. tpu_inference/tpu_info.py +4 -3
  64. tpu_inference/utils.py +46 -18
  65. tpu_inference/worker/tpu_worker.py +197 -63
  66. {tpu_inference-0.11.1.dev202511180814.dist-info → tpu_inference-0.12.0.dev20251213.dist-info}/METADATA +9 -10
  67. {tpu_inference-0.11.1.dev202511180814.dist-info → tpu_inference-0.12.0.dev20251213.dist-info}/RECORD +70 -74
  68. tpu_inference/mock/__init__.py +0 -0
  69. tpu_inference/mock/vllm_config_utils.py +0 -28
  70. tpu_inference/mock/vllm_envs.py +0 -1219
  71. tpu_inference/mock/vllm_logger.py +0 -212
  72. tpu_inference/mock/vllm_logging_utils.py +0 -15
  73. tpu_inference/models/jax/phi3.py +0 -376
  74. {tpu_inference-0.11.1.dev202511180814.dist-info → tpu_inference-0.12.0.dev20251213.dist-info}/WHEEL +0 -0
  75. {tpu_inference-0.11.1.dev202511180814.dist-info → tpu_inference-0.12.0.dev20251213.dist-info}/licenses/LICENSE +0 -0
  76. {tpu_inference-0.11.1.dev202511180814.dist-info → tpu_inference-0.12.0.dev20251213.dist-info}/top_level.txt +0 -0
@@ -1,9 +1,9 @@
1
1
  tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
2
  tests/test_base.py,sha256=Ct5WFRMHL7IHEIxk8FrzAvO8m0xFuDpzDBKkAKKAL2Q,7341
3
- tests/test_envs.py,sha256=Woyfp_d5HS-uTGo4_u9dYlBbgmhfIEoFb-Rx_k7YXD4,6298
4
- tests/test_quantization.py,sha256=IT5ASyS1uuWcxc22kRtBcA-V4j3Z3hb7pMztm3GOlBs,34445
3
+ tests/test_envs.py,sha256=v0_R-HfWRNY8ssPqFrytHMl1irohJaTpS_rSKo2FZaY,10021
4
+ tests/test_quantization.py,sha256=VaxrxS-05PeHEit1bVHZSGnGO2lk2TTjyWh4pxAZwOw,34615
5
5
  tests/test_tpu_info.py,sha256=ZrwlMsp8ffITkS_b8Q1t_QG-a-WVAd4NUcjHhGibcsI,4670
6
- tests/test_utils.py,sha256=Mta5ZzYCgRAh1-BjcOvvx9iQ9DnnXLps7oDHxVQp2yE,8236
6
+ tests/test_utils.py,sha256=GIXLdd-x4gnqSLrySXGk22phqPc8MegFd7ph1Jj8OcU,8182
7
7
  tests/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
8
8
  tests/core/test_core_tpu.py,sha256=r496rk1eOsK_F4nvm9zprl_T-RcO6eCUb7LuVReOZno,21413
9
9
  tests/core/test_disagg_executor.py,sha256=QdE2YZs08EyDDCmSjhiXkXqQ9BJTgO6csr_E1xkkfSg,2256
@@ -11,74 +11,75 @@ tests/core/test_disagg_utils.py,sha256=alktTGppaGdg-_un0Amz8Y0IDQz-xNJN0dXG-YApE
11
11
  tests/core/test_dp_scheduler.py,sha256=IwCR1Vs96V4CQdWA051rNaYxxr2V_byA1yx9HWyRoMg,37339
12
12
  tests/core/test_init.py,sha256=NEFI5A9eKGu4rmeJ2iqd0EmhlA3bzbVkXmMi1PV1b9U,1687
13
13
  tests/kernels/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
14
- tests/kernels/fused_moe_v1_test.py,sha256=c6zbSHQDzOseeyL9VCjQeP7zayNnwYf059CPlKcvZzQ,3137
15
- tests/kernels/mla_v1_test.py,sha256=oZc4TCgquiG0KOeWfv46yJbUIpro_CgCMFc7vzyB7t8,11646
16
- tests/kernels/quantized_matmul_kernel_test.py,sha256=od5-zXFjcsc_gWGRDrREL8E_ftymNniQVTzgtkBo_Gc,5679
14
+ tests/kernels/fused_moe_v1_test.py,sha256=sQ6gvpti94fpPYrSZn7frPPNjqbVmRibFtenVrGGCA4,10403
15
+ tests/kernels/mla_v1_test.py,sha256=FZnFVQomU39fsmZaZaLr51MXN5PeLw5cTOe0eIoLO8o,15501
16
+ tests/kernels/quantized_matmul_kernel_test.py,sha256=9Q3ufAG6NY9jeEFcre_IY2JbwpQdYzzhMWbXb5yfY6Q,4796
17
17
  tests/kernels/ragged_kv_cache_update_v2_test.py,sha256=6-HjP5CoUG-kcuP8MS-JJVMiBnPRo_zadS3VInnO0D4,10821
18
18
  tests/kernels/ragged_paged_attention_kernel_v2_test.py,sha256=pWqo9UYF0tzwgBKO_xYw-TYSPrtAsKcMK5Haj8hFG7I,11340
19
- tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py,sha256=JhIElqUZIRqIsfQ3U1RUzSiH_gz_SabAqDosGGZ2tlA,16321
20
- tests/kernels/ragged_paged_attention_kernel_v3_test.py,sha256=Hrd8iUkS1pS3rxeTyY53aYRg_ZL_d3NqgBXvOgnigSU,14838
19
+ tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py,sha256=1tLpdHK3jb1OYICZ7aPViUsR3NAW1D1pQaoz_fTrrx4,16432
20
+ tests/kernels/ragged_paged_attention_kernel_v3_test.py,sha256=tEMWsQ6M5zO8aOa-JW6XFQJHTyep4aS7pwXe33oLPDs,14949
21
21
  tests/lora/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
22
22
  tests/lora/conftest.py,sha256=EXjwE1CjmUUlMEXpyE3UwxvgrKUllE73I8BNKfP1FTc,984
23
23
  tests/lora/test_bgmv.py,sha256=gQxWsJdNX2nkrE2xyrG0exwf3E2eHm2k2nkEXoANuQc,1359
24
- tests/lora/test_layers.py,sha256=21ekYlsK36r1GPZOfzs7E-KIsfI1JcuZl1E6vaQbHf4,26273
24
+ tests/lora/test_layers.py,sha256=xeA4vFD6pm1DY8Quov-qryjcS3X7ksux9C9U4ectBaQ,26084
25
25
  tests/lora/test_lora.py,sha256=wJiF1P1BDnPN8TLX2tlFtdZ_QCkV-S9nPl6_uR6DqFc,4439
26
- tests/lora/utils.py,sha256=dR_v1H20vPVjFHdBhDajWOz0WJZlKuPLgMFQsME0LtA,3009
27
- tpu_inference/__init__.py,sha256=7IduGWw-_fwx0VA6EvC_AqHF67fnnShz6YvkqCfvFx8,1317
26
+ tests/lora/test_lora_perf.py,sha256=f_uTnJbgHdcyMnVWImgloGaQNRdsMsGhBSkb_G3oJx8,1806
27
+ tests/lora/utils.py,sha256=rY0tDZEZe58ye4-ykwrTnsiWuLcaEG57N_Rua90bDXI,2726
28
+ tpu_inference/__init__.py,sha256=p4MaepRdN7723FUNE-3pOMxZWjFn4_TVFgjrNyty4JE,2304
28
29
  tpu_inference/env_override.py,sha256=pmL7lfs_rGCP92ya3wuWuudsCYeOMZ6tFZY82A4KkQc,365
29
- tpu_inference/envs.py,sha256=MTT_Pdtd6cAcciYjv1OekEmvspaq3SYL0oR_jDkQ_aE,3948
30
+ tpu_inference/envs.py,sha256=A1Bdm5qiXhTdu-Q_yNzBpi79_nOJIDbdFF7MAMqmjxo,6662
30
31
  tpu_inference/logger.py,sha256=HQCz7NefmbturuhOC7-3Ixbtcdgoz4g9FHh2RB6o8cc,334
31
- tpu_inference/tpu_info.py,sha256=9UohshkndR6dZpGWpWXfTD4qvIVdVgHf0yOoSEkLTrw,2276
32
- tpu_inference/utils.py,sha256=iGPY147jP_8AKMu3g7vYTndjJJiOrK_4opA0JWtws5Q,10068
32
+ tpu_inference/tpu_info.py,sha256=3iilHRQSFjwMJwhKcuuawTm7mhwkgHbj4zi6CiAySrs,2265
33
+ tpu_inference/utils.py,sha256=Gx9AKphXvY5ltfXL5DNKEH-I7LN6V4ZIv7cqTgxMtaI,11088
33
34
  tpu_inference/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
34
35
  tpu_inference/core/core_tpu.py,sha256=WDD3koE_j1QhWS2BbMA2aQOZayPZm4tYPvzL4YCX2jY,33294
35
36
  tpu_inference/core/disagg_executor.py,sha256=HZpgYMVxRxm0RQxO4l8IDYBWJ6Z3Tac6xavc5otcirc,4657
36
- tpu_inference/core/disagg_utils.py,sha256=ufWNFWQ5n4YnZpPOtoReHlYo4dlN7AbIqCyqS4an0t4,1572
37
+ tpu_inference/core/disagg_utils.py,sha256=lv8MAVoAjtcmTaenUXVokg2q3d0tzsma86UiQlQ3omY,1492
37
38
  tpu_inference/core/sched/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
38
39
  tpu_inference/core/sched/dp_scheduler.py,sha256=mKs8Ms46szdlBfo8hjdqis2ZKAZbcKnHAGfEr0X5R8g,22527
39
40
  tpu_inference/distributed/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
40
41
  tpu_inference/distributed/jax_parallel_state.py,sha256=5_xCwcL03lFPUoSO_OP7hIVKpUFroW1m-jVO7R6FbUc,2223
41
- tpu_inference/distributed/tpu_connector.py,sha256=Zah46Sm5iOuh72SzXw69NxMc0MLnqsLEpe2BfDhpnqA,29731
42
- tpu_inference/distributed/utils.py,sha256=RwFQi8G4TzN1g9RjQu0pb5JxSc_jhoIZVsFJo0uHjxo,1513
42
+ tpu_inference/distributed/tpu_connector.py,sha256=kLaTwy6BrAThJeFkd1soJ47bBo5iGp4GjUJs7xFx4Tg,29696
43
+ tpu_inference/distributed/utils.py,sha256=1KIREn28Zg10O-MSUkVQMRzS09WoGc_VLGOX4QTFJac,1504
43
44
  tpu_inference/executors/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
44
- tpu_inference/executors/ray_distributed_executor.py,sha256=ZMuVUwmroi7UUZs3u67OsOwUIkxNDz9IszUPG20F18E,15904
45
+ tpu_inference/executors/ray_distributed_executor.py,sha256=9CnzWb8aurH1B0tJfMHB73F-RQBGqSf5DnymetBvZ5o,16225
45
46
  tpu_inference/experimental/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
46
47
  tpu_inference/experimental/llama3_jax_stashed.py,sha256=YK1oSIfto9ALo-HB45XfSrbq9XgVbE4m2C-9zRwmSzI,10913
47
48
  tpu_inference/kernels/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
48
49
  tpu_inference/kernels/collectives/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
49
- tpu_inference/kernels/collectives/all_gather_matmul.py,sha256=0OYLLjlDmkRYScl7lHRi0o___5I5iMiW1gso-_dWSbc,27255
50
- tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py,sha256=KdaOIzTfIgUR0CcUTA46tpYH-cxPNoJx2cTMEvHx-Ac,1399
50
+ tpu_inference/kernels/collectives/all_gather_matmul.py,sha256=TtQWY0lNj8699JwDmjqbRrdku-3oAw5WkuuoFPS49AY,27597
51
+ tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py,sha256=OEPf4q08IeIFyJfzizgRs6kSD7w35NeZDRIn7CcZ344,1468
51
52
  tpu_inference/kernels/collectives/util.py,sha256=LbLD6lOxuszbUsykF89gWQqEJUICCZsfzam3EJDPnFE,1859
52
53
  tpu_inference/kernels/flash_attention/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
53
54
  tpu_inference/kernels/flash_attention/kernel.py,sha256=n8gmAFVfchMXlyaSEj8xXJm6AadFt26edQihPRdithY,25897
54
55
  tpu_inference/kernels/fused_moe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
55
56
  tpu_inference/kernels/fused_moe/v1/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
56
- tpu_inference/kernels/fused_moe/v1/kernel.py,sha256=QHB0QEvC3x_6zhwz06JQpaOncQcNAhOSV92dD5tGVq8,40869
57
+ tpu_inference/kernels/fused_moe/v1/kernel.py,sha256=p1gfFKK-Goa0RVFusVup_F9fVKdZslYQp60S93v43Q0,65179
57
58
  tpu_inference/kernels/mla/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
58
59
  tpu_inference/kernels/mla/v1/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
59
- tpu_inference/kernels/mla/v1/kernel.py,sha256=dw1nhpL47uQxMFOIN2kENC6aITbalT81YZLAyr1usLU,51571
60
+ tpu_inference/kernels/mla/v1/kernel.py,sha256=5VBo2-C2-hRWSS1NVlDLneZixtnFiJQX6vE5cDBf5Xs,50222
60
61
  tpu_inference/kernels/quantized_matmul/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
61
- tpu_inference/kernels/quantized_matmul/kernel.py,sha256=4oEVUXgWOeOY-PfySHf-iEuUSd9J7GQk_rDSbxa7CXg,14086
62
+ tpu_inference/kernels/quantized_matmul/kernel.py,sha256=-A9Kd2ApHWgPvCaUPfjM5JooLz_iCfWV1UT0taaZaAo,16264
62
63
  tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py,sha256=3zhIm73JEE8qOty2_0v3AJlVz13k6qMB5wlXBDyC1EM,35130
63
64
  tpu_inference/kernels/quantized_matmul/util.py,sha256=rf6nIiAj9I2cj4LDvtaZGhcLXEc94o2xgMWasnFaREM,1943
64
65
  tpu_inference/kernels/ragged_paged_attention/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
65
66
  tpu_inference/kernels/ragged_paged_attention/v2/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
66
- tpu_inference/kernels/ragged_paged_attention/v2/kernel.py,sha256=OiQGAHhyggbp1PeuasPymopFohKOJjGXcpq9p_S8UWA,34940
67
- tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py,sha256=vGp2ZWODTbjyG9z2z0Qf_BX-wYHd5bUybnc_DtOz0nI,10995
67
+ tpu_inference/kernels/ragged_paged_attention/v2/kernel.py,sha256=462jgsWdnaQfO9K1Y99cJ-qidYWXZMc5GdoY9enQEWY,35019
68
+ tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py,sha256=y9-C_F28WGd282Ra_DqwTbHyUIIj2jyWY3DiX8yozHY,11080
68
69
  tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py,sha256=mw80bXBGenroGdrITV0F_EaI2s-Z9KWwqU9WodvJg14,97919
69
70
  tpu_inference/kernels/ragged_paged_attention/v3/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
70
- tpu_inference/kernels/ragged_paged_attention/v3/kernel.py,sha256=tlP6121yfXaukx_RQroHlHcZnbKPyyum0lAcvT0B_Pk,56132
71
- tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py,sha256=pD1Pte3neoLAxE3I3-VyV_4FuqgCHeAHGzEjMVt0MMk,56004
71
+ tpu_inference/kernels/ragged_paged_attention/v3/kernel.py,sha256=X4kz6C4Zujy7Lm5pQhMRHqvWHO6baXDcosbUEUgJ4us,59258
72
+ tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py,sha256=9M67U_lL2pYmR_TfNfJ_JexxlXoqUz9p_uXw4rlRvVo,59715
72
73
  tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py,sha256=k3LwduhZO85cJ-pSgnGN0c2Nn8eNeQq4eA94KUXJzMw,142198
73
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py,sha256=P3_ivi8iUz5QMU_3pgpl4Bkbmn0q0NpDtVJX39haRQA,11208
74
- tpu_inference/kernels/ragged_paged_attention/v3/util.py,sha256=1N_ozjKboDYLteFJndWoLXNudj2z53rGXMkELa5Z9tY,1102
74
+ tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py,sha256=O0XK9pPS3QyH3-7PG7m7FD9cMGV_vYV0f39evmLDDhI,11235
75
+ tpu_inference/kernels/ragged_paged_attention/v3/util.py,sha256=4ypt-NQwhfjCtPxFdZ1OhidZtiVRGPGbNMj1F9HbqMk,1181
75
76
  tpu_inference/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
76
77
  tpu_inference/layers/common/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
77
- tpu_inference/layers/common/attention_interface.py,sha256=CImMS8tuWgvaRY9YbGS3pY7OBnzeJ4Jla7LRFb4Xoa4,13224
78
+ tpu_inference/layers/common/attention_interface.py,sha256=V3YowJ_3PTwpRnN72o8Kph17szBB4x9fKC-XE8JpvUc,13368
78
79
  tpu_inference/layers/common/attention_metadata.py,sha256=St8ZatbY1D7xQACKJH459jMgp3oTP3AQ36mi9FZdrPU,850
79
80
  tpu_inference/layers/common/binary_search.py,sha256=ZQi-z1wG6WTcfVQXeTGOZokX4K1DSf9kCzqfrhEU8lk,12320
80
81
  tpu_inference/layers/common/quant_methods.py,sha256=mQSxZ44-QQtm22C_8ViejnP1cP2Dv6yc2YaP6oMKJeQ,185
81
- tpu_inference/layers/common/sharding.py,sha256=wBqdkXZSWfnnH8pkJtyW2DSqmAe_V4Vxi0iMPaXq0Z0,25185
82
+ tpu_inference/layers/common/sharding.py,sha256=_FTTPrbet069tHRSAaSg_nT3DYRM5x4pRLZPO7jwqUY,25410
82
83
  tpu_inference/layers/jax/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
83
84
  tpu_inference/layers/jax/base.py,sha256=Vhts6ZMwNCZ8LbnEXeB0rl3nHdS5hDJWX7HEa7Fl7yE,5775
84
85
  tpu_inference/layers/jax/constants.py,sha256=NcYg0zAf3ClfP7YMYdYu_F1GngOzZaIxIAHBZDunKw4,2755
@@ -89,8 +90,8 @@ tpu_inference/layers/jax/rope_interface.py,sha256=X0SruXizlCHGnssFujC1pL07UC4Vsp
89
90
  tpu_inference/layers/jax/transformer_block.py,sha256=ufv-yfVDmRP_Ynrx3UX9xj-x0PkNw_tQ-0N0eYf4i7M,3917
90
91
  tpu_inference/layers/jax/attention/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
91
92
  tpu_inference/layers/jax/attention/attention.py,sha256=DJFDkpQc9SDD156wVPFw3r2XaBgb44QNJ8OcdONaF5g,10085
92
- tpu_inference/layers/jax/attention/deepseek_v3_attention.py,sha256=YlagoBMwINv2KRH1dr4oEcH_cQ9QMPB55nO2FQZsWs0,14010
93
- tpu_inference/layers/jax/attention/gpt_oss_attention.py,sha256=rkrEv4aNZxtAGcXd1HXHUxhNeDNAd9nWTEZOKWSI8cA,8725
93
+ tpu_inference/layers/jax/attention/deepseek_v3_attention.py,sha256=02Zn5fIlV11QC0wx-prEp2gRxqo1YgTPlqleDKWcv_U,21086
94
+ tpu_inference/layers/jax/attention/gpt_oss_attention.py,sha256=A7V0M24p1yLKE3Gx7mIXEP7NG5tTAl5SxZLuDYIW6M0,8703
94
95
  tpu_inference/layers/jax/attention/llama4_attention.py,sha256=VvUmfBxQEbHf3F2BrcYDUnq5abj7CSDYeRsNx_eVAh0,6162
95
96
  tpu_inference/layers/jax/moe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
96
97
  tpu_inference/layers/jax/moe/deepseek_v3_moe.py,sha256=Q6CuwwiZtWYm6iUee1wJoDJrwJE6_bcznTK2HrtXb0M,26089
@@ -102,78 +103,73 @@ tpu_inference/layers/jax/sample/sampling.py,sha256=C30KgmdOVSaagvHhbfLgVJtVQmJo8
102
103
  tpu_inference/layers/jax/sample/sampling_metadata.py,sha256=Gd835LNWfGM0NRQBVBqEv0nPwt5q9F4AdFym0CUS1fw,2561
103
104
  tpu_inference/layers/vllm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
104
105
  tpu_inference/layers/vllm/attention.py,sha256=wbJpcgqEAuIirv5PIULbiP-ggMKjmTanbB7Dg0BVYv4,7366
105
- tpu_inference/layers/vllm/fused_moe.py,sha256=XZt2CPUz00qZzDcyfBFz6buhVzmGL1amHalHJALl9zw,18945
106
- tpu_inference/layers/vllm/linear_common.py,sha256=_YlJtbdaYcck_j-gFLos_k0ycktVWxT8Qo57tR2YqJ8,7749
107
- tpu_inference/layers/vllm/sharding.py,sha256=WTx1tF_7R99AdyE-lL7HQJ378hAafeI-JVRsugAvwn4,9177
106
+ tpu_inference/layers/vllm/fused_moe.py,sha256=qGbQoCq-sdcZj_Q0kP6RzQk7_YvcX7FopkpLcerjNFM,17819
107
+ tpu_inference/layers/vllm/linear_common.py,sha256=AaI5fyivhsEtpIqOY3DKiS8ZxL62v8O4MYKn8E8eYoA,8579
108
+ tpu_inference/layers/vllm/sharding.py,sha256=as7CF8UKTF3ToymwRY5Pi8uzwJk0P1sHPkWB5xEx3mA,9169
108
109
  tpu_inference/layers/vllm/quantization/__init__.py,sha256=SEppGayBzzQ5tsXLSy99aqilkAawQwYxnv2alCg6-ZU,1777
109
110
  tpu_inference/layers/vllm/quantization/awq.py,sha256=-8ZmjGvSKJB6_JuwSctNWt8xHWq4VSvK_AK9iahlgCo,8495
110
- tpu_inference/layers/vllm/quantization/common.py,sha256=wm3pge6XMTMsLK7_SSdgBP0PvQzz-1mrqN2I6xMqzrc,4218
111
- tpu_inference/layers/vllm/quantization/mxfp4.py,sha256=KwGoqIiPkd6FplGuYAKi4uX5A8MPlZqq99MVPchXyi4,11561
112
- tpu_inference/layers/vllm/quantization/unquantized.py,sha256=Q1v1ZbSIDmaoOg97Ehv6rA5CnSf6nTP40xDBMmHHeLw,15054
111
+ tpu_inference/layers/vllm/quantization/common.py,sha256=U3fm5rzQNmWa8i0dqx7Km8WZWVobulYi1I1RRokiJ-M,4324
112
+ tpu_inference/layers/vllm/quantization/mxfp4.py,sha256=9wdImu5zkMRzeraHxq_Wxkl2EZyxbHSGQaImCqEWEAg,12837
113
+ tpu_inference/layers/vllm/quantization/unquantized.py,sha256=KC_cCFDi4AmMp17tKokCq0cWlU-0zaXQzLYovUaZHok,15424
113
114
  tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
114
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py,sha256=6idEyy3e849fZ1UeNvc9eSHYX7e6qvohrJa_d_D9MBk,5285
115
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py,sha256=FM901QhyhJRC8CuMeICzCVVERvBHbhruRxYW0EQ570s,8820
115
+ tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py,sha256=LRR0mGtVm1k70-dsgUxtVdvDdoPYpfD-1w3WoljbYEo,5339
116
+ tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py,sha256=4dd1kyLHp-xTLkuuH7oU-XAmd0L7vGuMv7dS8h0N0aU,9177
116
117
  tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
117
118
  tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py,sha256=6sQvsxiWdi5Vte8V9vrQ2abaqGqWpq-mtzU7lGAo-ac,8759
118
119
  tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py,sha256=4y7lYgybpXszpCAtxGFhR8LDEbEoCCeo3DfUSOXxhaQ,5202
119
120
  tpu_inference/lora/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
120
121
  tpu_inference/lora/torch_lora_ops.py,sha256=pr3N7DVfkn3ANijUC6dBoiCtIJW4fdJpKdC3zWBUsxE,3121
121
- tpu_inference/lora/torch_punica_tpu.py,sha256=b27DpmIS_N5bhlIcryiENYNmPxp_cu40CGxjPW64d44,12706
122
- tpu_inference/mock/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
123
- tpu_inference/mock/vllm_config_utils.py,sha256=FlQshLjoHdgs3C66tYHYbKFUjbk9DhUwY-7HibZk0fI,878
124
- tpu_inference/mock/vllm_envs.py,sha256=cCubeOhH2WeYZQFJt6W0y_IiQo0fzIWR1LCCE8i6kI4,50990
125
- tpu_inference/mock/vllm_logger.py,sha256=vUGnN5nKT--ZvU15YCzODUM_FGiXKhcrrjDGjeN00RQ,7297
126
- tpu_inference/mock/vllm_logging_utils.py,sha256=TEUmKj3xHiLzHBnFqAujcxH0t2hBQ04sUaho2RyORnk,486
122
+ tpu_inference/lora/torch_punica_tpu.py,sha256=qTnXZGLoOgvukSxeunO_SfpPTlkq9GlMj9H7zVYg9LE,12680
127
123
  tpu_inference/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
128
124
  tpu_inference/models/common/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
129
- tpu_inference/models/common/model_loader.py,sha256=VgxM2OODb0-69dexv4aNJ4g24Nrx5sj_ra4XStkhl14,18289
125
+ tpu_inference/models/common/model_loader.py,sha256=RKLSj4BnkaEZe4R0JG1L_ghX4VTgygm-u5aGGVJk9lM,21035
130
126
  tpu_inference/models/jax/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
131
- tpu_inference/models/jax/deepseek_v3.py,sha256=SKOHVEC-_2NLxBnzBzbu5tu0d6FTlAEiI1EefGaO2QE,40047
132
- tpu_inference/models/jax/gpt_oss.py,sha256=Vw4LRB5Kp6hbA2hjZGFS8kiEqOCjf881XH2JNtu2S1I,20924
127
+ tpu_inference/models/jax/deepseek_v3.py,sha256=rsGOV6b_EnOxMwz3r2s508g_fhdLJ2hj2EwP2mN0A8I,45967
128
+ tpu_inference/models/jax/gpt_oss.py,sha256=IvTAKtdJIlBpvYUcPWfwPDyOIVd4ci6eNkoV5AEUia4,20930
133
129
  tpu_inference/models/jax/jax_intermediate_tensor.py,sha256=Pxu1PCV5LN5X58aYVkPiohcXZIeKVim2oqvrS_cVgw4,2604
134
- tpu_inference/models/jax/llama3.py,sha256=w99DAfipGS9HyX2ZRwqyYLxC3oa0ew5eEQ6EXlMMf18,13426
130
+ tpu_inference/models/jax/llama3.py,sha256=ZiFtrpAzXTT9vAPES9UeuJInCWGbvDWs7g0_JLdCCa4,13479
135
131
  tpu_inference/models/jax/llama4.py,sha256=wf2Sp2iYViaYD5rSfv3_ryO6gYuYM5XaOyvghaP4OCY,29631
136
- tpu_inference/models/jax/llama_eagle3.py,sha256=STUkAK6XEA7JM3i_Lx36-t5BhkAGeW_xYiq3zYhHP1A,12297
137
- tpu_inference/models/jax/phi3.py,sha256=TpP3Nvr1myW_Qd8xNrLP1VmXtq7BuTcWNayJitskFd0,13579
138
- tpu_inference/models/jax/qwen2.py,sha256=P_x_Qygf-nanmF8Uufk4c-qLNxP4RAk4yuqSF8VwbxE,13357
139
- tpu_inference/models/jax/qwen2_5_vl.py,sha256=fvMgM5GfUn5EECaMbR0z37mmbCHphAT1AvWPvGkhVn4,43942
140
- tpu_inference/models/jax/qwen3.py,sha256=lr3TIIQKmNgWFDFxwuPsVOypqBijkqrpnNCopVg4iBo,10997
132
+ tpu_inference/models/jax/llama_eagle3.py,sha256=7-U99yvBkle-FSZ3NDDI-obWSQ2Fo2OTOi1H67H4jxY,12476
133
+ tpu_inference/models/jax/llama_guard_4.py,sha256=LrnU2zBWM0s4q_5dwmR--OO0V7ttltsYhrHYlBgQVIw,15275
134
+ tpu_inference/models/jax/qwen2.py,sha256=SuAp7tErk8OoIRko0Vt6QSOZP_9B9r5GTfqmVfImUIo,13410
135
+ tpu_inference/models/jax/qwen2_5_vl.py,sha256=WUOmqNE6fHQ8PGU85Y8Bt6-CtCC1Uubbox_9FdpDMMo,49833
136
+ tpu_inference/models/jax/qwen3.py,sha256=CIZQKjZDke_LPGsLNhRCJdDTzWueUneBPAQ1blS24IM,11050
141
137
  tpu_inference/models/jax/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
142
138
  tpu_inference/models/jax/utils/file_utils.py,sha256=NOuSC3YFnZpf3CZgYdghbbiNYJt42zgjlEYbOZIVct4,2840
143
139
  tpu_inference/models/jax/utils/multi_modal_utils.py,sha256=rrIrQWidkUnGilBHKNpdYh7_2BkvnAaqanXjC81GNcg,6156
144
- tpu_inference/models/jax/utils/weight_utils.py,sha256=65-H8BTbyilIBMBfvWjkkW3mf4soYASbhrJFqbFKzL4,20129
140
+ tpu_inference/models/jax/utils/weight_utils.py,sha256=JXclW_ioRlizTBHweDj8Ml-ybv5HT-cucMf4w_0AgIc,21678
145
141
  tpu_inference/models/jax/utils/quantization/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
146
142
  tpu_inference/models/jax/utils/quantization/mxfp4_utils.py,sha256=boGnqJCRIOf5nedAxQ8_IUTV6Rfll10DXnRC40BeeE8,3682
147
- tpu_inference/models/jax/utils/quantization/quantization_utils.py,sha256=xgKoKB7AM3TYPxzVgEGLTK9ebQH2Kx8mNuO0heovkmk,26778
143
+ tpu_inference/models/jax/utils/quantization/quantization_utils.py,sha256=0ASVjrqYiyX27-U71OMxCMkqSln-s8H9rZlPCfFD_qI,26586
148
144
  tpu_inference/models/jax/utils/quantization/configs/fp8_all_modules_w_only.yaml,sha256=d_YHPtaRJ_7PBrPijSzJGnVeoJO62tKIGqrgFqpYT1k,137
149
145
  tpu_inference/models/jax/utils/quantization/configs/fp8_default.yaml,sha256=b7SyL75HuSTj3fN9_ZLCK_CDiccL5DGq_DddGmxj_qk,170
150
146
  tpu_inference/models/jax/utils/quantization/configs/int8_all_modules_w_only.yaml,sha256=0Qwij71zj9k6rmrUNd8Q5df9YYfkoJ1ZkgMAHxQy81k,128
151
147
  tpu_inference/models/jax/utils/quantization/configs/int8_default.yaml,sha256=lGec0UwwxmNPNgKPSsTsCMSXNJjhw507KMtM2NsSCMw,152
152
148
  tpu_inference/models/vllm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
153
- tpu_inference/models/vllm/vllm_model_wrapper.py,sha256=o3oJ7Uhu-vSJEFHHifF8e0Q7dULRKJ2GRsT1qAN6PWY,12099
149
+ tpu_inference/models/vllm/vllm_model_wrapper.py,sha256=3EcaD_1vZuyAZBfDtm5u_qfCahQU28qR4rAUraNAFqs,12305
154
150
  tpu_inference/models/vllm/vllm_model_wrapper_context.py,sha256=yxlJHPmRQIAwlb1MmHK3xfXokgIkJ-evNU4PgyoJUdg,1187
155
151
  tpu_inference/platforms/__init__.py,sha256=lQCrKddS_GcGpCbeogvz9zOZD1mQw5bBsiw8On46qFQ,74
156
- tpu_inference/platforms/tpu_platform.py,sha256=AYFr1Q7VUN76wcdgOe_wZuVIHgp2U8isBJ3iHrYqt0M,10530
152
+ tpu_inference/platforms/tpu_platform.py,sha256=naS-yuZXi16hAkQ5n-Leru0y-GeIzX0WbsCTM0AGACk,9629
157
153
  tpu_inference/runner/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
158
154
  tpu_inference/runner/block_table.py,sha256=K3Ic8EgPM08d_C5nEN60mxoRydlaQWySAemf_8Q_qVw,4175
159
- tpu_inference/runner/compilation_manager.py,sha256=yIsonouB5G0-fyVtAKuyyRXaMGNFwnX8D7q6ppQYgUI,36318
155
+ tpu_inference/runner/compilation_manager.py,sha256=tWzyNBMYFk-G6hRMyos5aEG4k_YgXUyD-VIOWeC1Da4,40423
160
156
  tpu_inference/runner/input_batch.py,sha256=bx221NX2IOWzrtopss-B-2ZKW4y-U6nQpG09PjpUziw,18273
161
- tpu_inference/runner/kv_cache.py,sha256=F4dzW2d53xuxkFUn0oKzwE6VklGUeVm-QM19NVfIQDU,4577
162
- tpu_inference/runner/kv_cache_manager.py,sha256=CJxXtdWuewJqcTBMoR70_Uvwxjtc3cK2jxe1KpI9kQc,22152
157
+ tpu_inference/runner/kv_cache.py,sha256=e3sfOJRuaLC7WVX0V_lFTxo-Z5pQf3CAnAgGy707YxY,5471
158
+ tpu_inference/runner/kv_cache_manager.py,sha256=F2oVejiCaPBNDJAO0y6FYv6YyPsKckVRE--Zhv4zXo0,22842
163
159
  tpu_inference/runner/lora_utils.py,sha256=B4xMCgXGJ4VNdePvn89HH3tIZ-gYsQ7Vq_YCiYIATEY,3843
164
160
  tpu_inference/runner/multimodal_manager.py,sha256=azEPdHOwz8CN11MQmorGdtrCLbFaTCxdWyuEsZTzjYM,9778
165
- tpu_inference/runner/persistent_batch_manager.py,sha256=KERSfKy6XjMejnbtPGI3hzoYAHJLeCxmpZVYPqBCago,11156
161
+ tpu_inference/runner/persistent_batch_manager.py,sha256=Otu67vOTf1_HKAMZgPDDHlRvvZ3YVJdz-QderH4qOII,13263
166
162
  tpu_inference/runner/speculative_decoding_manager.py,sha256=I3FDWKh2dn6nV8LgTGfCTwMKYnxQsTPpBIrmaJngXHs,10215
167
- tpu_inference/runner/structured_decoding_manager.py,sha256=Y0ERPhj4olFh6Y2TxP0R1_4UIJwy7nemYA-h63YIR2U,3622
168
- tpu_inference/runner/tpu_runner.py,sha256=3SZYn0CBA4LOaTO3GdQOxKx3HKmVcNmUEeSyzSAGyFY,73320
169
- tpu_inference/runner/utils.py,sha256=ZnWUoNo-7INeB0mdXti1jwUOdbmxyExznOs-crRTQLk,17126
163
+ tpu_inference/runner/structured_decoding_manager.py,sha256=gZQKQUFxh6xYYH9eGTdbguqk8hc2WwTrIdMMuCcbymE,3573
164
+ tpu_inference/runner/tpu_runner.py,sha256=yjY9dGpHku6mhSjD113viNPwvrmBXwiRvzhj2RrvI_E,79834
165
+ tpu_inference/runner/utils.py,sha256=lKqL5nxGTk7ufzJRNdp4udn2bPu3jIX52W7akXgSrHc,17133
170
166
  tpu_inference/spec_decode/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
171
167
  tpu_inference/spec_decode/jax/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
172
- tpu_inference/spec_decode/jax/eagle3.py,sha256=A1dt-dmBttpy-5DGcL4noEDCB0OGP8Xo6MXqgJvWIo8,16593
168
+ tpu_inference/spec_decode/jax/eagle3.py,sha256=FxP0uWeQlHlgCpt1nY3FUd4lKlegKJljHyc05jJucaQ,19104
173
169
  tpu_inference/worker/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
174
- tpu_inference/worker/tpu_worker.py,sha256=0ZguK2BtIQjQSvyUTcUH9ENBrxt09w3CbgPoDY13Eok,14210
175
- tpu_inference-0.11.1.dev202511180814.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
176
- tpu_inference-0.11.1.dev202511180814.dist-info/METADATA,sha256=6dHy_ByQ0ihDNFuqyb-ZXTFczvQ8Ia54zBNTKaUPhSk,5465
177
- tpu_inference-0.11.1.dev202511180814.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
178
- tpu_inference-0.11.1.dev202511180814.dist-info/top_level.txt,sha256=gb1hRIQ3DOawUfVzvPL2E__2KPIl9I0vb5r0xcRBGYQ,20
179
- tpu_inference-0.11.1.dev202511180814.dist-info/RECORD,,
170
+ tpu_inference/worker/tpu_worker.py,sha256=ygpjBeSRd7iz6Upf2NxuExsyHhHJFdCgdUL0SN2HRTE,20615
171
+ tpu_inference-0.12.0.dev20251213.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
172
+ tpu_inference-0.12.0.dev20251213.dist-info/METADATA,sha256=Uy87CPn-1EfirI5J77oxS-d-ABvxxynki53m68sVIuo,5767
173
+ tpu_inference-0.12.0.dev20251213.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
174
+ tpu_inference-0.12.0.dev20251213.dist-info/top_level.txt,sha256=gb1hRIQ3DOawUfVzvPL2E__2KPIl9I0vb5r0xcRBGYQ,20
175
+ tpu_inference-0.12.0.dev20251213.dist-info/RECORD,,
File without changes
@@ -1,28 +0,0 @@
1
- from dataclasses import dataclass, field
2
- from typing import Any, List, Mapping
3
-
4
-
5
- @dataclass
6
- class ModelConfig():
7
- max_model_len: int = 2048
8
- max_prefill_len: int = 1024
9
- prefill_batch_size: int = 1
10
- decode_batch_size: int = 1
11
- block_size: int = 16
12
- num_layers: int = 32
13
- num_kv_heads: int = 32
14
- head_dim: int = 128
15
- vocab_size: int = 32000
16
- model: str = "llama3"
17
- hf_config: str = ""
18
- architectures: List[str] = field(default_factory=list)
19
- override_generation_config: dict[str, Any] = field(default_factory=dict)
20
- hf_overrides: dict[str, Any] = field(default_factory=dict)
21
-
22
-
23
- @dataclass
24
- class VllmConfig():
25
- additional_config: Mapping[str, Any] = field(default_factory=dict)
26
- # Set default max_model_len to turn off warnings.
27
- model_config: ModelConfig = field(
28
- default_factory=lambda: ModelConfig(max_model_len=1024))