tpu-inference 0.11.1.dev202511180814__py3-none-any.whl → 0.12.0.dev20251213__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tpu-inference might be problematic. Click here for more details.
- tests/kernels/fused_moe_v1_test.py +303 -34
- tests/kernels/mla_v1_test.py +129 -41
- tests/kernels/quantized_matmul_kernel_test.py +2 -34
- tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +3 -1
- tests/kernels/ragged_paged_attention_kernel_v3_test.py +3 -1
- tests/lora/test_layers.py +4 -7
- tests/lora/test_lora_perf.py +53 -0
- tests/lora/utils.py +0 -8
- tests/test_envs.py +110 -12
- tests/test_quantization.py +3 -0
- tests/test_utils.py +1 -2
- tpu_inference/__init__.py +22 -3
- tpu_inference/core/disagg_utils.py +6 -8
- tpu_inference/distributed/tpu_connector.py +3 -4
- tpu_inference/distributed/utils.py +3 -2
- tpu_inference/envs.py +93 -9
- tpu_inference/executors/ray_distributed_executor.py +9 -2
- tpu_inference/kernels/collectives/all_gather_matmul.py +12 -6
- tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +7 -2
- tpu_inference/kernels/fused_moe/v1/kernel.py +712 -143
- tpu_inference/kernels/mla/v1/kernel.py +98 -120
- tpu_inference/kernels/quantized_matmul/kernel.py +69 -8
- tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +2 -1
- tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +2 -1
- tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +140 -67
- tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +204 -120
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +2 -1
- tpu_inference/kernels/ragged_paged_attention/v3/util.py +2 -1
- tpu_inference/layers/common/attention_interface.py +7 -1
- tpu_inference/layers/common/sharding.py +11 -7
- tpu_inference/layers/jax/attention/deepseek_v3_attention.py +232 -64
- tpu_inference/layers/jax/attention/gpt_oss_attention.py +5 -5
- tpu_inference/layers/vllm/fused_moe.py +170 -208
- tpu_inference/layers/vllm/linear_common.py +43 -21
- tpu_inference/layers/vllm/quantization/common.py +11 -6
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +4 -3
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +74 -65
- tpu_inference/layers/vllm/quantization/mxfp4.py +140 -94
- tpu_inference/layers/vllm/quantization/unquantized.py +103 -80
- tpu_inference/layers/vllm/sharding.py +2 -2
- tpu_inference/lora/torch_punica_tpu.py +1 -2
- tpu_inference/models/common/model_loader.py +84 -28
- tpu_inference/models/jax/deepseek_v3.py +185 -64
- tpu_inference/models/jax/gpt_oss.py +3 -3
- tpu_inference/models/jax/llama3.py +2 -1
- tpu_inference/models/jax/llama_eagle3.py +8 -5
- tpu_inference/models/jax/llama_guard_4.py +361 -0
- tpu_inference/models/jax/qwen2.py +2 -1
- tpu_inference/models/jax/qwen2_5_vl.py +163 -48
- tpu_inference/models/jax/qwen3.py +2 -1
- tpu_inference/models/jax/utils/quantization/quantization_utils.py +7 -8
- tpu_inference/models/jax/utils/weight_utils.py +205 -144
- tpu_inference/models/vllm/vllm_model_wrapper.py +14 -8
- tpu_inference/platforms/tpu_platform.py +34 -50
- tpu_inference/runner/compilation_manager.py +144 -60
- tpu_inference/runner/kv_cache.py +40 -20
- tpu_inference/runner/kv_cache_manager.py +48 -33
- tpu_inference/runner/persistent_batch_manager.py +40 -2
- tpu_inference/runner/structured_decoding_manager.py +2 -3
- tpu_inference/runner/tpu_runner.py +280 -149
- tpu_inference/runner/utils.py +2 -2
- tpu_inference/spec_decode/jax/eagle3.py +71 -21
- tpu_inference/tpu_info.py +4 -3
- tpu_inference/utils.py +46 -18
- tpu_inference/worker/tpu_worker.py +197 -63
- {tpu_inference-0.11.1.dev202511180814.dist-info → tpu_inference-0.12.0.dev20251213.dist-info}/METADATA +9 -10
- {tpu_inference-0.11.1.dev202511180814.dist-info → tpu_inference-0.12.0.dev20251213.dist-info}/RECORD +70 -74
- tpu_inference/mock/__init__.py +0 -0
- tpu_inference/mock/vllm_config_utils.py +0 -28
- tpu_inference/mock/vllm_envs.py +0 -1219
- tpu_inference/mock/vllm_logger.py +0 -212
- tpu_inference/mock/vllm_logging_utils.py +0 -15
- tpu_inference/models/jax/phi3.py +0 -376
- {tpu_inference-0.11.1.dev202511180814.dist-info → tpu_inference-0.12.0.dev20251213.dist-info}/WHEEL +0 -0
- {tpu_inference-0.11.1.dev202511180814.dist-info → tpu_inference-0.12.0.dev20251213.dist-info}/licenses/LICENSE +0 -0
- {tpu_inference-0.11.1.dev202511180814.dist-info → tpu_inference-0.12.0.dev20251213.dist-info}/top_level.txt +0 -0
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
import jax
|
|
2
2
|
import jax.numpy as jnp
|
|
3
3
|
import numpy as np
|
|
4
|
-
from absl.testing import absltest
|
|
4
|
+
from absl.testing import absltest, parameterized
|
|
5
5
|
from jax._src import test_util as jtu
|
|
6
6
|
from jax.sharding import Mesh
|
|
7
7
|
|
|
@@ -10,6 +10,15 @@ from tpu_inference.kernels.fused_moe.v1.kernel import fused_ep_moe, ref_moe
|
|
|
10
10
|
jax.config.parse_flags_with_absl()
|
|
11
11
|
|
|
12
12
|
|
|
13
|
+
def cdiv(a, b):
|
|
14
|
+
assert b != 0
|
|
15
|
+
return (a + b - 1) // b
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
def align_to(x, a):
|
|
19
|
+
return cdiv(x, a) * a
|
|
20
|
+
|
|
21
|
+
|
|
13
22
|
def gen_moe_inputs(
|
|
14
23
|
dtype,
|
|
15
24
|
top_k,
|
|
@@ -19,11 +28,14 @@ def gen_moe_inputs(
|
|
|
19
28
|
num_tokens,
|
|
20
29
|
*,
|
|
21
30
|
seed=1234,
|
|
31
|
+
has_bias=False,
|
|
22
32
|
):
|
|
23
33
|
key = jax.random.key(seed)
|
|
24
|
-
k0, k1, k2, k4, k5 = jax.random.split(key,
|
|
34
|
+
k0, k1, k2, k3, k4, k5, k6 = jax.random.split(key, 7)
|
|
35
|
+
|
|
25
36
|
a = jax.random.normal(k0, (num_tokens, hidden_size),
|
|
26
37
|
dtype=jnp.float32).astype(dtype) / 10
|
|
38
|
+
|
|
27
39
|
w1 = (jax.random.normal(
|
|
28
40
|
k1,
|
|
29
41
|
(num_experts, 2, hidden_size, intermediate_size),
|
|
@@ -31,21 +43,54 @@ def gen_moe_inputs(
|
|
|
31
43
|
) / 10).astype(dtype)
|
|
32
44
|
w2 = (jax.random.normal(k2, (num_experts, intermediate_size, hidden_size),
|
|
33
45
|
dtype=jnp.float32) / 10).astype(dtype)
|
|
46
|
+
|
|
47
|
+
if has_bias:
|
|
48
|
+
b1 = (jax.random.normal(k3, (num_experts, 2, intermediate_size),
|
|
49
|
+
dtype=jnp.float32) / 10).astype(dtype)
|
|
50
|
+
b2 = (jax.random.normal(k4, (num_experts, hidden_size),
|
|
51
|
+
dtype=jnp.float32) / 10).astype(dtype)
|
|
52
|
+
else:
|
|
53
|
+
b1 = b2 = None
|
|
54
|
+
|
|
34
55
|
gating_output = (
|
|
35
|
-
jax.random.normal(
|
|
56
|
+
jax.random.normal(k5, (num_tokens, num_experts), dtype=jnp.float32) +
|
|
36
57
|
jnp.arange(num_tokens * num_experts, dtype=jnp.float32).reshape(
|
|
37
58
|
num_tokens, num_experts) / 100)
|
|
59
|
+
|
|
38
60
|
# To generate unique top-k!
|
|
39
|
-
top_k_indices = jax.random.randint(
|
|
61
|
+
top_k_indices = jax.random.randint(k6, (num_tokens, top_k),
|
|
40
62
|
minval=0,
|
|
41
63
|
maxval=num_experts - 1,
|
|
42
64
|
dtype=jnp.int32)
|
|
65
|
+
|
|
43
66
|
one_hot = (jnp.sum(
|
|
44
67
|
jax.nn.one_hot(top_k_indices, num_experts, dtype=jnp.float32),
|
|
45
68
|
axis=1,
|
|
46
|
-
) *
|
|
69
|
+
) * 30)
|
|
70
|
+
|
|
47
71
|
gating_output = (gating_output + one_hot).astype(dtype)
|
|
48
|
-
|
|
72
|
+
|
|
73
|
+
return a, w1, w2, b1, b2, gating_output
|
|
74
|
+
|
|
75
|
+
|
|
76
|
+
def sub_channel_quantize(x, quant_dtype, wsz=256):
|
|
77
|
+
"""Quantizes x with sub-channel quantization on the 2nd minor."""
|
|
78
|
+
if jnp.issubdtype(quant_dtype, jnp.floating):
|
|
79
|
+
dtype_info = jnp.finfo(quant_dtype)
|
|
80
|
+
else:
|
|
81
|
+
dtype_info = jnp.iinfo(quant_dtype)
|
|
82
|
+
dtype_max = float(dtype_info.max)
|
|
83
|
+
w_lst, scale_lst = [], []
|
|
84
|
+
assert len(x.shape) >= 2
|
|
85
|
+
assert x.shape[-2] % wsz == 0
|
|
86
|
+
for i in range(0, x.shape[-2], wsz):
|
|
87
|
+
y = x[..., i:i + wsz, :]
|
|
88
|
+
abs_max = jnp.abs(y).max(axis=-2, keepdims=True)
|
|
89
|
+
scale = (abs_max / dtype_max).astype(jnp.float32)
|
|
90
|
+
w = (y / scale).astype(quant_dtype)
|
|
91
|
+
w_lst.append(w)
|
|
92
|
+
scale_lst.append(scale)
|
|
93
|
+
return jnp.concat(w_lst, axis=-2), jnp.concat(scale_lst, axis=-2)
|
|
49
94
|
|
|
50
95
|
|
|
51
96
|
@jtu.with_config(jax_numpy_dtype_promotion="standard")
|
|
@@ -63,42 +108,266 @@ class MoEKernelTest(jtu.JaxTestCase):
|
|
|
63
108
|
self.mesh = Mesh(np.array(self.mesh_devices).reshape(1, -1),
|
|
64
109
|
axis_names=("data", "model"))
|
|
65
110
|
|
|
66
|
-
def
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
111
|
+
def _test_moe(
|
|
112
|
+
self,
|
|
113
|
+
dtype,
|
|
114
|
+
top_k,
|
|
115
|
+
num_experts,
|
|
116
|
+
hidden_size,
|
|
117
|
+
intermediate_size,
|
|
118
|
+
num_tokens,
|
|
119
|
+
seed,
|
|
120
|
+
renormalize_topk_logits,
|
|
121
|
+
bt,
|
|
122
|
+
bf,
|
|
123
|
+
bd1,
|
|
124
|
+
bd2,
|
|
125
|
+
btc,
|
|
126
|
+
bfc,
|
|
127
|
+
bd1c,
|
|
128
|
+
bd2c,
|
|
129
|
+
act_fn="silu",
|
|
130
|
+
w_dtype=None,
|
|
131
|
+
subc_quant_wsz=None,
|
|
132
|
+
has_bias=False,
|
|
133
|
+
atol=2e-1,
|
|
134
|
+
rtol=2e-1,
|
|
135
|
+
):
|
|
136
|
+
a, w1, w2, b1, b2, gating_output = gen_moe_inputs(
|
|
75
137
|
dtype,
|
|
76
138
|
top_k,
|
|
77
139
|
num_experts,
|
|
78
140
|
hidden_size,
|
|
79
141
|
intermediate_size,
|
|
80
142
|
num_tokens,
|
|
143
|
+
seed=seed,
|
|
144
|
+
has_bias=has_bias,
|
|
81
145
|
)
|
|
146
|
+
w1_scale = None
|
|
147
|
+
w2_scale = None
|
|
148
|
+
if w_dtype is not None:
|
|
149
|
+
if subc_quant_wsz is None:
|
|
150
|
+
subc_quant_wsz = 256
|
|
151
|
+
w1, w1_scale = sub_channel_quantize(w1, w_dtype, subc_quant_wsz)
|
|
152
|
+
w2, w2_scale = sub_channel_quantize(w2, w_dtype, subc_quant_wsz)
|
|
82
153
|
|
|
83
|
-
actual =
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
154
|
+
actual = fused_ep_moe(
|
|
155
|
+
mesh=self.mesh,
|
|
156
|
+
tokens=a,
|
|
157
|
+
w1=w1,
|
|
158
|
+
w2=w2,
|
|
159
|
+
gating_output=gating_output,
|
|
160
|
+
top_k=top_k,
|
|
161
|
+
renormalize_topk_logits=renormalize_topk_logits,
|
|
162
|
+
act_fn=act_fn,
|
|
163
|
+
subc_quant_wsz=subc_quant_wsz,
|
|
164
|
+
w1_scale=w1_scale,
|
|
165
|
+
w2_scale=w2_scale,
|
|
166
|
+
b1=b1,
|
|
167
|
+
b2=b2,
|
|
168
|
+
bt=bt,
|
|
169
|
+
bf=bf,
|
|
170
|
+
bd1=bd1,
|
|
171
|
+
bd2=bd2,
|
|
172
|
+
btc=btc,
|
|
173
|
+
bfc=bfc,
|
|
174
|
+
bd1c=bd1c,
|
|
175
|
+
bd2c=bd2c,
|
|
176
|
+
)
|
|
177
|
+
expected = ref_moe(
|
|
178
|
+
a,
|
|
179
|
+
w1,
|
|
180
|
+
w2,
|
|
181
|
+
gating_output,
|
|
182
|
+
top_k,
|
|
183
|
+
b1=b1,
|
|
184
|
+
b2=b2,
|
|
185
|
+
renormalize_topk_logits=renormalize_topk_logits,
|
|
186
|
+
activation=act_fn,
|
|
187
|
+
subc_quant_wsz=subc_quant_wsz,
|
|
188
|
+
w1_scale=w1_scale,
|
|
189
|
+
w2_scale=w2_scale,
|
|
190
|
+
)
|
|
191
|
+
self.assertAllClose(actual, expected, atol=atol, rtol=rtol)
|
|
192
|
+
|
|
193
|
+
@parameterized.product(renormalize_topk_logits=[True, False], )
|
|
194
|
+
def test_basic(self, renormalize_topk_logits):
|
|
195
|
+
dtype = jnp.bfloat16
|
|
196
|
+
top_k = 8
|
|
197
|
+
num_experts = 128
|
|
198
|
+
hidden_size = 1024
|
|
199
|
+
intermediate_size = 1024
|
|
200
|
+
num_tokens = 8 * 32
|
|
201
|
+
self._test_moe(
|
|
202
|
+
dtype=dtype,
|
|
203
|
+
top_k=top_k,
|
|
204
|
+
num_experts=num_experts,
|
|
205
|
+
hidden_size=hidden_size,
|
|
206
|
+
intermediate_size=intermediate_size,
|
|
207
|
+
num_tokens=num_tokens,
|
|
208
|
+
seed=1234,
|
|
209
|
+
renormalize_topk_logits=renormalize_topk_logits,
|
|
210
|
+
bt=32,
|
|
211
|
+
bf=1024,
|
|
212
|
+
bd1=1024,
|
|
213
|
+
bd2=1024,
|
|
214
|
+
btc=32,
|
|
215
|
+
bfc=256,
|
|
216
|
+
bd1c=256,
|
|
217
|
+
bd2c=256,
|
|
218
|
+
)
|
|
219
|
+
|
|
220
|
+
@parameterized.product(act_fn=["silu", "gelu", "swigluoai"], )
|
|
221
|
+
def test_activation(self, act_fn):
|
|
222
|
+
dtype = jnp.bfloat16
|
|
223
|
+
top_k = 8
|
|
224
|
+
num_experts = 128
|
|
225
|
+
hidden_size = 1024
|
|
226
|
+
intermediate_size = 1024
|
|
227
|
+
num_tokens = 8 * 32
|
|
228
|
+
self._test_moe(
|
|
229
|
+
dtype=dtype,
|
|
230
|
+
top_k=top_k,
|
|
231
|
+
num_experts=num_experts,
|
|
232
|
+
hidden_size=hidden_size,
|
|
233
|
+
intermediate_size=intermediate_size,
|
|
234
|
+
num_tokens=num_tokens,
|
|
235
|
+
seed=1234,
|
|
236
|
+
renormalize_topk_logits=True,
|
|
237
|
+
act_fn=act_fn,
|
|
238
|
+
bt=32,
|
|
239
|
+
bf=512,
|
|
240
|
+
bd1=512,
|
|
241
|
+
bd2=512,
|
|
242
|
+
btc=32,
|
|
243
|
+
bfc=256,
|
|
244
|
+
bd1c=256,
|
|
245
|
+
bd2c=256,
|
|
246
|
+
)
|
|
247
|
+
|
|
248
|
+
def test_benchmark_qwen_235(self):
|
|
249
|
+
num_experts = 128
|
|
250
|
+
top_k = 8
|
|
251
|
+
hidden_size = 4096
|
|
252
|
+
intermediate_size = 1536
|
|
253
|
+
dtype = jnp.bfloat16
|
|
254
|
+
num_tokens = 8 * 64
|
|
255
|
+
seed = 54321
|
|
256
|
+
renormalize_topk_logits = True
|
|
257
|
+
self._test_moe(
|
|
258
|
+
dtype=dtype,
|
|
259
|
+
top_k=top_k,
|
|
260
|
+
num_experts=num_experts,
|
|
261
|
+
hidden_size=hidden_size,
|
|
262
|
+
intermediate_size=intermediate_size,
|
|
263
|
+
num_tokens=num_tokens,
|
|
264
|
+
seed=seed,
|
|
265
|
+
renormalize_topk_logits=renormalize_topk_logits,
|
|
266
|
+
bt=64,
|
|
267
|
+
bf=768,
|
|
268
|
+
bd1=2048,
|
|
269
|
+
bd2=2048,
|
|
270
|
+
btc=64,
|
|
271
|
+
bfc=768,
|
|
272
|
+
bd1c=2048,
|
|
273
|
+
bd2c=2048,
|
|
274
|
+
act_fn="silu",
|
|
275
|
+
atol=5e-2,
|
|
276
|
+
rtol=5e-2,
|
|
277
|
+
)
|
|
278
|
+
|
|
279
|
+
def test_benchmark_qwen_30b_a3b(self):
|
|
280
|
+
num_experts = 128
|
|
281
|
+
top_k = 8
|
|
282
|
+
hidden_size = 2048
|
|
283
|
+
intermediate_size = 768
|
|
284
|
+
dtype = jnp.bfloat16
|
|
285
|
+
num_tokens = 512
|
|
286
|
+
seed = 54321
|
|
287
|
+
renormalize_topk_logits = True
|
|
288
|
+
self._test_moe(
|
|
289
|
+
dtype=dtype,
|
|
290
|
+
top_k=top_k,
|
|
291
|
+
num_experts=num_experts,
|
|
292
|
+
hidden_size=hidden_size,
|
|
293
|
+
intermediate_size=intermediate_size,
|
|
294
|
+
num_tokens=num_tokens,
|
|
295
|
+
seed=seed,
|
|
296
|
+
renormalize_topk_logits=renormalize_topk_logits,
|
|
297
|
+
bt=16,
|
|
298
|
+
bf=384,
|
|
299
|
+
bd1=512,
|
|
300
|
+
bd2=512,
|
|
301
|
+
btc=16,
|
|
302
|
+
bfc=384,
|
|
303
|
+
bd1c=256,
|
|
304
|
+
bd2c=256,
|
|
305
|
+
act_fn="silu",
|
|
306
|
+
atol=5e-2,
|
|
307
|
+
rtol=5e-2,
|
|
308
|
+
)
|
|
309
|
+
|
|
310
|
+
@parameterized.product(
|
|
311
|
+
w_dtype=[jnp.int8, jnp.float8_e5m2, jnp.float4_e2m1fn], )
|
|
312
|
+
def test_sub_channel_quantization(self, w_dtype):
|
|
313
|
+
if w_dtype in (
|
|
314
|
+
jnp.float8_e5m2,
|
|
315
|
+
jnp.float4_e2m1fn,
|
|
316
|
+
) and not jtu.is_device_tpu_at_least(version=7):
|
|
317
|
+
self.skipTest("Expect TPUv7+")
|
|
318
|
+
dtype = jnp.bfloat16
|
|
319
|
+
top_k = 8
|
|
320
|
+
num_experts = 128
|
|
321
|
+
hidden_size = 1024
|
|
322
|
+
intermediate_size = 1024
|
|
323
|
+
num_tokens = 8 * 32
|
|
324
|
+
self._test_moe(
|
|
325
|
+
dtype=dtype,
|
|
326
|
+
top_k=top_k,
|
|
327
|
+
num_experts=num_experts,
|
|
328
|
+
hidden_size=hidden_size,
|
|
329
|
+
intermediate_size=intermediate_size,
|
|
330
|
+
num_tokens=num_tokens,
|
|
331
|
+
seed=1234,
|
|
332
|
+
renormalize_topk_logits=False,
|
|
333
|
+
w_dtype=w_dtype,
|
|
334
|
+
subc_quant_wsz=256,
|
|
335
|
+
bt=32,
|
|
336
|
+
bf=1024,
|
|
337
|
+
bd1=1024,
|
|
338
|
+
bd2=1024,
|
|
339
|
+
btc=32,
|
|
340
|
+
bfc=256,
|
|
341
|
+
bd1c=256,
|
|
342
|
+
bd2c=256,
|
|
343
|
+
)
|
|
344
|
+
|
|
345
|
+
def test_bias(self):
|
|
346
|
+
dtype = jnp.bfloat16
|
|
347
|
+
top_k = 8
|
|
348
|
+
num_experts = 128
|
|
349
|
+
hidden_size = 1024
|
|
350
|
+
intermediate_size = 1024
|
|
351
|
+
num_tokens = 8 * 32
|
|
352
|
+
self._test_moe(
|
|
353
|
+
dtype=dtype,
|
|
354
|
+
top_k=top_k,
|
|
355
|
+
num_experts=num_experts,
|
|
356
|
+
hidden_size=hidden_size,
|
|
357
|
+
intermediate_size=intermediate_size,
|
|
358
|
+
num_tokens=num_tokens,
|
|
359
|
+
seed=1234,
|
|
360
|
+
renormalize_topk_logits=False,
|
|
361
|
+
has_bias=True,
|
|
362
|
+
bt=32,
|
|
363
|
+
bf=512,
|
|
364
|
+
bd1=512,
|
|
365
|
+
bd2=512,
|
|
366
|
+
btc=32,
|
|
367
|
+
bfc=256,
|
|
368
|
+
bd1c=256,
|
|
369
|
+
bd2c=256,
|
|
370
|
+
)
|
|
102
371
|
|
|
103
372
|
|
|
104
373
|
if __name__ == "__main__":
|
tests/kernels/mla_v1_test.py
CHANGED
|
@@ -42,6 +42,7 @@ class MlaRaggedPagedAttentionKernelTest(jtu.JaxTestCase):
|
|
|
42
42
|
|
|
43
43
|
padded_r_dim = align_to(r_dim, 128)
|
|
44
44
|
padded_lkv_dim = align_to(lkv_dim, 128)
|
|
45
|
+
padded_kv_dim = padded_lkv_dim + padded_r_dim
|
|
45
46
|
packing = get_dtype_packing(kv_dtype)
|
|
46
47
|
q_lens = [s[0] for s in seq_lens]
|
|
47
48
|
kv_lens_list = [s[1] for s in seq_lens]
|
|
@@ -69,13 +70,10 @@ class MlaRaggedPagedAttentionKernelTest(jtu.JaxTestCase):
|
|
|
69
70
|
new_kv_c = gen_random((total_q_len, lkv_dim), kv_dtype)
|
|
70
71
|
new_k_pe = gen_random((total_q_len, r_dim), kv_dtype)
|
|
71
72
|
|
|
72
|
-
|
|
73
|
-
(total_num_pages, page_size // packing, packing,
|
|
73
|
+
cache_kv = gen_random(
|
|
74
|
+
(total_num_pages, page_size // packing, packing, padded_kv_dim),
|
|
74
75
|
kv_dtype,
|
|
75
76
|
)
|
|
76
|
-
cache_k_pe = gen_random(
|
|
77
|
-
(total_num_pages, page_size // packing, packing, padded_r_dim),
|
|
78
|
-
kv_dtype)
|
|
79
77
|
kv_lens = jnp.array(kv_lens_list, dtype=jnp.int32)
|
|
80
78
|
page_indices = jnp.array(page_indices_list, dtype=jnp.int32)
|
|
81
79
|
cu_q_lens = jnp.array(cu_q_lens_list, dtype=jnp.int32)
|
|
@@ -84,14 +82,13 @@ class MlaRaggedPagedAttentionKernelTest(jtu.JaxTestCase):
|
|
|
84
82
|
ql_nope_for_kernel = ql_nope.copy()
|
|
85
83
|
q_pe_for_kernel = q_pe.copy()
|
|
86
84
|
|
|
87
|
-
expected_out,
|
|
85
|
+
expected_out, expected_updated_kv = (
|
|
88
86
|
mla.ref_mla_ragged_paged_attention(
|
|
89
87
|
ql_nope,
|
|
90
88
|
q_pe,
|
|
91
89
|
new_kv_c,
|
|
92
90
|
new_k_pe,
|
|
93
|
-
|
|
94
|
-
cache_k_pe.copy(),
|
|
91
|
+
cache_kv.copy(),
|
|
95
92
|
kv_lens,
|
|
96
93
|
page_indices,
|
|
97
94
|
cu_q_lens,
|
|
@@ -101,50 +98,141 @@ class MlaRaggedPagedAttentionKernelTest(jtu.JaxTestCase):
|
|
|
101
98
|
soft_cap=soft_cap,
|
|
102
99
|
))
|
|
103
100
|
|
|
104
|
-
kernel_out,
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
vmem_limit_bytes=vmem_limit_bytes,
|
|
122
|
-
))
|
|
101
|
+
kernel_out, kernel_updated_kv = (mla.mla_ragged_paged_attention(
|
|
102
|
+
ql_nope_for_kernel,
|
|
103
|
+
q_pe_for_kernel,
|
|
104
|
+
new_kv_c,
|
|
105
|
+
new_k_pe,
|
|
106
|
+
cache_kv.copy(),
|
|
107
|
+
kv_lens,
|
|
108
|
+
page_indices,
|
|
109
|
+
cu_q_lens,
|
|
110
|
+
distribution,
|
|
111
|
+
sm_scale=sm_scale,
|
|
112
|
+
sliding_window=sliding_window,
|
|
113
|
+
soft_cap=soft_cap,
|
|
114
|
+
num_kv_pages_per_block=num_kv_pages_per_block,
|
|
115
|
+
num_queries_per_block=num_queries_per_block,
|
|
116
|
+
vmem_limit_bytes=vmem_limit_bytes,
|
|
117
|
+
))
|
|
123
118
|
|
|
124
119
|
self.assertEqual(expected_out.shape,
|
|
125
120
|
(total_q_len, num_heads, padded_lkv_dim))
|
|
126
121
|
self.assertEqual(
|
|
127
|
-
|
|
128
|
-
(total_num_pages, page_size // packing, packing,
|
|
129
|
-
)
|
|
130
|
-
self.assertEqual(
|
|
131
|
-
expeceted_updated_k_pe.shape,
|
|
132
|
-
(total_num_pages, page_size // packing, packing, padded_r_dim),
|
|
122
|
+
expected_updated_kv.shape,
|
|
123
|
+
(total_num_pages, page_size // packing, packing, padded_kv_dim),
|
|
133
124
|
)
|
|
134
125
|
self.assertEqual(expected_out.dtype, kv_dtype)
|
|
135
|
-
self.assertEqual(
|
|
136
|
-
self.assertEqual(expeceted_updated_k_pe.dtype, kv_dtype)
|
|
126
|
+
self.assertEqual(expected_updated_kv.dtype, kv_dtype)
|
|
137
127
|
|
|
138
128
|
self.assertAllClose(expected_out, kernel_out, atol=0.2, rtol=0.2)
|
|
139
|
-
self.assertAllClose(
|
|
140
|
-
|
|
141
|
-
atol=0.2,
|
|
142
|
-
rtol=0.2)
|
|
143
|
-
self.assertAllClose(expeceted_updated_k_pe,
|
|
144
|
-
kernel_updated_k_pe,
|
|
129
|
+
self.assertAllClose(expected_updated_kv,
|
|
130
|
+
kernel_updated_kv,
|
|
145
131
|
atol=0.2,
|
|
146
132
|
rtol=0.2)
|
|
147
133
|
|
|
134
|
+
def test_update_kv_cache(self):
|
|
135
|
+
lkv_dim = 4
|
|
136
|
+
r_dim = 4
|
|
137
|
+
padded_lkv_dim = align_to(lkv_dim, 128)
|
|
138
|
+
padded_r_dim = align_to(r_dim, 128)
|
|
139
|
+
kv_dtype = jnp.bfloat16
|
|
140
|
+
new_kv_c = jnp.arange(16, dtype=kv_dtype).reshape((4, lkv_dim))
|
|
141
|
+
new_k_pe = (jnp.arange(16, dtype=kv_dtype).reshape((4, r_dim)) + 100)
|
|
142
|
+
total_num_pages = 2
|
|
143
|
+
page_size = 4
|
|
144
|
+
cache_kv_shape = mla.get_kv_cache_shape(
|
|
145
|
+
total_num_pages,
|
|
146
|
+
page_size,
|
|
147
|
+
padded_lkv_dim + padded_r_dim,
|
|
148
|
+
kv_dtype,
|
|
149
|
+
)
|
|
150
|
+
cache_kv = jnp.zeros(cache_kv_shape, dtype=kv_dtype)
|
|
151
|
+
|
|
152
|
+
# two sequences, first with 3 tokens, second with 1 token
|
|
153
|
+
kv_lens = jnp.array([3, 1], dtype=jnp.int32)
|
|
154
|
+
# first seq uses page 0, second uses page 1
|
|
155
|
+
page_indices = jnp.array([0, -1, 1, -1], dtype=jnp.int32)
|
|
156
|
+
# three tokens for first seq, one for second
|
|
157
|
+
cu_q_lens = jnp.array([0, 3, 4], dtype=jnp.int32)
|
|
158
|
+
distribution = jnp.array([0, 0, 2], dtype=jnp.int32)
|
|
159
|
+
|
|
160
|
+
# manually compute the expected cache
|
|
161
|
+
padded_new_kv_c = jnp.pad(new_kv_c,
|
|
162
|
+
((0, 0), (0, padded_lkv_dim - lkv_dim)),
|
|
163
|
+
constant_values=0)
|
|
164
|
+
padded_new_k_pe = jnp.pad(new_k_pe,
|
|
165
|
+
((0, 0), (0, padded_r_dim - r_dim)),
|
|
166
|
+
constant_values=0)
|
|
167
|
+
|
|
168
|
+
expected_cache = cache_kv
|
|
169
|
+
# First sequence
|
|
170
|
+
# token 0
|
|
171
|
+
page_idx, row, col = 0, 0, 0
|
|
172
|
+
expected_cache = expected_cache.at[page_idx, row,
|
|
173
|
+
col, :padded_lkv_dim].set(
|
|
174
|
+
padded_new_kv_c[0])
|
|
175
|
+
expected_cache = expected_cache.at[page_idx, row, col,
|
|
176
|
+
padded_lkv_dim:padded_lkv_dim +
|
|
177
|
+
padded_r_dim].set(
|
|
178
|
+
padded_new_k_pe[0])
|
|
179
|
+
# token 1
|
|
180
|
+
page_idx, row, col = 0, 0, 1
|
|
181
|
+
expected_cache = expected_cache.at[page_idx, row,
|
|
182
|
+
col, :padded_lkv_dim].set(
|
|
183
|
+
padded_new_kv_c[1])
|
|
184
|
+
expected_cache = expected_cache.at[page_idx, row, col,
|
|
185
|
+
padded_lkv_dim:padded_lkv_dim +
|
|
186
|
+
padded_r_dim].set(
|
|
187
|
+
padded_new_k_pe[1])
|
|
188
|
+
# token 2
|
|
189
|
+
page_idx, row, col = 0, 1, 0
|
|
190
|
+
expected_cache = expected_cache.at[page_idx, row,
|
|
191
|
+
col, :padded_lkv_dim].set(
|
|
192
|
+
padded_new_kv_c[2])
|
|
193
|
+
expected_cache = expected_cache.at[page_idx, row, col,
|
|
194
|
+
padded_lkv_dim:padded_lkv_dim +
|
|
195
|
+
padded_r_dim].set(
|
|
196
|
+
padded_new_k_pe[2])
|
|
197
|
+
|
|
198
|
+
# Second sequence
|
|
199
|
+
# token 0
|
|
200
|
+
page_idx, row, col = 1, 0, 0
|
|
201
|
+
expected_cache = expected_cache.at[page_idx, row,
|
|
202
|
+
col, :padded_lkv_dim].set(
|
|
203
|
+
padded_new_kv_c[3])
|
|
204
|
+
expected_cache = expected_cache.at[page_idx, row, col,
|
|
205
|
+
padded_lkv_dim:padded_lkv_dim +
|
|
206
|
+
padded_r_dim].set(
|
|
207
|
+
padded_new_k_pe[3])
|
|
208
|
+
|
|
209
|
+
updated_cache = mla.update_kv_cache(
|
|
210
|
+
new_kv_c,
|
|
211
|
+
new_k_pe,
|
|
212
|
+
cache_kv,
|
|
213
|
+
kv_lens,
|
|
214
|
+
page_indices,
|
|
215
|
+
cu_q_lens,
|
|
216
|
+
distribution,
|
|
217
|
+
)
|
|
218
|
+
|
|
219
|
+
self.assertAllClose(updated_cache, expected_cache)
|
|
220
|
+
|
|
221
|
+
def test_get_kv_cache_shape(self):
|
|
222
|
+
total_num_pages = 10
|
|
223
|
+
page_size = 16
|
|
224
|
+
lkv_dim = 128
|
|
225
|
+
kv_dtype = jnp.bfloat16
|
|
226
|
+
# The calculation for the expected shape is as follows:
|
|
227
|
+
# kv_packing is determined by the dtype, which is 2 for bfloat16.
|
|
228
|
+
# The second dimension is page_size / kv_packing = 16 / 2 = 8
|
|
229
|
+
# The third dimension is kv_packing = 2
|
|
230
|
+
# The fourth dimension is lkv_dim aligned to 128, which is 128
|
|
231
|
+
expected_shape = (10, 8, 2, 128)
|
|
232
|
+
self.assertEqual(
|
|
233
|
+
mla.get_kv_cache_shape(total_num_pages, page_size, lkv_dim,
|
|
234
|
+
kv_dtype), expected_shape)
|
|
235
|
+
|
|
148
236
|
def test_ragged_paged_attention_basic(self):
|
|
149
237
|
dtype = jnp.bfloat16
|
|
150
238
|
seq_lens = [(192, 328), (128, 180), (64, 255)]
|
|
@@ -1,7 +1,5 @@
|
|
|
1
1
|
# SPDX-License-Identifier: Apache-2.0
|
|
2
2
|
|
|
3
|
-
import functools
|
|
4
|
-
|
|
5
3
|
import jax
|
|
6
4
|
import jax.numpy as jnp
|
|
7
5
|
from absl.testing import absltest, parameterized
|
|
@@ -10,6 +8,7 @@ from jax._src import test_util as jtu
|
|
|
10
8
|
from tpu_inference.kernels.quantized_matmul import (kernel, tuned_block_sizes,
|
|
11
9
|
util)
|
|
12
10
|
|
|
11
|
+
xla_quantized_matmul = kernel.xla_quantized_matmul
|
|
13
12
|
quantized_matmul_kernel = kernel.quantized_matmul_kernel
|
|
14
13
|
quantize_tensor = util.quantize_tensor
|
|
15
14
|
get_tuned_block_sizes = tuned_block_sizes.get_tuned_block_sizes
|
|
@@ -17,37 +16,6 @@ get_tuned_block_sizes = tuned_block_sizes.get_tuned_block_sizes
|
|
|
17
16
|
jax.config.parse_flags_with_absl()
|
|
18
17
|
|
|
19
18
|
|
|
20
|
-
@functools.partial(jax.jit, static_argnames=["quantize_activation"])
|
|
21
|
-
def reference_quantized_matmul(
|
|
22
|
-
x: jax.Array,
|
|
23
|
-
w_q: jax.Array,
|
|
24
|
-
w_scale: jax.Array,
|
|
25
|
-
quantize_activation=True,
|
|
26
|
-
):
|
|
27
|
-
if quantize_activation:
|
|
28
|
-
acc_dtype = jnp.float32
|
|
29
|
-
if quantize_activation and jnp.issubdtype(w_q.dtype, jnp.integer):
|
|
30
|
-
acc_dtype = jnp.int32
|
|
31
|
-
|
|
32
|
-
x_q, x_scale = quantize_tensor(x, w_q.dtype)
|
|
33
|
-
out = jax.lax.dot_general(
|
|
34
|
-
x_q,
|
|
35
|
-
w_q,
|
|
36
|
-
dimension_numbers=(((1, ), (1, )), ((), ())),
|
|
37
|
-
preferred_element_type=acc_dtype,
|
|
38
|
-
).astype(jnp.float32)
|
|
39
|
-
out *= x_scale
|
|
40
|
-
else:
|
|
41
|
-
out = jax.lax.dot_general(
|
|
42
|
-
x,
|
|
43
|
-
w_q,
|
|
44
|
-
dimension_numbers=(((1, ), (1, )), ((), ())),
|
|
45
|
-
preferred_element_type=jnp.float32,
|
|
46
|
-
)
|
|
47
|
-
out *= jnp.expand_dims(w_scale, 0)
|
|
48
|
-
return out.astype(x.dtype)
|
|
49
|
-
|
|
50
|
-
|
|
51
19
|
@jtu.with_config(jax_numpy_dtype_promotion="standard")
|
|
52
20
|
class QuantizedMatmulKernelTest(jtu.JaxTestCase):
|
|
53
21
|
|
|
@@ -94,7 +62,7 @@ class QuantizedMatmulKernelTest(jtu.JaxTestCase):
|
|
|
94
62
|
x_q_dtype=x_q_dtype,
|
|
95
63
|
tuned_value=tuned_value,
|
|
96
64
|
)
|
|
97
|
-
expected =
|
|
65
|
+
expected = xla_quantized_matmul(
|
|
98
66
|
x, w_q, w_scale, quantize_activation=quantize_activation)
|
|
99
67
|
|
|
100
68
|
self.assertAllClose(output,
|
|
@@ -176,7 +176,9 @@ class RaggedPagedAttentionHeadDim64KernelTest(jtu.JaxTestCase):
|
|
|
176
176
|
)
|
|
177
177
|
output = output[:cu_q_lens[distribution[-1]]]
|
|
178
178
|
|
|
179
|
-
dtype_bits = dtypes.bit_width(jnp.dtype(kv_dtype))
|
|
179
|
+
dtype_bits = (dtypes.bit_width(jnp.dtype(kv_dtype)) if hasattr(
|
|
180
|
+
dtypes, "bit_width") else dtypes.itemsize_bits(
|
|
181
|
+
jnp.dtype(kv_dtype)))
|
|
180
182
|
tols = {
|
|
181
183
|
32: 0.15,
|
|
182
184
|
16: 0.2,
|
|
@@ -162,7 +162,9 @@ class RaggedPagedAttentionKernelTest(jtu.JaxTestCase):
|
|
|
162
162
|
)
|
|
163
163
|
output = output[:cu_q_lens[distribution[-1]]]
|
|
164
164
|
|
|
165
|
-
dtype_bits = dtypes.bit_width(jnp.dtype(kv_dtype))
|
|
165
|
+
dtype_bits = (dtypes.bit_width(jnp.dtype(kv_dtype)) if hasattr(
|
|
166
|
+
dtypes, "bit_width") else dtypes.itemsize_bits(
|
|
167
|
+
jnp.dtype(kv_dtype)))
|
|
166
168
|
tols = {
|
|
167
169
|
32: 0.15,
|
|
168
170
|
16: 0.2,
|