tpu-inference 0.11.1.dev202511180814__py3-none-any.whl → 0.12.0.dev20251213__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tpu-inference might be problematic. Click here for more details.
- tests/kernels/fused_moe_v1_test.py +303 -34
- tests/kernels/mla_v1_test.py +129 -41
- tests/kernels/quantized_matmul_kernel_test.py +2 -34
- tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +3 -1
- tests/kernels/ragged_paged_attention_kernel_v3_test.py +3 -1
- tests/lora/test_layers.py +4 -7
- tests/lora/test_lora_perf.py +53 -0
- tests/lora/utils.py +0 -8
- tests/test_envs.py +110 -12
- tests/test_quantization.py +3 -0
- tests/test_utils.py +1 -2
- tpu_inference/__init__.py +22 -3
- tpu_inference/core/disagg_utils.py +6 -8
- tpu_inference/distributed/tpu_connector.py +3 -4
- tpu_inference/distributed/utils.py +3 -2
- tpu_inference/envs.py +93 -9
- tpu_inference/executors/ray_distributed_executor.py +9 -2
- tpu_inference/kernels/collectives/all_gather_matmul.py +12 -6
- tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +7 -2
- tpu_inference/kernels/fused_moe/v1/kernel.py +712 -143
- tpu_inference/kernels/mla/v1/kernel.py +98 -120
- tpu_inference/kernels/quantized_matmul/kernel.py +69 -8
- tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +2 -1
- tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +2 -1
- tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +140 -67
- tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +204 -120
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +2 -1
- tpu_inference/kernels/ragged_paged_attention/v3/util.py +2 -1
- tpu_inference/layers/common/attention_interface.py +7 -1
- tpu_inference/layers/common/sharding.py +11 -7
- tpu_inference/layers/jax/attention/deepseek_v3_attention.py +232 -64
- tpu_inference/layers/jax/attention/gpt_oss_attention.py +5 -5
- tpu_inference/layers/vllm/fused_moe.py +170 -208
- tpu_inference/layers/vllm/linear_common.py +43 -21
- tpu_inference/layers/vllm/quantization/common.py +11 -6
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +4 -3
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +74 -65
- tpu_inference/layers/vllm/quantization/mxfp4.py +140 -94
- tpu_inference/layers/vllm/quantization/unquantized.py +103 -80
- tpu_inference/layers/vllm/sharding.py +2 -2
- tpu_inference/lora/torch_punica_tpu.py +1 -2
- tpu_inference/models/common/model_loader.py +84 -28
- tpu_inference/models/jax/deepseek_v3.py +185 -64
- tpu_inference/models/jax/gpt_oss.py +3 -3
- tpu_inference/models/jax/llama3.py +2 -1
- tpu_inference/models/jax/llama_eagle3.py +8 -5
- tpu_inference/models/jax/llama_guard_4.py +361 -0
- tpu_inference/models/jax/qwen2.py +2 -1
- tpu_inference/models/jax/qwen2_5_vl.py +163 -48
- tpu_inference/models/jax/qwen3.py +2 -1
- tpu_inference/models/jax/utils/quantization/quantization_utils.py +7 -8
- tpu_inference/models/jax/utils/weight_utils.py +205 -144
- tpu_inference/models/vllm/vllm_model_wrapper.py +14 -8
- tpu_inference/platforms/tpu_platform.py +34 -50
- tpu_inference/runner/compilation_manager.py +144 -60
- tpu_inference/runner/kv_cache.py +40 -20
- tpu_inference/runner/kv_cache_manager.py +48 -33
- tpu_inference/runner/persistent_batch_manager.py +40 -2
- tpu_inference/runner/structured_decoding_manager.py +2 -3
- tpu_inference/runner/tpu_runner.py +280 -149
- tpu_inference/runner/utils.py +2 -2
- tpu_inference/spec_decode/jax/eagle3.py +71 -21
- tpu_inference/tpu_info.py +4 -3
- tpu_inference/utils.py +46 -18
- tpu_inference/worker/tpu_worker.py +197 -63
- {tpu_inference-0.11.1.dev202511180814.dist-info → tpu_inference-0.12.0.dev20251213.dist-info}/METADATA +9 -10
- {tpu_inference-0.11.1.dev202511180814.dist-info → tpu_inference-0.12.0.dev20251213.dist-info}/RECORD +70 -74
- tpu_inference/mock/__init__.py +0 -0
- tpu_inference/mock/vllm_config_utils.py +0 -28
- tpu_inference/mock/vllm_envs.py +0 -1219
- tpu_inference/mock/vllm_logger.py +0 -212
- tpu_inference/mock/vllm_logging_utils.py +0 -15
- tpu_inference/models/jax/phi3.py +0 -376
- {tpu_inference-0.11.1.dev202511180814.dist-info → tpu_inference-0.12.0.dev20251213.dist-info}/WHEEL +0 -0
- {tpu_inference-0.11.1.dev202511180814.dist-info → tpu_inference-0.12.0.dev20251213.dist-info}/licenses/LICENSE +0 -0
- {tpu_inference-0.11.1.dev202511180814.dist-info → tpu_inference-0.12.0.dev20251213.dist-info}/top_level.txt +0 -0
|
@@ -13,12 +13,14 @@ from typing import Any, Optional
|
|
|
13
13
|
import jax
|
|
14
14
|
import jax.numpy as jnp
|
|
15
15
|
import torch
|
|
16
|
+
import torchax
|
|
16
17
|
from flax import nnx
|
|
17
18
|
from jax.sharding import Mesh, NamedSharding
|
|
18
19
|
from jax.sharding import PartitionSpec as P
|
|
19
20
|
from safetensors import safe_open
|
|
21
|
+
from vllm.config import VllmConfig
|
|
20
22
|
|
|
21
|
-
from tpu_inference import utils
|
|
23
|
+
from tpu_inference import envs, utils
|
|
22
24
|
from tpu_inference.logger import init_logger
|
|
23
25
|
from tpu_inference.models.jax.utils import file_utils
|
|
24
26
|
|
|
@@ -65,7 +67,13 @@ def transpose_params(param_key: str, param_tensor: jax.Array, transpose_map):
|
|
|
65
67
|
def reshape_params(param_key: str, param_tensor: jax.Array, shape_map):
|
|
66
68
|
for key, new_shape in shape_map.items():
|
|
67
69
|
if key in param_key:
|
|
68
|
-
|
|
70
|
+
try:
|
|
71
|
+
#TODO:(gpolovets) Add validation on whether reshape preserves data layout.
|
|
72
|
+
return jnp.reshape(param_tensor, new_shape)
|
|
73
|
+
except TypeError:
|
|
74
|
+
raise TypeError(
|
|
75
|
+
f"Cannot reshape for key={key}, new_shape={new_shape}, param_shape={param_tensor.shape}"
|
|
76
|
+
)
|
|
69
77
|
return param_tensor # Base case / no-op
|
|
70
78
|
|
|
71
79
|
|
|
@@ -197,12 +205,11 @@ def shard_put(x: jax.Array, shardings, mesh: jax.sharding.Mesh) -> jax.Array:
|
|
|
197
205
|
return jax.device_put(x, shardings)
|
|
198
206
|
|
|
199
207
|
|
|
200
|
-
def get_default_maps(
|
|
208
|
+
def get_default_maps(model_config, mesh: Mesh,
|
|
201
209
|
name_map: dict[str, str]) -> MetadataMap:
|
|
202
210
|
"""Load weights from one model weights file to the model, run on single thread."""
|
|
203
211
|
sharding_size = mesh.shape["model"]
|
|
204
212
|
|
|
205
|
-
model_config = vllm_config.model_config
|
|
206
213
|
hf_config = model_config.hf_config
|
|
207
214
|
|
|
208
215
|
num_heads = hf_config.num_attention_heads
|
|
@@ -266,14 +273,15 @@ def get_default_maps(vllm_config, mesh: Mesh,
|
|
|
266
273
|
bias_pad_map=bias_pad_keys)
|
|
267
274
|
|
|
268
275
|
|
|
269
|
-
def
|
|
270
|
-
|
|
271
|
-
|
|
272
|
-
|
|
273
|
-
|
|
274
|
-
|
|
275
|
-
|
|
276
|
-
|
|
276
|
+
def _load_and_shard_weight(vllm_config,
|
|
277
|
+
params: nnx.State,
|
|
278
|
+
shardings: Any,
|
|
279
|
+
metadata_map: MetadataMap,
|
|
280
|
+
mesh: Mesh,
|
|
281
|
+
hf_key: str,
|
|
282
|
+
hf_weight: jax.Array,
|
|
283
|
+
keep_original_dtype_keys_regex: list[str]
|
|
284
|
+
| None = None):
|
|
277
285
|
name_map = metadata_map.name_map
|
|
278
286
|
reshape_keys = metadata_map.reshape_map
|
|
279
287
|
bias_reshape_keys = metadata_map.bias_reshape_map
|
|
@@ -290,6 +298,118 @@ def _load_hf_weights_on_thread(vllm_config,
|
|
|
290
298
|
head_dim = utils.get_padded_head_dim(head_dim_original)
|
|
291
299
|
head_dim_pad = head_dim - head_dim_original
|
|
292
300
|
|
|
301
|
+
# Check if the key should retain its original dtype
|
|
302
|
+
keep_original_dtype = False
|
|
303
|
+
if keep_original_dtype_keys_regex:
|
|
304
|
+
for pattern in keep_original_dtype_keys_regex:
|
|
305
|
+
if re.match(pattern, hf_key):
|
|
306
|
+
keep_original_dtype = True
|
|
307
|
+
break
|
|
308
|
+
|
|
309
|
+
# Converting to config's dtype
|
|
310
|
+
if not keep_original_dtype and hf_weight.dtype != model_config.dtype:
|
|
311
|
+
logger.warning(
|
|
312
|
+
f"Converting dtype for {hf_key} from {hf_weight.dtype} to {model_config.dtype}"
|
|
313
|
+
)
|
|
314
|
+
hf_weight = hf_weight.astype(model_config.dtype)
|
|
315
|
+
|
|
316
|
+
if hf_key.endswith(".weight"):
|
|
317
|
+
hf_key = hf_key.removesuffix(".weight")
|
|
318
|
+
|
|
319
|
+
# Find the corresponding model key using the HF key
|
|
320
|
+
if "layers" in hf_key:
|
|
321
|
+
layer_num = re.search(r"layers\.(\d+)", hf_key).group(1)
|
|
322
|
+
layer_key = re.sub(r"layers\.\d+", "layers.*", hf_key)
|
|
323
|
+
model_key = name_map[layer_key]
|
|
324
|
+
model_key = re.sub(r"layers\.\*", f"layers.{layer_num}", model_key)
|
|
325
|
+
elif "blocks" in hf_key:
|
|
326
|
+
layer_num = re.search(r"blocks\.(\d+)", hf_key).group(1)
|
|
327
|
+
layer_key = re.sub(r"blocks\.\d+", "blocks.*", hf_key)
|
|
328
|
+
model_key = name_map[layer_key]
|
|
329
|
+
model_key = re.sub(r"blocks\.\*", f"blocks.{layer_num}", model_key)
|
|
330
|
+
else:
|
|
331
|
+
if hf_key not in name_map and hf_key == "lm_head":
|
|
332
|
+
logger.warning(f"Skip loading {hf_key} due to tie_word_embeddings")
|
|
333
|
+
return
|
|
334
|
+
if hf_key not in name_map and "t2d" in hf_key:
|
|
335
|
+
logger.warning(
|
|
336
|
+
f"Skip loading {hf_key} as it's not used in eagle-3 for now")
|
|
337
|
+
return
|
|
338
|
+
model_key = name_map.get(hf_key, hf_key)
|
|
339
|
+
|
|
340
|
+
model_weight, model_sharding = get_param_and_sharding(
|
|
341
|
+
params, shardings, model_key)
|
|
342
|
+
|
|
343
|
+
logger.debug(
|
|
344
|
+
"before transform | "
|
|
345
|
+
f"{hf_key}: {hf_weight.shape} --> {model_key}: {model_weight.value.shape} {model_sharding}"
|
|
346
|
+
)
|
|
347
|
+
|
|
348
|
+
if hf_key.endswith(".bias"):
|
|
349
|
+
for key in bias_reshape_keys:
|
|
350
|
+
if key in hf_key:
|
|
351
|
+
hf_weight = jnp.reshape(hf_weight, bias_reshape_keys[key])
|
|
352
|
+
if head_dim_pad > 0:
|
|
353
|
+
hf_weight = jnp.pad(hf_weight, ((0, 0), (0, head_dim_pad)))
|
|
354
|
+
break
|
|
355
|
+
else:
|
|
356
|
+
for key in reshape_keys:
|
|
357
|
+
if key in hf_key:
|
|
358
|
+
hf_weight = jnp.reshape(hf_weight, reshape_keys[key])
|
|
359
|
+
if head_dim_pad > 0:
|
|
360
|
+
if "o_proj" in key:
|
|
361
|
+
hf_weight = jnp.pad(hf_weight, ((0, 0), (0, 0),
|
|
362
|
+
(0, head_dim_pad)))
|
|
363
|
+
else:
|
|
364
|
+
hf_weight = jnp.pad(hf_weight,
|
|
365
|
+
((0, 0), (0, head_dim_pad),
|
|
366
|
+
(0, 0)))
|
|
367
|
+
break
|
|
368
|
+
for key in transpose_keys:
|
|
369
|
+
if key in hf_key:
|
|
370
|
+
hf_weight = jnp.transpose(hf_weight, transpose_keys[key])
|
|
371
|
+
break
|
|
372
|
+
|
|
373
|
+
# Pad num-kv-heads
|
|
374
|
+
if hf_key.endswith(".bias"):
|
|
375
|
+
for key, value in bias_pad_keys.items():
|
|
376
|
+
dim = value[0]
|
|
377
|
+
dim_size = value[1]
|
|
378
|
+
if key in hf_key and dim_size != 0:
|
|
379
|
+
hf_weight = jnp.repeat(hf_weight, dim_size, axis=dim)
|
|
380
|
+
break
|
|
381
|
+
else:
|
|
382
|
+
for key, value in pad_keys.items():
|
|
383
|
+
dim = value[0]
|
|
384
|
+
dim_size = value[1]
|
|
385
|
+
if key in hf_key and dim_size != 0:
|
|
386
|
+
hf_weight = jnp.repeat(hf_weight, dim_size, axis=dim)
|
|
387
|
+
break
|
|
388
|
+
|
|
389
|
+
logger.debug(
|
|
390
|
+
"after transform | "
|
|
391
|
+
f"{hf_key}: {hf_weight.shape} --> {model_key}: {model_weight.value.shape} {model_sharding}"
|
|
392
|
+
)
|
|
393
|
+
|
|
394
|
+
if head_dim_pad == 0:
|
|
395
|
+
assert model_weight.value.shape == hf_weight.shape, f"{hf_key}: {model_weight.value.shape} != {hf_weight.shape}"
|
|
396
|
+
|
|
397
|
+
# Update the model weight
|
|
398
|
+
spec = model_weight.sharding.spec if isinstance(
|
|
399
|
+
model_weight.sharding, NamedSharding) else model_weight.sharding
|
|
400
|
+
model_weight.value = shard(hf_weight, spec)
|
|
401
|
+
|
|
402
|
+
|
|
403
|
+
def _load_hf_weights_on_thread(
|
|
404
|
+
vllm_config: VllmConfig,
|
|
405
|
+
params: nnx.State,
|
|
406
|
+
metadata_map: "MetadataMap",
|
|
407
|
+
mesh: Mesh,
|
|
408
|
+
weights_file: str,
|
|
409
|
+
filter_regex: Optional[str] = None,
|
|
410
|
+
keep_original_dtype_keys_regex: Optional[list[str]] = None,
|
|
411
|
+
):
|
|
412
|
+
"""Loads weights from a single weights file."""
|
|
293
413
|
try:
|
|
294
414
|
shardings = nnx.get_named_sharding(params, mesh)
|
|
295
415
|
except TypeError:
|
|
@@ -297,147 +417,88 @@ def _load_hf_weights_on_thread(vllm_config,
|
|
|
297
417
|
|
|
298
418
|
for hf_key, hf_weight in model_weights_single_file_generator(
|
|
299
419
|
weights_file, framework="flax", filter_regex=filter_regex):
|
|
420
|
+
_load_and_shard_weight(
|
|
421
|
+
vllm_config,
|
|
422
|
+
params,
|
|
423
|
+
shardings,
|
|
424
|
+
metadata_map,
|
|
425
|
+
mesh,
|
|
426
|
+
hf_key,
|
|
427
|
+
hf_weight,
|
|
428
|
+
keep_original_dtype_keys_regex,
|
|
429
|
+
)
|
|
300
430
|
|
|
301
|
-
# Check if the key should retain its original dtype
|
|
302
|
-
keep_original_dtype = False
|
|
303
|
-
if keep_original_dtype_keys_regex:
|
|
304
|
-
for pattern in keep_original_dtype_keys_regex:
|
|
305
|
-
if re.match(pattern, hf_key):
|
|
306
|
-
keep_original_dtype = True
|
|
307
|
-
break
|
|
308
431
|
|
|
309
|
-
|
|
310
|
-
|
|
311
|
-
|
|
312
|
-
|
|
313
|
-
|
|
314
|
-
|
|
315
|
-
|
|
316
|
-
|
|
317
|
-
|
|
318
|
-
|
|
319
|
-
|
|
320
|
-
|
|
321
|
-
|
|
322
|
-
|
|
323
|
-
|
|
324
|
-
|
|
325
|
-
|
|
326
|
-
|
|
327
|
-
|
|
328
|
-
|
|
329
|
-
|
|
330
|
-
|
|
331
|
-
if
|
|
332
|
-
logger.warning(
|
|
333
|
-
f"Skip loading {hf_key} due to tie_word_embeddings")
|
|
334
|
-
continue
|
|
335
|
-
if hf_key not in name_map and "t2d" in hf_key:
|
|
336
|
-
logger.warning(
|
|
337
|
-
f"Skip loading {hf_key} as it's not used in eagle-3 for now"
|
|
338
|
-
)
|
|
432
|
+
def load_hf_weights(
|
|
433
|
+
vllm_config: VllmConfig,
|
|
434
|
+
model: nnx.Module,
|
|
435
|
+
metadata_map: "MetadataMap",
|
|
436
|
+
mesh: Mesh,
|
|
437
|
+
filter_regex: Optional[str] = None,
|
|
438
|
+
is_draft_model: bool = False,
|
|
439
|
+
keep_original_dtype_keys_regex: Optional[list[str]] = None,
|
|
440
|
+
):
|
|
441
|
+
"""Load weights into a JAX model from either an iterator or files."""
|
|
442
|
+
params = nnx.state(model)
|
|
443
|
+
try:
|
|
444
|
+
shardings = nnx.get_named_sharding(params, mesh)
|
|
445
|
+
except TypeError:
|
|
446
|
+
shardings = params
|
|
447
|
+
weights_iterator = None
|
|
448
|
+
if hasattr(vllm_config.model_config, "model_weights_iterator"):
|
|
449
|
+
weights_iterator = vllm_config.model_config.model_weights_iterator
|
|
450
|
+
env = torchax.default_env()
|
|
451
|
+
# The weights_iterator is used in RunAI model streamer integration.
|
|
452
|
+
if weights_iterator is not None:
|
|
453
|
+
for hf_key, hf_weight in weights_iterator:
|
|
454
|
+
if filter_regex and not re.match(filter_regex, hf_key):
|
|
339
455
|
continue
|
|
340
|
-
model_key = name_map.get(hf_key, hf_key)
|
|
341
|
-
model_weight, model_sharding = get_param_and_sharding(
|
|
342
|
-
params, shardings, model_key)
|
|
343
|
-
|
|
344
|
-
logger.debug(
|
|
345
|
-
"before transform | "
|
|
346
|
-
f"{hf_key}: {hf_weight.shape} --> {model_key}: {model_weight.value.shape} {model_sharding}"
|
|
347
|
-
)
|
|
348
456
|
|
|
349
|
-
|
|
350
|
-
|
|
351
|
-
|
|
352
|
-
hf_weight = jnp.reshape(hf_weight, bias_reshape_keys[key])
|
|
353
|
-
if head_dim_pad > 0:
|
|
354
|
-
hf_weight = jnp.pad(hf_weight,
|
|
355
|
-
((0, 0), (0, head_dim_pad)))
|
|
356
|
-
break
|
|
357
|
-
else:
|
|
358
|
-
for key in reshape_keys:
|
|
359
|
-
if key in hf_key:
|
|
360
|
-
hf_weight = jnp.reshape(hf_weight, reshape_keys[key])
|
|
361
|
-
if head_dim_pad > 0:
|
|
362
|
-
if "o_proj" in key:
|
|
363
|
-
hf_weight = jnp.pad(hf_weight, ((0, 0), (0, 0),
|
|
364
|
-
(0, head_dim_pad)))
|
|
365
|
-
else:
|
|
366
|
-
hf_weight = jnp.pad(hf_weight,
|
|
367
|
-
((0, 0), (0, head_dim_pad),
|
|
368
|
-
(0, 0)))
|
|
369
|
-
break
|
|
370
|
-
for key in transpose_keys:
|
|
371
|
-
if key in hf_key:
|
|
372
|
-
hf_weight = jnp.transpose(hf_weight, transpose_keys[key])
|
|
373
|
-
break
|
|
374
|
-
|
|
375
|
-
# Pad num-kv-heads
|
|
376
|
-
if hf_key.endswith(".bias"):
|
|
377
|
-
for key, value in bias_pad_keys.items():
|
|
378
|
-
dim = value[0]
|
|
379
|
-
dim_size = value[1]
|
|
380
|
-
if key in hf_key and dim_size != 0:
|
|
381
|
-
hf_weight = jnp.repeat(hf_weight, dim_size, axis=dim)
|
|
382
|
-
break
|
|
383
|
-
else:
|
|
384
|
-
for key, value in pad_keys.items():
|
|
385
|
-
dim = value[0]
|
|
386
|
-
dim_size = value[1]
|
|
387
|
-
if key in hf_key and dim_size != 0:
|
|
388
|
-
hf_weight = jnp.repeat(hf_weight, dim_size, axis=dim)
|
|
389
|
-
break
|
|
390
|
-
|
|
391
|
-
logger.debug(
|
|
392
|
-
"after transform | "
|
|
393
|
-
f"{hf_key}: {hf_weight.shape} --> {model_key}: {model_weight.value.shape} {model_sharding}"
|
|
394
|
-
)
|
|
457
|
+
# Since the weights_iterator yields Pytorch tensors (torch.Tensor),
|
|
458
|
+
# we need to convert them to JAX arrays (jax.Array).
|
|
459
|
+
hf_weight_jax = env.t2j_copy(hf_weight)
|
|
395
460
|
|
|
396
|
-
|
|
397
|
-
assert model_weight.value.shape == hf_weight.shape, f"{hf_key}: {model_weight.value.shape} != {hf_weight.shape}"
|
|
398
|
-
|
|
399
|
-
# Update the model weight
|
|
400
|
-
spec = model_weight.sharding.spec if isinstance(
|
|
401
|
-
model_weight.sharding, NamedSharding) else model_weight.sharding
|
|
402
|
-
model_weight.value = shard(hf_weight, spec)
|
|
403
|
-
|
|
404
|
-
|
|
405
|
-
def load_hf_weights(vllm_config,
|
|
406
|
-
model: nnx.Module,
|
|
407
|
-
metadata_map: MetadataMap,
|
|
408
|
-
mesh: Mesh,
|
|
409
|
-
filter_regex: str | None = None,
|
|
410
|
-
is_draft_model: bool = False,
|
|
411
|
-
keep_original_dtype_keys_regex: list[str] | None = None):
|
|
412
|
-
"""Load weights from all model weights files to the model, run in multi threads."""
|
|
413
|
-
if is_draft_model:
|
|
414
|
-
model_path = vllm_config.speculative_config.draft_model_config.model
|
|
415
|
-
else:
|
|
416
|
-
model_path = vllm_config.model_config.model
|
|
417
|
-
weights_files = get_model_weights_files(
|
|
418
|
-
model_path, vllm_config.load_config.download_dir)
|
|
419
|
-
params = nnx.state(model)
|
|
420
|
-
max_workers = min(64, len(weights_files))
|
|
421
|
-
# NOTE(xiang): Disable multi-threading mode if running on multi-host.
|
|
422
|
-
# Because multi-threading would cause different JAX processes to load
|
|
423
|
-
# different weights at the same time.
|
|
424
|
-
if os.environ.get("TPU_MULTIHOST_BACKEND", "").lower() == "ray":
|
|
425
|
-
max_workers = 1
|
|
426
|
-
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
|
427
|
-
futures = [
|
|
428
|
-
executor.submit(
|
|
429
|
-
_load_hf_weights_on_thread,
|
|
461
|
+
_load_and_shard_weight(
|
|
430
462
|
vllm_config,
|
|
431
463
|
params,
|
|
464
|
+
shardings,
|
|
432
465
|
metadata_map,
|
|
433
466
|
mesh,
|
|
434
|
-
|
|
435
|
-
|
|
436
|
-
keep_original_dtype_keys_regex
|
|
437
|
-
|
|
438
|
-
|
|
439
|
-
|
|
440
|
-
|
|
467
|
+
hf_key,
|
|
468
|
+
hf_weight_jax,
|
|
469
|
+
keep_original_dtype_keys_regex,
|
|
470
|
+
)
|
|
471
|
+
else:
|
|
472
|
+
# File-based path (multi-threaded)
|
|
473
|
+
if is_draft_model:
|
|
474
|
+
model_path = vllm_config.speculative_config.draft_model_config.model
|
|
475
|
+
else:
|
|
476
|
+
model_path = vllm_config.model_config.model
|
|
477
|
+
weights_files = get_model_weights_files(
|
|
478
|
+
model_path, vllm_config.load_config.download_dir)
|
|
479
|
+
max_workers = min(64, len(weights_files))
|
|
480
|
+
# NOTE(xiang): Disable multi-threading mode if running on multi-host.
|
|
481
|
+
# Because multi-threading would cause different JAX processes to load
|
|
482
|
+
# different weights at the same time.
|
|
483
|
+
if envs.TPU_MULTIHOST_BACKEND == "ray":
|
|
484
|
+
max_workers = 1
|
|
485
|
+
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
|
486
|
+
futures = [
|
|
487
|
+
executor.submit(
|
|
488
|
+
_load_hf_weights_on_thread,
|
|
489
|
+
vllm_config,
|
|
490
|
+
params,
|
|
491
|
+
metadata_map,
|
|
492
|
+
mesh,
|
|
493
|
+
weights_file,
|
|
494
|
+
filter_regex=filter_regex,
|
|
495
|
+
keep_original_dtype_keys_regex=
|
|
496
|
+
keep_original_dtype_keys_regex,
|
|
497
|
+
) for weights_file in weights_files
|
|
498
|
+
]
|
|
499
|
+
for future in futures:
|
|
500
|
+
future.result()
|
|
501
|
+
|
|
441
502
|
check_all_loaded(params)
|
|
442
503
|
nnx.update(model, params)
|
|
443
504
|
|
|
@@ -9,6 +9,7 @@ import jax
|
|
|
9
9
|
import torch
|
|
10
10
|
import torch.nn
|
|
11
11
|
import torchax
|
|
12
|
+
import vllm.envs as vllm_envs
|
|
12
13
|
from flax.typing import PRNGKey
|
|
13
14
|
from jax.sharding import Mesh, NamedSharding, PartitionSpec
|
|
14
15
|
from torchax.interop import jax_view, torch_view
|
|
@@ -118,10 +119,16 @@ class VllmModelWrapper:
|
|
|
118
119
|
"torch._sync",
|
|
119
120
|
return_value=None) if use_random_weights else nullcontext()
|
|
120
121
|
|
|
122
|
+
# By default load weights to the CPU device first. If we are running
|
|
123
|
+
# under Pathways, this would cause weights to be loaded on a CPU-only
|
|
124
|
+
# node, so we'll need to remove this context.
|
|
125
|
+
jax_context = jax.default_device(
|
|
126
|
+
jax.devices("cpu")
|
|
127
|
+
[0]) if not vllm_envs.VLLM_TPU_USING_PATHWAYS else nullcontext()
|
|
128
|
+
|
|
121
129
|
# Load the vLLM model and wrap it into a new model whose forward
|
|
122
130
|
# function can calculate the hidden_state and logits.
|
|
123
|
-
|
|
124
|
-
with load_context, jax.default_device(available_devices[0]):
|
|
131
|
+
with load_context, jax_context:
|
|
125
132
|
vllm_model = vllm_get_model(vllm_config=vllm_config_for_load)
|
|
126
133
|
lora_manager = None
|
|
127
134
|
if vllm_config_for_load.lora_config is not None:
|
|
@@ -162,6 +169,7 @@ class VllmModelWrapper:
|
|
|
162
169
|
input_ids: jax.Array,
|
|
163
170
|
attn_metadata: AttentionMetadata,
|
|
164
171
|
input_embeds: jax.Array,
|
|
172
|
+
input_positions: jax.Array,
|
|
165
173
|
layer_name_to_kvcache_index: Sequence[Tuple[str, int]],
|
|
166
174
|
lora_metadata,
|
|
167
175
|
intermediate_tensors: JaxIntermediateTensors = None,
|
|
@@ -188,8 +196,8 @@ class VllmModelWrapper:
|
|
|
188
196
|
torch_view(params_and_buffers),
|
|
189
197
|
kwargs={
|
|
190
198
|
"input_ids": torch_view(input_ids),
|
|
191
|
-
"positions": torch_view(
|
|
192
|
-
"intermediate_tensors":
|
|
199
|
+
"positions": torch_view(input_positions),
|
|
200
|
+
"intermediate_tensors": None,
|
|
193
201
|
"inputs_embeds": None,
|
|
194
202
|
},
|
|
195
203
|
tie_weights=False,
|
|
@@ -213,7 +221,7 @@ class VllmModelWrapper:
|
|
|
213
221
|
@functools.partial(
|
|
214
222
|
jax.jit,
|
|
215
223
|
out_shardings=(NamedSharding(self.mesh,
|
|
216
|
-
PartitionSpec(
|
|
224
|
+
PartitionSpec("data", "model"))),
|
|
217
225
|
)
|
|
218
226
|
def compute_logits_func(
|
|
219
227
|
params_and_buffers: Any,
|
|
@@ -255,7 +263,6 @@ def load_lora_model(model: torch.nn.Module, vllm_config: VllmConfig,
|
|
|
255
263
|
vllm_config,
|
|
256
264
|
device,
|
|
257
265
|
model.embedding_modules,
|
|
258
|
-
model.embedding_padding_modules,
|
|
259
266
|
)
|
|
260
267
|
return lora_manager, lora_manager.create_lora_manager(model)
|
|
261
268
|
|
|
@@ -269,10 +276,9 @@ def replace_set_lora(model):
|
|
|
269
276
|
index: int,
|
|
270
277
|
lora_a: torch.Tensor,
|
|
271
278
|
lora_b: torch.Tensor,
|
|
272
|
-
embeddings_tensor: Optional[torch.Tensor],
|
|
273
279
|
):
|
|
274
280
|
with torchax.default_env():
|
|
275
|
-
self._original_set_lora(index, lora_a, lora_b
|
|
281
|
+
self._original_set_lora(index, lora_a, lora_b)
|
|
276
282
|
|
|
277
283
|
def _tpu_reset_lora(self, index: int):
|
|
278
284
|
with torchax.default_env():
|
|
@@ -1,39 +1,34 @@
|
|
|
1
1
|
# SPDX-License-Identifier: Apache-2.0
|
|
2
2
|
|
|
3
|
-
import os
|
|
4
3
|
from typing import TYPE_CHECKING, Any, Optional, Tuple, Union, cast
|
|
5
4
|
|
|
6
5
|
import jax.numpy as jnp
|
|
6
|
+
import torch
|
|
7
7
|
import vllm.envs as vllm_envs
|
|
8
|
-
from torchax.ops.mappings import j2t_dtype
|
|
9
8
|
from tpu_info import device
|
|
10
9
|
from vllm.inputs import ProcessorInputs, PromptType
|
|
11
10
|
from vllm.platforms.interface import Platform, PlatformEnum
|
|
12
|
-
from vllm.sampling_params import SamplingParams, SamplingType
|
|
13
11
|
|
|
14
12
|
from tpu_inference import envs
|
|
15
13
|
from tpu_inference.layers.common.sharding import ShardingConfigManager
|
|
16
14
|
from tpu_inference.logger import init_logger
|
|
17
15
|
|
|
18
16
|
if TYPE_CHECKING:
|
|
19
|
-
from vllm.attention.backends.registry import
|
|
17
|
+
from vllm.attention.backends.registry import AttentionBackendEnum
|
|
20
18
|
from vllm.config import BlockSize, ModelConfig, VllmConfig
|
|
21
19
|
from vllm.pooling_params import PoolingParams
|
|
20
|
+
from vllm.sampling_params import SamplingParams, SamplingType
|
|
22
21
|
else:
|
|
23
22
|
BlockSize = None
|
|
24
23
|
ModelConfig = None
|
|
25
24
|
VllmConfig = None
|
|
26
25
|
PoolingParams = None
|
|
27
|
-
|
|
26
|
+
AttentionBackendEnum = None
|
|
27
|
+
SamplingParams = None
|
|
28
|
+
SamplingType = None
|
|
28
29
|
|
|
29
30
|
logger = init_logger(__name__)
|
|
30
31
|
|
|
31
|
-
_DTYPE: dict[str, jnp.dtype] = {
|
|
32
|
-
"bfloat16": jnp.bfloat16,
|
|
33
|
-
"float": jnp.float32,
|
|
34
|
-
"float32": jnp.float32,
|
|
35
|
-
}
|
|
36
|
-
|
|
37
32
|
|
|
38
33
|
class TpuPlatform(Platform):
|
|
39
34
|
_enum = PlatformEnum.TPU
|
|
@@ -50,25 +45,22 @@ class TpuPlatform(Platform):
|
|
|
50
45
|
|
|
51
46
|
additional_env_vars: list[str] = [
|
|
52
47
|
"PHASED_PROFILING_DIR", "TPU_CHIPS_PER_HOST_BOUNDS", "TPU_HOST_BOUNDS",
|
|
53
|
-
"TPU_MULTIHOST_BACKEND", "VLLM_MLA_DISABLE", "TPU_BACKEND_TYPE"
|
|
48
|
+
"TPU_MULTIHOST_BACKEND", "VLLM_MLA_DISABLE", "TPU_BACKEND_TYPE",
|
|
49
|
+
"NEW_MODEL_DESIGN"
|
|
54
50
|
]
|
|
55
51
|
|
|
56
52
|
@classmethod
|
|
57
|
-
def get_attn_backend_cls(cls, selected_backend: "
|
|
58
|
-
dtype: jnp.dtype,
|
|
59
|
-
|
|
60
|
-
has_sink: bool, use_sparse: bool,
|
|
61
|
-
attn_type: Any) -> str:
|
|
62
|
-
from vllm.attention.backends.registry import
|
|
63
|
-
if selected_backend !=
|
|
53
|
+
def get_attn_backend_cls(cls, selected_backend: "AttentionBackendEnum",
|
|
54
|
+
head_size: int, dtype: jnp.dtype,
|
|
55
|
+
kv_cache_dtype: Optional[str], block_size: int,
|
|
56
|
+
use_mla: bool, has_sink: bool, use_sparse: bool,
|
|
57
|
+
use_mm_prefix: bool, attn_type: Any) -> str:
|
|
58
|
+
from vllm.attention.backends.registry import AttentionBackendEnum
|
|
59
|
+
if selected_backend != AttentionBackendEnum.PALLAS:
|
|
64
60
|
logger.info("Cannot use %s backend on TPU.", selected_backend)
|
|
65
61
|
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
return "tpu_inference.layers.vllm.attention.PallasAttentionBackend"
|
|
69
|
-
else:
|
|
70
|
-
logger.info("Using Pallas backend.")
|
|
71
|
-
return "vllm.attention.backends.pallas.PallasAttentionBackend"
|
|
62
|
+
logger.info("Using Pallas V1 backend.")
|
|
63
|
+
return "tpu_inference.layers.vllm.attention.PallasAttentionBackend"
|
|
72
64
|
|
|
73
65
|
@classmethod
|
|
74
66
|
def get_device_name(cls, device_id: int = 0) -> str:
|
|
@@ -83,6 +75,14 @@ class TpuPlatform(Platform):
|
|
|
83
75
|
logger.warning(f"Error getting device name: {e}")
|
|
84
76
|
return 'TPU'
|
|
85
77
|
|
|
78
|
+
@classmethod
|
|
79
|
+
def fp8_dtype(cls) -> torch.dtype:
|
|
80
|
+
if cls.get_device_name().lower() == "tpu v6e":
|
|
81
|
+
logger.info(
|
|
82
|
+
"Automatically using fp8_e5m2 for FP8 KV cache on TPU v6e.")
|
|
83
|
+
return torch.float8_e5m2
|
|
84
|
+
return torch.float8_e4m3fn
|
|
85
|
+
|
|
86
86
|
@classmethod
|
|
87
87
|
def get_device_total_memory(cls, device_id: int = 0) -> int:
|
|
88
88
|
raise NotImplementedError
|
|
@@ -133,6 +133,7 @@ class TpuPlatform(Platform):
|
|
|
133
133
|
# For v0, the default block size is 16.
|
|
134
134
|
if cache_config and cache_config.block_size is None:
|
|
135
135
|
cache_config.block_size = cast(BlockSize, 16)
|
|
136
|
+
|
|
136
137
|
compilation_config = vllm_config.compilation_config
|
|
137
138
|
|
|
138
139
|
# TPU only supports DYNAMO_TRACE_ONCE compilation level
|
|
@@ -143,27 +144,6 @@ class TpuPlatform(Platform):
|
|
|
143
144
|
if compilation_config.backend == "":
|
|
144
145
|
compilation_config.backend = "openxla"
|
|
145
146
|
|
|
146
|
-
# If we use vLLM's model implementation in PyTorch, we should set it with torch version of the dtype.
|
|
147
|
-
impl = envs.MODEL_IMPL_TYPE
|
|
148
|
-
|
|
149
|
-
# NOTE(xiang): convert dtype to jnp.dtype
|
|
150
|
-
# NOTE(wenlong): skip this logic for mm model preprocessing
|
|
151
|
-
# For mm model preprocessors, it may need the output dtype to be torch.
|
|
152
|
-
# In order to avoid a PR to vLLM, we postpone the dtype checking during tpu_worker initialization
|
|
153
|
-
if not vllm_config.scheduler_config.is_multimodal_model or impl == "vllm":
|
|
154
|
-
if not isinstance(vllm_config.model_config.dtype, str):
|
|
155
|
-
logger.warning(
|
|
156
|
-
"The model dtype is not properly set for JAX backend. "
|
|
157
|
-
"Overwriting it to jnp.bfloat16")
|
|
158
|
-
vllm_config.model_config.dtype = jnp.bfloat16
|
|
159
|
-
else:
|
|
160
|
-
vllm_config.model_config.dtype = _DTYPE.get(
|
|
161
|
-
vllm_config.model_config.dtype, jnp.bfloat16)
|
|
162
|
-
|
|
163
|
-
if impl == "vllm":
|
|
164
|
-
vllm_config.model_config.dtype = j2t_dtype(
|
|
165
|
-
vllm_config.model_config.dtype.dtype)
|
|
166
|
-
|
|
167
147
|
# TODO(cuiq): remove this dependency.
|
|
168
148
|
from vllm.v1.attention.backends.pallas import PallasAttentionBackend
|
|
169
149
|
cache_config.block_size = PallasAttentionBackend.get_page_size(
|
|
@@ -171,8 +151,7 @@ class TpuPlatform(Platform):
|
|
|
171
151
|
min_page_size = PallasAttentionBackend.get_min_page_size(vllm_config)
|
|
172
152
|
if min_page_size > cache_config.block_size:
|
|
173
153
|
logger.warning(
|
|
174
|
-
"Increase the page size from %s to %s to
|
|
175
|
-
"no SMEM OOM",
|
|
154
|
+
"Increase the page size from %s to %s to avoid SMEM OOM",
|
|
176
155
|
cache_config.block_size,
|
|
177
156
|
min_page_size,
|
|
178
157
|
)
|
|
@@ -183,7 +162,7 @@ class TpuPlatform(Platform):
|
|
|
183
162
|
parallel_config.worker_cls = \
|
|
184
163
|
"tpu_inference.worker.tpu_worker.TPUWorker"
|
|
185
164
|
|
|
186
|
-
multihost_backend =
|
|
165
|
+
multihost_backend = envs.TPU_MULTIHOST_BACKEND
|
|
187
166
|
if not multihost_backend: # Single host
|
|
188
167
|
if parallel_config.pipeline_parallel_size == 1:
|
|
189
168
|
logger.info("Force using UniProcExecutor for JAX on \
|
|
@@ -247,10 +226,11 @@ class TpuPlatform(Platform):
|
|
|
247
226
|
def validate_request(
|
|
248
227
|
cls,
|
|
249
228
|
prompt: PromptType,
|
|
250
|
-
params: Union[SamplingParams, PoolingParams],
|
|
229
|
+
params: Union["SamplingParams", PoolingParams],
|
|
251
230
|
processed_inputs: ProcessorInputs,
|
|
252
231
|
) -> None:
|
|
253
232
|
"""Raises if this request is unsupported on this platform"""
|
|
233
|
+
from vllm.sampling_params import SamplingParams, SamplingType
|
|
254
234
|
|
|
255
235
|
if isinstance(params, SamplingParams):
|
|
256
236
|
if params.sampling_type == SamplingType.RANDOM_SEED:
|
|
@@ -267,3 +247,7 @@ class TpuPlatform(Platform):
|
|
|
267
247
|
Returns if the current platform needs to sync weight loader.
|
|
268
248
|
"""
|
|
269
249
|
return True
|
|
250
|
+
|
|
251
|
+
@classmethod
|
|
252
|
+
def support_hybrid_kv_cache(cls) -> bool:
|
|
253
|
+
return True
|