torchrl 0.11.0__cp314-cp314t-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- benchmarks/benchmark_batched_envs.py +104 -0
- benchmarks/conftest.py +91 -0
- benchmarks/ecosystem/gym_env_throughput.py +321 -0
- benchmarks/ecosystem/vmas_rllib_vs_torchrl_sampling_performance.py +231 -0
- benchmarks/requirements.txt +7 -0
- benchmarks/storage/benchmark_sample_latency_over_rpc.py +193 -0
- benchmarks/test_collectors_benchmark.py +240 -0
- benchmarks/test_compressed_storage_benchmark.py +145 -0
- benchmarks/test_envs_benchmark.py +133 -0
- benchmarks/test_llm.py +101 -0
- benchmarks/test_non_tensor_env_benchmark.py +70 -0
- benchmarks/test_objectives_benchmarks.py +1199 -0
- benchmarks/test_replaybuffer_benchmark.py +254 -0
- sota-check/README.md +35 -0
- sota-implementations/README.md +142 -0
- sota-implementations/a2c/README.md +39 -0
- sota-implementations/a2c/a2c_atari.py +291 -0
- sota-implementations/a2c/a2c_mujoco.py +273 -0
- sota-implementations/a2c/utils_atari.py +240 -0
- sota-implementations/a2c/utils_mujoco.py +160 -0
- sota-implementations/bandits/README.md +7 -0
- sota-implementations/bandits/dqn.py +126 -0
- sota-implementations/cql/cql_offline.py +198 -0
- sota-implementations/cql/cql_online.py +249 -0
- sota-implementations/cql/discrete_cql_offline.py +180 -0
- sota-implementations/cql/discrete_cql_online.py +227 -0
- sota-implementations/cql/utils.py +471 -0
- sota-implementations/crossq/crossq.py +271 -0
- sota-implementations/crossq/utils.py +320 -0
- sota-implementations/ddpg/ddpg.py +231 -0
- sota-implementations/ddpg/utils.py +325 -0
- sota-implementations/decision_transformer/dt.py +163 -0
- sota-implementations/decision_transformer/lamb.py +167 -0
- sota-implementations/decision_transformer/online_dt.py +178 -0
- sota-implementations/decision_transformer/utils.py +562 -0
- sota-implementations/discrete_sac/discrete_sac.py +243 -0
- sota-implementations/discrete_sac/utils.py +324 -0
- sota-implementations/dqn/README.md +30 -0
- sota-implementations/dqn/dqn_atari.py +272 -0
- sota-implementations/dqn/dqn_cartpole.py +236 -0
- sota-implementations/dqn/utils_atari.py +132 -0
- sota-implementations/dqn/utils_cartpole.py +90 -0
- sota-implementations/dreamer/README.md +129 -0
- sota-implementations/dreamer/dreamer.py +586 -0
- sota-implementations/dreamer/dreamer_utils.py +1107 -0
- sota-implementations/expert-iteration/README.md +352 -0
- sota-implementations/expert-iteration/ei_utils.py +770 -0
- sota-implementations/expert-iteration/expert-iteration-async.py +512 -0
- sota-implementations/expert-iteration/expert-iteration-sync.py +508 -0
- sota-implementations/expert-iteration/requirements_gsm8k.txt +13 -0
- sota-implementations/expert-iteration/requirements_ifeval.txt +16 -0
- sota-implementations/gail/gail.py +327 -0
- sota-implementations/gail/gail_utils.py +68 -0
- sota-implementations/gail/ppo_utils.py +157 -0
- sota-implementations/grpo/README.md +273 -0
- sota-implementations/grpo/grpo-async.py +437 -0
- sota-implementations/grpo/grpo-sync.py +435 -0
- sota-implementations/grpo/grpo_utils.py +843 -0
- sota-implementations/grpo/requirements_gsm8k.txt +11 -0
- sota-implementations/grpo/requirements_ifeval.txt +16 -0
- sota-implementations/impala/README.md +33 -0
- sota-implementations/impala/impala_multi_node_ray.py +292 -0
- sota-implementations/impala/impala_multi_node_submitit.py +284 -0
- sota-implementations/impala/impala_single_node.py +261 -0
- sota-implementations/impala/utils.py +184 -0
- sota-implementations/iql/discrete_iql.py +230 -0
- sota-implementations/iql/iql_offline.py +164 -0
- sota-implementations/iql/iql_online.py +225 -0
- sota-implementations/iql/utils.py +437 -0
- sota-implementations/multiagent/README.md +74 -0
- sota-implementations/multiagent/iql.py +237 -0
- sota-implementations/multiagent/maddpg_iddpg.py +266 -0
- sota-implementations/multiagent/mappo_ippo.py +267 -0
- sota-implementations/multiagent/qmix_vdn.py +271 -0
- sota-implementations/multiagent/sac.py +337 -0
- sota-implementations/multiagent/utils/__init__.py +4 -0
- sota-implementations/multiagent/utils/logging.py +151 -0
- sota-implementations/multiagent/utils/utils.py +43 -0
- sota-implementations/ppo/README.md +29 -0
- sota-implementations/ppo/ppo_atari.py +305 -0
- sota-implementations/ppo/ppo_mujoco.py +293 -0
- sota-implementations/ppo/utils_atari.py +238 -0
- sota-implementations/ppo/utils_mujoco.py +152 -0
- sota-implementations/ppo_trainer/train.py +21 -0
- sota-implementations/redq/README.md +7 -0
- sota-implementations/redq/redq.py +199 -0
- sota-implementations/redq/utils.py +1060 -0
- sota-implementations/sac/sac-async.py +266 -0
- sota-implementations/sac/sac.py +239 -0
- sota-implementations/sac/utils.py +381 -0
- sota-implementations/sac_trainer/train.py +16 -0
- sota-implementations/td3/td3.py +254 -0
- sota-implementations/td3/utils.py +319 -0
- sota-implementations/td3_bc/td3_bc.py +177 -0
- sota-implementations/td3_bc/utils.py +251 -0
- torchrl/.dylibs/libc++.1.0.dylib +0 -0
- torchrl/__init__.py +144 -0
- torchrl/_extension.py +74 -0
- torchrl/_torchrl.cpython-314t-darwin.so +0 -0
- torchrl/_utils.py +1431 -0
- torchrl/collectors/__init__.py +48 -0
- torchrl/collectors/_base.py +1058 -0
- torchrl/collectors/_constants.py +88 -0
- torchrl/collectors/_multi_async.py +324 -0
- torchrl/collectors/_multi_base.py +1805 -0
- torchrl/collectors/_multi_sync.py +464 -0
- torchrl/collectors/_runner.py +581 -0
- torchrl/collectors/_single.py +2009 -0
- torchrl/collectors/_single_async.py +259 -0
- torchrl/collectors/collectors.py +62 -0
- torchrl/collectors/distributed/__init__.py +32 -0
- torchrl/collectors/distributed/default_configs.py +133 -0
- torchrl/collectors/distributed/generic.py +1306 -0
- torchrl/collectors/distributed/ray.py +1092 -0
- torchrl/collectors/distributed/rpc.py +1006 -0
- torchrl/collectors/distributed/sync.py +731 -0
- torchrl/collectors/distributed/utils.py +160 -0
- torchrl/collectors/llm/__init__.py +10 -0
- torchrl/collectors/llm/base.py +494 -0
- torchrl/collectors/llm/ray_collector.py +275 -0
- torchrl/collectors/llm/utils.py +36 -0
- torchrl/collectors/llm/weight_update/__init__.py +10 -0
- torchrl/collectors/llm/weight_update/vllm.py +348 -0
- torchrl/collectors/llm/weight_update/vllm_v2.py +311 -0
- torchrl/collectors/utils.py +433 -0
- torchrl/collectors/weight_update.py +591 -0
- torchrl/csrc/numpy_utils.h +38 -0
- torchrl/csrc/pybind.cpp +27 -0
- torchrl/csrc/segment_tree.h +458 -0
- torchrl/csrc/torch_utils.h +34 -0
- torchrl/csrc/utils.cpp +48 -0
- torchrl/csrc/utils.h +31 -0
- torchrl/data/__init__.py +187 -0
- torchrl/data/datasets/__init__.py +58 -0
- torchrl/data/datasets/atari_dqn.py +878 -0
- torchrl/data/datasets/common.py +281 -0
- torchrl/data/datasets/d4rl.py +489 -0
- torchrl/data/datasets/d4rl_infos.py +187 -0
- torchrl/data/datasets/gen_dgrl.py +375 -0
- torchrl/data/datasets/minari_data.py +643 -0
- torchrl/data/datasets/openml.py +177 -0
- torchrl/data/datasets/openx.py +798 -0
- torchrl/data/datasets/roboset.py +363 -0
- torchrl/data/datasets/utils.py +11 -0
- torchrl/data/datasets/vd4rl.py +432 -0
- torchrl/data/llm/__init__.py +34 -0
- torchrl/data/llm/dataset.py +491 -0
- torchrl/data/llm/history.py +1378 -0
- torchrl/data/llm/prompt.py +198 -0
- torchrl/data/llm/reward.py +225 -0
- torchrl/data/llm/topk.py +186 -0
- torchrl/data/llm/utils.py +543 -0
- torchrl/data/map/__init__.py +21 -0
- torchrl/data/map/hash.py +185 -0
- torchrl/data/map/query.py +204 -0
- torchrl/data/map/tdstorage.py +363 -0
- torchrl/data/map/tree.py +1434 -0
- torchrl/data/map/utils.py +103 -0
- torchrl/data/postprocs/__init__.py +8 -0
- torchrl/data/postprocs/postprocs.py +391 -0
- torchrl/data/replay_buffers/__init__.py +99 -0
- torchrl/data/replay_buffers/checkpointers.py +622 -0
- torchrl/data/replay_buffers/ray_buffer.py +292 -0
- torchrl/data/replay_buffers/replay_buffers.py +2376 -0
- torchrl/data/replay_buffers/samplers.py +2578 -0
- torchrl/data/replay_buffers/scheduler.py +265 -0
- torchrl/data/replay_buffers/storages.py +2412 -0
- torchrl/data/replay_buffers/utils.py +1042 -0
- torchrl/data/replay_buffers/writers.py +781 -0
- torchrl/data/tensor_specs.py +7101 -0
- torchrl/data/utils.py +334 -0
- torchrl/envs/__init__.py +265 -0
- torchrl/envs/async_envs.py +1105 -0
- torchrl/envs/batched_envs.py +3093 -0
- torchrl/envs/common.py +4241 -0
- torchrl/envs/custom/__init__.py +11 -0
- torchrl/envs/custom/chess.py +617 -0
- torchrl/envs/custom/llm.py +214 -0
- torchrl/envs/custom/pendulum.py +401 -0
- torchrl/envs/custom/san_moves.txt +29274 -0
- torchrl/envs/custom/tictactoeenv.py +288 -0
- torchrl/envs/env_creator.py +263 -0
- torchrl/envs/gym_like.py +752 -0
- torchrl/envs/libs/__init__.py +68 -0
- torchrl/envs/libs/_gym_utils.py +326 -0
- torchrl/envs/libs/brax.py +846 -0
- torchrl/envs/libs/dm_control.py +544 -0
- torchrl/envs/libs/envpool.py +447 -0
- torchrl/envs/libs/gym.py +2239 -0
- torchrl/envs/libs/habitat.py +138 -0
- torchrl/envs/libs/isaac_lab.py +87 -0
- torchrl/envs/libs/isaacgym.py +203 -0
- torchrl/envs/libs/jax_utils.py +166 -0
- torchrl/envs/libs/jumanji.py +963 -0
- torchrl/envs/libs/meltingpot.py +599 -0
- torchrl/envs/libs/openml.py +153 -0
- torchrl/envs/libs/openspiel.py +652 -0
- torchrl/envs/libs/pettingzoo.py +1042 -0
- torchrl/envs/libs/procgen.py +351 -0
- torchrl/envs/libs/robohive.py +429 -0
- torchrl/envs/libs/smacv2.py +645 -0
- torchrl/envs/libs/unity_mlagents.py +891 -0
- torchrl/envs/libs/utils.py +147 -0
- torchrl/envs/libs/vmas.py +813 -0
- torchrl/envs/llm/__init__.py +63 -0
- torchrl/envs/llm/chat.py +730 -0
- torchrl/envs/llm/datasets/README.md +4 -0
- torchrl/envs/llm/datasets/__init__.py +17 -0
- torchrl/envs/llm/datasets/gsm8k.py +353 -0
- torchrl/envs/llm/datasets/ifeval.py +274 -0
- torchrl/envs/llm/envs.py +789 -0
- torchrl/envs/llm/libs/README.md +3 -0
- torchrl/envs/llm/libs/__init__.py +8 -0
- torchrl/envs/llm/libs/mlgym.py +869 -0
- torchrl/envs/llm/reward/__init__.py +10 -0
- torchrl/envs/llm/reward/gsm8k.py +324 -0
- torchrl/envs/llm/reward/ifeval/README.md +13 -0
- torchrl/envs/llm/reward/ifeval/__init__.py +10 -0
- torchrl/envs/llm/reward/ifeval/_instructions.py +1667 -0
- torchrl/envs/llm/reward/ifeval/_instructions_main.py +131 -0
- torchrl/envs/llm/reward/ifeval/_instructions_registry.py +100 -0
- torchrl/envs/llm/reward/ifeval/_instructions_util.py +1677 -0
- torchrl/envs/llm/reward/ifeval/_scorer.py +454 -0
- torchrl/envs/llm/transforms/__init__.py +55 -0
- torchrl/envs/llm/transforms/browser.py +292 -0
- torchrl/envs/llm/transforms/dataloading.py +859 -0
- torchrl/envs/llm/transforms/format.py +73 -0
- torchrl/envs/llm/transforms/kl.py +1544 -0
- torchrl/envs/llm/transforms/policy_version.py +189 -0
- torchrl/envs/llm/transforms/reason.py +323 -0
- torchrl/envs/llm/transforms/tokenizer.py +321 -0
- torchrl/envs/llm/transforms/tools.py +1955 -0
- torchrl/envs/model_based/__init__.py +9 -0
- torchrl/envs/model_based/common.py +180 -0
- torchrl/envs/model_based/dreamer.py +112 -0
- torchrl/envs/transforms/__init__.py +147 -0
- torchrl/envs/transforms/functional.py +48 -0
- torchrl/envs/transforms/gym_transforms.py +203 -0
- torchrl/envs/transforms/module.py +341 -0
- torchrl/envs/transforms/r3m.py +372 -0
- torchrl/envs/transforms/ray_service.py +663 -0
- torchrl/envs/transforms/rb_transforms.py +214 -0
- torchrl/envs/transforms/transforms.py +11835 -0
- torchrl/envs/transforms/utils.py +94 -0
- torchrl/envs/transforms/vc1.py +307 -0
- torchrl/envs/transforms/vecnorm.py +845 -0
- torchrl/envs/transforms/vip.py +407 -0
- torchrl/envs/utils.py +1718 -0
- torchrl/envs/vec_envs.py +11 -0
- torchrl/modules/__init__.py +206 -0
- torchrl/modules/distributions/__init__.py +73 -0
- torchrl/modules/distributions/continuous.py +830 -0
- torchrl/modules/distributions/discrete.py +908 -0
- torchrl/modules/distributions/truncated_normal.py +187 -0
- torchrl/modules/distributions/utils.py +233 -0
- torchrl/modules/llm/__init__.py +62 -0
- torchrl/modules/llm/backends/__init__.py +65 -0
- torchrl/modules/llm/backends/vllm/__init__.py +94 -0
- torchrl/modules/llm/backends/vllm/_models.py +46 -0
- torchrl/modules/llm/backends/vllm/base.py +72 -0
- torchrl/modules/llm/backends/vllm/vllm_async.py +2075 -0
- torchrl/modules/llm/backends/vllm/vllm_plugin.py +22 -0
- torchrl/modules/llm/backends/vllm/vllm_sync.py +446 -0
- torchrl/modules/llm/backends/vllm/vllm_utils.py +129 -0
- torchrl/modules/llm/policies/__init__.py +28 -0
- torchrl/modules/llm/policies/common.py +1809 -0
- torchrl/modules/llm/policies/transformers_wrapper.py +2756 -0
- torchrl/modules/llm/policies/vllm_wrapper.py +2241 -0
- torchrl/modules/llm/utils.py +23 -0
- torchrl/modules/mcts/__init__.py +21 -0
- torchrl/modules/mcts/scores.py +579 -0
- torchrl/modules/models/__init__.py +86 -0
- torchrl/modules/models/batchrenorm.py +119 -0
- torchrl/modules/models/decision_transformer.py +179 -0
- torchrl/modules/models/exploration.py +731 -0
- torchrl/modules/models/llm.py +156 -0
- torchrl/modules/models/model_based.py +596 -0
- torchrl/modules/models/models.py +1712 -0
- torchrl/modules/models/multiagent.py +1067 -0
- torchrl/modules/models/recipes/impala.py +185 -0
- torchrl/modules/models/utils.py +162 -0
- torchrl/modules/planners/__init__.py +10 -0
- torchrl/modules/planners/cem.py +228 -0
- torchrl/modules/planners/common.py +73 -0
- torchrl/modules/planners/mppi.py +265 -0
- torchrl/modules/tensordict_module/__init__.py +89 -0
- torchrl/modules/tensordict_module/actors.py +2457 -0
- torchrl/modules/tensordict_module/common.py +529 -0
- torchrl/modules/tensordict_module/exploration.py +814 -0
- torchrl/modules/tensordict_module/probabilistic.py +321 -0
- torchrl/modules/tensordict_module/rnn.py +1639 -0
- torchrl/modules/tensordict_module/sequence.py +132 -0
- torchrl/modules/tensordict_module/world_models.py +34 -0
- torchrl/modules/utils/__init__.py +38 -0
- torchrl/modules/utils/mappings.py +9 -0
- torchrl/modules/utils/utils.py +89 -0
- torchrl/objectives/__init__.py +78 -0
- torchrl/objectives/a2c.py +659 -0
- torchrl/objectives/common.py +753 -0
- torchrl/objectives/cql.py +1346 -0
- torchrl/objectives/crossq.py +710 -0
- torchrl/objectives/ddpg.py +453 -0
- torchrl/objectives/decision_transformer.py +371 -0
- torchrl/objectives/deprecated.py +516 -0
- torchrl/objectives/dqn.py +683 -0
- torchrl/objectives/dreamer.py +488 -0
- torchrl/objectives/functional.py +48 -0
- torchrl/objectives/gail.py +258 -0
- torchrl/objectives/iql.py +996 -0
- torchrl/objectives/llm/__init__.py +30 -0
- torchrl/objectives/llm/grpo.py +846 -0
- torchrl/objectives/llm/sft.py +482 -0
- torchrl/objectives/multiagent/__init__.py +8 -0
- torchrl/objectives/multiagent/qmixer.py +396 -0
- torchrl/objectives/ppo.py +1669 -0
- torchrl/objectives/redq.py +683 -0
- torchrl/objectives/reinforce.py +530 -0
- torchrl/objectives/sac.py +1580 -0
- torchrl/objectives/td3.py +570 -0
- torchrl/objectives/td3_bc.py +625 -0
- torchrl/objectives/utils.py +782 -0
- torchrl/objectives/value/__init__.py +28 -0
- torchrl/objectives/value/advantages.py +1956 -0
- torchrl/objectives/value/functional.py +1459 -0
- torchrl/objectives/value/utils.py +360 -0
- torchrl/record/__init__.py +17 -0
- torchrl/record/loggers/__init__.py +23 -0
- torchrl/record/loggers/common.py +48 -0
- torchrl/record/loggers/csv.py +226 -0
- torchrl/record/loggers/mlflow.py +142 -0
- torchrl/record/loggers/tensorboard.py +139 -0
- torchrl/record/loggers/trackio.py +163 -0
- torchrl/record/loggers/utils.py +78 -0
- torchrl/record/loggers/wandb.py +214 -0
- torchrl/record/recorder.py +554 -0
- torchrl/services/__init__.py +79 -0
- torchrl/services/base.py +109 -0
- torchrl/services/ray_service.py +453 -0
- torchrl/testing/__init__.py +107 -0
- torchrl/testing/assertions.py +179 -0
- torchrl/testing/dist_utils.py +122 -0
- torchrl/testing/env_creators.py +227 -0
- torchrl/testing/env_helper.py +35 -0
- torchrl/testing/gym_helpers.py +156 -0
- torchrl/testing/llm_mocks.py +119 -0
- torchrl/testing/mocking_classes.py +2720 -0
- torchrl/testing/modules.py +295 -0
- torchrl/testing/mp_helpers.py +15 -0
- torchrl/testing/ray_helpers.py +293 -0
- torchrl/testing/utils.py +190 -0
- torchrl/trainers/__init__.py +42 -0
- torchrl/trainers/algorithms/__init__.py +11 -0
- torchrl/trainers/algorithms/configs/__init__.py +705 -0
- torchrl/trainers/algorithms/configs/collectors.py +216 -0
- torchrl/trainers/algorithms/configs/common.py +41 -0
- torchrl/trainers/algorithms/configs/data.py +308 -0
- torchrl/trainers/algorithms/configs/envs.py +104 -0
- torchrl/trainers/algorithms/configs/envs_libs.py +361 -0
- torchrl/trainers/algorithms/configs/logging.py +80 -0
- torchrl/trainers/algorithms/configs/modules.py +570 -0
- torchrl/trainers/algorithms/configs/objectives.py +177 -0
- torchrl/trainers/algorithms/configs/trainers.py +340 -0
- torchrl/trainers/algorithms/configs/transforms.py +955 -0
- torchrl/trainers/algorithms/configs/utils.py +252 -0
- torchrl/trainers/algorithms/configs/weight_sync_schemes.py +191 -0
- torchrl/trainers/algorithms/configs/weight_update.py +159 -0
- torchrl/trainers/algorithms/ppo.py +373 -0
- torchrl/trainers/algorithms/sac.py +308 -0
- torchrl/trainers/helpers/__init__.py +40 -0
- torchrl/trainers/helpers/collectors.py +416 -0
- torchrl/trainers/helpers/envs.py +573 -0
- torchrl/trainers/helpers/logger.py +33 -0
- torchrl/trainers/helpers/losses.py +132 -0
- torchrl/trainers/helpers/models.py +658 -0
- torchrl/trainers/helpers/replay_buffer.py +59 -0
- torchrl/trainers/helpers/trainers.py +301 -0
- torchrl/trainers/trainers.py +2052 -0
- torchrl/weight_update/__init__.py +33 -0
- torchrl/weight_update/_distributed.py +749 -0
- torchrl/weight_update/_mp.py +624 -0
- torchrl/weight_update/_noupdate.py +102 -0
- torchrl/weight_update/_ray.py +1032 -0
- torchrl/weight_update/_rpc.py +284 -0
- torchrl/weight_update/_shared.py +891 -0
- torchrl/weight_update/llm/__init__.py +32 -0
- torchrl/weight_update/llm/vllm_double_buffer.py +370 -0
- torchrl/weight_update/llm/vllm_nccl.py +710 -0
- torchrl/weight_update/utils.py +73 -0
- torchrl/weight_update/weight_sync_schemes.py +1244 -0
- torchrl-0.11.0.dist-info/METADATA +1308 -0
- torchrl-0.11.0.dist-info/RECORD +395 -0
- torchrl-0.11.0.dist-info/WHEEL +5 -0
- torchrl-0.11.0.dist-info/entry_points.txt +2 -0
- torchrl-0.11.0.dist-info/licenses/LICENSE +21 -0
- torchrl-0.11.0.dist-info/top_level.txt +7 -0
|
@@ -0,0 +1,240 @@
|
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
2
|
+
#
|
|
3
|
+
# This source code is licensed under the MIT license found in the
|
|
4
|
+
# LICENSE file in the root directory of this source tree.
|
|
5
|
+
from __future__ import annotations
|
|
6
|
+
|
|
7
|
+
import numpy as np
|
|
8
|
+
import torch.nn
|
|
9
|
+
import torch.optim
|
|
10
|
+
from tensordict.nn import TensorDictModule
|
|
11
|
+
from torchrl.data.tensor_specs import CategoricalBox
|
|
12
|
+
from torchrl.envs import (
|
|
13
|
+
CatFrames,
|
|
14
|
+
DoubleToFloat,
|
|
15
|
+
EndOfLifeTransform,
|
|
16
|
+
EnvCreator,
|
|
17
|
+
ExplorationType,
|
|
18
|
+
GrayScale,
|
|
19
|
+
GymEnv,
|
|
20
|
+
NoopResetEnv,
|
|
21
|
+
ParallelEnv,
|
|
22
|
+
Resize,
|
|
23
|
+
RewardSum,
|
|
24
|
+
set_gym_backend,
|
|
25
|
+
SignTransform,
|
|
26
|
+
StepCounter,
|
|
27
|
+
ToTensorImage,
|
|
28
|
+
TransformedEnv,
|
|
29
|
+
VecNorm,
|
|
30
|
+
)
|
|
31
|
+
from torchrl.modules import (
|
|
32
|
+
ActorValueOperator,
|
|
33
|
+
ConvNet,
|
|
34
|
+
MLP,
|
|
35
|
+
OneHotCategorical,
|
|
36
|
+
ProbabilisticActor,
|
|
37
|
+
TanhNormal,
|
|
38
|
+
ValueOperator,
|
|
39
|
+
)
|
|
40
|
+
from torchrl.record import VideoRecorder
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
# ====================================================================
|
|
44
|
+
# Environment utils
|
|
45
|
+
# --------------------------------------------------------------------
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
def make_base_env(
|
|
49
|
+
env_name="BreakoutNoFrameskip-v4",
|
|
50
|
+
gym_backend="gymnasium",
|
|
51
|
+
frame_skip=4,
|
|
52
|
+
device="cpu",
|
|
53
|
+
is_test=False,
|
|
54
|
+
):
|
|
55
|
+
with set_gym_backend(gym_backend):
|
|
56
|
+
env = GymEnv(
|
|
57
|
+
env_name,
|
|
58
|
+
frame_skip=frame_skip,
|
|
59
|
+
from_pixels=True,
|
|
60
|
+
pixels_only=False,
|
|
61
|
+
device=device,
|
|
62
|
+
)
|
|
63
|
+
env = TransformedEnv(env)
|
|
64
|
+
env.append_transform(NoopResetEnv(noops=30, random=True))
|
|
65
|
+
if not is_test:
|
|
66
|
+
env.append_transform(EndOfLifeTransform())
|
|
67
|
+
return env
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
def make_parallel_env(env_name, num_envs, device, gym_backend, is_test=False):
|
|
71
|
+
env = ParallelEnv(
|
|
72
|
+
num_envs,
|
|
73
|
+
EnvCreator(
|
|
74
|
+
lambda: make_base_env(env_name, gym_backend=gym_backend, is_test=is_test),
|
|
75
|
+
),
|
|
76
|
+
serial_for_single=True,
|
|
77
|
+
device=device,
|
|
78
|
+
)
|
|
79
|
+
env = TransformedEnv(env)
|
|
80
|
+
env.append_transform(DoubleToFloat())
|
|
81
|
+
env.append_transform(ToTensorImage())
|
|
82
|
+
env.append_transform(GrayScale())
|
|
83
|
+
env.append_transform(Resize(84, 84))
|
|
84
|
+
env.append_transform(CatFrames(N=4, dim=-3))
|
|
85
|
+
env.append_transform(RewardSum())
|
|
86
|
+
env.append_transform(StepCounter(max_steps=4500))
|
|
87
|
+
if not is_test:
|
|
88
|
+
env.append_transform(SignTransform(in_keys=["reward"]))
|
|
89
|
+
env.append_transform(VecNorm(in_keys=["pixels"]))
|
|
90
|
+
return env
|
|
91
|
+
|
|
92
|
+
|
|
93
|
+
# ====================================================================
|
|
94
|
+
# Model utils
|
|
95
|
+
# --------------------------------------------------------------------
|
|
96
|
+
|
|
97
|
+
|
|
98
|
+
def make_ppo_modules_pixels(proof_environment, device):
|
|
99
|
+
|
|
100
|
+
# Define input shape
|
|
101
|
+
input_shape = proof_environment.observation_spec["pixels"].shape
|
|
102
|
+
|
|
103
|
+
# Define distribution class and kwargs
|
|
104
|
+
if isinstance(proof_environment.action_spec_unbatched.space, CategoricalBox):
|
|
105
|
+
num_outputs = proof_environment.action_spec_unbatched.space.n
|
|
106
|
+
distribution_class = OneHotCategorical
|
|
107
|
+
distribution_kwargs = {}
|
|
108
|
+
else: # is ContinuousBox
|
|
109
|
+
num_outputs = proof_environment.action_spec_unbatched.shape
|
|
110
|
+
distribution_class = TanhNormal
|
|
111
|
+
distribution_kwargs = {
|
|
112
|
+
"low": proof_environment.action_spec_unbatched.space.low.to(device),
|
|
113
|
+
"high": proof_environment.action_spec_unbatched.space.high.to(device),
|
|
114
|
+
}
|
|
115
|
+
|
|
116
|
+
# Define input keys
|
|
117
|
+
in_keys = ["pixels"]
|
|
118
|
+
|
|
119
|
+
# Define a shared Module and TensorDictModule (CNN + MLP)
|
|
120
|
+
common_cnn = ConvNet(
|
|
121
|
+
activation_class=torch.nn.ReLU,
|
|
122
|
+
num_cells=[32, 64, 64],
|
|
123
|
+
kernel_sizes=[8, 4, 3],
|
|
124
|
+
strides=[4, 2, 1],
|
|
125
|
+
device=device,
|
|
126
|
+
)
|
|
127
|
+
common_cnn_output = common_cnn(torch.ones(input_shape, device=device))
|
|
128
|
+
common_mlp = MLP(
|
|
129
|
+
in_features=common_cnn_output.shape[-1],
|
|
130
|
+
activation_class=torch.nn.ReLU,
|
|
131
|
+
activate_last_layer=True,
|
|
132
|
+
out_features=512,
|
|
133
|
+
num_cells=[],
|
|
134
|
+
device=device,
|
|
135
|
+
)
|
|
136
|
+
common_mlp_output = common_mlp(common_cnn_output)
|
|
137
|
+
|
|
138
|
+
# Define shared net as TensorDictModule
|
|
139
|
+
common_module = TensorDictModule(
|
|
140
|
+
module=torch.nn.Sequential(common_cnn, common_mlp),
|
|
141
|
+
in_keys=in_keys,
|
|
142
|
+
out_keys=["common_features"],
|
|
143
|
+
)
|
|
144
|
+
|
|
145
|
+
# Define on head for the policy
|
|
146
|
+
policy_net = MLP(
|
|
147
|
+
in_features=common_mlp_output.shape[-1],
|
|
148
|
+
out_features=num_outputs,
|
|
149
|
+
activation_class=torch.nn.ReLU,
|
|
150
|
+
num_cells=[],
|
|
151
|
+
device=device,
|
|
152
|
+
)
|
|
153
|
+
policy_module = TensorDictModule(
|
|
154
|
+
module=policy_net,
|
|
155
|
+
in_keys=["common_features"],
|
|
156
|
+
out_keys=["logits"],
|
|
157
|
+
)
|
|
158
|
+
|
|
159
|
+
# Add probabilistic sampling of the actions
|
|
160
|
+
policy_module = ProbabilisticActor(
|
|
161
|
+
policy_module,
|
|
162
|
+
in_keys=["logits"],
|
|
163
|
+
spec=proof_environment.full_action_spec_unbatched.to(device),
|
|
164
|
+
distribution_class=distribution_class,
|
|
165
|
+
distribution_kwargs=distribution_kwargs,
|
|
166
|
+
return_log_prob=True,
|
|
167
|
+
default_interaction_type=ExplorationType.RANDOM,
|
|
168
|
+
)
|
|
169
|
+
|
|
170
|
+
# Define another head for the value
|
|
171
|
+
value_net = MLP(
|
|
172
|
+
activation_class=torch.nn.ReLU,
|
|
173
|
+
in_features=common_mlp_output.shape[-1],
|
|
174
|
+
out_features=1,
|
|
175
|
+
num_cells=[],
|
|
176
|
+
device=device,
|
|
177
|
+
)
|
|
178
|
+
value_module = ValueOperator(
|
|
179
|
+
value_net,
|
|
180
|
+
in_keys=["common_features"],
|
|
181
|
+
)
|
|
182
|
+
|
|
183
|
+
return common_module, policy_module, value_module
|
|
184
|
+
|
|
185
|
+
|
|
186
|
+
def make_ppo_models(env_name, device, gym_backend):
|
|
187
|
+
|
|
188
|
+
proof_environment = make_parallel_env(
|
|
189
|
+
env_name, num_envs=1, device="cpu", gym_backend=gym_backend
|
|
190
|
+
)
|
|
191
|
+
common_module, policy_module, value_module = make_ppo_modules_pixels(
|
|
192
|
+
proof_environment, device=device
|
|
193
|
+
)
|
|
194
|
+
|
|
195
|
+
# Wrap modules in a single ActorCritic operator
|
|
196
|
+
actor_critic = ActorValueOperator(
|
|
197
|
+
common_operator=common_module,
|
|
198
|
+
policy_operator=policy_module,
|
|
199
|
+
value_operator=value_module,
|
|
200
|
+
)
|
|
201
|
+
|
|
202
|
+
with torch.no_grad():
|
|
203
|
+
td = proof_environment.fake_tensordict().expand(1)
|
|
204
|
+
td = actor_critic(td.to(device))
|
|
205
|
+
del td
|
|
206
|
+
|
|
207
|
+
actor = actor_critic.get_policy_operator()
|
|
208
|
+
critic = actor_critic.get_value_operator()
|
|
209
|
+
critic_head = actor_critic.get_value_head()
|
|
210
|
+
|
|
211
|
+
del proof_environment
|
|
212
|
+
|
|
213
|
+
return actor, critic, critic_head
|
|
214
|
+
|
|
215
|
+
|
|
216
|
+
# ====================================================================
|
|
217
|
+
# Evaluation utils
|
|
218
|
+
# --------------------------------------------------------------------
|
|
219
|
+
|
|
220
|
+
|
|
221
|
+
def dump_video(module):
|
|
222
|
+
if isinstance(module, VideoRecorder):
|
|
223
|
+
module.dump()
|
|
224
|
+
|
|
225
|
+
|
|
226
|
+
def eval_model(actor, test_env, num_episodes=3):
|
|
227
|
+
test_rewards = []
|
|
228
|
+
for _ in range(num_episodes):
|
|
229
|
+
td_test = test_env.rollout(
|
|
230
|
+
policy=actor,
|
|
231
|
+
auto_reset=True,
|
|
232
|
+
auto_cast_to_device=True,
|
|
233
|
+
break_when_any_done=True,
|
|
234
|
+
max_steps=10_000_000,
|
|
235
|
+
)
|
|
236
|
+
reward = td_test["next", "episode_reward"][td_test["next", "done"]]
|
|
237
|
+
test_rewards = np.append(test_rewards, reward.cpu().numpy())
|
|
238
|
+
test_env.apply(dump_video)
|
|
239
|
+
del td_test
|
|
240
|
+
return test_rewards.mean()
|
|
@@ -0,0 +1,160 @@
|
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
2
|
+
#
|
|
3
|
+
# This source code is licensed under the MIT license found in the
|
|
4
|
+
# LICENSE file in the root directory of this source tree.
|
|
5
|
+
from __future__ import annotations
|
|
6
|
+
|
|
7
|
+
import numpy as np
|
|
8
|
+
import torch.nn
|
|
9
|
+
import torch.optim
|
|
10
|
+
|
|
11
|
+
from tensordict.nn import AddStateIndependentNormalScale, TensorDictModule
|
|
12
|
+
from torchrl.envs import (
|
|
13
|
+
ClipTransform,
|
|
14
|
+
DoubleToFloat,
|
|
15
|
+
ExplorationType,
|
|
16
|
+
RewardSum,
|
|
17
|
+
StepCounter,
|
|
18
|
+
TransformedEnv,
|
|
19
|
+
VecNorm,
|
|
20
|
+
)
|
|
21
|
+
from torchrl.envs.libs.gym import GymEnv
|
|
22
|
+
from torchrl.modules import MLP, ProbabilisticActor, TanhNormal, ValueOperator
|
|
23
|
+
from torchrl.record import VideoRecorder
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
# ====================================================================
|
|
27
|
+
# Environment utils
|
|
28
|
+
# --------------------------------------------------------------------
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
def make_env(
|
|
32
|
+
env_name="HalfCheetah-v4", device="cpu", from_pixels=False, pixels_only=False
|
|
33
|
+
):
|
|
34
|
+
env = GymEnv(
|
|
35
|
+
env_name, device=device, from_pixels=from_pixels, pixels_only=pixels_only
|
|
36
|
+
)
|
|
37
|
+
env = TransformedEnv(env)
|
|
38
|
+
env.append_transform(RewardSum())
|
|
39
|
+
env.append_transform(StepCounter())
|
|
40
|
+
env.append_transform(VecNorm(in_keys=["observation"]))
|
|
41
|
+
env.append_transform(ClipTransform(in_keys=["observation"], low=-10, high=10))
|
|
42
|
+
env.append_transform(DoubleToFloat(in_keys=["observation"]))
|
|
43
|
+
return env
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
# ====================================================================
|
|
47
|
+
# Model utils
|
|
48
|
+
# --------------------------------------------------------------------
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
def make_ppo_models_state(proof_environment, device, *, compile: bool = False):
|
|
52
|
+
|
|
53
|
+
# Define input shape
|
|
54
|
+
input_shape = proof_environment.observation_spec["observation"].shape
|
|
55
|
+
|
|
56
|
+
# Define policy output distribution class
|
|
57
|
+
num_outputs = proof_environment.action_spec_unbatched.shape[-1]
|
|
58
|
+
distribution_class = TanhNormal
|
|
59
|
+
distribution_kwargs = {
|
|
60
|
+
"low": proof_environment.action_spec_unbatched.space.low.to(device),
|
|
61
|
+
"high": proof_environment.action_spec_unbatched.space.high.to(device),
|
|
62
|
+
"tanh_loc": False,
|
|
63
|
+
"safe_tanh": True,
|
|
64
|
+
}
|
|
65
|
+
|
|
66
|
+
# Define policy architecture
|
|
67
|
+
policy_mlp = MLP(
|
|
68
|
+
in_features=input_shape[-1],
|
|
69
|
+
activation_class=torch.nn.Tanh,
|
|
70
|
+
out_features=num_outputs, # predict only loc
|
|
71
|
+
num_cells=[64, 64],
|
|
72
|
+
device=device,
|
|
73
|
+
)
|
|
74
|
+
|
|
75
|
+
# Initialize policy weights
|
|
76
|
+
for layer in policy_mlp.modules():
|
|
77
|
+
if isinstance(layer, torch.nn.Linear):
|
|
78
|
+
torch.nn.init.orthogonal_(layer.weight, 1.0)
|
|
79
|
+
layer.bias.data.zero_()
|
|
80
|
+
|
|
81
|
+
# Add state-independent normal scale
|
|
82
|
+
policy_mlp = torch.nn.Sequential(
|
|
83
|
+
policy_mlp,
|
|
84
|
+
AddStateIndependentNormalScale(
|
|
85
|
+
proof_environment.action_spec_unbatched.shape[-1], device=device
|
|
86
|
+
),
|
|
87
|
+
)
|
|
88
|
+
|
|
89
|
+
# Add probabilistic sampling of the actions
|
|
90
|
+
policy_module = ProbabilisticActor(
|
|
91
|
+
TensorDictModule(
|
|
92
|
+
module=policy_mlp,
|
|
93
|
+
in_keys=["observation"],
|
|
94
|
+
out_keys=["loc", "scale"],
|
|
95
|
+
),
|
|
96
|
+
in_keys=["loc", "scale"],
|
|
97
|
+
spec=proof_environment.full_action_spec_unbatched.to(device),
|
|
98
|
+
distribution_class=distribution_class,
|
|
99
|
+
distribution_kwargs=distribution_kwargs,
|
|
100
|
+
return_log_prob=True,
|
|
101
|
+
default_interaction_type=ExplorationType.RANDOM,
|
|
102
|
+
)
|
|
103
|
+
|
|
104
|
+
# Define value architecture
|
|
105
|
+
value_mlp = MLP(
|
|
106
|
+
in_features=input_shape[-1],
|
|
107
|
+
activation_class=torch.nn.Tanh,
|
|
108
|
+
out_features=1,
|
|
109
|
+
num_cells=[64, 64],
|
|
110
|
+
device=device,
|
|
111
|
+
)
|
|
112
|
+
|
|
113
|
+
# Initialize value weights
|
|
114
|
+
for layer in value_mlp.modules():
|
|
115
|
+
if isinstance(layer, torch.nn.Linear):
|
|
116
|
+
torch.nn.init.orthogonal_(layer.weight, 0.01)
|
|
117
|
+
layer.bias.data.zero_()
|
|
118
|
+
|
|
119
|
+
# Define value module
|
|
120
|
+
value_module = ValueOperator(
|
|
121
|
+
value_mlp,
|
|
122
|
+
in_keys=["observation"],
|
|
123
|
+
)
|
|
124
|
+
|
|
125
|
+
return policy_module, value_module
|
|
126
|
+
|
|
127
|
+
|
|
128
|
+
def make_ppo_models(env_name, device, *, compile: bool = False):
|
|
129
|
+
proof_environment = make_env(env_name, device="cpu")
|
|
130
|
+
actor, critic = make_ppo_models_state(
|
|
131
|
+
proof_environment, device=device, compile=compile
|
|
132
|
+
)
|
|
133
|
+
return actor, critic
|
|
134
|
+
|
|
135
|
+
|
|
136
|
+
# ====================================================================
|
|
137
|
+
# Evaluation utils
|
|
138
|
+
# --------------------------------------------------------------------
|
|
139
|
+
|
|
140
|
+
|
|
141
|
+
def dump_video(module):
|
|
142
|
+
if isinstance(module, VideoRecorder):
|
|
143
|
+
module.dump()
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
def eval_model(actor, test_env, num_episodes=3):
|
|
147
|
+
test_rewards = []
|
|
148
|
+
for _ in range(num_episodes):
|
|
149
|
+
td_test = test_env.rollout(
|
|
150
|
+
policy=actor,
|
|
151
|
+
auto_reset=True,
|
|
152
|
+
auto_cast_to_device=True,
|
|
153
|
+
break_when_any_done=True,
|
|
154
|
+
max_steps=10_000_000,
|
|
155
|
+
)
|
|
156
|
+
reward = td_test["next", "episode_reward"][td_test["next", "done"]]
|
|
157
|
+
test_rewards = np.append(test_rewards, reward.cpu().numpy())
|
|
158
|
+
test_env.apply(dump_video)
|
|
159
|
+
del td_test
|
|
160
|
+
return test_rewards.mean()
|
|
@@ -0,0 +1,7 @@
|
|
|
1
|
+
# Bandits example
|
|
2
|
+
|
|
3
|
+
## Note:
|
|
4
|
+
This example is not included in the benchmarked results of the current release (v0.3). The intention is to include it in the
|
|
5
|
+
benchmarking of future releases, to ensure that it can be successfully run with the release code and that the
|
|
6
|
+
results are consistent. For now, be aware that this additional check has not been performed in the case of this
|
|
7
|
+
specific example.
|
|
@@ -0,0 +1,126 @@
|
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
2
|
+
#
|
|
3
|
+
# This source code is licensed under the MIT license found in the
|
|
4
|
+
# LICENSE file in the root directory of this source tree.
|
|
5
|
+
from __future__ import annotations
|
|
6
|
+
|
|
7
|
+
import argparse
|
|
8
|
+
|
|
9
|
+
import torch
|
|
10
|
+
import tqdm
|
|
11
|
+
|
|
12
|
+
from tensordict.nn import TensorDictSequential
|
|
13
|
+
from torch import nn
|
|
14
|
+
from torchrl.envs.libs.openml import OpenMLEnv
|
|
15
|
+
from torchrl.envs.utils import ExplorationType, set_exploration_type
|
|
16
|
+
from torchrl.modules import DistributionalQValueActor, EGreedyModule, MLP, QValueActor
|
|
17
|
+
from torchrl.objectives import DistributionalDQNLoss, DQNLoss
|
|
18
|
+
|
|
19
|
+
parser = argparse.ArgumentParser()
|
|
20
|
+
|
|
21
|
+
# Add arguments
|
|
22
|
+
parser.add_argument("--batch_size", type=int, default=256, help="batch size")
|
|
23
|
+
parser.add_argument("--n_steps", type=int, default=10000, help="number of steps")
|
|
24
|
+
parser.add_argument(
|
|
25
|
+
"--eps_greedy", type=float, default=0.1, help="epsilon-greedy parameter"
|
|
26
|
+
)
|
|
27
|
+
parser.add_argument("--lr", type=float, default=2e-4, help="learning rate")
|
|
28
|
+
parser.add_argument("--wd", type=float, default=1e-4, help="weight decay")
|
|
29
|
+
parser.add_argument("--n_cells", type=int, default=128, help="number of cells")
|
|
30
|
+
parser.add_argument(
|
|
31
|
+
"--distributional", action="store_true", help="enable distributional Q-learning"
|
|
32
|
+
)
|
|
33
|
+
parser.add_argument(
|
|
34
|
+
"--dataset",
|
|
35
|
+
default="adult_onehot",
|
|
36
|
+
choices=[
|
|
37
|
+
"adult_num",
|
|
38
|
+
"adult_onehot",
|
|
39
|
+
"mushroom_num",
|
|
40
|
+
"mushroom_onehot",
|
|
41
|
+
"covertype",
|
|
42
|
+
"shuttle",
|
|
43
|
+
"magic",
|
|
44
|
+
],
|
|
45
|
+
help="OpenML dataset",
|
|
46
|
+
)
|
|
47
|
+
|
|
48
|
+
if __name__ == "__main__":
|
|
49
|
+
# Parse arguments
|
|
50
|
+
args = parser.parse_args()
|
|
51
|
+
|
|
52
|
+
# Access arguments
|
|
53
|
+
batch_size = args.batch_size
|
|
54
|
+
n_steps = args.n_steps
|
|
55
|
+
eps_greedy = args.eps_greedy
|
|
56
|
+
lr = args.lr
|
|
57
|
+
wd = args.wd
|
|
58
|
+
n_cells = args.n_cells
|
|
59
|
+
distributional = args.distributional
|
|
60
|
+
dataset = args.dataset
|
|
61
|
+
|
|
62
|
+
env = OpenMLEnv(dataset, batch_size=[batch_size])
|
|
63
|
+
n_actions = env.action_spec.space.n
|
|
64
|
+
if distributional:
|
|
65
|
+
# does not really make sense since the value is either 0 or 1 and hopefully we
|
|
66
|
+
# should always predict 1
|
|
67
|
+
nbins = 2
|
|
68
|
+
model = MLP(
|
|
69
|
+
out_features=(nbins, n_actions),
|
|
70
|
+
depth=3,
|
|
71
|
+
num_cells=n_cells,
|
|
72
|
+
activation_class=nn.Tanh,
|
|
73
|
+
)
|
|
74
|
+
actor = DistributionalQValueActor(
|
|
75
|
+
model, support=torch.arange(2), action_space="categorical"
|
|
76
|
+
)
|
|
77
|
+
actor(env.reset())
|
|
78
|
+
loss = DistributionalDQNLoss(
|
|
79
|
+
actor,
|
|
80
|
+
)
|
|
81
|
+
loss.make_value_estimator(gamma=0.9)
|
|
82
|
+
else:
|
|
83
|
+
model = MLP(
|
|
84
|
+
out_features=n_actions, depth=3, num_cells=n_cells, activation_class=nn.Tanh
|
|
85
|
+
)
|
|
86
|
+
actor = QValueActor(model, action_space="categorical")
|
|
87
|
+
actor(env.reset())
|
|
88
|
+
loss = DQNLoss(actor, loss_function="smooth_l1", action_space=env.action_spec)
|
|
89
|
+
loss.make_value_estimator(gamma=0.0)
|
|
90
|
+
policy = TensorDictSequential(
|
|
91
|
+
actor,
|
|
92
|
+
EGreedyModule(
|
|
93
|
+
eps_init=eps_greedy,
|
|
94
|
+
eps_end=0.0,
|
|
95
|
+
annealing_num_steps=n_steps,
|
|
96
|
+
spec=env.action_spec,
|
|
97
|
+
),
|
|
98
|
+
)
|
|
99
|
+
optim = torch.optim.Adam(loss.parameters(), lr, weight_decay=wd)
|
|
100
|
+
|
|
101
|
+
pbar = tqdm.tqdm(range(n_steps))
|
|
102
|
+
|
|
103
|
+
init_r = None
|
|
104
|
+
init_loss = None
|
|
105
|
+
for i in pbar:
|
|
106
|
+
with set_exploration_type(ExplorationType.RANDOM):
|
|
107
|
+
data = env.step(policy(env.reset()))
|
|
108
|
+
loss_vals = loss(data)
|
|
109
|
+
loss_val = sum(
|
|
110
|
+
value for key, value in loss_vals.items() if key.startswith("loss")
|
|
111
|
+
)
|
|
112
|
+
loss_val.backward()
|
|
113
|
+
optim.step()
|
|
114
|
+
optim.zero_grad()
|
|
115
|
+
if i % 10 == 0:
|
|
116
|
+
test_data = env.step(policy(env.reset()))
|
|
117
|
+
if init_r is None:
|
|
118
|
+
init_r = test_data["next", "reward"].sum() / env.numel()
|
|
119
|
+
if init_loss is None:
|
|
120
|
+
init_loss = loss_val.detach().item()
|
|
121
|
+
pbar.set_description(
|
|
122
|
+
f"reward: {test_data['next', 'reward'].sum() / env.numel(): 4.4f} (init={init_r: 4.4f}), "
|
|
123
|
+
f"training reward {data['next', 'reward'].sum() / env.numel() : 4.4f}, "
|
|
124
|
+
f"loss {loss_val: 4.4f} (init: {init_loss: 4.4f})"
|
|
125
|
+
)
|
|
126
|
+
policy[1].step()
|