torchrl 0.11.0__cp314-cp314t-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (395) hide show
  1. benchmarks/benchmark_batched_envs.py +104 -0
  2. benchmarks/conftest.py +91 -0
  3. benchmarks/ecosystem/gym_env_throughput.py +321 -0
  4. benchmarks/ecosystem/vmas_rllib_vs_torchrl_sampling_performance.py +231 -0
  5. benchmarks/requirements.txt +7 -0
  6. benchmarks/storage/benchmark_sample_latency_over_rpc.py +193 -0
  7. benchmarks/test_collectors_benchmark.py +240 -0
  8. benchmarks/test_compressed_storage_benchmark.py +145 -0
  9. benchmarks/test_envs_benchmark.py +133 -0
  10. benchmarks/test_llm.py +101 -0
  11. benchmarks/test_non_tensor_env_benchmark.py +70 -0
  12. benchmarks/test_objectives_benchmarks.py +1199 -0
  13. benchmarks/test_replaybuffer_benchmark.py +254 -0
  14. sota-check/README.md +35 -0
  15. sota-implementations/README.md +142 -0
  16. sota-implementations/a2c/README.md +39 -0
  17. sota-implementations/a2c/a2c_atari.py +291 -0
  18. sota-implementations/a2c/a2c_mujoco.py +273 -0
  19. sota-implementations/a2c/utils_atari.py +240 -0
  20. sota-implementations/a2c/utils_mujoco.py +160 -0
  21. sota-implementations/bandits/README.md +7 -0
  22. sota-implementations/bandits/dqn.py +126 -0
  23. sota-implementations/cql/cql_offline.py +198 -0
  24. sota-implementations/cql/cql_online.py +249 -0
  25. sota-implementations/cql/discrete_cql_offline.py +180 -0
  26. sota-implementations/cql/discrete_cql_online.py +227 -0
  27. sota-implementations/cql/utils.py +471 -0
  28. sota-implementations/crossq/crossq.py +271 -0
  29. sota-implementations/crossq/utils.py +320 -0
  30. sota-implementations/ddpg/ddpg.py +231 -0
  31. sota-implementations/ddpg/utils.py +325 -0
  32. sota-implementations/decision_transformer/dt.py +163 -0
  33. sota-implementations/decision_transformer/lamb.py +167 -0
  34. sota-implementations/decision_transformer/online_dt.py +178 -0
  35. sota-implementations/decision_transformer/utils.py +562 -0
  36. sota-implementations/discrete_sac/discrete_sac.py +243 -0
  37. sota-implementations/discrete_sac/utils.py +324 -0
  38. sota-implementations/dqn/README.md +30 -0
  39. sota-implementations/dqn/dqn_atari.py +272 -0
  40. sota-implementations/dqn/dqn_cartpole.py +236 -0
  41. sota-implementations/dqn/utils_atari.py +132 -0
  42. sota-implementations/dqn/utils_cartpole.py +90 -0
  43. sota-implementations/dreamer/README.md +129 -0
  44. sota-implementations/dreamer/dreamer.py +586 -0
  45. sota-implementations/dreamer/dreamer_utils.py +1107 -0
  46. sota-implementations/expert-iteration/README.md +352 -0
  47. sota-implementations/expert-iteration/ei_utils.py +770 -0
  48. sota-implementations/expert-iteration/expert-iteration-async.py +512 -0
  49. sota-implementations/expert-iteration/expert-iteration-sync.py +508 -0
  50. sota-implementations/expert-iteration/requirements_gsm8k.txt +13 -0
  51. sota-implementations/expert-iteration/requirements_ifeval.txt +16 -0
  52. sota-implementations/gail/gail.py +327 -0
  53. sota-implementations/gail/gail_utils.py +68 -0
  54. sota-implementations/gail/ppo_utils.py +157 -0
  55. sota-implementations/grpo/README.md +273 -0
  56. sota-implementations/grpo/grpo-async.py +437 -0
  57. sota-implementations/grpo/grpo-sync.py +435 -0
  58. sota-implementations/grpo/grpo_utils.py +843 -0
  59. sota-implementations/grpo/requirements_gsm8k.txt +11 -0
  60. sota-implementations/grpo/requirements_ifeval.txt +16 -0
  61. sota-implementations/impala/README.md +33 -0
  62. sota-implementations/impala/impala_multi_node_ray.py +292 -0
  63. sota-implementations/impala/impala_multi_node_submitit.py +284 -0
  64. sota-implementations/impala/impala_single_node.py +261 -0
  65. sota-implementations/impala/utils.py +184 -0
  66. sota-implementations/iql/discrete_iql.py +230 -0
  67. sota-implementations/iql/iql_offline.py +164 -0
  68. sota-implementations/iql/iql_online.py +225 -0
  69. sota-implementations/iql/utils.py +437 -0
  70. sota-implementations/multiagent/README.md +74 -0
  71. sota-implementations/multiagent/iql.py +237 -0
  72. sota-implementations/multiagent/maddpg_iddpg.py +266 -0
  73. sota-implementations/multiagent/mappo_ippo.py +267 -0
  74. sota-implementations/multiagent/qmix_vdn.py +271 -0
  75. sota-implementations/multiagent/sac.py +337 -0
  76. sota-implementations/multiagent/utils/__init__.py +4 -0
  77. sota-implementations/multiagent/utils/logging.py +151 -0
  78. sota-implementations/multiagent/utils/utils.py +43 -0
  79. sota-implementations/ppo/README.md +29 -0
  80. sota-implementations/ppo/ppo_atari.py +305 -0
  81. sota-implementations/ppo/ppo_mujoco.py +293 -0
  82. sota-implementations/ppo/utils_atari.py +238 -0
  83. sota-implementations/ppo/utils_mujoco.py +152 -0
  84. sota-implementations/ppo_trainer/train.py +21 -0
  85. sota-implementations/redq/README.md +7 -0
  86. sota-implementations/redq/redq.py +199 -0
  87. sota-implementations/redq/utils.py +1060 -0
  88. sota-implementations/sac/sac-async.py +266 -0
  89. sota-implementations/sac/sac.py +239 -0
  90. sota-implementations/sac/utils.py +381 -0
  91. sota-implementations/sac_trainer/train.py +16 -0
  92. sota-implementations/td3/td3.py +254 -0
  93. sota-implementations/td3/utils.py +319 -0
  94. sota-implementations/td3_bc/td3_bc.py +177 -0
  95. sota-implementations/td3_bc/utils.py +251 -0
  96. torchrl/.dylibs/libc++.1.0.dylib +0 -0
  97. torchrl/__init__.py +144 -0
  98. torchrl/_extension.py +74 -0
  99. torchrl/_torchrl.cpython-314t-darwin.so +0 -0
  100. torchrl/_utils.py +1431 -0
  101. torchrl/collectors/__init__.py +48 -0
  102. torchrl/collectors/_base.py +1058 -0
  103. torchrl/collectors/_constants.py +88 -0
  104. torchrl/collectors/_multi_async.py +324 -0
  105. torchrl/collectors/_multi_base.py +1805 -0
  106. torchrl/collectors/_multi_sync.py +464 -0
  107. torchrl/collectors/_runner.py +581 -0
  108. torchrl/collectors/_single.py +2009 -0
  109. torchrl/collectors/_single_async.py +259 -0
  110. torchrl/collectors/collectors.py +62 -0
  111. torchrl/collectors/distributed/__init__.py +32 -0
  112. torchrl/collectors/distributed/default_configs.py +133 -0
  113. torchrl/collectors/distributed/generic.py +1306 -0
  114. torchrl/collectors/distributed/ray.py +1092 -0
  115. torchrl/collectors/distributed/rpc.py +1006 -0
  116. torchrl/collectors/distributed/sync.py +731 -0
  117. torchrl/collectors/distributed/utils.py +160 -0
  118. torchrl/collectors/llm/__init__.py +10 -0
  119. torchrl/collectors/llm/base.py +494 -0
  120. torchrl/collectors/llm/ray_collector.py +275 -0
  121. torchrl/collectors/llm/utils.py +36 -0
  122. torchrl/collectors/llm/weight_update/__init__.py +10 -0
  123. torchrl/collectors/llm/weight_update/vllm.py +348 -0
  124. torchrl/collectors/llm/weight_update/vllm_v2.py +311 -0
  125. torchrl/collectors/utils.py +433 -0
  126. torchrl/collectors/weight_update.py +591 -0
  127. torchrl/csrc/numpy_utils.h +38 -0
  128. torchrl/csrc/pybind.cpp +27 -0
  129. torchrl/csrc/segment_tree.h +458 -0
  130. torchrl/csrc/torch_utils.h +34 -0
  131. torchrl/csrc/utils.cpp +48 -0
  132. torchrl/csrc/utils.h +31 -0
  133. torchrl/data/__init__.py +187 -0
  134. torchrl/data/datasets/__init__.py +58 -0
  135. torchrl/data/datasets/atari_dqn.py +878 -0
  136. torchrl/data/datasets/common.py +281 -0
  137. torchrl/data/datasets/d4rl.py +489 -0
  138. torchrl/data/datasets/d4rl_infos.py +187 -0
  139. torchrl/data/datasets/gen_dgrl.py +375 -0
  140. torchrl/data/datasets/minari_data.py +643 -0
  141. torchrl/data/datasets/openml.py +177 -0
  142. torchrl/data/datasets/openx.py +798 -0
  143. torchrl/data/datasets/roboset.py +363 -0
  144. torchrl/data/datasets/utils.py +11 -0
  145. torchrl/data/datasets/vd4rl.py +432 -0
  146. torchrl/data/llm/__init__.py +34 -0
  147. torchrl/data/llm/dataset.py +491 -0
  148. torchrl/data/llm/history.py +1378 -0
  149. torchrl/data/llm/prompt.py +198 -0
  150. torchrl/data/llm/reward.py +225 -0
  151. torchrl/data/llm/topk.py +186 -0
  152. torchrl/data/llm/utils.py +543 -0
  153. torchrl/data/map/__init__.py +21 -0
  154. torchrl/data/map/hash.py +185 -0
  155. torchrl/data/map/query.py +204 -0
  156. torchrl/data/map/tdstorage.py +363 -0
  157. torchrl/data/map/tree.py +1434 -0
  158. torchrl/data/map/utils.py +103 -0
  159. torchrl/data/postprocs/__init__.py +8 -0
  160. torchrl/data/postprocs/postprocs.py +391 -0
  161. torchrl/data/replay_buffers/__init__.py +99 -0
  162. torchrl/data/replay_buffers/checkpointers.py +622 -0
  163. torchrl/data/replay_buffers/ray_buffer.py +292 -0
  164. torchrl/data/replay_buffers/replay_buffers.py +2376 -0
  165. torchrl/data/replay_buffers/samplers.py +2578 -0
  166. torchrl/data/replay_buffers/scheduler.py +265 -0
  167. torchrl/data/replay_buffers/storages.py +2412 -0
  168. torchrl/data/replay_buffers/utils.py +1042 -0
  169. torchrl/data/replay_buffers/writers.py +781 -0
  170. torchrl/data/tensor_specs.py +7101 -0
  171. torchrl/data/utils.py +334 -0
  172. torchrl/envs/__init__.py +265 -0
  173. torchrl/envs/async_envs.py +1105 -0
  174. torchrl/envs/batched_envs.py +3093 -0
  175. torchrl/envs/common.py +4241 -0
  176. torchrl/envs/custom/__init__.py +11 -0
  177. torchrl/envs/custom/chess.py +617 -0
  178. torchrl/envs/custom/llm.py +214 -0
  179. torchrl/envs/custom/pendulum.py +401 -0
  180. torchrl/envs/custom/san_moves.txt +29274 -0
  181. torchrl/envs/custom/tictactoeenv.py +288 -0
  182. torchrl/envs/env_creator.py +263 -0
  183. torchrl/envs/gym_like.py +752 -0
  184. torchrl/envs/libs/__init__.py +68 -0
  185. torchrl/envs/libs/_gym_utils.py +326 -0
  186. torchrl/envs/libs/brax.py +846 -0
  187. torchrl/envs/libs/dm_control.py +544 -0
  188. torchrl/envs/libs/envpool.py +447 -0
  189. torchrl/envs/libs/gym.py +2239 -0
  190. torchrl/envs/libs/habitat.py +138 -0
  191. torchrl/envs/libs/isaac_lab.py +87 -0
  192. torchrl/envs/libs/isaacgym.py +203 -0
  193. torchrl/envs/libs/jax_utils.py +166 -0
  194. torchrl/envs/libs/jumanji.py +963 -0
  195. torchrl/envs/libs/meltingpot.py +599 -0
  196. torchrl/envs/libs/openml.py +153 -0
  197. torchrl/envs/libs/openspiel.py +652 -0
  198. torchrl/envs/libs/pettingzoo.py +1042 -0
  199. torchrl/envs/libs/procgen.py +351 -0
  200. torchrl/envs/libs/robohive.py +429 -0
  201. torchrl/envs/libs/smacv2.py +645 -0
  202. torchrl/envs/libs/unity_mlagents.py +891 -0
  203. torchrl/envs/libs/utils.py +147 -0
  204. torchrl/envs/libs/vmas.py +813 -0
  205. torchrl/envs/llm/__init__.py +63 -0
  206. torchrl/envs/llm/chat.py +730 -0
  207. torchrl/envs/llm/datasets/README.md +4 -0
  208. torchrl/envs/llm/datasets/__init__.py +17 -0
  209. torchrl/envs/llm/datasets/gsm8k.py +353 -0
  210. torchrl/envs/llm/datasets/ifeval.py +274 -0
  211. torchrl/envs/llm/envs.py +789 -0
  212. torchrl/envs/llm/libs/README.md +3 -0
  213. torchrl/envs/llm/libs/__init__.py +8 -0
  214. torchrl/envs/llm/libs/mlgym.py +869 -0
  215. torchrl/envs/llm/reward/__init__.py +10 -0
  216. torchrl/envs/llm/reward/gsm8k.py +324 -0
  217. torchrl/envs/llm/reward/ifeval/README.md +13 -0
  218. torchrl/envs/llm/reward/ifeval/__init__.py +10 -0
  219. torchrl/envs/llm/reward/ifeval/_instructions.py +1667 -0
  220. torchrl/envs/llm/reward/ifeval/_instructions_main.py +131 -0
  221. torchrl/envs/llm/reward/ifeval/_instructions_registry.py +100 -0
  222. torchrl/envs/llm/reward/ifeval/_instructions_util.py +1677 -0
  223. torchrl/envs/llm/reward/ifeval/_scorer.py +454 -0
  224. torchrl/envs/llm/transforms/__init__.py +55 -0
  225. torchrl/envs/llm/transforms/browser.py +292 -0
  226. torchrl/envs/llm/transforms/dataloading.py +859 -0
  227. torchrl/envs/llm/transforms/format.py +73 -0
  228. torchrl/envs/llm/transforms/kl.py +1544 -0
  229. torchrl/envs/llm/transforms/policy_version.py +189 -0
  230. torchrl/envs/llm/transforms/reason.py +323 -0
  231. torchrl/envs/llm/transforms/tokenizer.py +321 -0
  232. torchrl/envs/llm/transforms/tools.py +1955 -0
  233. torchrl/envs/model_based/__init__.py +9 -0
  234. torchrl/envs/model_based/common.py +180 -0
  235. torchrl/envs/model_based/dreamer.py +112 -0
  236. torchrl/envs/transforms/__init__.py +147 -0
  237. torchrl/envs/transforms/functional.py +48 -0
  238. torchrl/envs/transforms/gym_transforms.py +203 -0
  239. torchrl/envs/transforms/module.py +341 -0
  240. torchrl/envs/transforms/r3m.py +372 -0
  241. torchrl/envs/transforms/ray_service.py +663 -0
  242. torchrl/envs/transforms/rb_transforms.py +214 -0
  243. torchrl/envs/transforms/transforms.py +11835 -0
  244. torchrl/envs/transforms/utils.py +94 -0
  245. torchrl/envs/transforms/vc1.py +307 -0
  246. torchrl/envs/transforms/vecnorm.py +845 -0
  247. torchrl/envs/transforms/vip.py +407 -0
  248. torchrl/envs/utils.py +1718 -0
  249. torchrl/envs/vec_envs.py +11 -0
  250. torchrl/modules/__init__.py +206 -0
  251. torchrl/modules/distributions/__init__.py +73 -0
  252. torchrl/modules/distributions/continuous.py +830 -0
  253. torchrl/modules/distributions/discrete.py +908 -0
  254. torchrl/modules/distributions/truncated_normal.py +187 -0
  255. torchrl/modules/distributions/utils.py +233 -0
  256. torchrl/modules/llm/__init__.py +62 -0
  257. torchrl/modules/llm/backends/__init__.py +65 -0
  258. torchrl/modules/llm/backends/vllm/__init__.py +94 -0
  259. torchrl/modules/llm/backends/vllm/_models.py +46 -0
  260. torchrl/modules/llm/backends/vllm/base.py +72 -0
  261. torchrl/modules/llm/backends/vllm/vllm_async.py +2075 -0
  262. torchrl/modules/llm/backends/vllm/vllm_plugin.py +22 -0
  263. torchrl/modules/llm/backends/vllm/vllm_sync.py +446 -0
  264. torchrl/modules/llm/backends/vllm/vllm_utils.py +129 -0
  265. torchrl/modules/llm/policies/__init__.py +28 -0
  266. torchrl/modules/llm/policies/common.py +1809 -0
  267. torchrl/modules/llm/policies/transformers_wrapper.py +2756 -0
  268. torchrl/modules/llm/policies/vllm_wrapper.py +2241 -0
  269. torchrl/modules/llm/utils.py +23 -0
  270. torchrl/modules/mcts/__init__.py +21 -0
  271. torchrl/modules/mcts/scores.py +579 -0
  272. torchrl/modules/models/__init__.py +86 -0
  273. torchrl/modules/models/batchrenorm.py +119 -0
  274. torchrl/modules/models/decision_transformer.py +179 -0
  275. torchrl/modules/models/exploration.py +731 -0
  276. torchrl/modules/models/llm.py +156 -0
  277. torchrl/modules/models/model_based.py +596 -0
  278. torchrl/modules/models/models.py +1712 -0
  279. torchrl/modules/models/multiagent.py +1067 -0
  280. torchrl/modules/models/recipes/impala.py +185 -0
  281. torchrl/modules/models/utils.py +162 -0
  282. torchrl/modules/planners/__init__.py +10 -0
  283. torchrl/modules/planners/cem.py +228 -0
  284. torchrl/modules/planners/common.py +73 -0
  285. torchrl/modules/planners/mppi.py +265 -0
  286. torchrl/modules/tensordict_module/__init__.py +89 -0
  287. torchrl/modules/tensordict_module/actors.py +2457 -0
  288. torchrl/modules/tensordict_module/common.py +529 -0
  289. torchrl/modules/tensordict_module/exploration.py +814 -0
  290. torchrl/modules/tensordict_module/probabilistic.py +321 -0
  291. torchrl/modules/tensordict_module/rnn.py +1639 -0
  292. torchrl/modules/tensordict_module/sequence.py +132 -0
  293. torchrl/modules/tensordict_module/world_models.py +34 -0
  294. torchrl/modules/utils/__init__.py +38 -0
  295. torchrl/modules/utils/mappings.py +9 -0
  296. torchrl/modules/utils/utils.py +89 -0
  297. torchrl/objectives/__init__.py +78 -0
  298. torchrl/objectives/a2c.py +659 -0
  299. torchrl/objectives/common.py +753 -0
  300. torchrl/objectives/cql.py +1346 -0
  301. torchrl/objectives/crossq.py +710 -0
  302. torchrl/objectives/ddpg.py +453 -0
  303. torchrl/objectives/decision_transformer.py +371 -0
  304. torchrl/objectives/deprecated.py +516 -0
  305. torchrl/objectives/dqn.py +683 -0
  306. torchrl/objectives/dreamer.py +488 -0
  307. torchrl/objectives/functional.py +48 -0
  308. torchrl/objectives/gail.py +258 -0
  309. torchrl/objectives/iql.py +996 -0
  310. torchrl/objectives/llm/__init__.py +30 -0
  311. torchrl/objectives/llm/grpo.py +846 -0
  312. torchrl/objectives/llm/sft.py +482 -0
  313. torchrl/objectives/multiagent/__init__.py +8 -0
  314. torchrl/objectives/multiagent/qmixer.py +396 -0
  315. torchrl/objectives/ppo.py +1669 -0
  316. torchrl/objectives/redq.py +683 -0
  317. torchrl/objectives/reinforce.py +530 -0
  318. torchrl/objectives/sac.py +1580 -0
  319. torchrl/objectives/td3.py +570 -0
  320. torchrl/objectives/td3_bc.py +625 -0
  321. torchrl/objectives/utils.py +782 -0
  322. torchrl/objectives/value/__init__.py +28 -0
  323. torchrl/objectives/value/advantages.py +1956 -0
  324. torchrl/objectives/value/functional.py +1459 -0
  325. torchrl/objectives/value/utils.py +360 -0
  326. torchrl/record/__init__.py +17 -0
  327. torchrl/record/loggers/__init__.py +23 -0
  328. torchrl/record/loggers/common.py +48 -0
  329. torchrl/record/loggers/csv.py +226 -0
  330. torchrl/record/loggers/mlflow.py +142 -0
  331. torchrl/record/loggers/tensorboard.py +139 -0
  332. torchrl/record/loggers/trackio.py +163 -0
  333. torchrl/record/loggers/utils.py +78 -0
  334. torchrl/record/loggers/wandb.py +214 -0
  335. torchrl/record/recorder.py +554 -0
  336. torchrl/services/__init__.py +79 -0
  337. torchrl/services/base.py +109 -0
  338. torchrl/services/ray_service.py +453 -0
  339. torchrl/testing/__init__.py +107 -0
  340. torchrl/testing/assertions.py +179 -0
  341. torchrl/testing/dist_utils.py +122 -0
  342. torchrl/testing/env_creators.py +227 -0
  343. torchrl/testing/env_helper.py +35 -0
  344. torchrl/testing/gym_helpers.py +156 -0
  345. torchrl/testing/llm_mocks.py +119 -0
  346. torchrl/testing/mocking_classes.py +2720 -0
  347. torchrl/testing/modules.py +295 -0
  348. torchrl/testing/mp_helpers.py +15 -0
  349. torchrl/testing/ray_helpers.py +293 -0
  350. torchrl/testing/utils.py +190 -0
  351. torchrl/trainers/__init__.py +42 -0
  352. torchrl/trainers/algorithms/__init__.py +11 -0
  353. torchrl/trainers/algorithms/configs/__init__.py +705 -0
  354. torchrl/trainers/algorithms/configs/collectors.py +216 -0
  355. torchrl/trainers/algorithms/configs/common.py +41 -0
  356. torchrl/trainers/algorithms/configs/data.py +308 -0
  357. torchrl/trainers/algorithms/configs/envs.py +104 -0
  358. torchrl/trainers/algorithms/configs/envs_libs.py +361 -0
  359. torchrl/trainers/algorithms/configs/logging.py +80 -0
  360. torchrl/trainers/algorithms/configs/modules.py +570 -0
  361. torchrl/trainers/algorithms/configs/objectives.py +177 -0
  362. torchrl/trainers/algorithms/configs/trainers.py +340 -0
  363. torchrl/trainers/algorithms/configs/transforms.py +955 -0
  364. torchrl/trainers/algorithms/configs/utils.py +252 -0
  365. torchrl/trainers/algorithms/configs/weight_sync_schemes.py +191 -0
  366. torchrl/trainers/algorithms/configs/weight_update.py +159 -0
  367. torchrl/trainers/algorithms/ppo.py +373 -0
  368. torchrl/trainers/algorithms/sac.py +308 -0
  369. torchrl/trainers/helpers/__init__.py +40 -0
  370. torchrl/trainers/helpers/collectors.py +416 -0
  371. torchrl/trainers/helpers/envs.py +573 -0
  372. torchrl/trainers/helpers/logger.py +33 -0
  373. torchrl/trainers/helpers/losses.py +132 -0
  374. torchrl/trainers/helpers/models.py +658 -0
  375. torchrl/trainers/helpers/replay_buffer.py +59 -0
  376. torchrl/trainers/helpers/trainers.py +301 -0
  377. torchrl/trainers/trainers.py +2052 -0
  378. torchrl/weight_update/__init__.py +33 -0
  379. torchrl/weight_update/_distributed.py +749 -0
  380. torchrl/weight_update/_mp.py +624 -0
  381. torchrl/weight_update/_noupdate.py +102 -0
  382. torchrl/weight_update/_ray.py +1032 -0
  383. torchrl/weight_update/_rpc.py +284 -0
  384. torchrl/weight_update/_shared.py +891 -0
  385. torchrl/weight_update/llm/__init__.py +32 -0
  386. torchrl/weight_update/llm/vllm_double_buffer.py +370 -0
  387. torchrl/weight_update/llm/vllm_nccl.py +710 -0
  388. torchrl/weight_update/utils.py +73 -0
  389. torchrl/weight_update/weight_sync_schemes.py +1244 -0
  390. torchrl-0.11.0.dist-info/METADATA +1308 -0
  391. torchrl-0.11.0.dist-info/RECORD +395 -0
  392. torchrl-0.11.0.dist-info/WHEEL +5 -0
  393. torchrl-0.11.0.dist-info/entry_points.txt +2 -0
  394. torchrl-0.11.0.dist-info/licenses/LICENSE +21 -0
  395. torchrl-0.11.0.dist-info/top_level.txt +7 -0
@@ -0,0 +1,187 @@
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ #
3
+ # This source code is licensed under the MIT license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+ from __future__ import annotations
6
+
7
+ D4RL_DATASETS = {
8
+ "maze2d-open-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/maze2d/maze2d-open-sparse.hdf5",
9
+ "maze2d-umaze-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/maze2d/maze2d-umaze-sparse-v1.hdf5",
10
+ "maze2d-medium-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/maze2d/maze2d-medium-sparse-v1.hdf5",
11
+ "maze2d-large-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/maze2d/maze2d-large-sparse-v1.hdf5",
12
+ "maze2d-eval-umaze-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/maze2d/maze2d-eval-umaze-sparse-v1.hdf5",
13
+ "maze2d-eval-medium-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/maze2d/maze2d-eval-medium-sparse-v1.hdf5",
14
+ "maze2d-eval-large-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/maze2d/maze2d-eval-large-sparse-v1.hdf5",
15
+ "maze2d-open-dense-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/maze2d/maze2d-open-dense.hdf5",
16
+ "maze2d-umaze-dense-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/maze2d/maze2d-umaze-dense-v1.hdf5",
17
+ "maze2d-medium-dense-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/maze2d/maze2d-medium-dense-v1.hdf5",
18
+ "maze2d-large-dense-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/maze2d/maze2d-large-dense-v1.hdf5",
19
+ "maze2d-eval-umaze-dense-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/maze2d/maze2d-eval-umaze-dense-v1.hdf5",
20
+ "maze2d-eval-medium-dense-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/maze2d/maze2d-eval-medium-dense-v1.hdf5",
21
+ "maze2d-eval-large-dense-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/maze2d/maze2d-eval-large-dense-v1.hdf5",
22
+ "minigrid-fourrooms-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/minigrid/minigrid4rooms.hdf5",
23
+ "minigrid-fourrooms-random-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/minigrid/minigrid4rooms_random.hdf5",
24
+ "pen-human-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/hand_dapg/pen-v0_demos_clipped.hdf5",
25
+ "pen-cloned-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/hand_dapg/pen-demos-v0-bc-combined.hdf5",
26
+ "pen-expert-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/hand_dapg/pen-v0_expert_clipped.hdf5",
27
+ "hammer-human-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/hand_dapg/hammer-v0_demos_clipped.hdf5",
28
+ "hammer-cloned-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/hand_dapg/hammer-demos-v0-bc-combined.hdf5",
29
+ "hammer-expert-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/hand_dapg/hammer-v0_expert_clipped.hdf5",
30
+ "relocate-human-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/hand_dapg/relocate-v0_demos_clipped.hdf5",
31
+ "relocate-cloned-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/hand_dapg/relocate-demos-v0-bc-combined.hdf5",
32
+ "relocate-expert-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/hand_dapg/relocate-v0_expert_clipped.hdf5",
33
+ "door-human-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/hand_dapg/door-v0_demos_clipped.hdf5",
34
+ "door-cloned-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/hand_dapg/door-demos-v0-bc-combined.hdf5",
35
+ "door-expert-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/hand_dapg/door-v0_expert_clipped.hdf5",
36
+ "halfcheetah-random-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco/halfcheetah_random.hdf5",
37
+ "halfcheetah-medium-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco/halfcheetah_medium.hdf5",
38
+ "halfcheetah-expert-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco/halfcheetah_expert.hdf5",
39
+ "halfcheetah-medium-replay-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco/halfcheetah_mixed.hdf5",
40
+ "halfcheetah-medium-expert-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco/halfcheetah_medium_expert.hdf5",
41
+ "walker2d-random-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco/walker2d_random.hdf5",
42
+ "walker2d-medium-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco/walker2d_medium.hdf5",
43
+ "walker2d-expert-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco/walker2d_expert.hdf5",
44
+ "walker2d-medium-replay-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco/walker_mixed.hdf5",
45
+ "walker2d-medium-expert-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco/walker2d_medium_expert.hdf5",
46
+ "hopper-random-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco/hopper_random.hdf5",
47
+ "hopper-medium-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco/hopper_medium.hdf5",
48
+ "hopper-expert-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco/hopper_expert.hdf5",
49
+ "hopper-medium-replay-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco/hopper_mixed.hdf5",
50
+ "hopper-medium-expert-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco/hopper_medium_expert.hdf5",
51
+ "ant-random-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco/ant_random.hdf5",
52
+ "ant-medium-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco/ant_medium.hdf5",
53
+ "ant-expert-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco/ant_expert.hdf5",
54
+ "ant-medium-replay-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco/ant_mixed.hdf5",
55
+ "ant-medium-expert-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco/ant_medium_expert.hdf5",
56
+ "ant-random-expert-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco/ant_random_expert.hdf5",
57
+ "antmaze-umaze-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/ant_maze_new/Ant_maze_u-maze_noisy_multistart_False_multigoal_False_sparse.hdf5",
58
+ "antmaze-umaze-diverse-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/ant_maze_new/Ant_maze_u-maze_noisy_multistart_True_multigoal_True_sparse.hdf5",
59
+ "antmaze-medium-play-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/ant_maze_new/Ant_maze_big-maze_noisy_multistart_True_multigoal_False_sparse.hdf5",
60
+ "antmaze-medium-diverse-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/ant_maze_new/Ant_maze_big-maze_noisy_multistart_True_multigoal_True_sparse.hdf5",
61
+ "antmaze-large-play-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/ant_maze_new/Ant_maze_hardest-maze_noisy_multistart_True_multigoal_False_sparse.hdf5",
62
+ "antmaze-large-diverse-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/ant_maze_new/Ant_maze_hardest-maze_noisy_multistart_True_multigoal_True_sparse.hdf5",
63
+ "antmaze-umaze-v2": "http://rail.eecs.berkeley.edu/datasets/offline_rl/ant_maze_v2/Ant_maze_u-maze_noisy_multistart_False_multigoal_False_sparse_fixed.hdf5",
64
+ "antmaze-umaze-diverse-v2": "http://rail.eecs.berkeley.edu/datasets/offline_rl/ant_maze_v2/Ant_maze_u-maze_noisy_multistart_True_multigoal_True_sparse_fixed.hdf5",
65
+ "antmaze-medium-play-v2": "http://rail.eecs.berkeley.edu/datasets/offline_rl/ant_maze_v2/Ant_maze_big-maze_noisy_multistart_True_multigoal_False_sparse_fixed.hdf5",
66
+ "antmaze-medium-diverse-v2": "http://rail.eecs.berkeley.edu/datasets/offline_rl/ant_maze_v2/Ant_maze_big-maze_noisy_multistart_True_multigoal_True_sparse_fixed.hdf5",
67
+ "antmaze-large-play-v2": "http://rail.eecs.berkeley.edu/datasets/offline_rl/ant_maze_v2/Ant_maze_hardest-maze_noisy_multistart_True_multigoal_False_sparse_fixed.hdf5",
68
+ "antmaze-large-diverse-v2": "http://rail.eecs.berkeley.edu/datasets/offline_rl/ant_maze_v2/Ant_maze_hardest-maze_noisy_multistart_True_multigoal_True_sparse_fixed.hdf5",
69
+ "flow-ring-random-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/flow/flow-ring-v0-random.hdf5",
70
+ "flow-ring-controller-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/flow/flow-ring-v0-idm.hdf5",
71
+ "flow-merge-random-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/flow/flow-merge-v0-random.hdf5",
72
+ "flow-merge-controller-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/flow/flow-merge-v0-idm.hdf5",
73
+ "kitchen-complete-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/kitchen/mini_kitchen_microwave_kettle_light_slider-v0.hdf5",
74
+ "kitchen-partial-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/kitchen/kitchen_microwave_kettle_light_slider-v0.hdf5",
75
+ "kitchen-mixed-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/kitchen/kitchen_microwave_kettle_bottomburner_light-v0.hdf5",
76
+ "carla-lane-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/carla/carla_lane_follow_flat-v0.hdf5",
77
+ "carla-town-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/carla/carla_town_subsamp_flat-v0.hdf5",
78
+ "carla-town-full-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/carla/carla_town_flat-v0.hdf5",
79
+ "bullet-halfcheetah-random-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/bullet/bullet-halfcheetah_random.hdf5",
80
+ "bullet-halfcheetah-medium-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/bullet/bullet-halfcheetah_medium.hdf5",
81
+ "bullet-halfcheetah-expert-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/bullet/bullet-halfcheetah_expert.hdf5",
82
+ "bullet-halfcheetah-medium-expert-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/bullet/bullet-halfcheetah_medium_expert.hdf5",
83
+ "bullet-halfcheetah-medium-replay-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/bullet/bullet-halfcheetah_medium_replay.hdf5",
84
+ "bullet-hopper-random-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/bullet/bullet-hopper_random.hdf5",
85
+ "bullet-hopper-medium-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/bullet/bullet-hopper_medium.hdf5",
86
+ "bullet-hopper-expert-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/bullet/bullet-hopper_expert.hdf5",
87
+ "bullet-hopper-medium-expert-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/bullet/bullet-hopper_medium_expert.hdf5",
88
+ "bullet-hopper-medium-replay-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/bullet/bullet-hopper_medium_replay.hdf5",
89
+ "bullet-ant-random-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/bullet/bullet-ant_random.hdf5",
90
+ "bullet-ant-medium-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/bullet/bullet-ant_medium.hdf5",
91
+ "bullet-ant-expert-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/bullet/bullet-ant_expert.hdf5",
92
+ "bullet-ant-medium-expert-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/bullet/bullet-ant_medium_expert.hdf5",
93
+ "bullet-ant-medium-replay-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/bullet/bullet-ant_medium_replay.hdf5",
94
+ "bullet-walker2d-random-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/bullet/bullet-walker2d_random.hdf5",
95
+ "bullet-walker2d-medium-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/bullet/bullet-walker2d_medium.hdf5",
96
+ "bullet-walker2d-expert-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/bullet/bullet-walker2d_expert.hdf5",
97
+ "bullet-walker2d-medium-expert-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/bullet/bullet-walker2d_medium_expert.hdf5",
98
+ "bullet-walker2d-medium-replay-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/bullet/bullet-walker2d_medium_replay.hdf5",
99
+ "bullet-maze2d-open-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/bullet/bullet-maze2d-open-sparse.hdf5",
100
+ "bullet-maze2d-umaze-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/bullet/bullet-maze2d-umaze-sparse.hdf5",
101
+ "bullet-maze2d-medium-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/bullet/bullet-maze2d-medium-sparse.hdf5",
102
+ "bullet-maze2d-large-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/bullet/bullet-maze2d-large-sparse.hdf5",
103
+ "halfcheetah-random-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v1/halfcheetah_random-v1.hdf5",
104
+ "halfcheetah-random-v2": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v2/halfcheetah_random-v2.hdf5",
105
+ "halfcheetah-medium-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v1/halfcheetah_medium-v1.hdf5",
106
+ "halfcheetah-medium-v2": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v2/halfcheetah_medium-v2.hdf5",
107
+ "halfcheetah-expert-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v1/halfcheetah_expert-v1.hdf5",
108
+ "halfcheetah-expert-v2": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v2/halfcheetah_expert-v2.hdf5",
109
+ "halfcheetah-medium-replay-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v1/halfcheetah_medium_replay-v1.hdf5",
110
+ "halfcheetah-medium-replay-v2": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v2/halfcheetah_medium_replay-v2.hdf5",
111
+ "halfcheetah-full-replay-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v1/halfcheetah_full_replay-v1.hdf5",
112
+ "halfcheetah-full-replay-v2": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v2/halfcheetah_full_replay-v2.hdf5",
113
+ "halfcheetah-medium-expert-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v1/halfcheetah_medium_expert-v1.hdf5",
114
+ "halfcheetah-medium-expert-v2": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v2/halfcheetah_medium_expert-v2.hdf5",
115
+ "hopper-random-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v1/hopper_random-v1.hdf5",
116
+ "hopper-random-v2": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v2/hopper_random-v2.hdf5",
117
+ "hopper-medium-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v1/hopper_medium-v1.hdf5",
118
+ "hopper-medium-v2": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v2/hopper_medium-v2.hdf5",
119
+ "hopper-expert-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v1/hopper_expert-v1.hdf5",
120
+ "hopper-expert-v2": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v2/hopper_expert-v2.hdf5",
121
+ "hopper-medium-replay-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v1/hopper_medium_replay-v1.hdf5",
122
+ "hopper-medium-replay-v2": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v2/hopper_medium_replay-v2.hdf5",
123
+ "hopper-full-replay-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v1/hopper_full_replay-v1.hdf5",
124
+ "hopper-full-replay-v2": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v2/hopper_full_replay-v2.hdf5",
125
+ "hopper-medium-expert-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v1/hopper_medium_expert-v1.hdf5",
126
+ "hopper-medium-expert-v2": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v2/hopper_medium_expert-v2.hdf5",
127
+ "walker2d-random-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v1/walker2d_random-v1.hdf5",
128
+ "walker2d-random-v2": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v2/walker2d_random-v2.hdf5",
129
+ "walker2d-medium-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v1/walker2d_medium-v1.hdf5",
130
+ "walker2d-medium-v2": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v2/walker2d_medium-v2.hdf5",
131
+ "walker2d-expert-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v1/walker2d_expert-v1.hdf5",
132
+ "walker2d-expert-v2": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v2/walker2d_expert-v2.hdf5",
133
+ "walker2d-medium-replay-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v1/walker2d_medium_replay-v1.hdf5",
134
+ "walker2d-medium-replay-v2": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v2/walker2d_medium_replay-v2.hdf5",
135
+ "walker2d-full-replay-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v1/walker2d_full_replay-v1.hdf5",
136
+ "walker2d-full-replay-v2": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v2/walker2d_full_replay-v2.hdf5",
137
+ "walker2d-medium-expert-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v1/walker2d_medium_expert-v1.hdf5",
138
+ "walker2d-medium-expert-v2": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v2/walker2d_medium_expert-v2.hdf5",
139
+ "ant-random-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v1/ant_random-v1.hdf5",
140
+ "ant-random-v2": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v2/ant_random-v2.hdf5",
141
+ "ant-medium-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v1/ant_medium-v1.hdf5",
142
+ "ant-medium-v2": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v2/ant_medium-v2.hdf5",
143
+ "ant-expert-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v1/ant_expert-v1.hdf5",
144
+ "ant-expert-v2": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v2/ant_expert-v2.hdf5",
145
+ "ant-medium-replay-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v1/ant_medium_replay-v1.hdf5",
146
+ "ant-medium-replay-v2": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v2/ant_medium_replay-v2.hdf5",
147
+ "ant-full-replay-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v1/ant_full_replay-v1.hdf5",
148
+ "ant-full-replay-v2": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v2/ant_full_replay-v2.hdf5",
149
+ "ant-medium-expert-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v1/ant_medium_expert-v1.hdf5",
150
+ "ant-medium-expert-v2": "http://rail.eecs.berkeley.edu/datasets/offline_rl/gym_mujoco_v2/ant_medium_expert-v2.hdf5",
151
+ "hammer-human-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/hand_dapg_v1/hammer-human-v1.hdf5",
152
+ "hammer-expert-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/hand_dapg_v1/hammer-expert-v1.hdf5",
153
+ "hammer-cloned-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/hand_dapg_v1/hammer-cloned-v1.hdf5",
154
+ "pen-human-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/hand_dapg_v1/pen-human-v1.hdf5",
155
+ "pen-expert-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/hand_dapg_v1/pen-expert-v1.hdf5",
156
+ "pen-cloned-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/hand_dapg_v1/pen-cloned-v1.hdf5",
157
+ "relocate-human-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/hand_dapg_v1/relocate-human-v1.hdf5",
158
+ "relocate-expert-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/hand_dapg_v1/relocate-expert-v1.hdf5",
159
+ "relocate-cloned-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/hand_dapg_v1/relocate-cloned-v1.hdf5",
160
+ "door-human-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/hand_dapg_v1/door-human-v1.hdf5",
161
+ "door-expert-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/hand_dapg_v1/door-expert-v1.hdf5",
162
+ "door-cloned-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/hand_dapg_v1/door-cloned-v1.hdf5",
163
+ "antmaze-umaze-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/ant_maze_v1/Ant_maze_umaze_noisy_multistart_False_multigoal_False_sparse.hdf5",
164
+ "antmaze-umaze-diverse-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/ant_maze_v1/Ant_maze_umaze_noisy_multistart_True_multigoal_True_sparse.hdf5",
165
+ "antmaze-medium-play-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/ant_maze_v1/Ant_maze_medium_noisy_multistart_True_multigoal_False_sparse.hdf5",
166
+ "antmaze-medium-diverse-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/ant_maze_v1/Ant_maze_medium_noisy_multistart_True_multigoal_True_sparse.hdf5",
167
+ "antmaze-large-diverse-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/ant_maze_v1/Ant_maze_large_noisy_multistart_True_multigoal_True_sparse.hdf5",
168
+ "antmaze-large-play-v1": "http://rail.eecs.berkeley.edu/datasets/offline_rl/ant_maze_v1/Ant_maze_large_noisy_multistart_True_multigoal_False_sparse.hdf5",
169
+ "antmaze-eval-umaze-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/ant_maze_new/Ant_maze_umaze_eval_noisy_multistart_True_multigoal_False_sparse.hdf5",
170
+ "antmaze-eval-umaze-diverse-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/ant_maze_new/Ant_maze_umaze_eval_noisy_multistart_True_multigoal_True_sparse.hdf5",
171
+ "antmaze-eval-medium-play-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/ant_maze_new/Ant_maze_medium_eval_noisy_multistart_True_multigoal_True_sparse.hdf5",
172
+ "antmaze-eval-medium-diverse-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/ant_maze_new/Ant_maze_medium_eval_noisy_multistart_True_multigoal_False_sparse.hdf5",
173
+ "antmaze-eval-large-diverse-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/ant_maze_new/Ant_maze_large_eval_noisy_multistart_True_multigoal_False_sparse.hdf5",
174
+ "antmaze-eval-large-play-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/ant_maze_new/Ant_maze_large_eval_noisy_multistart_True_multigoal_True_sparse.hdf5",
175
+ "door-human-longhorizon-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/hand_dapg/door-v0_demos_clipped.hdf5",
176
+ "hammer-human-longhorizon-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/hand_dapg/hammer-v0_demos_clipped.hdf5",
177
+ "pen-human-longhorizon-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/hand_dapg/pen-v0_demos_clipped.hdf5",
178
+ "relocate-human-longhorizon-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/hand_dapg/relocate-v0_demos_clipped.hdf5",
179
+ "maze2d-umaze-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/maze2d/maze2d-umaze-sparse.hdf5",
180
+ "maze2d-medium-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/maze2d/maze2d-medium-sparse.hdf5",
181
+ "maze2d-large-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/maze2d/maze2d-large-sparse.hdf5",
182
+ "maze2d-umaze-dense-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/maze2d/maze2d-umaze-dense.hdf5",
183
+ "maze2d-medium-dense-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/maze2d/maze2d-medium-dense.hdf5",
184
+ "maze2d-large-dense-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/maze2d/maze2d-large-dense.hdf5",
185
+ "carla-lane-render-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/carla/carla_lane_follow-v0.hdf5",
186
+ "carla-town-render-v0": "http://rail.eecs.berkeley.edu/datasets/offline_rl/carla/carla_town_flat-v0.hdf5",
187
+ }
@@ -0,0 +1,375 @@
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ #
3
+ # This source code is licensed under the MIT license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+ from __future__ import annotations
6
+
7
+ import importlib.util
8
+ import os
9
+ import shutil
10
+ import tarfile
11
+ import tempfile
12
+ import typing as tp
13
+ from pathlib import Path
14
+
15
+ import numpy as np
16
+ import torch
17
+
18
+ from tensordict import TensorDict
19
+ from torchrl._utils import logger as torchrl_logger
20
+ from torchrl.data.datasets.common import BaseDatasetExperienceReplay
21
+ from torchrl.data.datasets.utils import _get_root_dir
22
+ from torchrl.data.replay_buffers.storages import TensorStorage
23
+ from torchrl.envs.utils import _classproperty
24
+
25
+ _has_tqdm = importlib.util.find_spec("tqdm", None) is not None
26
+ _has_requests = importlib.util.find_spec("requests", None) is not None
27
+
28
+
29
+ class GenDGRLExperienceReplay(BaseDatasetExperienceReplay):
30
+ """Gen-DGRL Experience Replay dataset.
31
+
32
+ This dataset accompanies the paper "The Generalization Gap in Offline Reinforcement Learning".
33
+
34
+ Arxiv: https://arxiv.org/abs/2312.05742
35
+
36
+ GitHub: https://github.com/facebookresearch/gen_dgrl
37
+
38
+ The data format follows the :ref:`TED convention <TED-format>`.
39
+
40
+ This class gives you access to the ProcGen dataset. Each `dataset_id` registered
41
+ in `GenDGRLExperienceReplay.available_datasets` consists in a particular task
42
+ (`"bigfish"`, `"bossfight"`, ...) separated from a category (`"1M_E"`, `"1M_S"`, ...)
43
+ by a comma (`"bigfish-1M_E"`, ...).
44
+
45
+ During download and preparation, the data is downloaded as .tar files,
46
+ where each trajectory is stored independently in a .npy file. Each of these
47
+ files is extracted, written in a contiguous mmap tensor, and then cleared.
48
+ This process can take several minutes per dataset. On a cluster, it is advisable
49
+ to first run the download and preprocessing separately on different workers
50
+ or processes for different datasets, and launch the training script in a second time.
51
+
52
+ Args:
53
+ dataset_id (str): the dataset to be downloaded. Must be part of
54
+ :attr:`GenDGRLExperienceReplay.available_datasets`.
55
+ batch_size (int, optional): Batch-size used during sampling. Can be overridden by
56
+ `data.sample(batch_size)` if necessary.
57
+
58
+ Keyword Args:
59
+ root (Path or str, optional): The :class:`~torchrl.data.datasets.GenDGRLExperienceReplay`
60
+ dataset root directory.
61
+ The actual dataset memory-mapped files will be saved under
62
+ `<root>/<dataset_id>`. If none is provided, it defaults to
63
+ `~/.cache/torchrl/atari`.gen_dgrl`.
64
+ download (bool or str, optional): Whether the dataset should be downloaded if
65
+ not found. Defaults to ``True``. Download can also be passed as ``"force"``,
66
+ in which case the downloaded data will be overwritten.
67
+ sampler (Sampler, optional): the sampler to be used. If none is provided
68
+ a default RandomSampler() will be used.
69
+ writer (Writer, optional): the writer to be used. If none is provided
70
+ a default RoundRobinWriter() will be used.
71
+ collate_fn (callable, optional): merges a list of samples to form a
72
+ mini-batch of Tensor(s)/outputs. Used when using batched
73
+ loading from a map-style dataset.
74
+ pin_memory (bool): whether pin_memory() should be called on the rb
75
+ samples.
76
+ prefetch (int, optional): number of next batches to be prefetched
77
+ using multithreading.
78
+ transform (Transform, optional): Transform to be executed when sample() is called.
79
+ To chain transforms use the :obj:`Compose` class.
80
+
81
+ Attributes:
82
+ available_datasets: a list of accepted entries to be downloaded. These
83
+ names correspond to the directory path in the huggingface dataset
84
+ repository. If possible, the list will be dynamically retrieved from
85
+ huggingface. If no internet connection is available, it a cached
86
+ version will be used.
87
+
88
+ Examples:
89
+ >>> import torch
90
+ >>> torch.manual_seed(0)
91
+ >>> from torchrl.data.datasets import GenDGRLExperienceReplay
92
+ >>> d = GenDGRLExperienceReplay("bigfish-1M_E", batch_size=32)
93
+ >>> for batch in d:
94
+ ... break
95
+ >>> print(batch)
96
+
97
+ """
98
+
99
+ BASE_URL = "https://dl.fbaipublicfiles.com/DGRL/Procgen/Datasets/Compressed"
100
+ # number of files extracted at a time
101
+ _PROCESS_NPY_BATCH = 32
102
+ split_trajs: bool = False
103
+
104
+ @_classproperty
105
+ def available_datasets(cls):
106
+ datasets = [
107
+ "bigfish",
108
+ "bossfight",
109
+ "caveflyer",
110
+ "chaser",
111
+ "climber",
112
+ "coinrun",
113
+ "dodgeball",
114
+ "fruitbot",
115
+ "heist",
116
+ "jumper",
117
+ "leaper",
118
+ "maze",
119
+ "miner",
120
+ "ninja",
121
+ "plunder",
122
+ "starpilot",
123
+ ]
124
+ categories = [
125
+ "1M_E",
126
+ "1M_S",
127
+ "10M",
128
+ "25M",
129
+ "level_1_E",
130
+ "level_1_S",
131
+ "level_40_E",
132
+ "level_40_S",
133
+ ]
134
+
135
+ return ["-".join((ds, cat)) for cat in categories for ds in datasets]
136
+
137
+ def __init__(
138
+ self,
139
+ dataset_id: str,
140
+ batch_size: int | None = None,
141
+ *,
142
+ download: bool = True,
143
+ root: str | None = None,
144
+ **kwargs,
145
+ ):
146
+ self.dataset_id = dataset_id
147
+ try:
148
+ dataset, category = dataset_id.split("-")
149
+ except Exception:
150
+ category = dataset_id
151
+ dataset = None
152
+ self._dataset_name = dataset
153
+ self._category_name = category
154
+ if root is None:
155
+ root = _get_root_dir("gen_dgrl")
156
+ os.makedirs(root, exist_ok=True)
157
+ self.root = root
158
+ if download == "force" or (download and not self._is_downloaded()):
159
+ if download == "force" and os.path.exists(self.data_path_root):
160
+ shutil.rmtree(self.data_path_root)
161
+ storage = TensorStorage(self._download_and_preproc())
162
+ else:
163
+ storage = TensorStorage(TensorDict.load_memmap(self.data_path_root))
164
+ super().__init__(storage=storage, batch_size=batch_size, **kwargs)
165
+
166
+ @property
167
+ def data_path(self):
168
+ if self.split_trajs:
169
+ return Path(self.root) / (self.dataset_id + "_split")
170
+ return self.data_path_root
171
+
172
+ @property
173
+ def data_path_root(self):
174
+ return Path(self.root) / self.dataset_id
175
+
176
+ def _is_downloaded(self):
177
+ return os.path.exists(self.data_path_root)
178
+
179
+ def _download_and_preproc(self):
180
+ dataset, category = self._dataset_name, self._category_name
181
+ link = self._build_urls_with_category_name(dataset, category)
182
+ data_link = (category, self._fetch_file_name_from_link(link), link)
183
+
184
+ with tempfile.TemporaryDirectory() as tmpdir:
185
+ self._download_category_file(
186
+ tmpdir, skip_downloaded_files=True, link=data_link
187
+ )
188
+ return self._unpack_category_file(
189
+ tmpdir, clear_archive=True, link=data_link, category_name=category
190
+ )
191
+
192
+ @classmethod
193
+ def _build_urls_with_category_name(
194
+ cls, dataset, category_name: str
195
+ ) -> tp.List[str]:
196
+ path = [cls.BASE_URL, cls._convert_category_name(category_name)]
197
+ path += [f"{dataset}.tar.xz"]
198
+ return os.path.join(*path)
199
+
200
+ @staticmethod
201
+ def _convert_category_name(category_name: str) -> str:
202
+ if category_name == "1M_E":
203
+ return "1M/level_200/expert"
204
+ elif category_name == "1M_S":
205
+ return "1M/level_200/suboptimal"
206
+ elif category_name == "10M":
207
+ return "10M/level_200/expert"
208
+ elif category_name == "25M":
209
+ return "25M/level_200/expert"
210
+ elif category_name == "level_1_S":
211
+ return "100k/level_1/suboptimal"
212
+ elif category_name == "level_40_S":
213
+ return "100k/level_40/suboptimal"
214
+ elif category_name == "level_1_E":
215
+ return "100k/level_1/expert"
216
+ elif category_name == "level_40_E":
217
+ return "100k/level_40/expert"
218
+ else:
219
+ raise ValueError(f"Unrecognized category name {category_name}!")
220
+
221
+ @staticmethod
222
+ def _fetch_file_name_from_link(url: str) -> str:
223
+ return os.path.split(url)[-1]
224
+
225
+ @classmethod
226
+ def _get_category_len(cls, category_name):
227
+ if "1M" in category_name:
228
+ return 1_000_000
229
+ if "10M" in category_name:
230
+ return 10_000_000
231
+ if "25M" in category_name:
232
+ return 25_000_000
233
+ return 100_000
234
+
235
+ def _unpack_category_file(
236
+ self,
237
+ download_folder: str,
238
+ clear_archive: bool,
239
+ category_name,
240
+ link: str,
241
+ batch=None,
242
+ ):
243
+ if batch is None:
244
+ batch = self._PROCESS_NPY_BATCH
245
+ _, file_name, _ = link
246
+ file_path = os.path.join(download_folder, file_name)
247
+ torchrl_logger.info(
248
+ f"Unpacking dataset file {file_path} ({file_name}) to {download_folder}."
249
+ )
250
+ idx = 0
251
+ td_memmap = None
252
+ dataset_len = self._get_category_len(category_name)
253
+ if _has_tqdm:
254
+ from tqdm import tqdm
255
+
256
+ pbar = tqdm(total=dataset_len)
257
+ else:
258
+ pbar = None
259
+ mode = "r:xz" if str(file_path).endswith("xz") else "r"
260
+ full = False
261
+ with tarfile.open(file_path, mode) as tar:
262
+ members = list(tar.getmembers())
263
+ for i in range(0, len(members), batch):
264
+ if full:
265
+ break
266
+ submembers = [
267
+ member for member in members[i : i + batch] if member.isfile()
268
+ ]
269
+ for member in submembers:
270
+ if pbar is not None:
271
+ pbar.set_description(member.name)
272
+ npybuffer = tar.extractfile(member=member)
273
+ # npyfile = Path(download_folder) / member.name
274
+ npfile = np.load(npybuffer, allow_pickle=True)
275
+ td = TensorDict.from_dict(npfile.tolist(), auto_batch_size=True)
276
+ td.set("observations", td.get("observations").to(torch.uint8))
277
+ td.set(("next", "observation"), td.get("observations")[1:])
278
+ td.set("observations", td.get("observations")[:-1])
279
+ td.rename_key_("observations", "observation")
280
+ td.rename_key_("dones", ("next", "done"))
281
+ td.rename_key_("actions", "action")
282
+ td.rename_key_("rewards", ("next", "reward"))
283
+ td.set(
284
+ ("next", "done"), td.get(("next", "done")).bool().unsqueeze(-1)
285
+ )
286
+ td.set(
287
+ ("next", "truncated"),
288
+ torch.zeros_like(td.get(("next", "done"))),
289
+ )
290
+ td.set(("next", "terminated"), td.get(("next", "done")))
291
+
292
+ td.set(
293
+ "terminated", torch.zeros_like(td.get(("next", "terminated")))
294
+ )
295
+ td.set("done", torch.zeros_like(td.get(("next", "done"))))
296
+ td.set("truncated", torch.zeros_like(td.get(("next", "truncated"))))
297
+
298
+ td.batch_size = td.get("observation").shape[:1]
299
+ if td_memmap is None:
300
+ td_memmap = (
301
+ td[0]
302
+ .expand(dataset_len)
303
+ .memmap_like(self.data_path_root, num_threads=16)
304
+ )
305
+ idx_end = idx + td.shape[0]
306
+ idx_end = min(idx_end, td_memmap.shape[0])
307
+ if pbar is not None:
308
+ pbar.update(td.shape[0])
309
+ length = idx_end - idx
310
+ if length > 0:
311
+ if length != td.shape[0]:
312
+ td_memmap[idx:idx_end] = td[:length]
313
+ else:
314
+ td_memmap[idx:idx_end] = td
315
+ else:
316
+ full = True
317
+ idx = idx_end
318
+ if clear_archive:
319
+ os.remove(file_path)
320
+ return td_memmap
321
+
322
+ @classmethod
323
+ def _download_category_file(
324
+ cls,
325
+ download_folder: str,
326
+ skip_downloaded_files: bool,
327
+ link: str,
328
+ ):
329
+ _, file_name, url = link
330
+ file_path = os.path.join(download_folder, file_name)
331
+
332
+ if skip_downloaded_files and os.path.isfile(file_path):
333
+ torchrl_logger.info(f"Skipping {file_path}, already downloaded!")
334
+ return file_name, True
335
+
336
+ in_progress_folder = os.path.join(download_folder, "_in_progress")
337
+ os.makedirs(in_progress_folder, exist_ok=True)
338
+ in_progress_file_path = os.path.join(in_progress_folder, file_name)
339
+
340
+ torchrl_logger.info(
341
+ f"Downloading dataset file {file_name} ({url}) to {in_progress_file_path}."
342
+ )
343
+ cls._download_with_progress_bar(url, in_progress_file_path)
344
+
345
+ os.rename(in_progress_file_path, file_path)
346
+ return file_name, True
347
+
348
+ @classmethod
349
+ def _download_with_progress_bar(cls, url: str, file_path: str):
350
+ # taken from https://stackoverflow.com/a/62113293/986477
351
+ if not _has_requests:
352
+ raise ImportError(
353
+ "The requests package is required for Gen-DGRL dataset download."
354
+ )
355
+ import requests
356
+
357
+ resp = requests.get(url, stream=True)
358
+ total = int(resp.headers.get("content-length", 0))
359
+ if _has_tqdm:
360
+ from tqdm import tqdm
361
+
362
+ pbar = tqdm(
363
+ desc=file_path,
364
+ total=total,
365
+ unit="iB",
366
+ unit_scale=True,
367
+ unit_divisor=1024,
368
+ )
369
+ else:
370
+ pbar = None
371
+ with open(file_path, "wb") as file:
372
+ for data in resp.iter_content(chunk_size=1024):
373
+ size = file.write(data)
374
+ if pbar is not None:
375
+ pbar.update(size)