torchrl 0.11.0__cp314-cp314-manylinux_2_28_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- benchmarks/benchmark_batched_envs.py +104 -0
- benchmarks/conftest.py +91 -0
- benchmarks/ecosystem/gym_env_throughput.py +321 -0
- benchmarks/ecosystem/vmas_rllib_vs_torchrl_sampling_performance.py +231 -0
- benchmarks/requirements.txt +7 -0
- benchmarks/storage/benchmark_sample_latency_over_rpc.py +193 -0
- benchmarks/test_collectors_benchmark.py +240 -0
- benchmarks/test_compressed_storage_benchmark.py +145 -0
- benchmarks/test_envs_benchmark.py +133 -0
- benchmarks/test_llm.py +101 -0
- benchmarks/test_non_tensor_env_benchmark.py +70 -0
- benchmarks/test_objectives_benchmarks.py +1199 -0
- benchmarks/test_replaybuffer_benchmark.py +254 -0
- sota-check/README.md +35 -0
- sota-implementations/README.md +142 -0
- sota-implementations/a2c/README.md +39 -0
- sota-implementations/a2c/a2c_atari.py +291 -0
- sota-implementations/a2c/a2c_mujoco.py +273 -0
- sota-implementations/a2c/utils_atari.py +240 -0
- sota-implementations/a2c/utils_mujoco.py +160 -0
- sota-implementations/bandits/README.md +7 -0
- sota-implementations/bandits/dqn.py +126 -0
- sota-implementations/cql/cql_offline.py +198 -0
- sota-implementations/cql/cql_online.py +249 -0
- sota-implementations/cql/discrete_cql_offline.py +180 -0
- sota-implementations/cql/discrete_cql_online.py +227 -0
- sota-implementations/cql/utils.py +471 -0
- sota-implementations/crossq/crossq.py +271 -0
- sota-implementations/crossq/utils.py +320 -0
- sota-implementations/ddpg/ddpg.py +231 -0
- sota-implementations/ddpg/utils.py +325 -0
- sota-implementations/decision_transformer/dt.py +163 -0
- sota-implementations/decision_transformer/lamb.py +167 -0
- sota-implementations/decision_transformer/online_dt.py +178 -0
- sota-implementations/decision_transformer/utils.py +562 -0
- sota-implementations/discrete_sac/discrete_sac.py +243 -0
- sota-implementations/discrete_sac/utils.py +324 -0
- sota-implementations/dqn/README.md +30 -0
- sota-implementations/dqn/dqn_atari.py +272 -0
- sota-implementations/dqn/dqn_cartpole.py +236 -0
- sota-implementations/dqn/utils_atari.py +132 -0
- sota-implementations/dqn/utils_cartpole.py +90 -0
- sota-implementations/dreamer/README.md +129 -0
- sota-implementations/dreamer/dreamer.py +586 -0
- sota-implementations/dreamer/dreamer_utils.py +1107 -0
- sota-implementations/expert-iteration/README.md +352 -0
- sota-implementations/expert-iteration/ei_utils.py +770 -0
- sota-implementations/expert-iteration/expert-iteration-async.py +512 -0
- sota-implementations/expert-iteration/expert-iteration-sync.py +508 -0
- sota-implementations/expert-iteration/requirements_gsm8k.txt +13 -0
- sota-implementations/expert-iteration/requirements_ifeval.txt +16 -0
- sota-implementations/gail/gail.py +327 -0
- sota-implementations/gail/gail_utils.py +68 -0
- sota-implementations/gail/ppo_utils.py +157 -0
- sota-implementations/grpo/README.md +273 -0
- sota-implementations/grpo/grpo-async.py +437 -0
- sota-implementations/grpo/grpo-sync.py +435 -0
- sota-implementations/grpo/grpo_utils.py +843 -0
- sota-implementations/grpo/requirements_gsm8k.txt +11 -0
- sota-implementations/grpo/requirements_ifeval.txt +16 -0
- sota-implementations/impala/README.md +33 -0
- sota-implementations/impala/impala_multi_node_ray.py +292 -0
- sota-implementations/impala/impala_multi_node_submitit.py +284 -0
- sota-implementations/impala/impala_single_node.py +261 -0
- sota-implementations/impala/utils.py +184 -0
- sota-implementations/iql/discrete_iql.py +230 -0
- sota-implementations/iql/iql_offline.py +164 -0
- sota-implementations/iql/iql_online.py +225 -0
- sota-implementations/iql/utils.py +437 -0
- sota-implementations/multiagent/README.md +74 -0
- sota-implementations/multiagent/iql.py +237 -0
- sota-implementations/multiagent/maddpg_iddpg.py +266 -0
- sota-implementations/multiagent/mappo_ippo.py +267 -0
- sota-implementations/multiagent/qmix_vdn.py +271 -0
- sota-implementations/multiagent/sac.py +337 -0
- sota-implementations/multiagent/utils/__init__.py +4 -0
- sota-implementations/multiagent/utils/logging.py +151 -0
- sota-implementations/multiagent/utils/utils.py +43 -0
- sota-implementations/ppo/README.md +29 -0
- sota-implementations/ppo/ppo_atari.py +305 -0
- sota-implementations/ppo/ppo_mujoco.py +293 -0
- sota-implementations/ppo/utils_atari.py +238 -0
- sota-implementations/ppo/utils_mujoco.py +152 -0
- sota-implementations/ppo_trainer/train.py +21 -0
- sota-implementations/redq/README.md +7 -0
- sota-implementations/redq/redq.py +199 -0
- sota-implementations/redq/utils.py +1060 -0
- sota-implementations/sac/sac-async.py +266 -0
- sota-implementations/sac/sac.py +239 -0
- sota-implementations/sac/utils.py +381 -0
- sota-implementations/sac_trainer/train.py +16 -0
- sota-implementations/td3/td3.py +254 -0
- sota-implementations/td3/utils.py +319 -0
- sota-implementations/td3_bc/td3_bc.py +177 -0
- sota-implementations/td3_bc/utils.py +251 -0
- torchrl/__init__.py +144 -0
- torchrl/_extension.py +74 -0
- torchrl/_torchrl.cpython-314-aarch64-linux-gnu.so +0 -0
- torchrl/_utils.py +1431 -0
- torchrl/collectors/__init__.py +48 -0
- torchrl/collectors/_base.py +1058 -0
- torchrl/collectors/_constants.py +88 -0
- torchrl/collectors/_multi_async.py +324 -0
- torchrl/collectors/_multi_base.py +1805 -0
- torchrl/collectors/_multi_sync.py +464 -0
- torchrl/collectors/_runner.py +581 -0
- torchrl/collectors/_single.py +2009 -0
- torchrl/collectors/_single_async.py +259 -0
- torchrl/collectors/collectors.py +62 -0
- torchrl/collectors/distributed/__init__.py +32 -0
- torchrl/collectors/distributed/default_configs.py +133 -0
- torchrl/collectors/distributed/generic.py +1306 -0
- torchrl/collectors/distributed/ray.py +1092 -0
- torchrl/collectors/distributed/rpc.py +1006 -0
- torchrl/collectors/distributed/sync.py +731 -0
- torchrl/collectors/distributed/utils.py +160 -0
- torchrl/collectors/llm/__init__.py +10 -0
- torchrl/collectors/llm/base.py +494 -0
- torchrl/collectors/llm/ray_collector.py +275 -0
- torchrl/collectors/llm/utils.py +36 -0
- torchrl/collectors/llm/weight_update/__init__.py +10 -0
- torchrl/collectors/llm/weight_update/vllm.py +348 -0
- torchrl/collectors/llm/weight_update/vllm_v2.py +311 -0
- torchrl/collectors/utils.py +433 -0
- torchrl/collectors/weight_update.py +591 -0
- torchrl/csrc/numpy_utils.h +38 -0
- torchrl/csrc/pybind.cpp +27 -0
- torchrl/csrc/segment_tree.h +458 -0
- torchrl/csrc/torch_utils.h +34 -0
- torchrl/csrc/utils.cpp +48 -0
- torchrl/csrc/utils.h +31 -0
- torchrl/data/__init__.py +187 -0
- torchrl/data/datasets/__init__.py +58 -0
- torchrl/data/datasets/atari_dqn.py +878 -0
- torchrl/data/datasets/common.py +281 -0
- torchrl/data/datasets/d4rl.py +489 -0
- torchrl/data/datasets/d4rl_infos.py +187 -0
- torchrl/data/datasets/gen_dgrl.py +375 -0
- torchrl/data/datasets/minari_data.py +643 -0
- torchrl/data/datasets/openml.py +177 -0
- torchrl/data/datasets/openx.py +798 -0
- torchrl/data/datasets/roboset.py +363 -0
- torchrl/data/datasets/utils.py +11 -0
- torchrl/data/datasets/vd4rl.py +432 -0
- torchrl/data/llm/__init__.py +34 -0
- torchrl/data/llm/dataset.py +491 -0
- torchrl/data/llm/history.py +1378 -0
- torchrl/data/llm/prompt.py +198 -0
- torchrl/data/llm/reward.py +225 -0
- torchrl/data/llm/topk.py +186 -0
- torchrl/data/llm/utils.py +543 -0
- torchrl/data/map/__init__.py +21 -0
- torchrl/data/map/hash.py +185 -0
- torchrl/data/map/query.py +204 -0
- torchrl/data/map/tdstorage.py +363 -0
- torchrl/data/map/tree.py +1434 -0
- torchrl/data/map/utils.py +103 -0
- torchrl/data/postprocs/__init__.py +8 -0
- torchrl/data/postprocs/postprocs.py +391 -0
- torchrl/data/replay_buffers/__init__.py +99 -0
- torchrl/data/replay_buffers/checkpointers.py +622 -0
- torchrl/data/replay_buffers/ray_buffer.py +292 -0
- torchrl/data/replay_buffers/replay_buffers.py +2376 -0
- torchrl/data/replay_buffers/samplers.py +2578 -0
- torchrl/data/replay_buffers/scheduler.py +265 -0
- torchrl/data/replay_buffers/storages.py +2412 -0
- torchrl/data/replay_buffers/utils.py +1042 -0
- torchrl/data/replay_buffers/writers.py +781 -0
- torchrl/data/tensor_specs.py +7101 -0
- torchrl/data/utils.py +334 -0
- torchrl/envs/__init__.py +265 -0
- torchrl/envs/async_envs.py +1105 -0
- torchrl/envs/batched_envs.py +3093 -0
- torchrl/envs/common.py +4241 -0
- torchrl/envs/custom/__init__.py +11 -0
- torchrl/envs/custom/chess.py +617 -0
- torchrl/envs/custom/llm.py +214 -0
- torchrl/envs/custom/pendulum.py +401 -0
- torchrl/envs/custom/san_moves.txt +29274 -0
- torchrl/envs/custom/tictactoeenv.py +288 -0
- torchrl/envs/env_creator.py +263 -0
- torchrl/envs/gym_like.py +752 -0
- torchrl/envs/libs/__init__.py +68 -0
- torchrl/envs/libs/_gym_utils.py +326 -0
- torchrl/envs/libs/brax.py +846 -0
- torchrl/envs/libs/dm_control.py +544 -0
- torchrl/envs/libs/envpool.py +447 -0
- torchrl/envs/libs/gym.py +2239 -0
- torchrl/envs/libs/habitat.py +138 -0
- torchrl/envs/libs/isaac_lab.py +87 -0
- torchrl/envs/libs/isaacgym.py +203 -0
- torchrl/envs/libs/jax_utils.py +166 -0
- torchrl/envs/libs/jumanji.py +963 -0
- torchrl/envs/libs/meltingpot.py +599 -0
- torchrl/envs/libs/openml.py +153 -0
- torchrl/envs/libs/openspiel.py +652 -0
- torchrl/envs/libs/pettingzoo.py +1042 -0
- torchrl/envs/libs/procgen.py +351 -0
- torchrl/envs/libs/robohive.py +429 -0
- torchrl/envs/libs/smacv2.py +645 -0
- torchrl/envs/libs/unity_mlagents.py +891 -0
- torchrl/envs/libs/utils.py +147 -0
- torchrl/envs/libs/vmas.py +813 -0
- torchrl/envs/llm/__init__.py +63 -0
- torchrl/envs/llm/chat.py +730 -0
- torchrl/envs/llm/datasets/README.md +4 -0
- torchrl/envs/llm/datasets/__init__.py +17 -0
- torchrl/envs/llm/datasets/gsm8k.py +353 -0
- torchrl/envs/llm/datasets/ifeval.py +274 -0
- torchrl/envs/llm/envs.py +789 -0
- torchrl/envs/llm/libs/README.md +3 -0
- torchrl/envs/llm/libs/__init__.py +8 -0
- torchrl/envs/llm/libs/mlgym.py +869 -0
- torchrl/envs/llm/reward/__init__.py +10 -0
- torchrl/envs/llm/reward/gsm8k.py +324 -0
- torchrl/envs/llm/reward/ifeval/README.md +13 -0
- torchrl/envs/llm/reward/ifeval/__init__.py +10 -0
- torchrl/envs/llm/reward/ifeval/_instructions.py +1667 -0
- torchrl/envs/llm/reward/ifeval/_instructions_main.py +131 -0
- torchrl/envs/llm/reward/ifeval/_instructions_registry.py +100 -0
- torchrl/envs/llm/reward/ifeval/_instructions_util.py +1677 -0
- torchrl/envs/llm/reward/ifeval/_scorer.py +454 -0
- torchrl/envs/llm/transforms/__init__.py +55 -0
- torchrl/envs/llm/transforms/browser.py +292 -0
- torchrl/envs/llm/transforms/dataloading.py +859 -0
- torchrl/envs/llm/transforms/format.py +73 -0
- torchrl/envs/llm/transforms/kl.py +1544 -0
- torchrl/envs/llm/transforms/policy_version.py +189 -0
- torchrl/envs/llm/transforms/reason.py +323 -0
- torchrl/envs/llm/transforms/tokenizer.py +321 -0
- torchrl/envs/llm/transforms/tools.py +1955 -0
- torchrl/envs/model_based/__init__.py +9 -0
- torchrl/envs/model_based/common.py +180 -0
- torchrl/envs/model_based/dreamer.py +112 -0
- torchrl/envs/transforms/__init__.py +147 -0
- torchrl/envs/transforms/functional.py +48 -0
- torchrl/envs/transforms/gym_transforms.py +203 -0
- torchrl/envs/transforms/module.py +341 -0
- torchrl/envs/transforms/r3m.py +372 -0
- torchrl/envs/transforms/ray_service.py +663 -0
- torchrl/envs/transforms/rb_transforms.py +214 -0
- torchrl/envs/transforms/transforms.py +11835 -0
- torchrl/envs/transforms/utils.py +94 -0
- torchrl/envs/transforms/vc1.py +307 -0
- torchrl/envs/transforms/vecnorm.py +845 -0
- torchrl/envs/transforms/vip.py +407 -0
- torchrl/envs/utils.py +1718 -0
- torchrl/envs/vec_envs.py +11 -0
- torchrl/modules/__init__.py +206 -0
- torchrl/modules/distributions/__init__.py +73 -0
- torchrl/modules/distributions/continuous.py +830 -0
- torchrl/modules/distributions/discrete.py +908 -0
- torchrl/modules/distributions/truncated_normal.py +187 -0
- torchrl/modules/distributions/utils.py +233 -0
- torchrl/modules/llm/__init__.py +62 -0
- torchrl/modules/llm/backends/__init__.py +65 -0
- torchrl/modules/llm/backends/vllm/__init__.py +94 -0
- torchrl/modules/llm/backends/vllm/_models.py +46 -0
- torchrl/modules/llm/backends/vllm/base.py +72 -0
- torchrl/modules/llm/backends/vllm/vllm_async.py +2075 -0
- torchrl/modules/llm/backends/vllm/vllm_plugin.py +22 -0
- torchrl/modules/llm/backends/vllm/vllm_sync.py +446 -0
- torchrl/modules/llm/backends/vllm/vllm_utils.py +129 -0
- torchrl/modules/llm/policies/__init__.py +28 -0
- torchrl/modules/llm/policies/common.py +1809 -0
- torchrl/modules/llm/policies/transformers_wrapper.py +2756 -0
- torchrl/modules/llm/policies/vllm_wrapper.py +2241 -0
- torchrl/modules/llm/utils.py +23 -0
- torchrl/modules/mcts/__init__.py +21 -0
- torchrl/modules/mcts/scores.py +579 -0
- torchrl/modules/models/__init__.py +86 -0
- torchrl/modules/models/batchrenorm.py +119 -0
- torchrl/modules/models/decision_transformer.py +179 -0
- torchrl/modules/models/exploration.py +731 -0
- torchrl/modules/models/llm.py +156 -0
- torchrl/modules/models/model_based.py +596 -0
- torchrl/modules/models/models.py +1712 -0
- torchrl/modules/models/multiagent.py +1067 -0
- torchrl/modules/models/recipes/impala.py +185 -0
- torchrl/modules/models/utils.py +162 -0
- torchrl/modules/planners/__init__.py +10 -0
- torchrl/modules/planners/cem.py +228 -0
- torchrl/modules/planners/common.py +73 -0
- torchrl/modules/planners/mppi.py +265 -0
- torchrl/modules/tensordict_module/__init__.py +89 -0
- torchrl/modules/tensordict_module/actors.py +2457 -0
- torchrl/modules/tensordict_module/common.py +529 -0
- torchrl/modules/tensordict_module/exploration.py +814 -0
- torchrl/modules/tensordict_module/probabilistic.py +321 -0
- torchrl/modules/tensordict_module/rnn.py +1639 -0
- torchrl/modules/tensordict_module/sequence.py +132 -0
- torchrl/modules/tensordict_module/world_models.py +34 -0
- torchrl/modules/utils/__init__.py +38 -0
- torchrl/modules/utils/mappings.py +9 -0
- torchrl/modules/utils/utils.py +89 -0
- torchrl/objectives/__init__.py +78 -0
- torchrl/objectives/a2c.py +659 -0
- torchrl/objectives/common.py +753 -0
- torchrl/objectives/cql.py +1346 -0
- torchrl/objectives/crossq.py +710 -0
- torchrl/objectives/ddpg.py +453 -0
- torchrl/objectives/decision_transformer.py +371 -0
- torchrl/objectives/deprecated.py +516 -0
- torchrl/objectives/dqn.py +683 -0
- torchrl/objectives/dreamer.py +488 -0
- torchrl/objectives/functional.py +48 -0
- torchrl/objectives/gail.py +258 -0
- torchrl/objectives/iql.py +996 -0
- torchrl/objectives/llm/__init__.py +30 -0
- torchrl/objectives/llm/grpo.py +846 -0
- torchrl/objectives/llm/sft.py +482 -0
- torchrl/objectives/multiagent/__init__.py +8 -0
- torchrl/objectives/multiagent/qmixer.py +396 -0
- torchrl/objectives/ppo.py +1669 -0
- torchrl/objectives/redq.py +683 -0
- torchrl/objectives/reinforce.py +530 -0
- torchrl/objectives/sac.py +1580 -0
- torchrl/objectives/td3.py +570 -0
- torchrl/objectives/td3_bc.py +625 -0
- torchrl/objectives/utils.py +782 -0
- torchrl/objectives/value/__init__.py +28 -0
- torchrl/objectives/value/advantages.py +1956 -0
- torchrl/objectives/value/functional.py +1459 -0
- torchrl/objectives/value/utils.py +360 -0
- torchrl/record/__init__.py +17 -0
- torchrl/record/loggers/__init__.py +23 -0
- torchrl/record/loggers/common.py +48 -0
- torchrl/record/loggers/csv.py +226 -0
- torchrl/record/loggers/mlflow.py +142 -0
- torchrl/record/loggers/tensorboard.py +139 -0
- torchrl/record/loggers/trackio.py +163 -0
- torchrl/record/loggers/utils.py +78 -0
- torchrl/record/loggers/wandb.py +214 -0
- torchrl/record/recorder.py +554 -0
- torchrl/services/__init__.py +79 -0
- torchrl/services/base.py +109 -0
- torchrl/services/ray_service.py +453 -0
- torchrl/testing/__init__.py +107 -0
- torchrl/testing/assertions.py +179 -0
- torchrl/testing/dist_utils.py +122 -0
- torchrl/testing/env_creators.py +227 -0
- torchrl/testing/env_helper.py +35 -0
- torchrl/testing/gym_helpers.py +156 -0
- torchrl/testing/llm_mocks.py +119 -0
- torchrl/testing/mocking_classes.py +2720 -0
- torchrl/testing/modules.py +295 -0
- torchrl/testing/mp_helpers.py +15 -0
- torchrl/testing/ray_helpers.py +293 -0
- torchrl/testing/utils.py +190 -0
- torchrl/trainers/__init__.py +42 -0
- torchrl/trainers/algorithms/__init__.py +11 -0
- torchrl/trainers/algorithms/configs/__init__.py +705 -0
- torchrl/trainers/algorithms/configs/collectors.py +216 -0
- torchrl/trainers/algorithms/configs/common.py +41 -0
- torchrl/trainers/algorithms/configs/data.py +308 -0
- torchrl/trainers/algorithms/configs/envs.py +104 -0
- torchrl/trainers/algorithms/configs/envs_libs.py +361 -0
- torchrl/trainers/algorithms/configs/logging.py +80 -0
- torchrl/trainers/algorithms/configs/modules.py +570 -0
- torchrl/trainers/algorithms/configs/objectives.py +177 -0
- torchrl/trainers/algorithms/configs/trainers.py +340 -0
- torchrl/trainers/algorithms/configs/transforms.py +955 -0
- torchrl/trainers/algorithms/configs/utils.py +252 -0
- torchrl/trainers/algorithms/configs/weight_sync_schemes.py +191 -0
- torchrl/trainers/algorithms/configs/weight_update.py +159 -0
- torchrl/trainers/algorithms/ppo.py +373 -0
- torchrl/trainers/algorithms/sac.py +308 -0
- torchrl/trainers/helpers/__init__.py +40 -0
- torchrl/trainers/helpers/collectors.py +416 -0
- torchrl/trainers/helpers/envs.py +573 -0
- torchrl/trainers/helpers/logger.py +33 -0
- torchrl/trainers/helpers/losses.py +132 -0
- torchrl/trainers/helpers/models.py +658 -0
- torchrl/trainers/helpers/replay_buffer.py +59 -0
- torchrl/trainers/helpers/trainers.py +301 -0
- torchrl/trainers/trainers.py +2052 -0
- torchrl/weight_update/__init__.py +33 -0
- torchrl/weight_update/_distributed.py +749 -0
- torchrl/weight_update/_mp.py +624 -0
- torchrl/weight_update/_noupdate.py +102 -0
- torchrl/weight_update/_ray.py +1032 -0
- torchrl/weight_update/_rpc.py +284 -0
- torchrl/weight_update/_shared.py +891 -0
- torchrl/weight_update/llm/__init__.py +32 -0
- torchrl/weight_update/llm/vllm_double_buffer.py +370 -0
- torchrl/weight_update/llm/vllm_nccl.py +710 -0
- torchrl/weight_update/utils.py +73 -0
- torchrl/weight_update/weight_sync_schemes.py +1244 -0
- torchrl-0.11.0.dist-info/METADATA +1308 -0
- torchrl-0.11.0.dist-info/RECORD +394 -0
- torchrl-0.11.0.dist-info/WHEEL +5 -0
- torchrl-0.11.0.dist-info/entry_points.txt +2 -0
- torchrl-0.11.0.dist-info/licenses/LICENSE +21 -0
- torchrl-0.11.0.dist-info/top_level.txt +7 -0
torchrl/envs/gym_like.py
ADDED
|
@@ -0,0 +1,752 @@
|
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
2
|
+
#
|
|
3
|
+
# This source code is licensed under the MIT license found in the
|
|
4
|
+
# LICENSE file in the root directory of this source tree.
|
|
5
|
+
|
|
6
|
+
from __future__ import annotations
|
|
7
|
+
|
|
8
|
+
import abc
|
|
9
|
+
import functools
|
|
10
|
+
import re
|
|
11
|
+
import warnings
|
|
12
|
+
from collections.abc import Callable, Mapping, Sequence
|
|
13
|
+
from typing import Any, TypeVar
|
|
14
|
+
|
|
15
|
+
import numpy as np
|
|
16
|
+
import torch
|
|
17
|
+
from tensordict import NonTensorData, TensorDict, TensorDictBase
|
|
18
|
+
|
|
19
|
+
from torchrl._utils import logger as torchrl_logger
|
|
20
|
+
from torchrl.data.tensor_specs import Composite, NonTensor, TensorSpec, Unbounded
|
|
21
|
+
from torchrl.envs.common import _EnvWrapper, _maybe_unlock, EnvBase
|
|
22
|
+
|
|
23
|
+
T = TypeVar("T", bound=EnvBase)
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
class BaseInfoDictReader(metaclass=abc.ABCMeta):
|
|
27
|
+
"""Base class for info-readers."""
|
|
28
|
+
|
|
29
|
+
@abc.abstractmethod
|
|
30
|
+
def __call__(
|
|
31
|
+
self, info_dict: dict[str, Any], tensordict: TensorDictBase
|
|
32
|
+
) -> TensorDictBase:
|
|
33
|
+
raise NotImplementedError
|
|
34
|
+
|
|
35
|
+
@property
|
|
36
|
+
@abc.abstractmethod
|
|
37
|
+
def info_spec(self) -> dict[str, TensorSpec]:
|
|
38
|
+
raise NotImplementedError
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
class default_info_dict_reader(BaseInfoDictReader):
|
|
42
|
+
"""Default info-key reader.
|
|
43
|
+
|
|
44
|
+
Args:
|
|
45
|
+
keys (list of keys, optional): If provided, the list of keys to get from
|
|
46
|
+
the info dictionary. Defaults to all keys.
|
|
47
|
+
spec (List[TensorSpec], Dict[str, TensorSpec] or Composite, optional):
|
|
48
|
+
If a list of specs is provided, each spec will be matched to its
|
|
49
|
+
correspondent key to form a :class:`torchrl.data.Composite`.
|
|
50
|
+
If not provided, a composite spec with :class:`~torchrl.data.Unbounded`
|
|
51
|
+
specs will lazyly be created.
|
|
52
|
+
ignore_private (bool, optional): If ``True``, private infos (starting with
|
|
53
|
+
an underscore) will be ignored. Defaults to ``True``.
|
|
54
|
+
|
|
55
|
+
In cases where keys can be directly written to a tensordict (mostly if they abide to the
|
|
56
|
+
tensordict shape), one simply needs to indicate the keys to be registered during
|
|
57
|
+
instantiation.
|
|
58
|
+
|
|
59
|
+
Examples:
|
|
60
|
+
>>> from torchrl.envs.libs.gym import GymWrapper
|
|
61
|
+
>>> from torchrl.envs import default_info_dict_reader
|
|
62
|
+
>>> reader = default_info_dict_reader(["my_info_key"])
|
|
63
|
+
>>> # assuming "some_env-v0" returns a dict with a key "my_info_key"
|
|
64
|
+
>>> env = GymWrapper(gym.make("some_env-v0"))
|
|
65
|
+
>>> env.set_info_dict_reader(info_dict_reader=reader)
|
|
66
|
+
>>> tensordict = env.reset()
|
|
67
|
+
>>> tensordict = env.rand_step(tensordict)
|
|
68
|
+
>>> assert "my_info_key" in tensordict.keys()
|
|
69
|
+
|
|
70
|
+
"""
|
|
71
|
+
|
|
72
|
+
def __init__(
|
|
73
|
+
self,
|
|
74
|
+
keys: list[str] | None = None,
|
|
75
|
+
spec: Sequence[TensorSpec] | dict[str, TensorSpec] | Composite | None = None,
|
|
76
|
+
ignore_private: bool = True,
|
|
77
|
+
):
|
|
78
|
+
self.ignore_private = ignore_private
|
|
79
|
+
self._lazy = False
|
|
80
|
+
if keys is None:
|
|
81
|
+
self._lazy = True
|
|
82
|
+
self.keys = keys
|
|
83
|
+
|
|
84
|
+
if spec is None and keys is None:
|
|
85
|
+
_info_spec = None
|
|
86
|
+
elif spec is None:
|
|
87
|
+
_info_spec = Composite({key: Unbounded(()) for key in keys}, shape=[])
|
|
88
|
+
elif not isinstance(spec, Composite):
|
|
89
|
+
if self.keys is not None and len(spec) != len(self.keys):
|
|
90
|
+
raise ValueError(
|
|
91
|
+
"If specifying specs for info keys with a sequence, the "
|
|
92
|
+
"length of the sequence must match the number of keys"
|
|
93
|
+
)
|
|
94
|
+
if isinstance(spec, dict):
|
|
95
|
+
_info_spec = Composite(spec, shape=[])
|
|
96
|
+
else:
|
|
97
|
+
_info_spec = Composite(
|
|
98
|
+
{key: spec for key, spec in zip(keys, spec)}, shape=[]
|
|
99
|
+
)
|
|
100
|
+
else:
|
|
101
|
+
_info_spec = spec.clone()
|
|
102
|
+
self._info_spec = _info_spec
|
|
103
|
+
|
|
104
|
+
def __call__(
|
|
105
|
+
self, info_dict: dict[str, Any], tensordict: TensorDictBase
|
|
106
|
+
) -> TensorDictBase:
|
|
107
|
+
if not isinstance(info_dict, (dict, TensorDictBase)) and len(self.keys):
|
|
108
|
+
warnings.warn(
|
|
109
|
+
f"Found an info_dict of type {type(info_dict)} "
|
|
110
|
+
f"but expected type or subtype `dict`."
|
|
111
|
+
)
|
|
112
|
+
keys = self.keys
|
|
113
|
+
if keys is None:
|
|
114
|
+
keys = info_dict.keys()
|
|
115
|
+
if self.ignore_private:
|
|
116
|
+
keys = [key for key in keys if not key.startswith("_")]
|
|
117
|
+
self.keys = keys
|
|
118
|
+
# create an info_spec only if there is none
|
|
119
|
+
info_spec = None if self.info_spec is not None else Composite()
|
|
120
|
+
for key in keys:
|
|
121
|
+
if key in info_dict:
|
|
122
|
+
val = info_dict[key]
|
|
123
|
+
if val.dtype == np.dtype("O"):
|
|
124
|
+
val = np.stack(val)
|
|
125
|
+
tensordict.set(key, val)
|
|
126
|
+
if info_spec is not None:
|
|
127
|
+
val = tensordict.get(key)
|
|
128
|
+
info_spec[key] = Unbounded(
|
|
129
|
+
val.shape, device=val.device, dtype=val.dtype
|
|
130
|
+
)
|
|
131
|
+
elif self.info_spec is not None:
|
|
132
|
+
if key in self.info_spec:
|
|
133
|
+
# Fill missing with 0s
|
|
134
|
+
tensordict.set(key, self.info_spec[key].zero())
|
|
135
|
+
else:
|
|
136
|
+
raise KeyError(f"The key {key} could not be found or inferred.")
|
|
137
|
+
# set the info spec if there wasn't any - this should occur only once in this class
|
|
138
|
+
if info_spec is not None:
|
|
139
|
+
if tensordict.device is not None:
|
|
140
|
+
info_spec = info_spec.to(tensordict.device)
|
|
141
|
+
self._info_spec = info_spec
|
|
142
|
+
return tensordict
|
|
143
|
+
|
|
144
|
+
def reset(self):
|
|
145
|
+
self.keys = None
|
|
146
|
+
self._info_spec = None
|
|
147
|
+
|
|
148
|
+
@property
|
|
149
|
+
def info_spec(self) -> dict[str, TensorSpec]:
|
|
150
|
+
return self._info_spec
|
|
151
|
+
|
|
152
|
+
|
|
153
|
+
class GymLikeEnv(_EnvWrapper):
|
|
154
|
+
"""A gym-like env is an environment.
|
|
155
|
+
|
|
156
|
+
Its behavior is similar to gym environments in what common methods (specifically reset and step) are expected to do.
|
|
157
|
+
|
|
158
|
+
A :obj:`GymLikeEnv` has a :obj:`.step()` method with the following signature:
|
|
159
|
+
|
|
160
|
+
``env.step(action: np.ndarray) -> Tuple[Union[np.ndarray, dict], double, bool, *info]``
|
|
161
|
+
|
|
162
|
+
where the outputs are the observation, reward and done state respectively.
|
|
163
|
+
In this implementation, the info output is discarded (but specific keys can be read
|
|
164
|
+
by updating info_dict_reader, see :meth:`set_info_dict_reader` method).
|
|
165
|
+
|
|
166
|
+
By default, the first output is written at the "observation" key-value pair in the output tensordict, unless
|
|
167
|
+
the first output is a dictionary. In that case, each observation output will be put at the corresponding
|
|
168
|
+
:obj:`f"{key}"` location for each :obj:`f"{key}"` of the dictionary.
|
|
169
|
+
|
|
170
|
+
It is also expected that env.reset() returns an observation similar to the one observed after a step is completed.
|
|
171
|
+
"""
|
|
172
|
+
|
|
173
|
+
_info_dict_reader: list[BaseInfoDictReader]
|
|
174
|
+
|
|
175
|
+
@classmethod
|
|
176
|
+
def __new__(cls, *args, **kwargs):
|
|
177
|
+
self = super().__new__(cls, *args, _batch_locked=True, **kwargs)
|
|
178
|
+
self._info_dict_reader = []
|
|
179
|
+
|
|
180
|
+
return self
|
|
181
|
+
|
|
182
|
+
def fast_encoding(self, mode: bool = True) -> T:
|
|
183
|
+
"""Skips several checks during encoding of the environment output to accelerate the execution of the environment.
|
|
184
|
+
|
|
185
|
+
Args:
|
|
186
|
+
mode (bool, optional): the memoization mode. If ``True``, input checks will be executed only once and then
|
|
187
|
+
the encoding pipeline will be pre-recorded.
|
|
188
|
+
|
|
189
|
+
.. seealso:: :meth:`~torchrl.data.TensorSpec.memoize_cache`.
|
|
190
|
+
|
|
191
|
+
Example:
|
|
192
|
+
>>> from torchrl.envs import GymEnv
|
|
193
|
+
>>> from torch.utils.benchmark import Timer
|
|
194
|
+
>>>
|
|
195
|
+
>>> env = GymEnv("Pendulum-v1")
|
|
196
|
+
>>> t = Timer("env.rollout(1000, break_when_any_done=False)", globals=globals(), num_threads=32).adaptive_autorange()
|
|
197
|
+
>>> m = t.median
|
|
198
|
+
>>> print(f"Speed without memoizing: {1000/t.median: 4.4f}fps")
|
|
199
|
+
Speed without memoizing: 10141.5742fps
|
|
200
|
+
>>>
|
|
201
|
+
>>> env.fast_encoding()
|
|
202
|
+
>>> t = Timer("env.rollout(1000, break_when_any_done=False)", globals=globals(), num_threads=32).adaptive_autorange()
|
|
203
|
+
>>> m = t.median
|
|
204
|
+
>>> print(f"Speed with memoizing: {1000/t.median: 4.4f}fps")
|
|
205
|
+
Speed with memoizing: 10576.8388fps
|
|
206
|
+
|
|
207
|
+
"""
|
|
208
|
+
self.specs.memoize_encode(mode=mode)
|
|
209
|
+
if mode:
|
|
210
|
+
if type(self).read_obs is not GymLikeEnv.read_obs:
|
|
211
|
+
raise RuntimeError(
|
|
212
|
+
"Cannot use fast_encoding as the read_obs method has been overwritten."
|
|
213
|
+
)
|
|
214
|
+
if type(self).read_reward is not GymLikeEnv.read_reward:
|
|
215
|
+
raise RuntimeError(
|
|
216
|
+
"Cannot use fast_encoding as the read_reward method has been overwritten."
|
|
217
|
+
)
|
|
218
|
+
|
|
219
|
+
if mode:
|
|
220
|
+
self.read_reward = self._read_reward_memo
|
|
221
|
+
self.read_obs = self._read_obs_memo
|
|
222
|
+
else:
|
|
223
|
+
self.read_reward = self._read_reward_eager
|
|
224
|
+
self.read_obs = self._read_obs_eager
|
|
225
|
+
|
|
226
|
+
def read_action(self, action):
|
|
227
|
+
"""Reads the action obtained from the input TensorDict and transforms it in the format expected by the contained environment.
|
|
228
|
+
|
|
229
|
+
Args:
|
|
230
|
+
action (Tensor or TensorDict): an action to be taken in the environment
|
|
231
|
+
|
|
232
|
+
Returns: an action in a format compatible with the contained environment.
|
|
233
|
+
|
|
234
|
+
"""
|
|
235
|
+
action_spec = self.full_action_spec
|
|
236
|
+
action_keys = self.action_keys
|
|
237
|
+
if len(action_keys) == 1:
|
|
238
|
+
action_spec = action_spec[action_keys[0]]
|
|
239
|
+
return action_spec.to_numpy(action, safe=False)
|
|
240
|
+
|
|
241
|
+
def read_done(
|
|
242
|
+
self,
|
|
243
|
+
terminated: bool | None = None,
|
|
244
|
+
truncated: bool | None = None,
|
|
245
|
+
done: bool | None = None,
|
|
246
|
+
) -> tuple[bool | np.ndarray, bool | np.ndarray, bool | np.ndarray, bool]:
|
|
247
|
+
"""Done state reader.
|
|
248
|
+
|
|
249
|
+
In torchrl, a `"done"` signal means that a trajectory has reach its end,
|
|
250
|
+
either because it has been interrupted or because it is terminated.
|
|
251
|
+
Truncated means the episode has been interrupted early.
|
|
252
|
+
Terminated means the task is finished, the episode is completed.
|
|
253
|
+
|
|
254
|
+
Args:
|
|
255
|
+
terminated (np.ndarray, boolean or other format): completion state
|
|
256
|
+
obtained from the environment.
|
|
257
|
+
``"terminated"`` equates to ``"termination"`` in gymnasium:
|
|
258
|
+
the signal that the environment has reached the end of the
|
|
259
|
+
episode, any data coming after this should be considered as nonsensical.
|
|
260
|
+
Defaults to ``None``.
|
|
261
|
+
truncated (bool or None): early truncation signal.
|
|
262
|
+
Defaults to ``None``.
|
|
263
|
+
done (bool or None): end-of-trajectory signal.
|
|
264
|
+
This should be the fallback value of envs which do not specify
|
|
265
|
+
if the ``"done"`` entry points to a ``"terminated"`` or
|
|
266
|
+
``"truncated"``.
|
|
267
|
+
Defaults to ``None``.
|
|
268
|
+
|
|
269
|
+
Returns: a tuple with 4 boolean / tensor values,
|
|
270
|
+
|
|
271
|
+
- a terminated state,
|
|
272
|
+
- a truncated state,
|
|
273
|
+
- a done state,
|
|
274
|
+
- a boolean value indicating whether the frame_skip loop should be broken.
|
|
275
|
+
|
|
276
|
+
"""
|
|
277
|
+
if truncated is not None and done is None:
|
|
278
|
+
done = truncated | terminated
|
|
279
|
+
elif truncated is None and done is None:
|
|
280
|
+
done = terminated
|
|
281
|
+
do_break = done.any() if not isinstance(done, bool) else done
|
|
282
|
+
if isinstance(done, bool):
|
|
283
|
+
done = [done]
|
|
284
|
+
if terminated is not None:
|
|
285
|
+
terminated = [terminated]
|
|
286
|
+
if truncated is not None:
|
|
287
|
+
truncated = [truncated]
|
|
288
|
+
return (
|
|
289
|
+
torch.as_tensor(terminated),
|
|
290
|
+
torch.as_tensor(truncated),
|
|
291
|
+
torch.as_tensor(done),
|
|
292
|
+
do_break.any() if not isinstance(do_break, bool) else do_break,
|
|
293
|
+
)
|
|
294
|
+
|
|
295
|
+
_read_reward: Callable[[Any], Any] | None = None
|
|
296
|
+
|
|
297
|
+
def read_reward(self, reward):
|
|
298
|
+
"""Reads the reward and maps it to the reward space.
|
|
299
|
+
|
|
300
|
+
Args:
|
|
301
|
+
reward (torch.Tensor or TensorDict): reward to be mapped.
|
|
302
|
+
|
|
303
|
+
"""
|
|
304
|
+
return self._read_reward_eager(reward)
|
|
305
|
+
|
|
306
|
+
def _read_reward_eager(self, reward):
|
|
307
|
+
if isinstance(reward, int) and reward == 0:
|
|
308
|
+
return self.reward_spec.zero()
|
|
309
|
+
reward = self.reward_spec.encode(reward, ignore_device=True)
|
|
310
|
+
|
|
311
|
+
if reward is None:
|
|
312
|
+
reward = torch.tensor(np.nan).expand(self.reward_spec.shape)
|
|
313
|
+
|
|
314
|
+
return reward
|
|
315
|
+
|
|
316
|
+
def _read_reward_memo(self, reward):
|
|
317
|
+
func = self._read_reward
|
|
318
|
+
if func is not None:
|
|
319
|
+
return func(reward)
|
|
320
|
+
funcs = []
|
|
321
|
+
if isinstance(reward, int) and reward == 0:
|
|
322
|
+
|
|
323
|
+
def process_zero(reward):
|
|
324
|
+
return self.reward_spec.zero()
|
|
325
|
+
|
|
326
|
+
funcs.append(process_zero)
|
|
327
|
+
else:
|
|
328
|
+
|
|
329
|
+
def encode_reward(reward):
|
|
330
|
+
return self.reward_spec.encode(reward, ignore_device=True)
|
|
331
|
+
|
|
332
|
+
funcs.append(encode_reward)
|
|
333
|
+
|
|
334
|
+
if reward is None:
|
|
335
|
+
|
|
336
|
+
def check_none(reward):
|
|
337
|
+
return torch.tensor(np.nan).expand(self.reward_spec.shape)
|
|
338
|
+
|
|
339
|
+
funcs.append(check_none)
|
|
340
|
+
|
|
341
|
+
if len(funcs) == 1:
|
|
342
|
+
self._read_reward = funcs[0]
|
|
343
|
+
else:
|
|
344
|
+
self._read_reward = functools.partial(
|
|
345
|
+
functools.reduce, lambda x, f: f(x), funcs
|
|
346
|
+
)
|
|
347
|
+
return self._read_reward(reward)
|
|
348
|
+
|
|
349
|
+
def read_obs(
|
|
350
|
+
self, observations: dict[str, Any] | torch.Tensor | np.ndarray
|
|
351
|
+
) -> dict[str, Any]:
|
|
352
|
+
"""Reads an observation from the environment and returns an observation compatible with the output TensorDict.
|
|
353
|
+
|
|
354
|
+
Args:
|
|
355
|
+
observations (observation under a format dictated by the inner env): observation to be read.
|
|
356
|
+
|
|
357
|
+
"""
|
|
358
|
+
return self._read_obs_eager(observations)
|
|
359
|
+
|
|
360
|
+
def _read_obs_eager(
|
|
361
|
+
self, observations: dict[str, Any] | torch.Tensor | np.ndarray
|
|
362
|
+
) -> dict[str, Any]:
|
|
363
|
+
if isinstance(observations, dict):
|
|
364
|
+
if "state" in observations and "observation" not in observations:
|
|
365
|
+
# we rename "state" in "observation" as "observation" is the conventional name
|
|
366
|
+
# for single observation in torchrl.
|
|
367
|
+
# naming it 'state' will result in envs that have a different name for the state vector
|
|
368
|
+
# when queried with and without pixels
|
|
369
|
+
observations["observation"] = observations.pop("state")
|
|
370
|
+
if not isinstance(observations, Mapping):
|
|
371
|
+
for key, spec in self.observation_spec.items(True, True):
|
|
372
|
+
observations_dict = {}
|
|
373
|
+
observations_dict[key] = spec.encode(observations, ignore_device=True)
|
|
374
|
+
# we don't check that there is only one spec because obs spec also
|
|
375
|
+
# contains the data spec of the info dict.
|
|
376
|
+
break
|
|
377
|
+
else:
|
|
378
|
+
raise RuntimeError("Could not find any element in observation_spec.")
|
|
379
|
+
observations = observations_dict
|
|
380
|
+
else:
|
|
381
|
+
for key, val in observations.items():
|
|
382
|
+
if isinstance(self.observation_spec[key], NonTensor):
|
|
383
|
+
observations[key] = NonTensorData(val)
|
|
384
|
+
else:
|
|
385
|
+
observations[key] = self.observation_spec[key].encode(
|
|
386
|
+
val, ignore_device=True
|
|
387
|
+
)
|
|
388
|
+
return observations
|
|
389
|
+
|
|
390
|
+
_read_obs: Callable[[Any], Any] | None = None
|
|
391
|
+
|
|
392
|
+
def _read_obs_memo(
|
|
393
|
+
self, observations: dict[str, Any] | torch.Tensor | np.ndarray
|
|
394
|
+
) -> dict[str, Any]:
|
|
395
|
+
func = self._read_obs
|
|
396
|
+
if func is not None:
|
|
397
|
+
return func(observations)
|
|
398
|
+
funcs = []
|
|
399
|
+
if isinstance(observations, (dict, Mapping)):
|
|
400
|
+
if "state" in observations and "observation" not in observations:
|
|
401
|
+
|
|
402
|
+
def process_dict_pop(observations):
|
|
403
|
+
observations["observation"] = observations.pop("state")
|
|
404
|
+
return observations
|
|
405
|
+
|
|
406
|
+
funcs.append(process_dict_pop)
|
|
407
|
+
for key in observations.keys():
|
|
408
|
+
if isinstance(self.observation_spec[key], NonTensor):
|
|
409
|
+
|
|
410
|
+
def process_dict(observations, key=key):
|
|
411
|
+
observations[key] = NonTensorData(observations[key])
|
|
412
|
+
return observations
|
|
413
|
+
|
|
414
|
+
else:
|
|
415
|
+
|
|
416
|
+
def process_dict(observations, key=key):
|
|
417
|
+
observations[key] = self.observation_spec[key].encode(
|
|
418
|
+
observations[key], ignore_device=True
|
|
419
|
+
)
|
|
420
|
+
return observations
|
|
421
|
+
|
|
422
|
+
funcs.append(process_dict)
|
|
423
|
+
else:
|
|
424
|
+
key = next(iter(self.observation_spec.keys(True, True)), None)
|
|
425
|
+
if key is None:
|
|
426
|
+
raise RuntimeError("Could not find any element in observation_spec.")
|
|
427
|
+
spec = self.observation_spec[key]
|
|
428
|
+
|
|
429
|
+
def process_non_dict(observations, spec=spec):
|
|
430
|
+
return {key: spec.encode(observations, ignore_device=True)}
|
|
431
|
+
|
|
432
|
+
funcs.append(process_non_dict)
|
|
433
|
+
if len(funcs) == 1:
|
|
434
|
+
self._read_obs = funcs[0]
|
|
435
|
+
else:
|
|
436
|
+
self._read_obs = functools.partial(
|
|
437
|
+
functools.reduce, lambda x, f: f(x), funcs
|
|
438
|
+
)
|
|
439
|
+
return self._read_obs(observations)
|
|
440
|
+
|
|
441
|
+
def _step(self, tensordict: TensorDictBase) -> TensorDictBase:
|
|
442
|
+
if len(self.action_keys) == 1:
|
|
443
|
+
# Use brackets to get non-tensor data
|
|
444
|
+
action = tensordict[self.action_key]
|
|
445
|
+
else:
|
|
446
|
+
action = tensordict.select(*self.action_keys).to_dict()
|
|
447
|
+
if self._convert_actions_to_numpy:
|
|
448
|
+
action = self.read_action(action)
|
|
449
|
+
|
|
450
|
+
reward = 0
|
|
451
|
+
for _ in range(self.wrapper_frame_skip):
|
|
452
|
+
step_result = self._env.step(action)
|
|
453
|
+
(
|
|
454
|
+
obs,
|
|
455
|
+
_reward,
|
|
456
|
+
terminated,
|
|
457
|
+
truncated,
|
|
458
|
+
done,
|
|
459
|
+
info_dict,
|
|
460
|
+
) = self._output_transform(step_result)
|
|
461
|
+
|
|
462
|
+
if _reward is not None:
|
|
463
|
+
reward = reward + _reward
|
|
464
|
+
terminated, truncated, done, do_break = self.read_done(
|
|
465
|
+
terminated=terminated, truncated=truncated, done=done
|
|
466
|
+
)
|
|
467
|
+
if do_break:
|
|
468
|
+
break
|
|
469
|
+
|
|
470
|
+
reward = self.read_reward(reward)
|
|
471
|
+
obs_dict = self.read_obs(obs)
|
|
472
|
+
obs_dict[self.reward_key] = reward
|
|
473
|
+
|
|
474
|
+
# if truncated/terminated is not in the keys, we just don't pass it even if it
|
|
475
|
+
# is defined.
|
|
476
|
+
if terminated is None:
|
|
477
|
+
terminated = done.clone()
|
|
478
|
+
if truncated is not None:
|
|
479
|
+
obs_dict["truncated"] = truncated
|
|
480
|
+
obs_dict["done"] = done
|
|
481
|
+
obs_dict["terminated"] = terminated
|
|
482
|
+
validated = self.validated
|
|
483
|
+
if not validated:
|
|
484
|
+
tensordict_out = TensorDict(obs_dict, batch_size=tensordict.batch_size)
|
|
485
|
+
if validated is None:
|
|
486
|
+
# check if any value has to be recast to something else. If not, we can safely
|
|
487
|
+
# build the tensordict without running checks
|
|
488
|
+
self.validated = all(
|
|
489
|
+
val is tensordict_out.get(key)
|
|
490
|
+
for key, val in TensorDict(obs_dict, []).items(True, True)
|
|
491
|
+
)
|
|
492
|
+
else:
|
|
493
|
+
tensordict_out = TensorDict._new_unsafe(
|
|
494
|
+
obs_dict,
|
|
495
|
+
batch_size=tensordict.batch_size,
|
|
496
|
+
)
|
|
497
|
+
if self.device is not None:
|
|
498
|
+
tensordict_out = tensordict_out.to(self.device)
|
|
499
|
+
|
|
500
|
+
if self.info_dict_reader and info_dict is not None:
|
|
501
|
+
if not isinstance(info_dict, dict):
|
|
502
|
+
warnings.warn(
|
|
503
|
+
f"Expected info to be a dictionary but got a {type(info_dict)} with values {str(info_dict)[:100]}."
|
|
504
|
+
)
|
|
505
|
+
else:
|
|
506
|
+
for info_dict_reader in self.info_dict_reader:
|
|
507
|
+
out = info_dict_reader(info_dict, tensordict_out)
|
|
508
|
+
if out is not None:
|
|
509
|
+
tensordict_out = out
|
|
510
|
+
return tensordict_out
|
|
511
|
+
|
|
512
|
+
@property
|
|
513
|
+
def validated(self):
|
|
514
|
+
return self.__dict__.get("_validated", None)
|
|
515
|
+
|
|
516
|
+
@validated.setter
|
|
517
|
+
def validated(self, value):
|
|
518
|
+
self.__dict__["_validated"] = value
|
|
519
|
+
|
|
520
|
+
def _reset(
|
|
521
|
+
self, tensordict: TensorDictBase | None = None, **kwargs
|
|
522
|
+
) -> TensorDictBase:
|
|
523
|
+
if (
|
|
524
|
+
tensordict is not None
|
|
525
|
+
and "_reset" in tensordict
|
|
526
|
+
and not tensordict["_reset"].all()
|
|
527
|
+
):
|
|
528
|
+
raise RuntimeError("Partial resets are not handled at this level.")
|
|
529
|
+
obs, info = self._reset_output_transform(self._env.reset(**kwargs))
|
|
530
|
+
|
|
531
|
+
source = self.read_obs(obs)
|
|
532
|
+
|
|
533
|
+
# _new_unsafe cannot be used because it won't wrap non-tensor correctly
|
|
534
|
+
tensordict_out = TensorDict(
|
|
535
|
+
source=source,
|
|
536
|
+
batch_size=self.batch_size,
|
|
537
|
+
)
|
|
538
|
+
if self.info_dict_reader and info is not None:
|
|
539
|
+
for info_dict_reader in self.info_dict_reader:
|
|
540
|
+
out = info_dict_reader(info, tensordict_out)
|
|
541
|
+
if out is not None:
|
|
542
|
+
tensordict_out = out
|
|
543
|
+
elif info is None and self.info_dict_reader:
|
|
544
|
+
# populate the reset with the items we have not seen from info
|
|
545
|
+
for key, item in self.observation_spec.items(True, True):
|
|
546
|
+
if key not in tensordict_out.keys(True, True):
|
|
547
|
+
tensordict_out[key] = item.zero()
|
|
548
|
+
if self.device is not None:
|
|
549
|
+
tensordict_out = tensordict_out.to(self.device)
|
|
550
|
+
return tensordict_out
|
|
551
|
+
|
|
552
|
+
@abc.abstractmethod
|
|
553
|
+
def _output_transform(
|
|
554
|
+
self, step_outputs_tuple: tuple
|
|
555
|
+
) -> tuple[
|
|
556
|
+
Any,
|
|
557
|
+
float | np.ndarray,
|
|
558
|
+
bool | np.ndarray | None,
|
|
559
|
+
bool | np.ndarray | None,
|
|
560
|
+
bool | np.ndarray | None,
|
|
561
|
+
dict,
|
|
562
|
+
]:
|
|
563
|
+
"""A method to read the output of the env step.
|
|
564
|
+
|
|
565
|
+
Must return a tuple: (obs, reward, terminated, truncated, done, info).
|
|
566
|
+
If only one end-of-trajectory is passed, it is interpreted as ``"truncated"``.
|
|
567
|
+
An attempt to retrieve ``"truncated"`` from the info dict is also undertaken.
|
|
568
|
+
If 2 are passed (like in gymnasium), we interpret them as ``"terminated",
|
|
569
|
+
"truncated"`` (``"truncated"`` meaning that the trajectory has been
|
|
570
|
+
interrupted early), and ``"done"`` is the union of the two,
|
|
571
|
+
ie. the unspecified end-of-trajectory signal.
|
|
572
|
+
|
|
573
|
+
These three concepts have different usage:
|
|
574
|
+
|
|
575
|
+
- ``"terminated"`` indicated the final stage of a Markov Decision
|
|
576
|
+
Process. It means that one should not pay attention to the
|
|
577
|
+
upcoming observations (eg., in value functions) as they should be
|
|
578
|
+
regarded as not valid.
|
|
579
|
+
- ``"truncated"`` means that the environment has reached a stage where
|
|
580
|
+
we decided to stop the collection for some reason but the next
|
|
581
|
+
observation should not be discarded. If it were not for this
|
|
582
|
+
arbitrary decision, the collection could have proceeded further.
|
|
583
|
+
- ``"done"`` is either one or the other. It is to be interpreted as
|
|
584
|
+
"a reset should be called before the next step is undertaken".
|
|
585
|
+
|
|
586
|
+
"""
|
|
587
|
+
...
|
|
588
|
+
|
|
589
|
+
@abc.abstractmethod
|
|
590
|
+
def _reset_output_transform(self, reset_outputs_tuple: tuple) -> tuple:
|
|
591
|
+
...
|
|
592
|
+
|
|
593
|
+
@_maybe_unlock
|
|
594
|
+
def set_info_dict_reader(
|
|
595
|
+
self,
|
|
596
|
+
info_dict_reader: BaseInfoDictReader | None = None,
|
|
597
|
+
ignore_private: bool = True,
|
|
598
|
+
) -> GymLikeEnv:
|
|
599
|
+
"""Sets an info_dict_reader function.
|
|
600
|
+
|
|
601
|
+
This function should take as input an
|
|
602
|
+
info_dict dictionary and the tensordict returned by the step function, and
|
|
603
|
+
write values in an ad-hoc manner from one to the other.
|
|
604
|
+
|
|
605
|
+
Args:
|
|
606
|
+
info_dict_reader (Callable[[Dict], TensorDict], optional): a callable
|
|
607
|
+
taking a input dictionary and output tensordict as arguments.
|
|
608
|
+
This function should modify the tensordict in-place. If none is
|
|
609
|
+
provided, :class:`~torchrl.envs.gym_like.default_info_dict_reader`
|
|
610
|
+
will be used.
|
|
611
|
+
ignore_private (bool, optional): If ``True``, private infos (starting with
|
|
612
|
+
an underscore) will be ignored. Defaults to ``True``.
|
|
613
|
+
|
|
614
|
+
Returns: the same environment with the dict_reader registered.
|
|
615
|
+
|
|
616
|
+
.. note::
|
|
617
|
+
Automatically registering an info_dict reader should be done via
|
|
618
|
+
:meth:`auto_register_info_dict`, which will ensure that the env
|
|
619
|
+
specs are properly constructed.
|
|
620
|
+
|
|
621
|
+
Examples:
|
|
622
|
+
>>> from torchrl.envs import default_info_dict_reader
|
|
623
|
+
>>> from torchrl.envs.libs.gym import GymWrapper
|
|
624
|
+
>>> reader = default_info_dict_reader(["my_info_key"])
|
|
625
|
+
>>> # assuming "some_env-v0" returns a dict with a key "my_info_key"
|
|
626
|
+
>>> env = GymWrapper(gym.make("some_env-v0")).set_info_dict_reader(info_dict_reader=reader)
|
|
627
|
+
>>> tensordict = env.reset()
|
|
628
|
+
>>> tensordict = env.rand_step(tensordict)
|
|
629
|
+
>>> assert "my_info_key" in tensordict.keys()
|
|
630
|
+
|
|
631
|
+
"""
|
|
632
|
+
if info_dict_reader is None:
|
|
633
|
+
info_dict_reader = default_info_dict_reader(ignore_private=ignore_private)
|
|
634
|
+
self.info_dict_reader.append(info_dict_reader)
|
|
635
|
+
if isinstance(info_dict_reader, BaseInfoDictReader):
|
|
636
|
+
# if we have a BaseInfoDictReader, we know what the specs will be
|
|
637
|
+
# In other cases (eg, RoboHive) we will need to figure it out empirically.
|
|
638
|
+
if (
|
|
639
|
+
isinstance(info_dict_reader, default_info_dict_reader)
|
|
640
|
+
and info_dict_reader.info_spec is None
|
|
641
|
+
):
|
|
642
|
+
torchrl_logger.info(
|
|
643
|
+
"The info_dict_reader does not have specs. The only way to palliate to this issue automatically "
|
|
644
|
+
"is to run a dummy rollout and gather the specs automatically. "
|
|
645
|
+
"To silence this message, provide the specs directly to your spec reader."
|
|
646
|
+
)
|
|
647
|
+
# Gym does not guarantee that reset passes all info
|
|
648
|
+
self.reset()
|
|
649
|
+
info_dict_reader.reset()
|
|
650
|
+
self.rand_step()
|
|
651
|
+
self.reset()
|
|
652
|
+
|
|
653
|
+
self.observation_spec.update(info_dict_reader.info_spec)
|
|
654
|
+
|
|
655
|
+
return self
|
|
656
|
+
|
|
657
|
+
def auto_register_info_dict(
|
|
658
|
+
self,
|
|
659
|
+
ignore_private: bool = True,
|
|
660
|
+
*,
|
|
661
|
+
info_dict_reader: BaseInfoDictReader = None,
|
|
662
|
+
) -> EnvBase:
|
|
663
|
+
"""Automatically registers the info dict and appends :class:`~torch.envs.transforms.TensorDictPrimer` instances if needed.
|
|
664
|
+
|
|
665
|
+
If no info_dict_reader is provided, it is assumed that all the information contained in the info dict can
|
|
666
|
+
be registered as numerical values within the tensordict.
|
|
667
|
+
|
|
668
|
+
This method returns a (possibly transformed) environment where we make sure that
|
|
669
|
+
the :func:`torchrl.envs.utils.check_env_specs` succeeds, whether
|
|
670
|
+
the info is filled at reset time.
|
|
671
|
+
|
|
672
|
+
.. note:: This method requires running a few iterations in the environment to
|
|
673
|
+
manually check that the behavior matches expectations.
|
|
674
|
+
|
|
675
|
+
Args:
|
|
676
|
+
ignore_private (bool, optional): If ``True``, private infos (starting with
|
|
677
|
+
an underscore) will be ignored. Defaults to ``True``.
|
|
678
|
+
|
|
679
|
+
Keyword Args:
|
|
680
|
+
info_dict_reader (BaseInfoDictReader, optional): the info_dict_reader, if it is known in advance.
|
|
681
|
+
Unlike :meth:`set_info_dict_reader`, this method will create the primers necessary to get
|
|
682
|
+
:func:`~torchrl.envs.utils.check_env_specs` to run.
|
|
683
|
+
|
|
684
|
+
Examples:
|
|
685
|
+
>>> from torchrl.envs import GymEnv
|
|
686
|
+
>>> env = GymEnv("HalfCheetah-v4")
|
|
687
|
+
>>> # registers the info dict reader
|
|
688
|
+
>>> env.auto_register_info_dict()
|
|
689
|
+
GymEnv(env=HalfCheetah-v4, batch_size=torch.Size([]), device=cpu)
|
|
690
|
+
>>> env.rollout(3)
|
|
691
|
+
TensorDict(
|
|
692
|
+
fields={
|
|
693
|
+
action: Tensor(shape=torch.Size([3, 6]), device=cpu, dtype=torch.float32, is_shared=False),
|
|
694
|
+
done: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.bool, is_shared=False),
|
|
695
|
+
next: TensorDict(
|
|
696
|
+
fields={
|
|
697
|
+
done: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.bool, is_shared=False),
|
|
698
|
+
observation: Tensor(shape=torch.Size([3, 17]), device=cpu, dtype=torch.float64, is_shared=False),
|
|
699
|
+
reward: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.float32, is_shared=False),
|
|
700
|
+
reward_ctrl: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float64, is_shared=False),
|
|
701
|
+
reward_run: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float64, is_shared=False),
|
|
702
|
+
terminated: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.bool, is_shared=False),
|
|
703
|
+
truncated: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.bool, is_shared=False),
|
|
704
|
+
x_position: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float64, is_shared=False),
|
|
705
|
+
x_velocity: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float64, is_shared=False)},
|
|
706
|
+
batch_size=torch.Size([3]),
|
|
707
|
+
device=cpu,
|
|
708
|
+
is_shared=False),
|
|
709
|
+
observation: Tensor(shape=torch.Size([3, 17]), device=cpu, dtype=torch.float64, is_shared=False),
|
|
710
|
+
reward_ctrl: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float64, is_shared=False),
|
|
711
|
+
reward_run: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float64, is_shared=False),
|
|
712
|
+
terminated: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.bool, is_shared=False),
|
|
713
|
+
truncated: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.bool, is_shared=False),
|
|
714
|
+
x_position: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float64, is_shared=False),
|
|
715
|
+
x_velocity: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float64, is_shared=False)},
|
|
716
|
+
batch_size=torch.Size([3]),
|
|
717
|
+
device=cpu,
|
|
718
|
+
is_shared=False)
|
|
719
|
+
|
|
720
|
+
"""
|
|
721
|
+
from torchrl.envs import check_env_specs, TensorDictPrimer, TransformedEnv
|
|
722
|
+
|
|
723
|
+
if self.info_dict_reader:
|
|
724
|
+
raise RuntimeError("The environment already has an info-dict reader.")
|
|
725
|
+
self.set_info_dict_reader(
|
|
726
|
+
ignore_private=ignore_private, info_dict_reader=info_dict_reader
|
|
727
|
+
)
|
|
728
|
+
try:
|
|
729
|
+
check_env_specs(self)
|
|
730
|
+
return self
|
|
731
|
+
except (AssertionError, RuntimeError) as err:
|
|
732
|
+
patterns = [
|
|
733
|
+
"The keys of the specs and data do not match",
|
|
734
|
+
"The sets of keys in the tensordicts to stack are exclusive",
|
|
735
|
+
]
|
|
736
|
+
for pattern in patterns:
|
|
737
|
+
if re.search(pattern, str(err)):
|
|
738
|
+
result = TransformedEnv(
|
|
739
|
+
self, TensorDictPrimer(self.info_dict_reader[0].info_spec)
|
|
740
|
+
)
|
|
741
|
+
check_env_specs(result)
|
|
742
|
+
return result
|
|
743
|
+
raise err
|
|
744
|
+
|
|
745
|
+
def __repr__(self) -> str:
|
|
746
|
+
return (
|
|
747
|
+
f"{self.__class__.__name__}(env={self._env}, batch_size={self.batch_size})"
|
|
748
|
+
)
|
|
749
|
+
|
|
750
|
+
@property
|
|
751
|
+
def info_dict_reader(self):
|
|
752
|
+
return self._info_dict_reader
|