torchrl 0.11.0__cp314-cp314-manylinux_2_28_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (394) hide show
  1. benchmarks/benchmark_batched_envs.py +104 -0
  2. benchmarks/conftest.py +91 -0
  3. benchmarks/ecosystem/gym_env_throughput.py +321 -0
  4. benchmarks/ecosystem/vmas_rllib_vs_torchrl_sampling_performance.py +231 -0
  5. benchmarks/requirements.txt +7 -0
  6. benchmarks/storage/benchmark_sample_latency_over_rpc.py +193 -0
  7. benchmarks/test_collectors_benchmark.py +240 -0
  8. benchmarks/test_compressed_storage_benchmark.py +145 -0
  9. benchmarks/test_envs_benchmark.py +133 -0
  10. benchmarks/test_llm.py +101 -0
  11. benchmarks/test_non_tensor_env_benchmark.py +70 -0
  12. benchmarks/test_objectives_benchmarks.py +1199 -0
  13. benchmarks/test_replaybuffer_benchmark.py +254 -0
  14. sota-check/README.md +35 -0
  15. sota-implementations/README.md +142 -0
  16. sota-implementations/a2c/README.md +39 -0
  17. sota-implementations/a2c/a2c_atari.py +291 -0
  18. sota-implementations/a2c/a2c_mujoco.py +273 -0
  19. sota-implementations/a2c/utils_atari.py +240 -0
  20. sota-implementations/a2c/utils_mujoco.py +160 -0
  21. sota-implementations/bandits/README.md +7 -0
  22. sota-implementations/bandits/dqn.py +126 -0
  23. sota-implementations/cql/cql_offline.py +198 -0
  24. sota-implementations/cql/cql_online.py +249 -0
  25. sota-implementations/cql/discrete_cql_offline.py +180 -0
  26. sota-implementations/cql/discrete_cql_online.py +227 -0
  27. sota-implementations/cql/utils.py +471 -0
  28. sota-implementations/crossq/crossq.py +271 -0
  29. sota-implementations/crossq/utils.py +320 -0
  30. sota-implementations/ddpg/ddpg.py +231 -0
  31. sota-implementations/ddpg/utils.py +325 -0
  32. sota-implementations/decision_transformer/dt.py +163 -0
  33. sota-implementations/decision_transformer/lamb.py +167 -0
  34. sota-implementations/decision_transformer/online_dt.py +178 -0
  35. sota-implementations/decision_transformer/utils.py +562 -0
  36. sota-implementations/discrete_sac/discrete_sac.py +243 -0
  37. sota-implementations/discrete_sac/utils.py +324 -0
  38. sota-implementations/dqn/README.md +30 -0
  39. sota-implementations/dqn/dqn_atari.py +272 -0
  40. sota-implementations/dqn/dqn_cartpole.py +236 -0
  41. sota-implementations/dqn/utils_atari.py +132 -0
  42. sota-implementations/dqn/utils_cartpole.py +90 -0
  43. sota-implementations/dreamer/README.md +129 -0
  44. sota-implementations/dreamer/dreamer.py +586 -0
  45. sota-implementations/dreamer/dreamer_utils.py +1107 -0
  46. sota-implementations/expert-iteration/README.md +352 -0
  47. sota-implementations/expert-iteration/ei_utils.py +770 -0
  48. sota-implementations/expert-iteration/expert-iteration-async.py +512 -0
  49. sota-implementations/expert-iteration/expert-iteration-sync.py +508 -0
  50. sota-implementations/expert-iteration/requirements_gsm8k.txt +13 -0
  51. sota-implementations/expert-iteration/requirements_ifeval.txt +16 -0
  52. sota-implementations/gail/gail.py +327 -0
  53. sota-implementations/gail/gail_utils.py +68 -0
  54. sota-implementations/gail/ppo_utils.py +157 -0
  55. sota-implementations/grpo/README.md +273 -0
  56. sota-implementations/grpo/grpo-async.py +437 -0
  57. sota-implementations/grpo/grpo-sync.py +435 -0
  58. sota-implementations/grpo/grpo_utils.py +843 -0
  59. sota-implementations/grpo/requirements_gsm8k.txt +11 -0
  60. sota-implementations/grpo/requirements_ifeval.txt +16 -0
  61. sota-implementations/impala/README.md +33 -0
  62. sota-implementations/impala/impala_multi_node_ray.py +292 -0
  63. sota-implementations/impala/impala_multi_node_submitit.py +284 -0
  64. sota-implementations/impala/impala_single_node.py +261 -0
  65. sota-implementations/impala/utils.py +184 -0
  66. sota-implementations/iql/discrete_iql.py +230 -0
  67. sota-implementations/iql/iql_offline.py +164 -0
  68. sota-implementations/iql/iql_online.py +225 -0
  69. sota-implementations/iql/utils.py +437 -0
  70. sota-implementations/multiagent/README.md +74 -0
  71. sota-implementations/multiagent/iql.py +237 -0
  72. sota-implementations/multiagent/maddpg_iddpg.py +266 -0
  73. sota-implementations/multiagent/mappo_ippo.py +267 -0
  74. sota-implementations/multiagent/qmix_vdn.py +271 -0
  75. sota-implementations/multiagent/sac.py +337 -0
  76. sota-implementations/multiagent/utils/__init__.py +4 -0
  77. sota-implementations/multiagent/utils/logging.py +151 -0
  78. sota-implementations/multiagent/utils/utils.py +43 -0
  79. sota-implementations/ppo/README.md +29 -0
  80. sota-implementations/ppo/ppo_atari.py +305 -0
  81. sota-implementations/ppo/ppo_mujoco.py +293 -0
  82. sota-implementations/ppo/utils_atari.py +238 -0
  83. sota-implementations/ppo/utils_mujoco.py +152 -0
  84. sota-implementations/ppo_trainer/train.py +21 -0
  85. sota-implementations/redq/README.md +7 -0
  86. sota-implementations/redq/redq.py +199 -0
  87. sota-implementations/redq/utils.py +1060 -0
  88. sota-implementations/sac/sac-async.py +266 -0
  89. sota-implementations/sac/sac.py +239 -0
  90. sota-implementations/sac/utils.py +381 -0
  91. sota-implementations/sac_trainer/train.py +16 -0
  92. sota-implementations/td3/td3.py +254 -0
  93. sota-implementations/td3/utils.py +319 -0
  94. sota-implementations/td3_bc/td3_bc.py +177 -0
  95. sota-implementations/td3_bc/utils.py +251 -0
  96. torchrl/__init__.py +144 -0
  97. torchrl/_extension.py +74 -0
  98. torchrl/_torchrl.cpython-314-aarch64-linux-gnu.so +0 -0
  99. torchrl/_utils.py +1431 -0
  100. torchrl/collectors/__init__.py +48 -0
  101. torchrl/collectors/_base.py +1058 -0
  102. torchrl/collectors/_constants.py +88 -0
  103. torchrl/collectors/_multi_async.py +324 -0
  104. torchrl/collectors/_multi_base.py +1805 -0
  105. torchrl/collectors/_multi_sync.py +464 -0
  106. torchrl/collectors/_runner.py +581 -0
  107. torchrl/collectors/_single.py +2009 -0
  108. torchrl/collectors/_single_async.py +259 -0
  109. torchrl/collectors/collectors.py +62 -0
  110. torchrl/collectors/distributed/__init__.py +32 -0
  111. torchrl/collectors/distributed/default_configs.py +133 -0
  112. torchrl/collectors/distributed/generic.py +1306 -0
  113. torchrl/collectors/distributed/ray.py +1092 -0
  114. torchrl/collectors/distributed/rpc.py +1006 -0
  115. torchrl/collectors/distributed/sync.py +731 -0
  116. torchrl/collectors/distributed/utils.py +160 -0
  117. torchrl/collectors/llm/__init__.py +10 -0
  118. torchrl/collectors/llm/base.py +494 -0
  119. torchrl/collectors/llm/ray_collector.py +275 -0
  120. torchrl/collectors/llm/utils.py +36 -0
  121. torchrl/collectors/llm/weight_update/__init__.py +10 -0
  122. torchrl/collectors/llm/weight_update/vllm.py +348 -0
  123. torchrl/collectors/llm/weight_update/vllm_v2.py +311 -0
  124. torchrl/collectors/utils.py +433 -0
  125. torchrl/collectors/weight_update.py +591 -0
  126. torchrl/csrc/numpy_utils.h +38 -0
  127. torchrl/csrc/pybind.cpp +27 -0
  128. torchrl/csrc/segment_tree.h +458 -0
  129. torchrl/csrc/torch_utils.h +34 -0
  130. torchrl/csrc/utils.cpp +48 -0
  131. torchrl/csrc/utils.h +31 -0
  132. torchrl/data/__init__.py +187 -0
  133. torchrl/data/datasets/__init__.py +58 -0
  134. torchrl/data/datasets/atari_dqn.py +878 -0
  135. torchrl/data/datasets/common.py +281 -0
  136. torchrl/data/datasets/d4rl.py +489 -0
  137. torchrl/data/datasets/d4rl_infos.py +187 -0
  138. torchrl/data/datasets/gen_dgrl.py +375 -0
  139. torchrl/data/datasets/minari_data.py +643 -0
  140. torchrl/data/datasets/openml.py +177 -0
  141. torchrl/data/datasets/openx.py +798 -0
  142. torchrl/data/datasets/roboset.py +363 -0
  143. torchrl/data/datasets/utils.py +11 -0
  144. torchrl/data/datasets/vd4rl.py +432 -0
  145. torchrl/data/llm/__init__.py +34 -0
  146. torchrl/data/llm/dataset.py +491 -0
  147. torchrl/data/llm/history.py +1378 -0
  148. torchrl/data/llm/prompt.py +198 -0
  149. torchrl/data/llm/reward.py +225 -0
  150. torchrl/data/llm/topk.py +186 -0
  151. torchrl/data/llm/utils.py +543 -0
  152. torchrl/data/map/__init__.py +21 -0
  153. torchrl/data/map/hash.py +185 -0
  154. torchrl/data/map/query.py +204 -0
  155. torchrl/data/map/tdstorage.py +363 -0
  156. torchrl/data/map/tree.py +1434 -0
  157. torchrl/data/map/utils.py +103 -0
  158. torchrl/data/postprocs/__init__.py +8 -0
  159. torchrl/data/postprocs/postprocs.py +391 -0
  160. torchrl/data/replay_buffers/__init__.py +99 -0
  161. torchrl/data/replay_buffers/checkpointers.py +622 -0
  162. torchrl/data/replay_buffers/ray_buffer.py +292 -0
  163. torchrl/data/replay_buffers/replay_buffers.py +2376 -0
  164. torchrl/data/replay_buffers/samplers.py +2578 -0
  165. torchrl/data/replay_buffers/scheduler.py +265 -0
  166. torchrl/data/replay_buffers/storages.py +2412 -0
  167. torchrl/data/replay_buffers/utils.py +1042 -0
  168. torchrl/data/replay_buffers/writers.py +781 -0
  169. torchrl/data/tensor_specs.py +7101 -0
  170. torchrl/data/utils.py +334 -0
  171. torchrl/envs/__init__.py +265 -0
  172. torchrl/envs/async_envs.py +1105 -0
  173. torchrl/envs/batched_envs.py +3093 -0
  174. torchrl/envs/common.py +4241 -0
  175. torchrl/envs/custom/__init__.py +11 -0
  176. torchrl/envs/custom/chess.py +617 -0
  177. torchrl/envs/custom/llm.py +214 -0
  178. torchrl/envs/custom/pendulum.py +401 -0
  179. torchrl/envs/custom/san_moves.txt +29274 -0
  180. torchrl/envs/custom/tictactoeenv.py +288 -0
  181. torchrl/envs/env_creator.py +263 -0
  182. torchrl/envs/gym_like.py +752 -0
  183. torchrl/envs/libs/__init__.py +68 -0
  184. torchrl/envs/libs/_gym_utils.py +326 -0
  185. torchrl/envs/libs/brax.py +846 -0
  186. torchrl/envs/libs/dm_control.py +544 -0
  187. torchrl/envs/libs/envpool.py +447 -0
  188. torchrl/envs/libs/gym.py +2239 -0
  189. torchrl/envs/libs/habitat.py +138 -0
  190. torchrl/envs/libs/isaac_lab.py +87 -0
  191. torchrl/envs/libs/isaacgym.py +203 -0
  192. torchrl/envs/libs/jax_utils.py +166 -0
  193. torchrl/envs/libs/jumanji.py +963 -0
  194. torchrl/envs/libs/meltingpot.py +599 -0
  195. torchrl/envs/libs/openml.py +153 -0
  196. torchrl/envs/libs/openspiel.py +652 -0
  197. torchrl/envs/libs/pettingzoo.py +1042 -0
  198. torchrl/envs/libs/procgen.py +351 -0
  199. torchrl/envs/libs/robohive.py +429 -0
  200. torchrl/envs/libs/smacv2.py +645 -0
  201. torchrl/envs/libs/unity_mlagents.py +891 -0
  202. torchrl/envs/libs/utils.py +147 -0
  203. torchrl/envs/libs/vmas.py +813 -0
  204. torchrl/envs/llm/__init__.py +63 -0
  205. torchrl/envs/llm/chat.py +730 -0
  206. torchrl/envs/llm/datasets/README.md +4 -0
  207. torchrl/envs/llm/datasets/__init__.py +17 -0
  208. torchrl/envs/llm/datasets/gsm8k.py +353 -0
  209. torchrl/envs/llm/datasets/ifeval.py +274 -0
  210. torchrl/envs/llm/envs.py +789 -0
  211. torchrl/envs/llm/libs/README.md +3 -0
  212. torchrl/envs/llm/libs/__init__.py +8 -0
  213. torchrl/envs/llm/libs/mlgym.py +869 -0
  214. torchrl/envs/llm/reward/__init__.py +10 -0
  215. torchrl/envs/llm/reward/gsm8k.py +324 -0
  216. torchrl/envs/llm/reward/ifeval/README.md +13 -0
  217. torchrl/envs/llm/reward/ifeval/__init__.py +10 -0
  218. torchrl/envs/llm/reward/ifeval/_instructions.py +1667 -0
  219. torchrl/envs/llm/reward/ifeval/_instructions_main.py +131 -0
  220. torchrl/envs/llm/reward/ifeval/_instructions_registry.py +100 -0
  221. torchrl/envs/llm/reward/ifeval/_instructions_util.py +1677 -0
  222. torchrl/envs/llm/reward/ifeval/_scorer.py +454 -0
  223. torchrl/envs/llm/transforms/__init__.py +55 -0
  224. torchrl/envs/llm/transforms/browser.py +292 -0
  225. torchrl/envs/llm/transforms/dataloading.py +859 -0
  226. torchrl/envs/llm/transforms/format.py +73 -0
  227. torchrl/envs/llm/transforms/kl.py +1544 -0
  228. torchrl/envs/llm/transforms/policy_version.py +189 -0
  229. torchrl/envs/llm/transforms/reason.py +323 -0
  230. torchrl/envs/llm/transforms/tokenizer.py +321 -0
  231. torchrl/envs/llm/transforms/tools.py +1955 -0
  232. torchrl/envs/model_based/__init__.py +9 -0
  233. torchrl/envs/model_based/common.py +180 -0
  234. torchrl/envs/model_based/dreamer.py +112 -0
  235. torchrl/envs/transforms/__init__.py +147 -0
  236. torchrl/envs/transforms/functional.py +48 -0
  237. torchrl/envs/transforms/gym_transforms.py +203 -0
  238. torchrl/envs/transforms/module.py +341 -0
  239. torchrl/envs/transforms/r3m.py +372 -0
  240. torchrl/envs/transforms/ray_service.py +663 -0
  241. torchrl/envs/transforms/rb_transforms.py +214 -0
  242. torchrl/envs/transforms/transforms.py +11835 -0
  243. torchrl/envs/transforms/utils.py +94 -0
  244. torchrl/envs/transforms/vc1.py +307 -0
  245. torchrl/envs/transforms/vecnorm.py +845 -0
  246. torchrl/envs/transforms/vip.py +407 -0
  247. torchrl/envs/utils.py +1718 -0
  248. torchrl/envs/vec_envs.py +11 -0
  249. torchrl/modules/__init__.py +206 -0
  250. torchrl/modules/distributions/__init__.py +73 -0
  251. torchrl/modules/distributions/continuous.py +830 -0
  252. torchrl/modules/distributions/discrete.py +908 -0
  253. torchrl/modules/distributions/truncated_normal.py +187 -0
  254. torchrl/modules/distributions/utils.py +233 -0
  255. torchrl/modules/llm/__init__.py +62 -0
  256. torchrl/modules/llm/backends/__init__.py +65 -0
  257. torchrl/modules/llm/backends/vllm/__init__.py +94 -0
  258. torchrl/modules/llm/backends/vllm/_models.py +46 -0
  259. torchrl/modules/llm/backends/vllm/base.py +72 -0
  260. torchrl/modules/llm/backends/vllm/vllm_async.py +2075 -0
  261. torchrl/modules/llm/backends/vllm/vllm_plugin.py +22 -0
  262. torchrl/modules/llm/backends/vllm/vllm_sync.py +446 -0
  263. torchrl/modules/llm/backends/vllm/vllm_utils.py +129 -0
  264. torchrl/modules/llm/policies/__init__.py +28 -0
  265. torchrl/modules/llm/policies/common.py +1809 -0
  266. torchrl/modules/llm/policies/transformers_wrapper.py +2756 -0
  267. torchrl/modules/llm/policies/vllm_wrapper.py +2241 -0
  268. torchrl/modules/llm/utils.py +23 -0
  269. torchrl/modules/mcts/__init__.py +21 -0
  270. torchrl/modules/mcts/scores.py +579 -0
  271. torchrl/modules/models/__init__.py +86 -0
  272. torchrl/modules/models/batchrenorm.py +119 -0
  273. torchrl/modules/models/decision_transformer.py +179 -0
  274. torchrl/modules/models/exploration.py +731 -0
  275. torchrl/modules/models/llm.py +156 -0
  276. torchrl/modules/models/model_based.py +596 -0
  277. torchrl/modules/models/models.py +1712 -0
  278. torchrl/modules/models/multiagent.py +1067 -0
  279. torchrl/modules/models/recipes/impala.py +185 -0
  280. torchrl/modules/models/utils.py +162 -0
  281. torchrl/modules/planners/__init__.py +10 -0
  282. torchrl/modules/planners/cem.py +228 -0
  283. torchrl/modules/planners/common.py +73 -0
  284. torchrl/modules/planners/mppi.py +265 -0
  285. torchrl/modules/tensordict_module/__init__.py +89 -0
  286. torchrl/modules/tensordict_module/actors.py +2457 -0
  287. torchrl/modules/tensordict_module/common.py +529 -0
  288. torchrl/modules/tensordict_module/exploration.py +814 -0
  289. torchrl/modules/tensordict_module/probabilistic.py +321 -0
  290. torchrl/modules/tensordict_module/rnn.py +1639 -0
  291. torchrl/modules/tensordict_module/sequence.py +132 -0
  292. torchrl/modules/tensordict_module/world_models.py +34 -0
  293. torchrl/modules/utils/__init__.py +38 -0
  294. torchrl/modules/utils/mappings.py +9 -0
  295. torchrl/modules/utils/utils.py +89 -0
  296. torchrl/objectives/__init__.py +78 -0
  297. torchrl/objectives/a2c.py +659 -0
  298. torchrl/objectives/common.py +753 -0
  299. torchrl/objectives/cql.py +1346 -0
  300. torchrl/objectives/crossq.py +710 -0
  301. torchrl/objectives/ddpg.py +453 -0
  302. torchrl/objectives/decision_transformer.py +371 -0
  303. torchrl/objectives/deprecated.py +516 -0
  304. torchrl/objectives/dqn.py +683 -0
  305. torchrl/objectives/dreamer.py +488 -0
  306. torchrl/objectives/functional.py +48 -0
  307. torchrl/objectives/gail.py +258 -0
  308. torchrl/objectives/iql.py +996 -0
  309. torchrl/objectives/llm/__init__.py +30 -0
  310. torchrl/objectives/llm/grpo.py +846 -0
  311. torchrl/objectives/llm/sft.py +482 -0
  312. torchrl/objectives/multiagent/__init__.py +8 -0
  313. torchrl/objectives/multiagent/qmixer.py +396 -0
  314. torchrl/objectives/ppo.py +1669 -0
  315. torchrl/objectives/redq.py +683 -0
  316. torchrl/objectives/reinforce.py +530 -0
  317. torchrl/objectives/sac.py +1580 -0
  318. torchrl/objectives/td3.py +570 -0
  319. torchrl/objectives/td3_bc.py +625 -0
  320. torchrl/objectives/utils.py +782 -0
  321. torchrl/objectives/value/__init__.py +28 -0
  322. torchrl/objectives/value/advantages.py +1956 -0
  323. torchrl/objectives/value/functional.py +1459 -0
  324. torchrl/objectives/value/utils.py +360 -0
  325. torchrl/record/__init__.py +17 -0
  326. torchrl/record/loggers/__init__.py +23 -0
  327. torchrl/record/loggers/common.py +48 -0
  328. torchrl/record/loggers/csv.py +226 -0
  329. torchrl/record/loggers/mlflow.py +142 -0
  330. torchrl/record/loggers/tensorboard.py +139 -0
  331. torchrl/record/loggers/trackio.py +163 -0
  332. torchrl/record/loggers/utils.py +78 -0
  333. torchrl/record/loggers/wandb.py +214 -0
  334. torchrl/record/recorder.py +554 -0
  335. torchrl/services/__init__.py +79 -0
  336. torchrl/services/base.py +109 -0
  337. torchrl/services/ray_service.py +453 -0
  338. torchrl/testing/__init__.py +107 -0
  339. torchrl/testing/assertions.py +179 -0
  340. torchrl/testing/dist_utils.py +122 -0
  341. torchrl/testing/env_creators.py +227 -0
  342. torchrl/testing/env_helper.py +35 -0
  343. torchrl/testing/gym_helpers.py +156 -0
  344. torchrl/testing/llm_mocks.py +119 -0
  345. torchrl/testing/mocking_classes.py +2720 -0
  346. torchrl/testing/modules.py +295 -0
  347. torchrl/testing/mp_helpers.py +15 -0
  348. torchrl/testing/ray_helpers.py +293 -0
  349. torchrl/testing/utils.py +190 -0
  350. torchrl/trainers/__init__.py +42 -0
  351. torchrl/trainers/algorithms/__init__.py +11 -0
  352. torchrl/trainers/algorithms/configs/__init__.py +705 -0
  353. torchrl/trainers/algorithms/configs/collectors.py +216 -0
  354. torchrl/trainers/algorithms/configs/common.py +41 -0
  355. torchrl/trainers/algorithms/configs/data.py +308 -0
  356. torchrl/trainers/algorithms/configs/envs.py +104 -0
  357. torchrl/trainers/algorithms/configs/envs_libs.py +361 -0
  358. torchrl/trainers/algorithms/configs/logging.py +80 -0
  359. torchrl/trainers/algorithms/configs/modules.py +570 -0
  360. torchrl/trainers/algorithms/configs/objectives.py +177 -0
  361. torchrl/trainers/algorithms/configs/trainers.py +340 -0
  362. torchrl/trainers/algorithms/configs/transforms.py +955 -0
  363. torchrl/trainers/algorithms/configs/utils.py +252 -0
  364. torchrl/trainers/algorithms/configs/weight_sync_schemes.py +191 -0
  365. torchrl/trainers/algorithms/configs/weight_update.py +159 -0
  366. torchrl/trainers/algorithms/ppo.py +373 -0
  367. torchrl/trainers/algorithms/sac.py +308 -0
  368. torchrl/trainers/helpers/__init__.py +40 -0
  369. torchrl/trainers/helpers/collectors.py +416 -0
  370. torchrl/trainers/helpers/envs.py +573 -0
  371. torchrl/trainers/helpers/logger.py +33 -0
  372. torchrl/trainers/helpers/losses.py +132 -0
  373. torchrl/trainers/helpers/models.py +658 -0
  374. torchrl/trainers/helpers/replay_buffer.py +59 -0
  375. torchrl/trainers/helpers/trainers.py +301 -0
  376. torchrl/trainers/trainers.py +2052 -0
  377. torchrl/weight_update/__init__.py +33 -0
  378. torchrl/weight_update/_distributed.py +749 -0
  379. torchrl/weight_update/_mp.py +624 -0
  380. torchrl/weight_update/_noupdate.py +102 -0
  381. torchrl/weight_update/_ray.py +1032 -0
  382. torchrl/weight_update/_rpc.py +284 -0
  383. torchrl/weight_update/_shared.py +891 -0
  384. torchrl/weight_update/llm/__init__.py +32 -0
  385. torchrl/weight_update/llm/vllm_double_buffer.py +370 -0
  386. torchrl/weight_update/llm/vllm_nccl.py +710 -0
  387. torchrl/weight_update/utils.py +73 -0
  388. torchrl/weight_update/weight_sync_schemes.py +1244 -0
  389. torchrl-0.11.0.dist-info/METADATA +1308 -0
  390. torchrl-0.11.0.dist-info/RECORD +394 -0
  391. torchrl-0.11.0.dist-info/WHEEL +5 -0
  392. torchrl-0.11.0.dist-info/entry_points.txt +2 -0
  393. torchrl-0.11.0.dist-info/licenses/LICENSE +21 -0
  394. torchrl-0.11.0.dist-info/top_level.txt +7 -0
@@ -0,0 +1,1092 @@
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ #
3
+ # This source code is licensed under the MIT license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ from __future__ import annotations
7
+
8
+ import threading
9
+ import warnings
10
+ from collections import OrderedDict
11
+ from collections.abc import Callable, Iterator, Sequence
12
+ from typing import Any
13
+
14
+ import torch
15
+ import torch.nn as nn
16
+ from tensordict import TensorDict, TensorDictBase
17
+
18
+ from torchrl._utils import as_remote, logger as torchrl_logger
19
+ from torchrl.collectors._base import BaseCollector
20
+ from torchrl.collectors._constants import DEFAULT_EXPLORATION_TYPE
21
+ from torchrl.collectors._multi_async import MultiAsyncCollector
22
+ from torchrl.collectors._multi_sync import MultiSyncCollector
23
+ from torchrl.collectors._single import Collector
24
+ from torchrl.collectors.utils import _NON_NN_POLICY_WEIGHTS, split_trajectories
25
+ from torchrl.collectors.weight_update import RayWeightUpdater, WeightUpdaterBase
26
+ from torchrl.data import ReplayBuffer
27
+ from torchrl.envs.common import EnvBase
28
+ from torchrl.envs.env_creator import EnvCreator
29
+ from torchrl.weight_update.weight_sync_schemes import WeightSyncScheme
30
+
31
+ RAY_ERR = None
32
+ try:
33
+ import ray
34
+ from ray._private.services import get_node_ip_address
35
+
36
+ _has_ray = True
37
+ except ImportError as err:
38
+ _has_ray = False
39
+ RAY_ERR = err
40
+
41
+ DEFAULT_RAY_INIT_CONFIG = {
42
+ "address": None,
43
+ "num_cpus": None,
44
+ "num_gpus": None,
45
+ "resources": None,
46
+ "object_store_memory": None,
47
+ "local_mode": False,
48
+ "ignore_reinit_error": False,
49
+ "include_dashboard": None,
50
+ "dashboard_host": "127.0.0.1",
51
+ "dashboard_port": None,
52
+ "job_config": None,
53
+ "configure_logging": True,
54
+ "logging_level": "info",
55
+ "logging_format": None,
56
+ "log_to_driver": True,
57
+ "namespace": None,
58
+ "runtime_env": None,
59
+ }
60
+
61
+ DEFAULT_REMOTE_CLASS_CONFIG = {
62
+ "num_cpus": 1,
63
+ "num_gpus": 0.2 if torch.cuda.is_available() else None,
64
+ "memory": 2 * 1024**3,
65
+ }
66
+
67
+
68
+ def print_remote_collector_info(self):
69
+ """Prints some information about the remote collector."""
70
+ s = (
71
+ f"Created remote collector with in machine "
72
+ f"{get_node_ip_address()} using gpus {ray.get_gpu_ids()}"
73
+ )
74
+ # torchrl_logger.warning(s)
75
+ torchrl_logger.debug(s)
76
+
77
+
78
+ class RayCollector(BaseCollector):
79
+ """Distributed data collector with `Ray <https://docs.ray.io/>`_ backend.
80
+
81
+ This Python class serves as a ray-based solution to instantiate and coordinate multiple
82
+ data collectors in a distributed cluster. Like TorchRL non-distributed collectors, this
83
+ collector is an iterable that yields TensorDicts until a target number of collected
84
+ frames is reached, but handles distributed data collection under the hood.
85
+
86
+ The class dictionary input parameter "ray_init_config" can be used to provide the kwargs to
87
+ call Ray initialization method ray.init(). If "ray_init_config" is not provided, the default
88
+ behavior is to autodetect an existing Ray cluster or start a new Ray instance locally if no
89
+ existing cluster is found. Refer to Ray documentation for advanced initialization kwargs.
90
+
91
+ Similarly, dictionary input parameter "remote_configs" can be used to specify the kwargs for
92
+ ray.remote() when called to create each remote collector actor, including collector compute
93
+ resources.The sum of all collector resources should be available in the cluster. Refer to Ray
94
+ documentation for advanced configuration of the ray.remote() method. Default kwargs are:
95
+
96
+ >>> kwargs = {
97
+ ... "num_cpus": 1,
98
+ ... "num_gpus": 0.2,
99
+ ... "memory": 2 * 1024 ** 3,
100
+ ... }
101
+
102
+
103
+ The coordination between collector instances can be specified as "synchronous" or "asynchronous".
104
+ In synchronous coordination, this class waits for all remote collectors to collect a rollout,
105
+ concatenates all rollouts into a single TensorDict instance and finally yields the concatenated
106
+ data. On the other hand, if the coordination is to be carried out asynchronously, this class
107
+ provides the rollouts as they become available from individual remote collectors.
108
+
109
+ Args:
110
+ create_env_fn (Callable or List[Callabled]): list of Callables, each returning an
111
+ instance of :class:`~torchrl.envs.EnvBase`.
112
+ policy (Callable, optional): Policy to be executed in the environment.
113
+ Must accept :class:`tensordict.tensordict.TensorDictBase` object as input.
114
+ If ``None`` is provided, the policy used will be a
115
+ :class:`~torchrl.collectors.RandomPolicy` instance with the environment
116
+ ``action_spec``.
117
+ Accepted policies are usually subclasses of :class:`~tensordict.nn.TensorDictModuleBase`.
118
+ This is the recommended usage of the collector.
119
+ Other callables are accepted too:
120
+ If the policy is not a ``TensorDictModuleBase`` (e.g., a regular :class:`~torch.nn.Module`
121
+ instances) it will be wrapped in a `nn.Module` first.
122
+ Then, the collector will try to assess if these
123
+ modules require wrapping in a :class:`~tensordict.nn.TensorDictModule` or not.
124
+
125
+ - If the policy forward signature matches any of ``forward(self, tensordict)``,
126
+ ``forward(self, td)`` or ``forward(self, <anything>: TensorDictBase)`` (or
127
+ any typing with a single argument typed as a subclass of ``TensorDictBase``)
128
+ then the policy won't be wrapped in a :class:`~tensordict.nn.TensorDictModule`.
129
+
130
+ - In all other cases an attempt to wrap it will be undergone as such: ``TensorDictModule(policy, in_keys=env_obs_key, out_keys=env.action_keys)``.
131
+
132
+ .. note:: If the policy needs to be passed as a policy factory (e.g., in case it mustn't be serialized /
133
+ pickled directly), the ``policy_factory`` should be used instead.
134
+
135
+ Keyword Args:
136
+ policy_factory (Callable[[], Callable], list of Callable[[], Callable], optional): a callable
137
+ (or list of callables) that returns a policy instance. This is exclusive with the `policy` argument.
138
+
139
+ .. note:: `policy_factory` comes in handy whenever the policy cannot be serialized.
140
+
141
+ trust_policy (bool, optional): if ``True``, a non-TensorDictModule policy will be trusted to be
142
+ assumed to be compatible with the collector. This defaults to ``True`` for CudaGraphModules
143
+ and ``False`` otherwise.
144
+ frames_per_batch (int): A keyword-only argument representing the
145
+ total number of elements in a batch.
146
+ total_frames (int, Optional): lower bound of the total number of frames returned by the collector.
147
+ The iterator will stop once the total number of frames equates or exceeds the total number of
148
+ frames passed to the collector. Default value is -1, which mean no target total number of frames
149
+ (i.e. the collector will run indefinitely).
150
+ device (int, str or torch.device, optional): The generic device of the
151
+ collector. The ``device`` args fills any non-specified device: if
152
+ ``device`` is not ``None`` and any of ``storing_device``, ``policy_device`` or
153
+ ``env_device`` is not specified, its value will be set to ``device``.
154
+ Defaults to ``None`` (No default device).
155
+ Lists of devices are supported.
156
+ storing_device (int, str or torch.device, optional): The *remote* device on which
157
+ the output :class:`~tensordict.TensorDict` will be stored.
158
+ If ``device`` is passed and ``storing_device`` is ``None``, it will
159
+ default to the value indicated by ``device``.
160
+ For long trajectories, it may be necessary to store the data on a different
161
+ device than the one where the policy and env are executed.
162
+ Defaults to ``None`` (the output tensordict isn't on a specific device,
163
+ leaf tensors sit on the device where they were created).
164
+ Lists of devices are supported.
165
+ env_device (int, str or torch.device, optional): The *remote* device on which
166
+ the environment should be cast (or executed if that functionality is
167
+ supported). If not specified and the env has a non-``None`` device,
168
+ ``env_device`` will default to that value. If ``device`` is passed
169
+ and ``env_device=None``, it will default to ``device``. If the value
170
+ as such specified of ``env_device`` differs from ``policy_device``
171
+ and one of them is not ``None``, the data will be cast to ``env_device``
172
+ before being passed to the env (i.e., passing different devices to
173
+ policy and env is supported). Defaults to ``None``.
174
+ Lists of devices are supported.
175
+ policy_device (int, str or torch.device, optional): The *remote* device on which
176
+ the policy should be cast.
177
+ If ``device`` is passed and ``policy_device=None``, it will default
178
+ to ``device``. If the value as such specified of ``policy_device``
179
+ differs from ``env_device`` and one of them is not ``None``,
180
+ the data will be cast to ``policy_device`` before being passed to
181
+ the policy (i.e., passing different devices to policy and env is
182
+ supported). Defaults to ``None``.
183
+ Lists of devices are supported.
184
+ create_env_kwargs (dict, optional): Dictionary of kwargs for
185
+ ``create_env_fn``.
186
+ max_frames_per_traj (int, optional): Maximum steps per trajectory.
187
+ Note that a trajectory can span across multiple batches (unless
188
+ ``reset_at_each_iter`` is set to ``True``, see below).
189
+ Once a trajectory reaches ``n_steps``, the environment is reset.
190
+ If the environment wraps multiple environments together, the number
191
+ of steps is tracked for each environment independently. Negative
192
+ values are allowed, in which case this argument is ignored.
193
+ Defaults to ``None`` (i.e., no maximum number of steps).
194
+ init_random_frames (int, optional): Number of frames for which the
195
+ policy is ignored before it is called. This feature is mainly
196
+ intended to be used in offline/model-based settings, where a
197
+ batch of random trajectories can be used to initialize training.
198
+ If provided, it will be rounded up to the closest multiple of frames_per_batch.
199
+ Defaults to ``None`` (i.e. no random frames).
200
+ reset_at_each_iter (bool, optional): Whether environments should be reset
201
+ at the beginning of a batch collection.
202
+ Defaults to ``False``.
203
+ postproc (Callable, optional): A post-processing transform, such as
204
+ a :class:`~torchrl.envs.Transform` or a :class:`~torchrl.data.postprocs.MultiStep`
205
+ instance.
206
+ Defaults to ``None``.
207
+ split_trajs (bool, optional): Boolean indicating whether the resulting
208
+ TensorDict should be split according to the trajectories.
209
+ See :func:`~torchrl.collectors.utils.split_trajectories` for more
210
+ information.
211
+ Defaults to ``False``.
212
+ exploration_type (ExplorationType, optional): interaction mode to be used when
213
+ collecting data. Must be one of ``torchrl.envs.utils.ExplorationType.DETERMINISTIC``,
214
+ ``torchrl.envs.utils.ExplorationType.RANDOM``, ``torchrl.envs.utils.ExplorationType.MODE``
215
+ or ``torchrl.envs.utils.ExplorationType.MEAN``.
216
+ collector_class (Python class or constructor): a collector class to be remotely instantiated. Can be
217
+ :class:`~torchrl.collectors.Collector`,
218
+ :class:`~torchrl.collectors.MultiSyncCollector`,
219
+ :class:`~torchrl.collectors.MultiAsyncCollector`
220
+ or a derived class of these.
221
+ Defaults to :class:`~torchrl.collectors.Collector`.
222
+ collector_kwargs (dict or list, optional): a dictionary of parameters to be passed to the
223
+ remote data-collector. If a list is provided, each element will
224
+ correspond to an individual set of keyword arguments for the
225
+ dedicated collector.
226
+ num_workers_per_collector (int): the number of copies of the
227
+ env constructor that is to be used on the remote nodes.
228
+ Defaults to 1 (a single env per collector).
229
+ On a single worker node all the sub-workers will be
230
+ executing the same environment. If different environments need to
231
+ be executed, they should be dispatched across worker nodes, not
232
+ subnodes.
233
+ ray_init_config (dict, Optional): kwargs used to call ray.init().
234
+ remote_configs (list of dicts, Optional): ray resource specs for each remote collector.
235
+ A single dict can be provided as well, and will be used in all collectors.
236
+ num_collectors (int, Optional): total number of collectors to be instantiated.
237
+ sync (bool): if ``True``, the resulting tensordict is a stack of all the
238
+ tensordicts collected on each node. If ``False`` (default), each
239
+ tensordict results from a separate node in a "first-ready,
240
+ first-served" fashion.
241
+ update_after_each_batch (bool, optional): if ``True``, the weights will
242
+ be updated after each collection. For ``sync=True``, this means that
243
+ all workers will see their weights updated. For ``sync=False``,
244
+ only the worker from which the data has been gathered will be
245
+ updated.
246
+ This is equivalent to `max_weight_update_interval=0`.
247
+ Defaults to ``False``, i.e. updates have to be executed manually
248
+ through
249
+ :meth:`torchrl.collectors.DataCollector.update_policy_weights_`
250
+ max_weight_update_interval (int, optional): the maximum number of
251
+ batches that can be collected before the policy weights of a worker
252
+ is updated.
253
+ For sync collections, this parameter is overwritten by ``update_after_each_batch``.
254
+ For async collections, it may be that one worker has not seen its
255
+ parameters being updated for a certain time even if ``update_after_each_batch``
256
+ is turned on.
257
+ Defaults to -1 (no forced update).
258
+ replay_buffer (RayReplayBuffer, optional): if provided, the collector will not yield tensordicts
259
+ but populate the buffer instead. Defaults to ``None``.
260
+
261
+ .. note:: although it is not enfoced (to allow users to implement their own replay buffer class), a
262
+ :class:`~torchrl.data.RayReplayBuffer` instance should be used here.
263
+ weight_updater (WeightUpdaterBase or constructor, optional): (Deprecated) An instance of :class:`~torchrl.collectors.WeightUpdaterBase`
264
+ or its subclass, responsible for updating the policy weights on remote inference workers managed by Ray.
265
+ If not provided, a :class:`~torchrl.collectors.RayWeightUpdater` will be used by default, leveraging
266
+ Ray's distributed capabilities.
267
+ Consider using a constructor if the updater needs to be serialized.
268
+ weight_sync_schemes (dict[str, WeightSyncScheme], optional): Dictionary of weight sync schemes for
269
+ SENDING weights to remote collector workers. Keys are model identifiers (e.g., "policy")
270
+ and values are WeightSyncScheme instances configured to send weights via Ray.
271
+ This is the recommended way to configure weight synchronization for propagating weights
272
+ from the main process to remote collectors. If not provided,
273
+ defaults to ``{"policy": RayWeightSyncScheme()}``.
274
+
275
+ .. note:: Weight synchronization is lazily initialized. When using ``policy_factory``
276
+ without a central ``policy``, weight sync is deferred until the first call to
277
+ :meth:`~torchrl.collectors.DataCollector.update_policy_weights_` with actual weights.
278
+ This allows sub-collectors to each have their own independent policies created via
279
+ the factory. If you have a central policy and want to sync its weights to remote
280
+ collectors, call ``update_policy_weights_(policy)`` before starting iteration.
281
+
282
+ weight_recv_schemes (dict[str, WeightSyncScheme], optional): Dictionary of weight sync schemes for
283
+ RECEIVING weights from a parent process or training loop. Keys are model identifiers (e.g., "policy")
284
+ and values are WeightSyncScheme instances configured to receive weights.
285
+ This is typically used when RayCollector is itself a worker in a larger distributed setup.
286
+ Defaults to ``None``.
287
+ use_env_creator (bool, optional): if ``True``, the environment constructor functions will be wrapped
288
+ in :class:`~torchrl.envs.EnvCreator`. This is useful for multiprocessed settings where shared memory
289
+ needs to be managed, but Ray has its own object storage mechanism, so this is typically not needed.
290
+ Defaults to ``False``.
291
+
292
+ Examples:
293
+ >>> from torch import nn
294
+ >>> from tensordict.nn import TensorDictModule
295
+ >>> from torchrl.envs.libs.gym import GymEnv
296
+ >>> from torchrl.collectors import Collector
297
+ >>> from torchrl.collectors.distributed import RayCollector
298
+ >>> env_maker = lambda: GymEnv("Pendulum-v1", device="cpu")
299
+ >>> policy = TensorDictModule(nn.Linear(3, 1), in_keys=["observation"], out_keys=["action"])
300
+ >>> distributed_collector = RayCollector(
301
+ ... create_env_fn=[env_maker],
302
+ ... policy=policy,
303
+ ... collector_class=Collector,
304
+ ... max_frames_per_traj=50,
305
+ ... init_random_frames=-1,
306
+ ... reset_at_each_iter=-False,
307
+ ... collector_kwargs={
308
+ ... "device": "cpu",
309
+ ... "storing_device": "cpu",
310
+ ... },
311
+ ... num_collectors=1,
312
+ ... total_frames=10000,
313
+ ... frames_per_batch=200,
314
+ ... )
315
+ >>> for i, data in enumerate(collector):
316
+ ... if i == 2:
317
+ ... print(data)
318
+ ... break
319
+ """
320
+
321
+ def __init__(
322
+ self,
323
+ create_env_fn: Callable | EnvBase | list[Callable] | list[EnvBase],
324
+ policy: Callable[[TensorDictBase], TensorDictBase] | None = None,
325
+ *,
326
+ policy_factory: Callable[[], Callable]
327
+ | list[Callable[[], Callable]]
328
+ | None = None,
329
+ trust_policy: bool | None = None,
330
+ frames_per_batch: int,
331
+ total_frames: int = -1,
332
+ device: torch.device | list[torch.device] | None = None,
333
+ storing_device: torch.device | list[torch.device] | None = None,
334
+ env_device: torch.device | list[torch.device] | None = None,
335
+ policy_device: torch.device | list[torch.device] | None = None,
336
+ max_frames_per_traj=-1,
337
+ init_random_frames=-1,
338
+ reset_at_each_iter=False,
339
+ postproc=None,
340
+ split_trajs=False,
341
+ exploration_type=DEFAULT_EXPLORATION_TYPE,
342
+ collector_class: Callable[[TensorDict], TensorDict] = Collector,
343
+ collector_kwargs: dict[str, Any] | list[dict] | None = None,
344
+ num_workers_per_collector: int = 1,
345
+ sync: bool = False,
346
+ ray_init_config: dict[str, Any] | None = None,
347
+ remote_configs: dict[str, Any] | list[dict[str, Any]] | None = None,
348
+ num_collectors: int | None = None,
349
+ update_after_each_batch: bool = False,
350
+ max_weight_update_interval: int = -1,
351
+ replay_buffer: ReplayBuffer | None = None,
352
+ weight_updater: WeightUpdaterBase
353
+ | Callable[[], WeightUpdaterBase]
354
+ | None = None,
355
+ weight_sync_schemes: dict[str, WeightSyncScheme] | None = None,
356
+ weight_recv_schemes: dict[str, WeightSyncScheme] | None = None,
357
+ use_env_creator: bool = False,
358
+ no_cuda_sync: bool | None = None,
359
+ ):
360
+ self.frames_per_batch = frames_per_batch
361
+ if remote_configs is None:
362
+ remote_configs = DEFAULT_REMOTE_CLASS_CONFIG
363
+
364
+ if ray_init_config is None:
365
+ ray_init_config = DEFAULT_RAY_INIT_CONFIG
366
+
367
+ if collector_kwargs is None:
368
+ collector_kwargs = {}
369
+ if replay_buffer is not None:
370
+ if isinstance(collector_kwargs, dict):
371
+ collector_kwargs.setdefault("replay_buffer", replay_buffer)
372
+ else:
373
+ collector_kwargs = [
374
+ ck.setdefault("replay_buffer", replay_buffer)
375
+ for ck in collector_kwargs
376
+ ]
377
+
378
+ # Make sure input parameters are consistent
379
+ def check_consistency_with_num_collectors(param, param_name, num_collectors):
380
+ """Checks that if param is a list, it has length num_collectors."""
381
+ if isinstance(param, list):
382
+ if len(param) != num_collectors:
383
+ raise ValueError(
384
+ f"Inconsistent RayDistributedCollector parameters, {param_name} is a list of length "
385
+ f"{len(param)} but the specified number of collectors is {num_collectors}."
386
+ )
387
+ else:
388
+ param = [param] * num_collectors
389
+ return param
390
+
391
+ if num_collectors:
392
+ create_env_fn = check_consistency_with_num_collectors(
393
+ create_env_fn, "create_env_fn", num_collectors
394
+ )
395
+ collector_kwargs = check_consistency_with_num_collectors(
396
+ collector_kwargs, "collector_kwargs", num_collectors
397
+ )
398
+ remote_configs = check_consistency_with_num_collectors(
399
+ remote_configs, "remote_config", num_collectors
400
+ )
401
+
402
+ def check_list_length_consistency(*lists):
403
+ """Checks that all input lists have the same length.
404
+
405
+ If any non-list input is given, it is converted to a list
406
+ of the same length as the others by repeating the same
407
+ element multiple times.
408
+ """
409
+ lengths = set()
410
+ new_lists = []
411
+ for lst in lists:
412
+ if isinstance(lst, list):
413
+ lengths.add(len(lst))
414
+ new_lists.append(lst)
415
+ else:
416
+ new_lst = [lst] * max(lengths)
417
+ new_lists.append(new_lst)
418
+ lengths.add(len(new_lst))
419
+ if len(lengths) > 1:
420
+ raise ValueError(
421
+ "Inconsistent RayDistributedCollector parameters. create_env_fn, "
422
+ "collector_kwargs and remote_configs are lists of different length."
423
+ )
424
+ else:
425
+ return new_lists
426
+
427
+ out_lists = check_list_length_consistency(
428
+ create_env_fn, collector_kwargs, remote_configs
429
+ )
430
+ create_env_fn, collector_kwargs, remote_configs = out_lists
431
+ num_collectors = len(create_env_fn)
432
+
433
+ if use_env_creator:
434
+ for i in range(len(create_env_fn)):
435
+ if not isinstance(create_env_fn[i], (EnvBase, EnvCreator)):
436
+ create_env_fn[i] = EnvCreator(create_env_fn[i])
437
+
438
+ # If ray available, try to connect to an existing Ray cluster or start one and connect to it.
439
+ if not _has_ray:
440
+ raise RuntimeError(
441
+ "ray library not found, unable to create a DistributedCollector. "
442
+ ) from RAY_ERR
443
+ if not ray.is_initialized():
444
+ ray.init(**ray_init_config)
445
+ if not ray.is_initialized():
446
+ raise RuntimeError("Ray could not be initialized.")
447
+
448
+ # Define collector_class, monkey patch it with as_remote and print_remote_collector_info methods
449
+ if collector_class == "async":
450
+ collector_class = MultiAsyncCollector
451
+ elif collector_class == "sync":
452
+ collector_class = MultiSyncCollector
453
+ elif collector_class == "single":
454
+ collector_class = Collector
455
+ elif not isinstance(collector_class, type) or not issubclass(
456
+ collector_class, BaseCollector
457
+ ):
458
+ raise TypeError("The collector_class must be an instance of BaseCollector.")
459
+ if not hasattr(collector_class, "as_remote"):
460
+ collector_class.as_remote = as_remote
461
+ if not hasattr(collector_class, "print_remote_collector_info"):
462
+ collector_class.print_remote_collector_info = print_remote_collector_info
463
+
464
+ self.no_cuda_sync = no_cuda_sync
465
+ self.replay_buffer = replay_buffer
466
+ if not isinstance(policy_factory, Sequence):
467
+ policy_factory = [policy_factory] * len(create_env_fn)
468
+ self.policy_factory = policy_factory
469
+ self.policy = policy # Store policy for weight extraction
470
+ self.trust_policy = trust_policy
471
+ if isinstance(policy, nn.Module):
472
+ policy_weights = TensorDict.from_module(policy)
473
+ policy_weights = policy_weights.data.lock_()
474
+ else:
475
+ policy_weights = TensorDict(lock=True)
476
+ if weight_updater is None:
477
+ warnings.warn(_NON_NN_POLICY_WEIGHTS)
478
+ self.policy_weights = policy_weights
479
+ self.collector_class = collector_class
480
+ self.collected_frames = 0
481
+ self.split_trajs = split_trajs
482
+ self.total_frames = total_frames
483
+ self.num_collectors = num_collectors
484
+
485
+ self.update_after_each_batch = update_after_each_batch
486
+ self.max_weight_update_interval = max_weight_update_interval
487
+
488
+ self.collector_kwargs = (
489
+ collector_kwargs if collector_kwargs is not None else [{}]
490
+ )
491
+ self.device = device
492
+ self.storing_device = storing_device
493
+ self.env_device = env_device
494
+ self.policy_device = policy_device
495
+ self._batches_since_weight_update = [0 for _ in range(self.num_collectors)]
496
+ self._sync = sync
497
+ self._collection_thread = None
498
+ self._stop_event = threading.Event()
499
+
500
+ if self._sync:
501
+ if frames_per_batch % self.num_collectors != 0:
502
+ raise RuntimeError(
503
+ f"Cannot dispatch {frames_per_batch} frames across {self.num_collectors}. "
504
+ f"Consider using a number of frames per batch that is divisible by the number of workers."
505
+ )
506
+ self._frames_per_batch_corrected = frames_per_batch // self.num_collectors
507
+ else:
508
+ self._frames_per_batch_corrected = frames_per_batch
509
+
510
+ # update collector kwargs
511
+ for i, collector_kwarg in enumerate(self.collector_kwargs):
512
+ # Don't pass policy_factory if we have a policy - remote collectors need the policy object
513
+ # to be able to apply weight updates
514
+ if policy is None:
515
+ collector_kwarg["policy_factory"] = policy_factory[i]
516
+ collector_kwarg["max_frames_per_traj"] = max_frames_per_traj
517
+ collector_kwarg["init_random_frames"] = (
518
+ init_random_frames // self.num_collectors
519
+ )
520
+ if not self._sync and init_random_frames > 0:
521
+ warnings.warn(
522
+ "async distributed data collection with init_random_frames > 0 "
523
+ "may have unforeseen consequences as we do not control that once "
524
+ "non-random data is being collected all nodes are returning non-random data. "
525
+ "If this is a feature that you feel should be fixed, please raise an issue on "
526
+ "torchrl's repo."
527
+ )
528
+ collector_kwarg["reset_at_each_iter"] = reset_at_each_iter
529
+ collector_kwarg["exploration_type"] = exploration_type
530
+ collector_kwarg["split_trajs"] = False
531
+ collector_kwarg["frames_per_batch"] = self._frames_per_batch_corrected
532
+ collector_kwarg["device"] = self.device[i]
533
+ collector_kwarg["storing_device"] = self.storing_device[i]
534
+ collector_kwarg["env_device"] = self.env_device[i]
535
+ collector_kwarg["policy_device"] = self.policy_device[i]
536
+ if "trust_policy" not in collector_kwarg:
537
+ collector_kwarg["trust_policy"] = self.trust_policy
538
+ if "no_cuda_sync" not in collector_kwarg and self.no_cuda_sync is not None:
539
+ collector_kwarg["no_cuda_sync"] = no_cuda_sync
540
+
541
+ self.postproc = postproc
542
+
543
+ # Create remote instances of the collector class
544
+ self._remote_collectors = []
545
+ if self.num_collectors > 0:
546
+ self.add_collectors(
547
+ create_env_fn,
548
+ num_workers_per_collector,
549
+ policy,
550
+ collector_kwargs,
551
+ remote_configs,
552
+ )
553
+ # Set up weight synchronization - prefer new schemes over legacy updater
554
+ if weight_updater is None and weight_sync_schemes is None:
555
+ # Default to Ray weight sync scheme for Ray collectors
556
+ from torchrl.weight_update import RayWeightSyncScheme
557
+
558
+ weight_sync_schemes = {"policy": RayWeightSyncScheme()}
559
+
560
+ if weight_sync_schemes is not None:
561
+ torchrl_logger.debug("RayCollector: Using weight sync schemes")
562
+ # Use new weight synchronization system
563
+ self._weight_sync_schemes = weight_sync_schemes
564
+
565
+ # Initialize schemes on the sender (main process) side
566
+ # Pass remote collectors as the "workers" for Ray schemes
567
+ for model_id, scheme in self._weight_sync_schemes.items():
568
+ torchrl_logger.debug(
569
+ f"RayCollector: Initializing sender for model '{model_id}'"
570
+ )
571
+ scheme.init_on_sender(
572
+ model_id=model_id,
573
+ remote_collectors=self.remote_collectors,
574
+ model=self.policy if model_id == "policy" else None,
575
+ context=self,
576
+ )
577
+
578
+ # Set up receiver schemes on remote collectors
579
+ # This enables the remote collectors to receive weight updates
580
+ for remote_collector in self.remote_collectors:
581
+ torchrl_logger.debug(
582
+ f"RayCollector: Registering scheme receiver for remote collector {remote_collector}"
583
+ )
584
+ fut = remote_collector.register_scheme_receiver.remote(
585
+ self._weight_sync_schemes, synchronize_weights=False
586
+ )
587
+ ray.get(fut)
588
+
589
+ self.weight_updater = None # Don't use legacy system
590
+ else:
591
+ torchrl_logger.debug("RayCollector: Using legacy weight updater system")
592
+ # Fall back to legacy weight updater system
593
+ if weight_updater is None:
594
+ weight_updater = RayWeightUpdater(
595
+ policy_weights=policy_weights,
596
+ remote_collectors=self.remote_collectors,
597
+ max_interval=self.max_weight_update_interval,
598
+ )
599
+ self.weight_updater = weight_updater
600
+ self._weight_sync_schemes = None
601
+
602
+ # Always initialize this flag - legacy system doesn't need lazy init
603
+ # but we set it for consistency
604
+ self._weight_sync_initialized = False
605
+
606
+ # Set up weight receivers if provided
607
+ if weight_recv_schemes is not None:
608
+ torchrl_logger.debug("RayCollector: Setting up weight receivers...")
609
+ self.register_scheme_receiver(weight_recv_schemes)
610
+
611
+ if not self._weight_sync_initialized:
612
+ self._lazy_initialize_weight_sync()
613
+
614
+ # Print info of all remote workers (fire and forget - no need to wait)
615
+ for e in self.remote_collectors:
616
+ e.print_remote_collector_info.remote()
617
+
618
+ def _lazy_initialize_weight_sync(self) -> None:
619
+ """Initialize weight synchronization lazily on first update_policy_weights_() call.
620
+
621
+ This method performs the initial weight synchronization that was deferred from __init__.
622
+ It must be called before collection begins if weights need to be synced from a central policy.
623
+
624
+ The synchronization is done here (not in __init__) because:
625
+ 1. When using policy_factory, there may be no central policy to sync from
626
+ 2. Users may want to train the policy first before syncing weights
627
+ 3. Different sub-collectors may have different policies via policy_factory
628
+ """
629
+ if self._weight_sync_initialized:
630
+ return
631
+
632
+ if self._weight_sync_schemes is None:
633
+ # Legacy weight updater system doesn't use lazy init
634
+ self._weight_sync_initialized = True
635
+ return
636
+
637
+ torchrl_logger.debug("RayCollector: Performing lazy weight synchronization")
638
+
639
+ # Cascade synchronize_weights to remote collectors
640
+ torchrl_logger.debug(
641
+ "RayCollector: Cascading synchronize_weights to remote collectors"
642
+ )
643
+ self._sync_futures = []
644
+ for remote_collector in self.remote_collectors:
645
+ for model_id in self._weight_sync_schemes:
646
+ self._sync_futures.append(
647
+ remote_collector.cascade_execute.remote(
648
+ f"_receiver_schemes['{model_id}'].connect"
649
+ )
650
+ )
651
+
652
+ # Synchronize weights for each scheme
653
+ for model_id, scheme in self._weight_sync_schemes.items():
654
+ torchrl_logger.debug(
655
+ f"RayCollector: Synchronizing weights for model '{model_id}'"
656
+ )
657
+ scheme.connect()
658
+
659
+ # Block sync
660
+ torchrl_logger.debug(
661
+ "RayCollector: Waiting for weight synchronization to finish"
662
+ )
663
+ ray.get(self._sync_futures)
664
+ self._weight_sync_initialized = True
665
+ torchrl_logger.debug("RayCollector: Weight synchronization complete")
666
+
667
+ def _weight_update_impl(
668
+ self,
669
+ policy_or_weights: TensorDictBase | nn.Module | dict | None = None,
670
+ *,
671
+ worker_ids: int | list[int] | torch.device | list[torch.device] | None = None,
672
+ model_id: str | None = None,
673
+ weights_dict: dict[str, Any] | None = None,
674
+ **kwargs,
675
+ ) -> None:
676
+ """Override to trigger lazy weight sync initialization on first call.
677
+
678
+ When using policy_factory without a central policy, weight synchronization
679
+ is deferred until this method is called with actual weights.
680
+ """
681
+ # Trigger lazy initialization if not already done
682
+ if not self._weight_sync_initialized:
683
+ self._lazy_initialize_weight_sync()
684
+
685
+ # Call parent implementation
686
+ return super()._weight_update_impl(
687
+ policy_or_weights=policy_or_weights,
688
+ worker_ids=worker_ids,
689
+ model_id=model_id,
690
+ weights_dict=weights_dict,
691
+ **kwargs,
692
+ )
693
+
694
+ # def _send_weights_scheme(self, *, scheme, processed_weights, worker_ids, model_id):
695
+ # if not worker_ids:
696
+ # worker_ids = list(range(self.num_collectors))
697
+ # futures = []
698
+ # for worker_id in worker_ids:
699
+ # torchrl_logger.debug(f"RayCollector: Sending weights to remote worker {worker_id}")
700
+ # # Call irecv
701
+ # fut = self.remote_collectors[worker_id].cascade_execute.remote(f"_receiver_schemes['{model_id}'].receive")
702
+ # futures.append(fut)
703
+ # torchrl_logger.debug(f"RayCollector: calling isend")
704
+ # scheme.send(weights=processed_weights, worker_ids=worker_ids)
705
+ # torchrl_logger.debug(f"RayCollector: Waiting for {len(futures)} irecv calls to finish")
706
+ # ray.get(futures)
707
+
708
+ def _extract_weights_if_needed(self, weights: Any, model_id: str) -> Any:
709
+ """Extract weights from a model if needed.
710
+
711
+ For Ray collectors, when weights is None and we have a weight sync scheme,
712
+ extract fresh weights from the tracked policy model.
713
+ """
714
+ scheme = (
715
+ self._weight_sync_schemes.get(model_id)
716
+ if self._weight_sync_schemes
717
+ else None
718
+ )
719
+
720
+ if weights is None and scheme is not None:
721
+ # Extract fresh weights from the scheme's model
722
+ model = scheme.model
723
+ if model is not None:
724
+ from torchrl.weight_update.weight_sync_schemes import WeightStrategy
725
+
726
+ strategy = WeightStrategy(extract_as=scheme.strategy_str)
727
+ return strategy.extract_weights(model)
728
+
729
+ # Fall back to base class behavior
730
+ return super()._extract_weights_if_needed(weights, model_id)
731
+
732
+ @property
733
+ def num_workers(self):
734
+ return self.num_collectors
735
+
736
+ @property
737
+ def device(self) -> list[torch.device]:
738
+ return self._device
739
+
740
+ @property
741
+ def storing_device(self) -> list[torch.device]:
742
+ return self._storing_device
743
+
744
+ @property
745
+ def env_device(self) -> list[torch.device]:
746
+ return self._env_device
747
+
748
+ @property
749
+ def policy_device(self) -> list[torch.device]:
750
+ return self._policy_device
751
+
752
+ @device.setter
753
+ def device(self, value):
754
+ if isinstance(value, (tuple, list)):
755
+ self._device = value
756
+ else:
757
+ self._device = [value] * self.num_collectors
758
+
759
+ @storing_device.setter
760
+ def storing_device(self, value):
761
+ if isinstance(value, (tuple, list)):
762
+ self._storing_device = value
763
+ else:
764
+ self._storing_device = [value] * self.num_collectors
765
+
766
+ @env_device.setter
767
+ def env_device(self, value):
768
+ if isinstance(value, (tuple, list)):
769
+ self._env_device = value
770
+ else:
771
+ self._env_device = [value] * self.num_collectors
772
+
773
+ @policy_device.setter
774
+ def policy_device(self, value):
775
+ if isinstance(value, (tuple, list)):
776
+ self._policy_device = value
777
+ else:
778
+ self._policy_device = [value] * self.num_collectors
779
+
780
+ @staticmethod
781
+ def _make_collector(cls, *, env_maker, policy, other_params):
782
+ """Create a single collector instance."""
783
+ if policy is not None:
784
+ other_params["policy"] = policy
785
+ collector = cls(
786
+ env_maker,
787
+ total_frames=-1,
788
+ **other_params,
789
+ )
790
+ return collector
791
+
792
+ def add_collectors(
793
+ self,
794
+ create_env_fn,
795
+ num_envs,
796
+ policy,
797
+ collector_kwargs,
798
+ remote_configs,
799
+ ):
800
+ """Creates and adds a number of remote collectors to the set."""
801
+ for i, (env_maker, other_params, remote_config) in enumerate(
802
+ zip(create_env_fn, collector_kwargs, remote_configs)
803
+ ):
804
+ # Add worker_idx to params so remote collectors know their index
805
+ other_params = dict(other_params) # Make a copy to avoid mutating original
806
+ other_params["worker_idx"] = i
807
+
808
+ cls = self.collector_class.as_remote(remote_config).remote
809
+ collector = self._make_collector(
810
+ cls,
811
+ env_maker=[env_maker] * num_envs
812
+ if num_envs > 1
813
+ or (
814
+ isinstance(self.collector_class, type)
815
+ and not issubclass(self.collector_class, Collector)
816
+ )
817
+ else env_maker,
818
+ policy=policy,
819
+ other_params=other_params,
820
+ )
821
+ self._remote_collectors.append(collector)
822
+
823
+ def local_policy(self):
824
+ """Returns local collector."""
825
+ return self._local_policy
826
+
827
+ @property
828
+ def remote_collectors(self):
829
+ """Returns list of remote collectors."""
830
+ return self._remote_collectors
831
+
832
+ def stop_remote_collectors(self):
833
+ """Stops all remote collectors."""
834
+ for _ in range(len(self._remote_collectors)):
835
+ collector = self.remote_collectors.pop()
836
+ # collector.__ray_terminate__.remote() # This will kill the actor but let pending tasks finish
837
+ ray.kill(
838
+ collector
839
+ ) # This will interrupt any running tasks on the actor, causing them to fail immediately
840
+
841
+ def iterator(self):
842
+ # Warn if weight sync wasn't initialized before collection starts
843
+ if not self._weight_sync_initialized and self._weight_sync_schemes is not None:
844
+ warnings.warn(
845
+ "RayCollector iteration started before weight synchronization was initialized. "
846
+ "Call update_policy_weights_(policy_or_weights) before iterating to sync weights "
847
+ "from a central policy to remote collectors. If using policy_factory with "
848
+ "independent policies on each collector, you can ignore this warning.",
849
+ UserWarning,
850
+ stacklevel=2,
851
+ )
852
+
853
+ def proc(data):
854
+ # When using RayReplayBuffer, sub-collectors write directly to buffer
855
+ # and return None, so skip processing
856
+ if data is None:
857
+ return None
858
+ if self.split_trajs:
859
+ data = split_trajectories(data)
860
+ if self.postproc is not None:
861
+ data = self.postproc(data)
862
+ return data
863
+
864
+ if self._sync:
865
+ meth = self._sync_iterator
866
+ else:
867
+ meth = self._async_iterator
868
+ yield from (proc(data) for data in meth())
869
+
870
+ async def _asyncio_iterator(self):
871
+ def proc(data):
872
+ # When using RayReplayBuffer, sub-collectors write directly to buffer
873
+ # and return None, so skip processing
874
+ if data is None:
875
+ return None
876
+ if self.split_trajs:
877
+ data = split_trajectories(data)
878
+ if self.postproc is not None:
879
+ data = self.postproc(data)
880
+ return data
881
+
882
+ if self._sync:
883
+ for d in self._sync_iterator():
884
+ yield proc(d)
885
+ else:
886
+ for d in self._async_iterator():
887
+ yield proc(d)
888
+
889
+ def _sync_iterator(self) -> Iterator[TensorDictBase]:
890
+ """Collects one data batch per remote collector in each iteration."""
891
+ while (
892
+ self.collected_frames < self.total_frames and not self._stop_event.is_set()
893
+ ):
894
+ if self.update_after_each_batch or self.max_weight_update_interval > -1:
895
+ torchrl_logger.debug("Updating weights on all workers")
896
+ self.update_policy_weights_()
897
+
898
+ # Ask for batches to all remote workers.
899
+ pending_tasks = [e.next.remote() for e in self.remote_collectors]
900
+
901
+ # Wait for all rollouts
902
+ samples_ready = []
903
+ while len(samples_ready) < self.num_collectors:
904
+ samples_ready, samples_not_ready = ray.wait(
905
+ pending_tasks, num_returns=len(pending_tasks)
906
+ )
907
+
908
+ # Retrieve and concatenate Tensordicts
909
+ out_td = []
910
+ for r in pending_tasks:
911
+ rollouts = ray.get(r)
912
+ ray.internal.free(
913
+ r
914
+ ) # should not be necessary, deleted automatically when ref count is down to 0
915
+ out_td.append(rollouts)
916
+
917
+ # Handle case where replay_buffer is used and rollouts are None
918
+ if out_td[0] is None:
919
+ # Sub-collectors are writing directly to RayReplayBuffer
920
+ # Track frames and yield None to signal completion
921
+ self.collected_frames += self.frames_per_batch
922
+ yield None
923
+ else:
924
+ # Normal case: concatenate and yield rollouts
925
+ if len(rollouts.batch_size):
926
+ out_td = torch.stack(out_td)
927
+ else:
928
+ out_td = torch.cat(out_td)
929
+
930
+ self.collected_frames += out_td.numel()
931
+ yield out_td
932
+
933
+ # Only auto-shutdown if not running in a background thread.
934
+ # When using replay buffer, users should explicitly manage shutdown order.
935
+ if self._collection_thread is None:
936
+ self.shutdown(shutdown_ray=False)
937
+
938
+ def _run_collection_loop(self):
939
+ """Runs the collection loop in a background thread."""
940
+ try:
941
+ for _ in self.iterator():
942
+ if self._stop_event.is_set():
943
+ break
944
+ # When RayReplayBuffer is configured, sub-collectors write directly
945
+ # to the buffer and data will be None. Otherwise, data contains rollouts.
946
+ except Exception as e:
947
+ torchrl_logger.error(f"Error in collection thread: {e}")
948
+ raise
949
+
950
+ def start(self):
951
+ """Starts the RayCollector in a background thread."""
952
+ if self.replay_buffer is None:
953
+ raise RuntimeError(
954
+ "Replay buffer must be defined for background execution."
955
+ )
956
+ if self._collection_thread is None or not self._collection_thread.is_alive():
957
+ self._stop_event.clear()
958
+ self._collection_thread = threading.Thread(
959
+ target=self._run_collection_loop, daemon=True
960
+ )
961
+ self._collection_thread.start()
962
+
963
+ async def async_shutdown(self, shutdown_ray: bool = False):
964
+ """Finishes processes started by the collector during async execution.
965
+
966
+ Args:
967
+ shutdown_ray (bool): If True, also shutdown the Ray cluster. Defaults to False.
968
+ Note: Setting this to True will kill all Ray actors in the cluster, including
969
+ any replay buffers or other services. Only set to True if you're sure you want
970
+ to shut down the entire Ray cluster.
971
+
972
+ """
973
+ self._stop_event.set()
974
+ if self._collection_thread is not None and self._collection_thread.is_alive():
975
+ self._collection_thread.join(timeout=5.0)
976
+ self.stop_remote_collectors()
977
+ if shutdown_ray:
978
+ ray.shutdown()
979
+
980
+ def _async_iterator(self) -> Iterator[TensorDictBase]:
981
+ """Collects a data batch from a single remote collector in each iteration."""
982
+ pending_tasks = {}
983
+ for index, collector in enumerate(self.remote_collectors):
984
+ future = collector.next.remote()
985
+ pending_tasks[future] = index
986
+
987
+ while (
988
+ self.collected_frames < self.total_frames and not self._stop_event.is_set()
989
+ ):
990
+ if not len(list(pending_tasks.keys())) == len(self.remote_collectors):
991
+ raise RuntimeError("Missing pending tasks, something went wrong")
992
+
993
+ # Wait for first worker to finish
994
+ wait_results = ray.wait(list(pending_tasks.keys()))
995
+ future = wait_results[0][0]
996
+ collector_index = pending_tasks.pop(future)
997
+ collector = self.remote_collectors[collector_index]
998
+
999
+ # Retrieve single rollouts
1000
+ out_td = ray.get(future)
1001
+ ray.internal.free(
1002
+ [future]
1003
+ ) # should not be necessary, deleted automatically when ref count is down to 0
1004
+
1005
+ # Track collected frames - use frames_per_batch since out_td might be None
1006
+ # when using RayReplayBuffer (sub-collectors write directly to buffer)
1007
+ self.collected_frames += self.frames_per_batch
1008
+
1009
+ yield out_td
1010
+
1011
+ if self.update_after_each_batch or self.max_weight_update_interval > -1:
1012
+ torchrl_logger.debug(f"Updating weights on worker {collector_index}")
1013
+ self.update_policy_weights_(worker_ids=collector_index + 1)
1014
+
1015
+ # Schedule a new collection task
1016
+ future = collector.next.remote()
1017
+ pending_tasks[future] = collector_index
1018
+
1019
+ # Wait for the in-process collections tasks to finish.
1020
+ refs = list(pending_tasks.keys())
1021
+ ray.wait(refs, num_returns=len(refs))
1022
+
1023
+ # Cancel the in-process collections tasks
1024
+ # for ref in refs:
1025
+ # ray.cancel(
1026
+ # object_ref=ref,
1027
+ # force=False,
1028
+ # )
1029
+ if self._collection_thread is None:
1030
+ self.shutdown()
1031
+
1032
+ def set_seed(self, seed: int, static_seed: bool = False) -> list[int]:
1033
+ """Calls parent method for each remote collector iteratively and returns final seed."""
1034
+ for collector in self.remote_collectors:
1035
+ seed = ray.get(object_refs=collector.set_seed.remote(seed, static_seed))
1036
+ return seed
1037
+
1038
+ def state_dict(self) -> list[OrderedDict]:
1039
+ """Calls parent method for each remote collector and returns a list of results."""
1040
+ futures = [
1041
+ collector.state_dict.remote() for collector in self.remote_collectors
1042
+ ]
1043
+ results = ray.get(object_refs=futures)
1044
+ return results
1045
+
1046
+ def load_state_dict(self, state_dict: OrderedDict | list[OrderedDict]) -> None:
1047
+ """Calls parent method for each remote collector."""
1048
+ if isinstance(state_dict, OrderedDict):
1049
+ state_dicts = [state_dict]
1050
+ if len(state_dict) == 1:
1051
+ state_dicts = state_dict * len(self.remote_collectors)
1052
+ for collector, state_dict in zip(self.remote_collectors, state_dicts):
1053
+ collector.load_state_dict.remote(state_dict)
1054
+
1055
+ def shutdown(
1056
+ self, timeout: float | None = None, shutdown_ray: bool = False
1057
+ ) -> None:
1058
+ """Finishes processes started by the collector.
1059
+
1060
+ Args:
1061
+ timeout (float, optional): Timeout for stopping the collection thread.
1062
+ shutdown_ray (bool): If True, also shutdown the Ray cluster. Defaults to False.
1063
+ Note: Setting this to True will kill all Ray actors in the cluster, including
1064
+ any replay buffers or other services. Only set to True if you're sure you want
1065
+ to shut down the entire Ray cluster.
1066
+
1067
+ """
1068
+ self._stop_event.set()
1069
+ if self._collection_thread is not None and self._collection_thread.is_alive():
1070
+ self._collection_thread.join(
1071
+ timeout=timeout if timeout is not None else 5.0
1072
+ )
1073
+ self.stop_remote_collectors()
1074
+
1075
+ # Clean up weight sync schemes AFTER workers have exited
1076
+ if getattr(self, "_weight_sync_schemes", None) is not None:
1077
+ torchrl_logger.debug("shutting down weight sync schemes")
1078
+ for scheme in self._weight_sync_schemes.values():
1079
+ try:
1080
+ scheme.shutdown()
1081
+ except Exception as e:
1082
+ torchrl_logger.warning(
1083
+ f"Error shutting down weight sync scheme: {e}"
1084
+ )
1085
+ self._weight_sync_schemes = None
1086
+
1087
+ if shutdown_ray:
1088
+ ray.shutdown()
1089
+
1090
+ def __repr__(self) -> str:
1091
+ string = f"{self.__class__.__name__}()"
1092
+ return string