torch-rechub 0.0.1__py3-none-any.whl → 0.0.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (65) hide show
  1. torch_rechub/__init__.py +14 -0
  2. torch_rechub/basic/activation.py +3 -1
  3. torch_rechub/basic/callback.py +2 -2
  4. torch_rechub/basic/features.py +38 -8
  5. torch_rechub/basic/initializers.py +92 -0
  6. torch_rechub/basic/layers.py +800 -46
  7. torch_rechub/basic/loss_func.py +223 -0
  8. torch_rechub/basic/metaoptimizer.py +76 -0
  9. torch_rechub/basic/metric.py +251 -0
  10. torch_rechub/models/generative/__init__.py +6 -0
  11. torch_rechub/models/generative/hllm.py +249 -0
  12. torch_rechub/models/generative/hstu.py +189 -0
  13. torch_rechub/models/matching/__init__.py +13 -0
  14. torch_rechub/models/matching/comirec.py +193 -0
  15. torch_rechub/models/matching/dssm.py +72 -0
  16. torch_rechub/models/matching/dssm_facebook.py +77 -0
  17. torch_rechub/models/matching/dssm_senet.py +87 -0
  18. torch_rechub/models/matching/gru4rec.py +85 -0
  19. torch_rechub/models/matching/mind.py +103 -0
  20. torch_rechub/models/matching/narm.py +82 -0
  21. torch_rechub/models/matching/sasrec.py +143 -0
  22. torch_rechub/models/matching/sine.py +148 -0
  23. torch_rechub/models/matching/stamp.py +81 -0
  24. torch_rechub/models/matching/youtube_dnn.py +75 -0
  25. torch_rechub/models/matching/youtube_sbc.py +98 -0
  26. torch_rechub/models/multi_task/__init__.py +5 -2
  27. torch_rechub/models/multi_task/aitm.py +83 -0
  28. torch_rechub/models/multi_task/esmm.py +19 -8
  29. torch_rechub/models/multi_task/mmoe.py +18 -12
  30. torch_rechub/models/multi_task/ple.py +41 -29
  31. torch_rechub/models/multi_task/shared_bottom.py +3 -2
  32. torch_rechub/models/ranking/__init__.py +13 -2
  33. torch_rechub/models/ranking/afm.py +65 -0
  34. torch_rechub/models/ranking/autoint.py +102 -0
  35. torch_rechub/models/ranking/bst.py +61 -0
  36. torch_rechub/models/ranking/dcn.py +38 -0
  37. torch_rechub/models/ranking/dcn_v2.py +59 -0
  38. torch_rechub/models/ranking/deepffm.py +131 -0
  39. torch_rechub/models/ranking/deepfm.py +8 -7
  40. torch_rechub/models/ranking/dien.py +191 -0
  41. torch_rechub/models/ranking/din.py +31 -19
  42. torch_rechub/models/ranking/edcn.py +101 -0
  43. torch_rechub/models/ranking/fibinet.py +42 -0
  44. torch_rechub/models/ranking/widedeep.py +6 -6
  45. torch_rechub/trainers/__init__.py +4 -2
  46. torch_rechub/trainers/ctr_trainer.py +191 -0
  47. torch_rechub/trainers/match_trainer.py +239 -0
  48. torch_rechub/trainers/matching.md +3 -0
  49. torch_rechub/trainers/mtl_trainer.py +137 -23
  50. torch_rechub/trainers/seq_trainer.py +293 -0
  51. torch_rechub/utils/__init__.py +0 -0
  52. torch_rechub/utils/data.py +492 -0
  53. torch_rechub/utils/hstu_utils.py +198 -0
  54. torch_rechub/utils/match.py +457 -0
  55. torch_rechub/utils/mtl.py +136 -0
  56. torch_rechub/utils/onnx_export.py +353 -0
  57. torch_rechub-0.0.4.dist-info/METADATA +391 -0
  58. torch_rechub-0.0.4.dist-info/RECORD +62 -0
  59. {torch_rechub-0.0.1.dist-info → torch_rechub-0.0.4.dist-info}/WHEEL +1 -2
  60. {torch_rechub-0.0.1.dist-info → torch_rechub-0.0.4.dist-info/licenses}/LICENSE +1 -1
  61. torch_rechub/basic/utils.py +0 -168
  62. torch_rechub/trainers/trainer.py +0 -111
  63. torch_rechub-0.0.1.dist-info/METADATA +0 -105
  64. torch_rechub-0.0.1.dist-info/RECORD +0 -26
  65. torch_rechub-0.0.1.dist-info/top_level.txt +0 -1
@@ -0,0 +1,72 @@
1
+ """
2
+ Date: create on 12/05/2022, update on 20/05/2022
3
+ References:
4
+ paper: (CIKM'2013) Learning Deep Structured Semantic Models for Web Search using Clickthrough Data
5
+ url: https://posenhuang.github.io/papers/cikm2013_DSSM_fullversion.pdf
6
+ code: https://github.com/bbruceyuan/DeepMatch-Torch/blob/main/deepmatch_torch/models/dssm.py
7
+ Authors: Mincai Lai, laimincai@shanghaitech.edu.cn
8
+ """
9
+
10
+ import torch
11
+ import torch.nn.functional as F
12
+
13
+ from ...basic.layers import MLP, EmbeddingLayer
14
+
15
+
16
+ class DSSM(torch.nn.Module):
17
+ """Deep Structured Semantic Model
18
+
19
+ Args:
20
+ user_features (list[Feature Class]): training by the user tower module.
21
+ item_features (list[Feature Class]): training by the item tower module.
22
+ temperature (float): temperature factor for similarity score, default to 1.0.
23
+ user_params (dict): the params of the User Tower module, keys include:`{"dims":list, "activation":str, "dropout":float, "output_layer":bool`}.
24
+ item_params (dict): the params of the Item Tower module, keys include:`{"dims":list, "activation":str, "dropout":float, "output_layer":bool`}.
25
+ """
26
+
27
+ def __init__(self, user_features, item_features, user_params, item_params, temperature=1.0):
28
+ super().__init__()
29
+ self.user_features = user_features
30
+ self.item_features = item_features
31
+ self.temperature = temperature
32
+ self.user_dims = sum([fea.embed_dim for fea in user_features])
33
+ self.item_dims = sum([fea.embed_dim for fea in item_features])
34
+
35
+ self.embedding = EmbeddingLayer(user_features + item_features)
36
+ self.user_mlp = MLP(self.user_dims, output_layer=False, **user_params)
37
+ self.item_mlp = MLP(self.item_dims, output_layer=False, **item_params)
38
+ self.mode = None
39
+
40
+ def forward(self, x):
41
+ user_embedding = self.user_tower(x)
42
+ item_embedding = self.item_tower(x)
43
+ if self.mode == "user":
44
+ return user_embedding
45
+ if self.mode == "item":
46
+ return item_embedding
47
+
48
+
49
+ # calculate cosine score
50
+ y = torch.mul(user_embedding, item_embedding).sum(dim=1)
51
+ # y = y / self.temperature
52
+ return torch.sigmoid(y)
53
+
54
+ def user_tower(self, x):
55
+ if self.mode == "item":
56
+ return None
57
+ # [batch_size, num_features*deep_dims]
58
+ input_user = self.embedding(x, self.user_features, squeeze_dim=True)
59
+ # [batch_size, user_params["dims"][-1]]
60
+ user_embedding = self.user_mlp(input_user)
61
+ user_embedding = F.normalize(user_embedding, p=2, dim=1) # L2 normalize
62
+ return user_embedding
63
+
64
+ def item_tower(self, x):
65
+ if self.mode == "user":
66
+ return None
67
+ # [batch_size, num_features*embed_dim]
68
+ input_item = self.embedding(x, self.item_features, squeeze_dim=True)
69
+ # [batch_size, item_params["dims"][-1]]
70
+ item_embedding = self.item_mlp(input_item)
71
+ item_embedding = F.normalize(item_embedding, p=2, dim=1)
72
+ return item_embedding
@@ -0,0 +1,77 @@
1
+ """
2
+ Date: create on 24/05/2022
3
+ References:
4
+ paper: (KDD'2020) Embedding-based Retrieval in Facebook Search
5
+ url: https://arxiv.org/abs/2006.11632
6
+ Authors: Mincai Lai, laimincai@shanghaitech.edu.cn
7
+ """
8
+
9
+ import torch
10
+ import torch.nn.functional as F
11
+
12
+ from ...basic.layers import MLP, EmbeddingLayer
13
+
14
+
15
+ class FaceBookDSSM(torch.nn.Module):
16
+ """Embedding-based Retrieval in Facebook Search
17
+ It's a DSSM match model trained by hinge loss on pair-wise samples.
18
+
19
+ Args:
20
+ user_features (list[Feature Class]): training by the user tower module.
21
+ pos_item_features (list[Feature Class]): negative sample features, training by the item tower module.
22
+ neg_item_features (list[Feature Class]): positive sample features, training by the item tower module.
23
+ temperature (float): temperature factor for similarity score, default to 1.0.
24
+ user_params (dict): the params of the User Tower module, keys include:`{"dims":list, "activation":str, "dropout":float, "output_layer":bool`}.
25
+ item_params (dict): the params of the Item Tower module, keys include:`{"dims":list, "activation":str, "dropout":float, "output_layer":bool`}.
26
+ """
27
+
28
+ def __init__(self, user_features, pos_item_features, neg_item_features, user_params, item_params, temperature=1.0):
29
+ super().__init__()
30
+ self.user_features = user_features
31
+ self.pos_item_features = pos_item_features
32
+ self.neg_item_features = neg_item_features
33
+ self.temperature = temperature
34
+ self.user_dims = sum([fea.embed_dim for fea in user_features])
35
+ self.item_dims = sum([fea.embed_dim for fea in pos_item_features])
36
+
37
+ self.embedding = EmbeddingLayer(user_features + pos_item_features + neg_item_features)
38
+ self.user_mlp = MLP(self.user_dims, output_layer=False, **user_params)
39
+ self.item_mlp = MLP(self.item_dims, output_layer=False, **item_params)
40
+ self.mode = None
41
+
42
+ def forward(self, x):
43
+ user_embedding = self.user_tower(x)
44
+ pos_item_embedding, neg_item_embedding = self.item_tower(x)
45
+ if self.mode == "user":
46
+ return user_embedding
47
+ if self.mode == "item":
48
+ return pos_item_embedding
49
+
50
+
51
+ # calculate cosine score
52
+ pos_score = torch.mul(user_embedding, pos_item_embedding).sum(dim=1)
53
+ neg_score = torch.mul(user_embedding, neg_item_embedding).sum(dim=1)
54
+
55
+ return pos_score, neg_score
56
+
57
+ def user_tower(self, x):
58
+ if self.mode == "item":
59
+ return None
60
+ # [batch_size, num_features*deep_dims]
61
+ input_user = self.embedding(x, self.user_features, squeeze_dim=True)
62
+ # [batch_size, user_params["dims"][-1]]
63
+ user_embedding = self.user_mlp(input_user)
64
+ user_embedding = F.normalize(user_embedding, p=2, dim=1)
65
+ return user_embedding
66
+
67
+ def item_tower(self, x):
68
+ if self.mode == "user":
69
+ return None, None
70
+ input_item_pos = self.embedding(x, self.pos_item_features, squeeze_dim=True)
71
+ if self.mode == "item": # inference embedding mode, the zeros is just for placefolder
72
+ return self.item_mlp(input_item_pos), None
73
+ input_item_neg = self.embedding(x, self.neg_item_features, squeeze_dim=True)
74
+ pos_embedding, neg_embedding = self.item_mlp(input_item_pos), self.item_mlp(input_item_neg)
75
+ pos_embedding = F.normalize(pos_embedding, p=2, dim=1)
76
+ neg_embedding = F.normalize(neg_embedding, p=2, dim=1)
77
+ return pos_embedding, neg_embedding
@@ -0,0 +1,87 @@
1
+ """
2
+ Date: create on 12/19/2024
3
+ References:
4
+ url: https://zhuanlan.zhihu.com/p/358779957
5
+ Authors: @1985312383
6
+ """
7
+
8
+ import torch
9
+ import torch.nn.functional as F
10
+
11
+ from ...basic.features import SequenceFeature, SparseFeature
12
+ from ...basic.layers import MLP, EmbeddingLayer, SENETLayer
13
+
14
+
15
+ class DSSM(torch.nn.Module):
16
+ """Deep Structured Semantic Model
17
+
18
+ Args:
19
+ user_features (list[Feature Class]): training by the user tower module.
20
+ item_features (list[Feature Class]): training by the item tower module.
21
+ temperature (float): temperature factor for similarity score, default to 1.0.
22
+ user_params (dict): the params of the User Tower module, keys include:`{"dims":list, "activation":str, "dropout":float, "output_layer":bool`}.
23
+ item_params (dict): the params of the Item Tower module, keys include:`{"dims":list, "activation":str, "dropout":float, "output_layer":bool`}.
24
+ """
25
+
26
+ def __init__(self, user_features, item_features, user_params, item_params, temperature=1.0):
27
+ super().__init__()
28
+ self.user_features = user_features
29
+ self.item_features = item_features
30
+ self.temperature = temperature
31
+ self.user_dims = sum([fea.embed_dim for fea in user_features])
32
+ self.item_dims = sum([fea.embed_dim for fea in item_features])
33
+
34
+ self.embedding = EmbeddingLayer(user_features + item_features)
35
+ self.user_mlp = MLP(self.user_dims, output_layer=False, **user_params)
36
+ self.item_mlp = MLP(self.item_dims, output_layer=False, **item_params)
37
+ self.user_num_features = len([fea.embed_dim for fea in self.user_features if isinstance(fea, SparseFeature) or isinstance(fea, SequenceFeature) and fea.shared_with is None])
38
+ self.item_num_features = len([fea.embed_dim for fea in self.item_features if isinstance(fea, SparseFeature) or isinstance(fea, SequenceFeature) and fea.shared_with is None])
39
+ self.user_senet = SENETLayer(self.user_num_features)
40
+ self.item_senet = SENETLayer(self.item_num_features)
41
+ self.mode = None
42
+
43
+ def forward(self, x):
44
+ user_embedding = self.user_tower(x)
45
+ item_embedding = self.item_tower(x)
46
+ if self.mode == "user":
47
+ return user_embedding
48
+ if self.mode == "item":
49
+ return item_embedding
50
+
51
+
52
+ # calculate cosine score
53
+ y = torch.mul(user_embedding, item_embedding).sum(dim=1)
54
+ y = y / self.temperature
55
+ return torch.sigmoid(y)
56
+
57
+ def user_tower(self, x):
58
+ if self.mode == "item":
59
+ return None
60
+ # [batch_size, num_features * embed_dim]
61
+ input_user = self.embedding(x, self.user_features, squeeze_dim=True)
62
+ # [batch_size, num_features, embed_dim]
63
+ input_user = input_user.view(input_user.size(0), self.user_num_features, -1)
64
+ # [batch_size, num_features, embed_dim]
65
+ input_user = self.user_senet(input_user)
66
+ # [batch_size, num_features * embed_dim]
67
+ input_user = input_user.view(input_user.size(0), -1)
68
+ # [batch_size, user_params["dims"][-1]]
69
+ user_embedding = self.user_mlp(input_user)
70
+ user_embedding = F.normalize(user_embedding, p=2, dim=1) # L2 normalize
71
+ return user_embedding
72
+
73
+ def item_tower(self, x):
74
+ if self.mode == "user":
75
+ return None
76
+ # [batch_size, num_features * embed_dim]
77
+ input_item = self.embedding(x, self.item_features, squeeze_dim=True)
78
+ # [batch_size, num_features, embed_dim]
79
+ input_item = input_item.view(input_item.size(0), self.item_num_features, -1)
80
+ # [batch_size, num_features, embed_dim]
81
+ input_item = self.item_senet(input_item)
82
+ # [batch_size, num_features * embed_dim]
83
+ input_item = input_item.view(input_item.size(0), -1)
84
+ # [batch_size, item_params["dims"][-1]]
85
+ item_embedding = self.item_mlp(input_item)
86
+ item_embedding = F.normalize(item_embedding, p=2, dim=1)
87
+ return item_embedding
@@ -0,0 +1,85 @@
1
+ """
2
+ Date: create on 03/06/2022
3
+ References:
4
+ paper: SESSION-BASED RECOMMENDATIONS WITH RECURRENT NEURAL NETWORKS
5
+ url: http://arxiv.org/abs/1511.06939
6
+ Authors: Kai Wang, 306178200@qq.com
7
+ """
8
+
9
+ import torch
10
+ import torch.nn.functional as F
11
+ from torch import nn
12
+
13
+ from ...basic.layers import MLP, EmbeddingLayer
14
+
15
+
16
+ class GRU4Rec(torch.nn.Module):
17
+ """The match model mentioned in `Deep Neural Networks for YouTube Recommendations` paper.
18
+ It's a DSSM match model trained by global softmax loss on list-wise samples.
19
+ Note in origin paper, it's without item dnn tower and train item embedding directly.
20
+
21
+ Args:
22
+ user_features (list[Feature Class]): training by the user tower module.
23
+ history_features (list[Feature Class]): training history
24
+ item_features (list[Feature Class]): training by the embedding table, it's the item id feature.
25
+ neg_item_feature (list[Feature Class]): training by the embedding table, it's the negative items id feature.
26
+ user_params (dict): the params of the User Tower module, keys include:`{"dims":list, "activation":str, "dropout":float, "output_layer":bool`}.
27
+ temperature (float): temperature factor for similarity score, default to 1.0.
28
+ """
29
+
30
+ def __init__(self, user_features, history_features, item_features, neg_item_feature, user_params, temperature=1.0):
31
+ super().__init__()
32
+ self.user_features = user_features
33
+ self.item_features = item_features
34
+ self.history_features = history_features
35
+ self.neg_item_feature = neg_item_feature
36
+ self.temperature = temperature
37
+ self.user_dims = sum([fea.embed_dim for fea in user_features + history_features])
38
+
39
+ self.embedding = EmbeddingLayer(user_features + item_features + history_features)
40
+ self.gru = nn.GRU(input_size=history_features[0].embed_dim, hidden_size=history_features[0].embed_dim, num_layers=user_params.get('num_layers', 2), batch_first=True, bias=False)
41
+ self.user_mlp = MLP(self.user_dims, output_layer=False, **user_params)
42
+ self.mode = None
43
+
44
+ def forward(self, x):
45
+ user_embedding = self.user_tower(x)
46
+ item_embedding = self.item_tower(x)
47
+ if self.mode == "user":
48
+ return user_embedding
49
+ if self.mode == "item":
50
+ return item_embedding
51
+
52
+ y = torch.mul(user_embedding, item_embedding).sum(dim=1)
53
+
54
+ return y
55
+
56
+ def user_tower(self, x):
57
+ if self.mode == "item":
58
+ return None
59
+ # [batch_size, num_features*deep_dims]
60
+ input_user = self.embedding(x, self.user_features, squeeze_dim=True)
61
+
62
+ history_emb = self.embedding(x, self.history_features).squeeze(1)
63
+ _, history_emb = self.gru(history_emb)
64
+ history_emb = history_emb[-1]
65
+
66
+ input_user = torch.cat([input_user, history_emb], dim=-1)
67
+
68
+ user_embedding = self.user_mlp(input_user).unsqueeze(1) # [batch_size, 1, embed_dim]
69
+ user_embedding = F.normalize(user_embedding, p=2, dim=-1) # L2 normalize
70
+ if self.mode == "user":
71
+ # inference embedding mode -> [batch_size, embed_dim]
72
+ return user_embedding.squeeze(1)
73
+ return user_embedding
74
+
75
+ def item_tower(self, x):
76
+ if self.mode == "user":
77
+ return None
78
+ pos_embedding = self.embedding(x, self.item_features, squeeze_dim=False) # [batch_size, 1, embed_dim]
79
+ pos_embedding = F.normalize(pos_embedding, p=2, dim=-1) # L2 normalize
80
+ if self.mode == "item": # inference embedding mode
81
+ return pos_embedding.squeeze(1) # [batch_size, embed_dim]
82
+ neg_embeddings = self.embedding(x, self.neg_item_feature, squeeze_dim=False).squeeze(1) # [batch_size, n_neg_items, embed_dim]
83
+ neg_embeddings = F.normalize(neg_embeddings, p=2, dim=-1) # L2 normalize
84
+ # [batch_size, 1+n_neg_items, embed_dim]
85
+ return torch.cat((pos_embedding, neg_embeddings), dim=1)
@@ -0,0 +1,103 @@
1
+ """
2
+ Date: create on 08/06/2022
3
+ References:
4
+ paper: Multi-Interest Network with Dynamic Routing
5
+ url: https://arxiv.org/pdf/1904.08030v1
6
+ code: https://github.com/ShiningCosmos/pytorch_ComiRec/blob/main/MIND.py
7
+ Authors: Kai Wang, 306178200@qq.com
8
+ """
9
+
10
+ import torch
11
+ import torch.nn.functional as F
12
+ from torch import nn
13
+
14
+ from ...basic.layers import MLP, CapsuleNetwork, EmbeddingLayer, MultiInterestSA
15
+
16
+
17
+ class MIND(torch.nn.Module):
18
+ """The match model mentioned in `Multi-Interest Network with Dynamic Routing` paper.
19
+ It's a ComirecDR match model trained by global softmax loss on list-wise samples.
20
+ Note in origin paper, it's without item dnn tower and train item embedding directly.
21
+
22
+ Args:
23
+ user_features (list[Feature Class]): training by the user tower module.
24
+ history_features (list[Feature Class]): training history
25
+ item_features (list[Feature Class]): training by the embedding table, it's the item id feature.
26
+ neg_item_feature (list[Feature Class]): training by the embedding table, it's the negative items id feature.
27
+ max_length (int): max sequence length of input item sequence
28
+ temperature (float): temperature factor for similarity score, default to 1.0.
29
+ interest_num (int): interest num
30
+ """
31
+
32
+ def __init__(self, user_features, history_features, item_features, neg_item_feature, max_length, temperature=1.0, interest_num=4):
33
+ super().__init__()
34
+ self.user_features = user_features
35
+ self.item_features = item_features
36
+ self.history_features = history_features
37
+ self.neg_item_feature = neg_item_feature
38
+ self.temperature = temperature
39
+ self.interest_num = interest_num
40
+ self.max_length = max_length
41
+ self.user_dims = sum([fea.embed_dim for fea in user_features + history_features])
42
+
43
+ self.embedding = EmbeddingLayer(user_features + item_features + history_features)
44
+ self.capsule = CapsuleNetwork(self.history_features[0].embed_dim, self.max_length, bilinear_type=0, interest_num=self.interest_num)
45
+ self.convert_user_weight = nn.Parameter(torch.rand(self.user_dims, self.history_features[0].embed_dim), requires_grad=True)
46
+ self.mode = None
47
+
48
+ def forward(self, x):
49
+ user_embedding = self.user_tower(x)
50
+ item_embedding = self.item_tower(x)
51
+ if self.mode == "user":
52
+ return user_embedding
53
+ if self.mode == "item":
54
+ return item_embedding
55
+
56
+ pos_item_embedding = item_embedding[:, 0, :]
57
+ dot_res = torch.bmm(user_embedding, pos_item_embedding.squeeze(1).unsqueeze(-1))
58
+ k_index = torch.argmax(dot_res, dim=1)
59
+ best_interest_emb = torch.rand(user_embedding.shape[0], user_embedding.shape[2]).to(user_embedding.device)
60
+ for k in range(user_embedding.shape[0]):
61
+ best_interest_emb[k, :] = user_embedding[k, k_index[k], :]
62
+ best_interest_emb = best_interest_emb.unsqueeze(1)
63
+
64
+ y = torch.mul(best_interest_emb, item_embedding).sum(dim=1)
65
+ return y
66
+
67
+ def user_tower(self, x):
68
+ if self.mode == "item":
69
+ return None
70
+ input_user = self.embedding(x, self.user_features, squeeze_dim=True).unsqueeze(1) # [batch_size, num_features*deep_dims]
71
+ input_user = input_user.expand([input_user.shape[0], self.interest_num, input_user.shape[-1]])
72
+
73
+ history_emb = self.embedding(x, self.history_features).squeeze(1)
74
+ mask = self.gen_mask(x)
75
+ multi_interest_emb = self.capsule(history_emb, mask)
76
+
77
+ input_user = torch.cat([input_user, multi_interest_emb], dim=-1)
78
+
79
+ # user_embedding = self.user_mlp(input_user).unsqueeze(1)
80
+ # #[batch_size, interest_num, embed_dim]
81
+ user_embedding = torch.matmul(input_user, self.convert_user_weight)
82
+ user_embedding = F.normalize(user_embedding, p=2, dim=-1) # L2 normalize
83
+ if self.mode == "user":
84
+ # inference embedding mode -> [batch_size, interest_num, embed_dim]
85
+ return user_embedding
86
+ return user_embedding
87
+
88
+ def item_tower(self, x):
89
+ if self.mode == "user":
90
+ return None
91
+ pos_embedding = self.embedding(x, self.item_features, squeeze_dim=False) # [batch_size, 1, embed_dim]
92
+ pos_embedding = F.normalize(pos_embedding, p=2, dim=-1) # L2 normalize
93
+ if self.mode == "item": # inference embedding mode
94
+ return pos_embedding.squeeze(1) # [batch_size, embed_dim]
95
+ neg_embeddings = self.embedding(x, self.neg_item_feature, squeeze_dim=False).squeeze(1) # [batch_size, n_neg_items, embed_dim]
96
+ neg_embeddings = F.normalize(neg_embeddings, p=2, dim=-1) # L2 normalize
97
+ # [batch_size, 1+n_neg_items, embed_dim]
98
+ return torch.cat((pos_embedding, neg_embeddings), dim=1)
99
+
100
+ def gen_mask(self, x):
101
+ his_list = x[self.history_features[0].name]
102
+ mask = (his_list > 0).long()
103
+ return mask
@@ -0,0 +1,82 @@
1
+ """
2
+ Date: created on 06/09/2022
3
+ References:
4
+ paper: Neural Attentive Session-based Recommendation
5
+ url: http://arxiv.org/abs/1711.04725
6
+ official Theano implementation: https://github.com/lijingsdu/sessionRec_NARM
7
+ another Pytorch implementation: https://github.com/Wang-Shuo/Neural-Attentive-Session-Based-Recommendation-PyTorch
8
+ Authors: Bo Kang, klinux@live.com
9
+ """
10
+
11
+ import torch
12
+ import torch.nn as nn
13
+ import torch.nn.utils.rnn as rnn_utils
14
+ from torch import sigmoid
15
+ from torch.nn import GRU, Dropout, Embedding, Parameter
16
+
17
+
18
+ class NARM(nn.Module):
19
+
20
+ def __init__(self, item_history_feature, hidden_dim, emb_dropout_p, session_rep_dropout_p):
21
+ super(NARM, self).__init__()
22
+
23
+ # item embedding layer
24
+ self.item_history_feature = item_history_feature
25
+ self.item_emb = Embedding(item_history_feature.vocab_size, item_history_feature.embed_dim, padding_idx=0)
26
+
27
+ # embedding dropout layer
28
+ self.emb_dropout = Dropout(emb_dropout_p)
29
+
30
+ # gru unit
31
+ self.gru = GRU(input_size=item_history_feature.embed_dim, hidden_size=hidden_dim)
32
+
33
+ # attention projection matrices
34
+ self.a_1, self.a_2 = Parameter(torch.randn(hidden_dim, hidden_dim)), Parameter(torch.randn(hidden_dim, hidden_dim))
35
+
36
+ # attention context vector
37
+ self.v = Parameter(torch.randn(hidden_dim, 1))
38
+
39
+ # session representation dropout layer
40
+ self.session_rep_dropout = Dropout(session_rep_dropout_p)
41
+
42
+ # bilinear projection matrix
43
+ self.b = Parameter(torch.randn(item_history_feature.embed_dim, hidden_dim * 2))
44
+
45
+ def forward(self, input_dict):
46
+ # Eq. 1-4, index item embeddings and pass through gru
47
+ # # Fetch the embeddings for items in the session
48
+ input = input_dict[self.item_history_feature.name]
49
+ value_mask = (input != 0)
50
+ value_counts = value_mask.sum(dim=1, keepdim=False).to("cpu").detach()
51
+ embs = rnn_utils.pack_padded_sequence(self.emb_dropout(self.item_emb(input)), value_counts, batch_first=True, enforce_sorted=False)
52
+
53
+ # # compute hidden states at each time step
54
+ h, h_t = self.gru(embs)
55
+ h_t = h_t.permute(1, 0, 2)
56
+ h, _ = rnn_utils.pad_packed_sequence(h, batch_first=True)
57
+
58
+ # Eq. 5, set last hidden state of gru as the output of the global
59
+ # encoder
60
+ c_g = h_t.squeeze(1)
61
+
62
+ # Eq. 8, compute similarity between final hidden state and previous
63
+ # hidden states
64
+ q = sigmoid(h_t @ self.a_1.T + h @ self.a_2.T) @ self.v
65
+
66
+ # Eq. 7, compute attention
67
+ alpha = torch.exp(q) * value_mask.unsqueeze(-1)
68
+ alpha /= alpha.sum(dim=1, keepdim=True)
69
+
70
+ # Eq. 6, compute the output of the local encoder
71
+ c_l = (alpha * h).sum(1)
72
+
73
+ # Eq. 9, compute session representation by concatenating user
74
+ # sequential behavior (global) and main purpose in the current session
75
+ # (local)
76
+ c = self.session_rep_dropout(torch.hstack((c_g, c_l)))
77
+
78
+ # Eq. 10, compute bilinear similarity between current session and each
79
+ # candidate items
80
+ s = c @ self.b.T @ self.item_emb.weight.T
81
+
82
+ return s
@@ -0,0 +1,143 @@
1
+ """
2
+ Date: create on 2022/5/8, update on 2022/5/8
3
+ References:
4
+ paper: (ICDM'2018) Self-attentive sequential recommendation
5
+ url: https://arxiv.org/pdf/1808.09781.pdf
6
+ code: https://github.com/kang205/SASRec
7
+ Authors: Yuchen Wang, 615922749@qq.com
8
+ """
9
+ import numpy as np
10
+ import torch
11
+ import torch.nn as nn
12
+
13
+ from torch_rechub.basic.features import DenseFeature, SequenceFeature, SparseFeature
14
+ from torch_rechub.basic.layers import MLP, EmbeddingLayer
15
+
16
+
17
+ class SASRec(torch.nn.Module):
18
+ """SASRec: Self-Attentive Sequential Recommendation
19
+ Args:
20
+ features (list): the list of `Feature Class`. In sasrec, the features list needs to have three elements in order: user historical behavior sequence features, positive sample sequence, and negative sample sequence.
21
+ max_len: The length of the sequence feature.
22
+ num_blocks: The number of stacks of attention modules.
23
+ num_heads: The number of heads in MultiheadAttention.
24
+
25
+ """
26
+
27
+ def __init__(
28
+ self,
29
+ features,
30
+ max_len=50,
31
+ dropout_rate=0.5,
32
+ num_blocks=2,
33
+ num_heads=1,
34
+ ):
35
+ super(SASRec, self).__init__()
36
+
37
+ self.features = features
38
+
39
+ self.item_num = self.features[0].vocab_size
40
+ self.embed_dim = self.features[0].embed_dim
41
+
42
+ self.item_emb = EmbeddingLayer(self.features)
43
+ self.position_emb = torch.nn.Embedding(max_len, self.embed_dim)
44
+ self.emb_dropout = torch.nn.Dropout(p=dropout_rate)
45
+
46
+ self.attention_layernorms = torch.nn.ModuleList()
47
+ self.attention_layers = torch.nn.ModuleList()
48
+ self.forward_layernorms = torch.nn.ModuleList()
49
+ self.forward_layers = torch.nn.ModuleList()
50
+ self.last_layernorm = torch.nn.LayerNorm(self.embed_dim, eps=1e-8)
51
+
52
+ for _ in range(num_blocks):
53
+ new_attn_layernorm = torch.nn.LayerNorm(self.embed_dim, eps=1e-8)
54
+ self.attention_layernorms.append(new_attn_layernorm)
55
+
56
+ new_attn_layer = torch.nn.MultiheadAttention(self.embed_dim, num_heads, dropout_rate)
57
+ self.attention_layers.append(new_attn_layer)
58
+
59
+ new_fwd_layernorm = torch.nn.LayerNorm(self.embed_dim, eps=1e-8)
60
+ self.forward_layernorms.append(new_fwd_layernorm)
61
+
62
+ new_fwd_layer = PointWiseFeedForward(self.embed_dim, dropout_rate)
63
+ self.forward_layers.append(new_fwd_layer)
64
+
65
+ def seq_forward(self, x, embed_x_feature):
66
+ x = x['seq']
67
+
68
+ embed_x_feature *= self.features[0].embed_dim**0.5
69
+ embed_x_feature = embed_x_feature.squeeze() # (bacth_size, max_len, embed_dim)
70
+
71
+ positions = np.tile(np.array(range(x.shape[1])), [x.shape[0], 1])
72
+
73
+ embed_x_feature += self.position_emb(torch.LongTensor(positions))
74
+ embed_x_feature = self.emb_dropout(embed_x_feature)
75
+
76
+ timeline_mask = torch.BoolTensor(x == 0)
77
+ embed_x_feature *= ~timeline_mask.unsqueeze(-1)
78
+
79
+ attention_mask = ~torch.tril(torch.ones((embed_x_feature.shape[1], embed_x_feature.shape[1]), dtype=torch.bool))
80
+
81
+ for i in range(len(self.attention_layers)):
82
+ embed_x_feature = torch.transpose(embed_x_feature, 0, 1)
83
+ Q = self.attention_layernorms[i](embed_x_feature)
84
+ mha_outputs, _ = self.attention_layers[i](Q, embed_x_feature, embed_x_feature, attn_mask=attention_mask)
85
+
86
+ embed_x_feature = Q + mha_outputs
87
+ embed_x_feature = torch.transpose(embed_x_feature, 0, 1)
88
+
89
+ embed_x_feature = self.forward_layernorms[i](embed_x_feature)
90
+ embed_x_feature = self.forward_layers[i](embed_x_feature)
91
+ embed_x_feature *= ~timeline_mask.unsqueeze(-1)
92
+
93
+ seq_output = self.last_layernorm(embed_x_feature)
94
+
95
+ return seq_output
96
+
97
+ def forward(self, x):
98
+ # (batch_size, 3, max_len, embed_dim)
99
+ embedding = self.item_emb(x, self.features)
100
+ # (batch_size, max_len, embed_dim)
101
+ seq_embed, pos_embed, neg_embed = embedding[:, 0], embedding[:, 1], embedding[:, 2]
102
+
103
+ # (batch_size, max_len, embed_dim)
104
+ seq_output = self.seq_forward(x, seq_embed)
105
+
106
+ pos_logits = (seq_output * pos_embed).sum(dim=-1)
107
+ neg_logits = (seq_output * neg_embed).sum(dim=-1) # (batch_size, max_len)
108
+
109
+ return pos_logits, neg_logits
110
+
111
+
112
+ class PointWiseFeedForward(torch.nn.Module):
113
+
114
+ def __init__(self, hidden_units, dropout_rate):
115
+ super(PointWiseFeedForward, self).__init__()
116
+
117
+ self.conv1 = torch.nn.Conv1d(hidden_units, hidden_units, kernel_size=1)
118
+ self.dropout1 = torch.nn.Dropout(p=dropout_rate)
119
+ self.relu = torch.nn.ReLU()
120
+ self.conv2 = torch.nn.Conv1d(hidden_units, hidden_units, kernel_size=1)
121
+ self.dropout2 = torch.nn.Dropout(p=dropout_rate)
122
+
123
+ def forward(self, inputs):
124
+ outputs = self.dropout2(self.conv2(self.relu(self.dropout1(self.conv1(inputs.transpose(-1, -2))))))
125
+ outputs = outputs.transpose(-1, -2)
126
+ outputs += inputs
127
+ return outputs
128
+
129
+
130
+ if __name__ == '__main__':
131
+ seq = SequenceFeature('seq', vocab_size=17, embed_dim=7, pooling='concat')
132
+ pos = SequenceFeature('pos', vocab_size=17, embed_dim=7, pooling='concat', shared_with='seq')
133
+ neg = SequenceFeature('neg', vocab_size=17, embed_dim=7, pooling='concat', shared_with='seq')
134
+
135
+ seq = [seq, pos, neg]
136
+
137
+ hist_seq = torch.tensor([[1, 2, 3, 4], [2, 3, 7, 8]])
138
+ pos_seq = hist_seq
139
+ neg_seq = hist_seq
140
+
141
+ x = {'seq': hist_seq, 'pos': pos_seq, 'neg': neg_seq}
142
+ model = SASRec(features=seq)
143
+ print('out', model(x))