torch-rechub 0.0.1__py3-none-any.whl → 0.0.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- torch_rechub/__init__.py +14 -0
- torch_rechub/basic/activation.py +3 -1
- torch_rechub/basic/callback.py +2 -2
- torch_rechub/basic/features.py +38 -8
- torch_rechub/basic/initializers.py +92 -0
- torch_rechub/basic/layers.py +800 -46
- torch_rechub/basic/loss_func.py +223 -0
- torch_rechub/basic/metaoptimizer.py +76 -0
- torch_rechub/basic/metric.py +251 -0
- torch_rechub/models/generative/__init__.py +6 -0
- torch_rechub/models/generative/hllm.py +249 -0
- torch_rechub/models/generative/hstu.py +189 -0
- torch_rechub/models/matching/__init__.py +13 -0
- torch_rechub/models/matching/comirec.py +193 -0
- torch_rechub/models/matching/dssm.py +72 -0
- torch_rechub/models/matching/dssm_facebook.py +77 -0
- torch_rechub/models/matching/dssm_senet.py +87 -0
- torch_rechub/models/matching/gru4rec.py +85 -0
- torch_rechub/models/matching/mind.py +103 -0
- torch_rechub/models/matching/narm.py +82 -0
- torch_rechub/models/matching/sasrec.py +143 -0
- torch_rechub/models/matching/sine.py +148 -0
- torch_rechub/models/matching/stamp.py +81 -0
- torch_rechub/models/matching/youtube_dnn.py +75 -0
- torch_rechub/models/matching/youtube_sbc.py +98 -0
- torch_rechub/models/multi_task/__init__.py +5 -2
- torch_rechub/models/multi_task/aitm.py +83 -0
- torch_rechub/models/multi_task/esmm.py +19 -8
- torch_rechub/models/multi_task/mmoe.py +18 -12
- torch_rechub/models/multi_task/ple.py +41 -29
- torch_rechub/models/multi_task/shared_bottom.py +3 -2
- torch_rechub/models/ranking/__init__.py +13 -2
- torch_rechub/models/ranking/afm.py +65 -0
- torch_rechub/models/ranking/autoint.py +102 -0
- torch_rechub/models/ranking/bst.py +61 -0
- torch_rechub/models/ranking/dcn.py +38 -0
- torch_rechub/models/ranking/dcn_v2.py +59 -0
- torch_rechub/models/ranking/deepffm.py +131 -0
- torch_rechub/models/ranking/deepfm.py +8 -7
- torch_rechub/models/ranking/dien.py +191 -0
- torch_rechub/models/ranking/din.py +31 -19
- torch_rechub/models/ranking/edcn.py +101 -0
- torch_rechub/models/ranking/fibinet.py +42 -0
- torch_rechub/models/ranking/widedeep.py +6 -6
- torch_rechub/trainers/__init__.py +4 -2
- torch_rechub/trainers/ctr_trainer.py +191 -0
- torch_rechub/trainers/match_trainer.py +239 -0
- torch_rechub/trainers/matching.md +3 -0
- torch_rechub/trainers/mtl_trainer.py +137 -23
- torch_rechub/trainers/seq_trainer.py +293 -0
- torch_rechub/utils/__init__.py +0 -0
- torch_rechub/utils/data.py +492 -0
- torch_rechub/utils/hstu_utils.py +198 -0
- torch_rechub/utils/match.py +457 -0
- torch_rechub/utils/mtl.py +136 -0
- torch_rechub/utils/onnx_export.py +353 -0
- torch_rechub-0.0.4.dist-info/METADATA +391 -0
- torch_rechub-0.0.4.dist-info/RECORD +62 -0
- {torch_rechub-0.0.1.dist-info → torch_rechub-0.0.4.dist-info}/WHEEL +1 -2
- {torch_rechub-0.0.1.dist-info → torch_rechub-0.0.4.dist-info/licenses}/LICENSE +1 -1
- torch_rechub/basic/utils.py +0 -168
- torch_rechub/trainers/trainer.py +0 -111
- torch_rechub-0.0.1.dist-info/METADATA +0 -105
- torch_rechub-0.0.1.dist-info/RECORD +0 -26
- torch_rechub-0.0.1.dist-info/top_level.txt +0 -1
|
@@ -0,0 +1,223 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import torch.functional as F
|
|
3
|
+
import torch.nn as nn
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
class RegularizationLoss(nn.Module):
|
|
7
|
+
"""Unified L1/L2 Regularization Loss for embedding and dense parameters.
|
|
8
|
+
|
|
9
|
+
Example:
|
|
10
|
+
>>> reg_loss_fn = RegularizationLoss(embedding_l2=1e-5, dense_l2=1e-5)
|
|
11
|
+
>>> # In model's forward or trainer
|
|
12
|
+
>>> reg_loss = reg_loss_fn(model)
|
|
13
|
+
>>> total_loss = task_loss + reg_loss
|
|
14
|
+
"""
|
|
15
|
+
|
|
16
|
+
def __init__(self, embedding_l1=0.0, embedding_l2=0.0, dense_l1=0.0, dense_l2=0.0):
|
|
17
|
+
super(RegularizationLoss, self).__init__()
|
|
18
|
+
self.embedding_l1 = embedding_l1
|
|
19
|
+
self.embedding_l2 = embedding_l2
|
|
20
|
+
self.dense_l1 = dense_l1
|
|
21
|
+
self.dense_l2 = dense_l2
|
|
22
|
+
|
|
23
|
+
def forward(self, model):
|
|
24
|
+
reg_loss = 0.0
|
|
25
|
+
|
|
26
|
+
# Register normalization layers
|
|
27
|
+
norm_params = set()
|
|
28
|
+
for module in model.modules():
|
|
29
|
+
if isinstance(module, (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d, nn.LayerNorm, nn.GroupNorm, nn.InstanceNorm1d, nn.InstanceNorm2d, nn.InstanceNorm3d)):
|
|
30
|
+
for param in module.parameters():
|
|
31
|
+
norm_params.add(id(param))
|
|
32
|
+
|
|
33
|
+
# Register embedding layers
|
|
34
|
+
embedding_params = set()
|
|
35
|
+
for module in model.modules():
|
|
36
|
+
if isinstance(module, (nn.Embedding, nn.EmbeddingBag)):
|
|
37
|
+
for param in module.parameters():
|
|
38
|
+
embedding_params.add(id(param))
|
|
39
|
+
|
|
40
|
+
for param in model.parameters():
|
|
41
|
+
if param.requires_grad:
|
|
42
|
+
# Skip normalization layer parameters
|
|
43
|
+
if id(param) in norm_params:
|
|
44
|
+
continue
|
|
45
|
+
|
|
46
|
+
if id(param) in embedding_params:
|
|
47
|
+
if self.embedding_l1 > 0:
|
|
48
|
+
reg_loss += self.embedding_l1 * torch.sum(torch.abs(param))
|
|
49
|
+
if self.embedding_l2 > 0:
|
|
50
|
+
reg_loss += self.embedding_l2 * torch.sum(param**2)
|
|
51
|
+
else:
|
|
52
|
+
if self.dense_l1 > 0:
|
|
53
|
+
reg_loss += self.dense_l1 * torch.sum(torch.abs(param))
|
|
54
|
+
if self.dense_l2 > 0:
|
|
55
|
+
reg_loss += self.dense_l2 * torch.sum(param**2)
|
|
56
|
+
|
|
57
|
+
return reg_loss
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
class HingeLoss(torch.nn.Module):
|
|
61
|
+
"""Hinge Loss for pairwise learning.
|
|
62
|
+
reference: https://github.com/ustcml/RecStudio/blob/main/recstudio/model/loss_func.py
|
|
63
|
+
|
|
64
|
+
"""
|
|
65
|
+
|
|
66
|
+
def __init__(self, margin=2, num_items=None):
|
|
67
|
+
super().__init__()
|
|
68
|
+
self.margin = margin
|
|
69
|
+
self.n_items = num_items
|
|
70
|
+
|
|
71
|
+
def forward(self, pos_score, neg_score):
|
|
72
|
+
loss = torch.maximum(torch.max(neg_score, dim=-1).values - pos_score + self.margin, torch.tensor([0]).type_as(pos_score))
|
|
73
|
+
if self.n_items is not None:
|
|
74
|
+
impostors = neg_score - pos_score.view(-1, 1) + self.margin > 0
|
|
75
|
+
rank = torch.mean(impostors, -1) * self.n_items
|
|
76
|
+
return torch.mean(loss * torch.log(rank + 1))
|
|
77
|
+
else:
|
|
78
|
+
return torch.mean(loss)
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
class BPRLoss(torch.nn.Module):
|
|
82
|
+
|
|
83
|
+
def __init__(self):
|
|
84
|
+
super().__init__()
|
|
85
|
+
|
|
86
|
+
def forward(self, pos_score, neg_score):
|
|
87
|
+
loss = torch.mean(-(pos_score - neg_score).sigmoid().log(), dim=-1)
|
|
88
|
+
return loss
|
|
89
|
+
|
|
90
|
+
|
|
91
|
+
class NCELoss(torch.nn.Module):
|
|
92
|
+
"""Noise Contrastive Estimation (NCE) Loss for recommendation systems.
|
|
93
|
+
|
|
94
|
+
NCE Loss is more efficient than CrossEntropyLoss for large-scale recommendation
|
|
95
|
+
scenarios. It uses in-batch negatives to reduce computational complexity.
|
|
96
|
+
|
|
97
|
+
Reference:
|
|
98
|
+
- Noise-contrastive estimation: A new estimation principle for unnormalized
|
|
99
|
+
statistical models (Gutmann & Hyvärinen, 2010)
|
|
100
|
+
- HLLM: Hierarchical Large Language Model for Recommendation
|
|
101
|
+
|
|
102
|
+
Args:
|
|
103
|
+
temperature (float): Temperature parameter for scaling logits. Default: 1.0
|
|
104
|
+
ignore_index (int): Index to ignore in loss computation. Default: 0
|
|
105
|
+
reduction (str): Specifies the reduction to apply to the output.
|
|
106
|
+
Options: 'mean', 'sum', 'none'. Default: 'mean'
|
|
107
|
+
|
|
108
|
+
Example:
|
|
109
|
+
>>> nce_loss = NCELoss(temperature=0.1)
|
|
110
|
+
>>> logits = torch.randn(32, 1000) # (batch_size, vocab_size)
|
|
111
|
+
>>> targets = torch.randint(0, 1000, (32,))
|
|
112
|
+
>>> loss = nce_loss(logits, targets)
|
|
113
|
+
"""
|
|
114
|
+
|
|
115
|
+
def __init__(self, temperature=1.0, ignore_index=0, reduction='mean'):
|
|
116
|
+
super().__init__()
|
|
117
|
+
self.temperature = temperature
|
|
118
|
+
self.ignore_index = ignore_index
|
|
119
|
+
self.reduction = reduction
|
|
120
|
+
|
|
121
|
+
def forward(self, logits, targets):
|
|
122
|
+
"""Compute NCE loss.
|
|
123
|
+
|
|
124
|
+
Args:
|
|
125
|
+
logits (torch.Tensor): Model output logits of shape (batch_size, vocab_size)
|
|
126
|
+
targets (torch.Tensor): Target indices of shape (batch_size,)
|
|
127
|
+
|
|
128
|
+
Returns:
|
|
129
|
+
torch.Tensor: NCE loss value
|
|
130
|
+
"""
|
|
131
|
+
# Scale logits by temperature
|
|
132
|
+
logits = logits / self.temperature
|
|
133
|
+
|
|
134
|
+
# Compute log softmax
|
|
135
|
+
log_probs = torch.nn.functional.log_softmax(logits, dim=-1)
|
|
136
|
+
|
|
137
|
+
# Get log probability of target class
|
|
138
|
+
batch_size = targets.shape[0]
|
|
139
|
+
target_log_probs = log_probs[torch.arange(batch_size), targets]
|
|
140
|
+
|
|
141
|
+
# Create mask for ignore_index
|
|
142
|
+
mask = targets != self.ignore_index
|
|
143
|
+
|
|
144
|
+
# Compute loss
|
|
145
|
+
loss = -target_log_probs
|
|
146
|
+
|
|
147
|
+
# Apply mask
|
|
148
|
+
if mask.any():
|
|
149
|
+
loss = loss[mask]
|
|
150
|
+
|
|
151
|
+
# Apply reduction
|
|
152
|
+
if self.reduction == 'mean':
|
|
153
|
+
return loss.mean()
|
|
154
|
+
elif self.reduction == 'sum':
|
|
155
|
+
return loss.sum()
|
|
156
|
+
else: # 'none'
|
|
157
|
+
return loss
|
|
158
|
+
|
|
159
|
+
|
|
160
|
+
class InBatchNCELoss(torch.nn.Module):
|
|
161
|
+
"""In-Batch NCE Loss with explicit negative sampling.
|
|
162
|
+
|
|
163
|
+
This loss function uses other samples in the batch as negative samples,
|
|
164
|
+
which is more efficient than sampling random negatives.
|
|
165
|
+
|
|
166
|
+
Args:
|
|
167
|
+
temperature (float): Temperature parameter for scaling logits. Default: 0.1
|
|
168
|
+
ignore_index (int): Index to ignore in loss computation. Default: 0
|
|
169
|
+
reduction (str): Specifies the reduction to apply to the output.
|
|
170
|
+
Options: 'mean', 'sum', 'none'. Default: 'mean'
|
|
171
|
+
|
|
172
|
+
Example:
|
|
173
|
+
>>> loss_fn = InBatchNCELoss(temperature=0.1)
|
|
174
|
+
>>> embeddings = torch.randn(32, 256) # (batch_size, embedding_dim)
|
|
175
|
+
>>> item_embeddings = torch.randn(1000, 256) # (vocab_size, embedding_dim)
|
|
176
|
+
>>> targets = torch.randint(0, 1000, (32,))
|
|
177
|
+
>>> loss = loss_fn(embeddings, item_embeddings, targets)
|
|
178
|
+
"""
|
|
179
|
+
|
|
180
|
+
def __init__(self, temperature=0.1, ignore_index=0, reduction='mean'):
|
|
181
|
+
super().__init__()
|
|
182
|
+
self.temperature = temperature
|
|
183
|
+
self.ignore_index = ignore_index
|
|
184
|
+
self.reduction = reduction
|
|
185
|
+
|
|
186
|
+
def forward(self, embeddings, item_embeddings, targets):
|
|
187
|
+
"""Compute in-batch NCE loss.
|
|
188
|
+
|
|
189
|
+
Args:
|
|
190
|
+
embeddings (torch.Tensor): User/query embeddings of shape (batch_size, embedding_dim)
|
|
191
|
+
item_embeddings (torch.Tensor): Item embeddings of shape (vocab_size, embedding_dim)
|
|
192
|
+
targets (torch.Tensor): Target item indices of shape (batch_size,)
|
|
193
|
+
|
|
194
|
+
Returns:
|
|
195
|
+
torch.Tensor: In-batch NCE loss value
|
|
196
|
+
"""
|
|
197
|
+
# Compute logits: (batch_size, vocab_size)
|
|
198
|
+
logits = torch.matmul(embeddings, item_embeddings.t()) / self.temperature
|
|
199
|
+
|
|
200
|
+
# Compute log softmax
|
|
201
|
+
log_probs = torch.nn.functional.log_softmax(logits, dim=-1)
|
|
202
|
+
|
|
203
|
+
# Get log probability of target class
|
|
204
|
+
batch_size = targets.shape[0]
|
|
205
|
+
target_log_probs = log_probs[torch.arange(batch_size), targets]
|
|
206
|
+
|
|
207
|
+
# Create mask for ignore_index
|
|
208
|
+
mask = targets != self.ignore_index
|
|
209
|
+
|
|
210
|
+
# Compute loss
|
|
211
|
+
loss = -target_log_probs
|
|
212
|
+
|
|
213
|
+
# Apply mask
|
|
214
|
+
if mask.any():
|
|
215
|
+
loss = loss[mask]
|
|
216
|
+
|
|
217
|
+
# Apply reduction
|
|
218
|
+
if self.reduction == 'mean':
|
|
219
|
+
return loss.mean()
|
|
220
|
+
elif self.reduction == 'sum':
|
|
221
|
+
return loss.sum()
|
|
222
|
+
else: # 'none'
|
|
223
|
+
return loss
|
|
@@ -0,0 +1,76 @@
|
|
|
1
|
+
"""The metaoptimizer module, it provides a class MetaBalance
|
|
2
|
+
MetaBalance is used to scale the gradient and balance the gradient of each task
|
|
3
|
+
Authors: Qida Dong, dongjidan@126.com
|
|
4
|
+
"""
|
|
5
|
+
import torch
|
|
6
|
+
from torch.optim.optimizer import Optimizer
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class MetaBalance(Optimizer):
|
|
10
|
+
"""MetaBalance Optimizer
|
|
11
|
+
This method is used to scale the gradient and balance the gradient of each task
|
|
12
|
+
|
|
13
|
+
Args:
|
|
14
|
+
parameters (list): the parameters of model
|
|
15
|
+
relax_factor (float, optional): the relax factor of gradient scaling (default: 0.7)
|
|
16
|
+
beta (float, optional): the coefficient of moving average (default: 0.9)
|
|
17
|
+
"""
|
|
18
|
+
|
|
19
|
+
def __init__(self, parameters, relax_factor=0.7, beta=0.9):
|
|
20
|
+
|
|
21
|
+
if relax_factor < 0. or relax_factor >= 1.:
|
|
22
|
+
raise ValueError(f'Invalid relax_factor: {relax_factor}, it should be 0. <= relax_factor < 1.')
|
|
23
|
+
if beta < 0. or beta >= 1.:
|
|
24
|
+
raise ValueError(f'Invalid beta: {beta}, it should be 0. <= beta < 1.')
|
|
25
|
+
rel_beta_dict = {'relax_factor': relax_factor, 'beta': beta}
|
|
26
|
+
super(MetaBalance, self).__init__(parameters, rel_beta_dict)
|
|
27
|
+
|
|
28
|
+
@torch.no_grad()
|
|
29
|
+
def step(self, losses):
|
|
30
|
+
"""_summary_
|
|
31
|
+
Args:
|
|
32
|
+
losses (_type_): _description_
|
|
33
|
+
|
|
34
|
+
Raises:
|
|
35
|
+
RuntimeError: _description_
|
|
36
|
+
"""
|
|
37
|
+
|
|
38
|
+
for idx, loss in enumerate(losses):
|
|
39
|
+
loss.backward(retain_graph=True)
|
|
40
|
+
for group in self.param_groups:
|
|
41
|
+
for gp in group['params']:
|
|
42
|
+
if gp.grad is None:
|
|
43
|
+
# print('breaking')
|
|
44
|
+
break
|
|
45
|
+
if gp.grad.is_sparse:
|
|
46
|
+
raise RuntimeError('MetaBalance does not support sparse gradients')
|
|
47
|
+
# store the result of moving average
|
|
48
|
+
state = self.state[gp]
|
|
49
|
+
if len(state) == 0:
|
|
50
|
+
for i in range(len(losses)):
|
|
51
|
+
if i == 0:
|
|
52
|
+
gp.norms = [0]
|
|
53
|
+
else:
|
|
54
|
+
gp.norms.append(0)
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
# calculate the moving average
|
|
58
|
+
beta = group['beta']
|
|
59
|
+
gp.norms[idx] = gp.norms[idx] * beta + \
|
|
60
|
+
(1 - beta) * torch.norm(gp.grad)
|
|
61
|
+
# scale the auxiliary gradient
|
|
62
|
+
relax_factor = group['relax_factor']
|
|
63
|
+
gp.grad = gp.grad * \
|
|
64
|
+
gp.norms[0] / (gp.norms[idx] + 1e-5) * relax_factor + gp.grad * (1. - relax_factor)
|
|
65
|
+
# store the gradient of each auxiliary task in state
|
|
66
|
+
if idx == 0:
|
|
67
|
+
state['sum_gradient'] = torch.zeros_like(gp.data)
|
|
68
|
+
state['sum_gradient'] += gp.grad
|
|
69
|
+
else:
|
|
70
|
+
state['sum_gradient'] += gp.grad
|
|
71
|
+
|
|
72
|
+
if gp.grad is not None:
|
|
73
|
+
gp.grad.detach_()
|
|
74
|
+
gp.grad.zero_()
|
|
75
|
+
if idx == len(losses) - 1:
|
|
76
|
+
gp.grad = state['sum_gradient']
|
|
@@ -0,0 +1,251 @@
|
|
|
1
|
+
"""The metric module, it is used to provide some metrics for recommenders.
|
|
2
|
+
Available function:
|
|
3
|
+
- auc_score: compute AUC
|
|
4
|
+
- gauc_score: compute GAUC
|
|
5
|
+
- log_loss: compute LogLoss
|
|
6
|
+
- topk_metrics: compute topk metrics contains 'ndcg', 'mrr', 'recall', 'hit'
|
|
7
|
+
Authors: Qida Dong, dongjidan@126.com
|
|
8
|
+
"""
|
|
9
|
+
from collections import defaultdict
|
|
10
|
+
|
|
11
|
+
import numpy as np
|
|
12
|
+
from sklearn.metrics import roc_auc_score
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
def auc_score(y_true, y_pred):
|
|
16
|
+
|
|
17
|
+
return roc_auc_score(y_true, y_pred)
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
def get_user_pred(y_true, y_pred, users):
|
|
21
|
+
"""divide the result into different group by user id
|
|
22
|
+
|
|
23
|
+
Args:
|
|
24
|
+
y_true (array): all true labels of the data
|
|
25
|
+
y_pred (array): the predicted score
|
|
26
|
+
users (array): user id
|
|
27
|
+
|
|
28
|
+
Return:
|
|
29
|
+
user_pred (dict): {userid: values}, key is user id and value is the labels and scores of each user
|
|
30
|
+
"""
|
|
31
|
+
user_pred = {}
|
|
32
|
+
for i, u in enumerate(users):
|
|
33
|
+
if u not in user_pred:
|
|
34
|
+
user_pred[u] = {'y_true': [y_true[i]], 'y_pred': [y_pred[i]]}
|
|
35
|
+
else:
|
|
36
|
+
user_pred[u]['y_true'].append(y_true[i])
|
|
37
|
+
user_pred[u]['y_pred'].append(y_pred[i])
|
|
38
|
+
|
|
39
|
+
return user_pred
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
def gauc_score(y_true, y_pred, users, weights=None):
|
|
43
|
+
"""compute GAUC
|
|
44
|
+
|
|
45
|
+
Args:
|
|
46
|
+
y_true (array): dim(N, ), all true labels of the data
|
|
47
|
+
y_pred (array): dim(N, ), the predicted score
|
|
48
|
+
users (array): dim(N, ), user id
|
|
49
|
+
weight (dict): {userid: weight_value}, it contains weights for each group.
|
|
50
|
+
if it is None, the weight is equal to the number
|
|
51
|
+
of times the user is recommended
|
|
52
|
+
Return:
|
|
53
|
+
score: float, GAUC
|
|
54
|
+
"""
|
|
55
|
+
assert len(y_true) == len(y_pred) and len(y_true) == len(users)
|
|
56
|
+
|
|
57
|
+
user_pred = get_user_pred(y_true, y_pred, users)
|
|
58
|
+
score = 0
|
|
59
|
+
num = 0
|
|
60
|
+
for u in user_pred.keys():
|
|
61
|
+
auc = auc_score(user_pred[u]['y_true'], user_pred[u]['y_pred'])
|
|
62
|
+
if weights is None:
|
|
63
|
+
user_weight = len(user_pred[u]['y_true'])
|
|
64
|
+
else:
|
|
65
|
+
user_weight = weights[u]
|
|
66
|
+
auc *= user_weight
|
|
67
|
+
num += user_weight
|
|
68
|
+
score += auc
|
|
69
|
+
return score / num
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
def ndcg_score(y_true, y_pred, topKs=None):
|
|
73
|
+
if topKs is None:
|
|
74
|
+
topKs = [5]
|
|
75
|
+
result = topk_metrics(y_true, y_pred, topKs)
|
|
76
|
+
return result['NDCG']
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
def hit_score(y_true, y_pred, topKs=None):
|
|
80
|
+
if topKs is None:
|
|
81
|
+
topKs = [5]
|
|
82
|
+
result = topk_metrics(y_true, y_pred, topKs)
|
|
83
|
+
return result['Hit']
|
|
84
|
+
|
|
85
|
+
|
|
86
|
+
def mrr_score(y_true, y_pred, topKs=None):
|
|
87
|
+
if topKs is None:
|
|
88
|
+
topKs = [5]
|
|
89
|
+
result = topk_metrics(y_true, y_pred, topKs)
|
|
90
|
+
return result['MRR']
|
|
91
|
+
|
|
92
|
+
|
|
93
|
+
def recall_score(y_true, y_pred, topKs=None):
|
|
94
|
+
if topKs is None:
|
|
95
|
+
topKs = [5]
|
|
96
|
+
result = topk_metrics(y_true, y_pred, topKs)
|
|
97
|
+
return result['Recall']
|
|
98
|
+
|
|
99
|
+
|
|
100
|
+
def precision_score(y_true, y_pred, topKs=None):
|
|
101
|
+
if topKs is None:
|
|
102
|
+
topKs = [5]
|
|
103
|
+
result = topk_metrics(y_true, y_pred, topKs)
|
|
104
|
+
return result['Precision']
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
def topk_metrics(y_true, y_pred, topKs=None):
|
|
108
|
+
"""choice topk metrics and compute it
|
|
109
|
+
the metrics contains 'ndcg', 'mrr', 'recall', 'precision' and 'hit'
|
|
110
|
+
|
|
111
|
+
Args:
|
|
112
|
+
y_true (dict): {userid, item_ids}, the key is user id and the value is the list that contains the items the user interacted
|
|
113
|
+
y_pred (dict): {userid, item_ids}, the key is user id and the value is the list that contains the items recommended
|
|
114
|
+
topKs (list or tuple): if you want to get top5 and top10, topKs=(5, 10)
|
|
115
|
+
|
|
116
|
+
Return:
|
|
117
|
+
results (dict): {metric_name: metric_values}, it contains five metrics, 'ndcg', 'recall', 'mrr', 'hit', 'precision'
|
|
118
|
+
|
|
119
|
+
"""
|
|
120
|
+
if topKs is None:
|
|
121
|
+
topKs = [5]
|
|
122
|
+
assert len(y_true) == len(y_pred)
|
|
123
|
+
|
|
124
|
+
if not isinstance(topKs, (tuple, list)):
|
|
125
|
+
raise ValueError('topKs wrong, it should be tuple or list')
|
|
126
|
+
|
|
127
|
+
pred_array = []
|
|
128
|
+
true_array = []
|
|
129
|
+
for u in y_true.keys():
|
|
130
|
+
pred_array.append(y_pred[u])
|
|
131
|
+
true_array.append(y_true[u])
|
|
132
|
+
ndcg_result = []
|
|
133
|
+
mrr_result = []
|
|
134
|
+
hit_result = []
|
|
135
|
+
precision_result = []
|
|
136
|
+
recall_result = []
|
|
137
|
+
for idx in range(len(topKs)):
|
|
138
|
+
ndcgs = 0
|
|
139
|
+
mrrs = 0
|
|
140
|
+
hits = 0
|
|
141
|
+
precisions = 0
|
|
142
|
+
recalls = 0
|
|
143
|
+
gts = 0
|
|
144
|
+
for i in range(len(true_array)):
|
|
145
|
+
if len(true_array[i]) != 0:
|
|
146
|
+
mrr_tmp = 0
|
|
147
|
+
mrr_flag = True
|
|
148
|
+
hit_tmp = 0
|
|
149
|
+
dcg_tmp = 0
|
|
150
|
+
idcg_tmp = 0
|
|
151
|
+
for j in range(topKs[idx]):
|
|
152
|
+
if pred_array[i][j] in true_array[i]:
|
|
153
|
+
hit_tmp += 1.
|
|
154
|
+
if mrr_flag:
|
|
155
|
+
mrr_flag = False
|
|
156
|
+
mrr_tmp = 1. / (1 + j)
|
|
157
|
+
dcg_tmp += 1. / (np.log2(j + 2))
|
|
158
|
+
if j < len(true_array[i]):
|
|
159
|
+
idcg_tmp += 1. / (np.log2(j + 2))
|
|
160
|
+
gts += len(true_array[i])
|
|
161
|
+
hits += hit_tmp
|
|
162
|
+
mrrs += mrr_tmp
|
|
163
|
+
recalls += hit_tmp / len(true_array[i])
|
|
164
|
+
precisions += hit_tmp / topKs[idx]
|
|
165
|
+
if idcg_tmp != 0:
|
|
166
|
+
ndcgs += dcg_tmp / idcg_tmp
|
|
167
|
+
hit_result.append(round(hits / gts, 4))
|
|
168
|
+
mrr_result.append(round(mrrs / len(pred_array), 4))
|
|
169
|
+
recall_result.append(round(recalls / len(pred_array), 4))
|
|
170
|
+
precision_result.append(round(precisions / len(pred_array), 4))
|
|
171
|
+
ndcg_result.append(round(ndcgs / len(pred_array), 4))
|
|
172
|
+
|
|
173
|
+
results = defaultdict(list)
|
|
174
|
+
for idx in range(len(topKs)):
|
|
175
|
+
|
|
176
|
+
output = f'NDCG@{topKs[idx]}: {ndcg_result[idx]}'
|
|
177
|
+
results['NDCG'].append(output)
|
|
178
|
+
|
|
179
|
+
output = f'MRR@{topKs[idx]}: {mrr_result[idx]}'
|
|
180
|
+
results['MRR'].append(output)
|
|
181
|
+
|
|
182
|
+
output = f'Recall@{topKs[idx]}: {recall_result[idx]}'
|
|
183
|
+
results['Recall'].append(output)
|
|
184
|
+
|
|
185
|
+
output = f'Hit@{topKs[idx]}: {hit_result[idx]}'
|
|
186
|
+
results['Hit'].append(output)
|
|
187
|
+
|
|
188
|
+
output = f'Precision@{topKs[idx]}: {precision_result[idx]}'
|
|
189
|
+
results['Precision'].append(output)
|
|
190
|
+
return results
|
|
191
|
+
|
|
192
|
+
|
|
193
|
+
def log_loss(y_true, y_pred):
|
|
194
|
+
score = y_true * np.log(y_pred) + (1 - y_true) * np.log(1 - y_pred)
|
|
195
|
+
return -score.sum() / len(y_true)
|
|
196
|
+
|
|
197
|
+
|
|
198
|
+
def Coverage(y_pred, all_items, topKs=None):
|
|
199
|
+
"""compute the coverage
|
|
200
|
+
This method measures the diversity of the recommended items
|
|
201
|
+
and the ability to explore the long-tailed items
|
|
202
|
+
Arg:
|
|
203
|
+
y_pred (dict): {userid, item_ids}, the key is user id and the value is the list that contains the items recommended
|
|
204
|
+
all_items (set): all unique items
|
|
205
|
+
Return:
|
|
206
|
+
result (list[float]): the list of coverage scores
|
|
207
|
+
"""
|
|
208
|
+
if topKs is None:
|
|
209
|
+
topKs = [5]
|
|
210
|
+
result = []
|
|
211
|
+
for k in topKs:
|
|
212
|
+
rec_items = set([])
|
|
213
|
+
for u in y_pred.keys():
|
|
214
|
+
tmp_items = set(y_pred[u][:k])
|
|
215
|
+
rec_items = rec_items | tmp_items
|
|
216
|
+
score = len(rec_items) * 1. / len(all_items)
|
|
217
|
+
score = round(score, 4)
|
|
218
|
+
result.append(f'Coverage@{k}: {score}')
|
|
219
|
+
return result
|
|
220
|
+
|
|
221
|
+
|
|
222
|
+
# print(Coverage({'0':[0,1,2],'1':[1,3,4]}, {0,1,2,3,4,5}, [2,3]))
|
|
223
|
+
|
|
224
|
+
# pred = np.array([ 0.3, 0.2, 0.5, 0.9, 0.7, 0.31, 0.8, 0.1, 0.4, 0.6])
|
|
225
|
+
# label = np.array([ 1, 0, 0, 1, 0, 0, 1, 0, 0, 1])
|
|
226
|
+
# users_id = np.array([ 2, 1, 0, 2, 1, 0, 0, 2, 1, 1])
|
|
227
|
+
|
|
228
|
+
# print('auc: ', auc_score(label, pred))
|
|
229
|
+
# print('gauc: ', gauc_score(label, pred, users_id))
|
|
230
|
+
# print('log_loss: ', log_loss(label, pred))
|
|
231
|
+
|
|
232
|
+
# for mt in ['ndcg', 'mrr', 'recall', 'hit','s']:
|
|
233
|
+
# tm = topk_metrics(y_true, y_pred, users_id, 3, metric_type=mt)
|
|
234
|
+
# print(f'{mt}: {tm}')
|
|
235
|
+
# y_pred = {'0': [0, 1], '1': [0, 1], '2': [2, 3]}
|
|
236
|
+
# y_true = {'0': [1, 2], '1': [0, 1, 2], '2': [2, 3]}
|
|
237
|
+
# out = topk_metrics(y_true, y_pred, topKs=(1,2))
|
|
238
|
+
# ndcgs = ndcg_score(y_true,y_pred, topKs=(1,2))
|
|
239
|
+
# print(out)
|
|
240
|
+
# print(ndcgs)
|
|
241
|
+
|
|
242
|
+
# ground_truth, match_res = np.load("C:\\Users\\dongj\\Desktop/res.npy", allow_pickle=True)
|
|
243
|
+
# print(len(ground_truth),len(match_res))
|
|
244
|
+
# out = topk_metrics(y_true=ground_truth, y_pred=match_res, topKs=[50])
|
|
245
|
+
# print(out)
|
|
246
|
+
|
|
247
|
+
if __name__ == "__main__":
|
|
248
|
+
y_pred = {'0': [0, 1], '1': [0, 1], '2': [2, 3]}
|
|
249
|
+
y_true = {'0': [1, 2], '1': [0, 1, 2], '2': [2, 3]}
|
|
250
|
+
out = topk_metrics(y_true, y_pred, topKs=(1, 2))
|
|
251
|
+
print(out)
|