torch-rechub 0.0.1__py3-none-any.whl → 0.0.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (65) hide show
  1. torch_rechub/__init__.py +14 -0
  2. torch_rechub/basic/activation.py +3 -1
  3. torch_rechub/basic/callback.py +2 -2
  4. torch_rechub/basic/features.py +38 -8
  5. torch_rechub/basic/initializers.py +92 -0
  6. torch_rechub/basic/layers.py +800 -46
  7. torch_rechub/basic/loss_func.py +223 -0
  8. torch_rechub/basic/metaoptimizer.py +76 -0
  9. torch_rechub/basic/metric.py +251 -0
  10. torch_rechub/models/generative/__init__.py +6 -0
  11. torch_rechub/models/generative/hllm.py +249 -0
  12. torch_rechub/models/generative/hstu.py +189 -0
  13. torch_rechub/models/matching/__init__.py +13 -0
  14. torch_rechub/models/matching/comirec.py +193 -0
  15. torch_rechub/models/matching/dssm.py +72 -0
  16. torch_rechub/models/matching/dssm_facebook.py +77 -0
  17. torch_rechub/models/matching/dssm_senet.py +87 -0
  18. torch_rechub/models/matching/gru4rec.py +85 -0
  19. torch_rechub/models/matching/mind.py +103 -0
  20. torch_rechub/models/matching/narm.py +82 -0
  21. torch_rechub/models/matching/sasrec.py +143 -0
  22. torch_rechub/models/matching/sine.py +148 -0
  23. torch_rechub/models/matching/stamp.py +81 -0
  24. torch_rechub/models/matching/youtube_dnn.py +75 -0
  25. torch_rechub/models/matching/youtube_sbc.py +98 -0
  26. torch_rechub/models/multi_task/__init__.py +5 -2
  27. torch_rechub/models/multi_task/aitm.py +83 -0
  28. torch_rechub/models/multi_task/esmm.py +19 -8
  29. torch_rechub/models/multi_task/mmoe.py +18 -12
  30. torch_rechub/models/multi_task/ple.py +41 -29
  31. torch_rechub/models/multi_task/shared_bottom.py +3 -2
  32. torch_rechub/models/ranking/__init__.py +13 -2
  33. torch_rechub/models/ranking/afm.py +65 -0
  34. torch_rechub/models/ranking/autoint.py +102 -0
  35. torch_rechub/models/ranking/bst.py +61 -0
  36. torch_rechub/models/ranking/dcn.py +38 -0
  37. torch_rechub/models/ranking/dcn_v2.py +59 -0
  38. torch_rechub/models/ranking/deepffm.py +131 -0
  39. torch_rechub/models/ranking/deepfm.py +8 -7
  40. torch_rechub/models/ranking/dien.py +191 -0
  41. torch_rechub/models/ranking/din.py +31 -19
  42. torch_rechub/models/ranking/edcn.py +101 -0
  43. torch_rechub/models/ranking/fibinet.py +42 -0
  44. torch_rechub/models/ranking/widedeep.py +6 -6
  45. torch_rechub/trainers/__init__.py +4 -2
  46. torch_rechub/trainers/ctr_trainer.py +191 -0
  47. torch_rechub/trainers/match_trainer.py +239 -0
  48. torch_rechub/trainers/matching.md +3 -0
  49. torch_rechub/trainers/mtl_trainer.py +137 -23
  50. torch_rechub/trainers/seq_trainer.py +293 -0
  51. torch_rechub/utils/__init__.py +0 -0
  52. torch_rechub/utils/data.py +492 -0
  53. torch_rechub/utils/hstu_utils.py +198 -0
  54. torch_rechub/utils/match.py +457 -0
  55. torch_rechub/utils/mtl.py +136 -0
  56. torch_rechub/utils/onnx_export.py +353 -0
  57. torch_rechub-0.0.4.dist-info/METADATA +391 -0
  58. torch_rechub-0.0.4.dist-info/RECORD +62 -0
  59. {torch_rechub-0.0.1.dist-info → torch_rechub-0.0.4.dist-info}/WHEEL +1 -2
  60. {torch_rechub-0.0.1.dist-info → torch_rechub-0.0.4.dist-info/licenses}/LICENSE +1 -1
  61. torch_rechub/basic/utils.py +0 -168
  62. torch_rechub/trainers/trainer.py +0 -111
  63. torch_rechub-0.0.1.dist-info/METADATA +0 -105
  64. torch_rechub-0.0.1.dist-info/RECORD +0 -26
  65. torch_rechub-0.0.1.dist-info/top_level.txt +0 -1
@@ -0,0 +1,492 @@
1
+ import random
2
+
3
+ import numpy as np
4
+ import pandas as pd
5
+ import torch
6
+ import tqdm
7
+ from sklearn.metrics import mean_squared_error, roc_auc_score
8
+ from sklearn.preprocessing import LabelEncoder
9
+ from torch.utils.data import DataLoader, Dataset, random_split
10
+
11
+
12
+ class TorchDataset(Dataset):
13
+
14
+ def __init__(self, x, y):
15
+ super().__init__()
16
+ self.x = x
17
+ self.y = y
18
+
19
+ def __getitem__(self, index):
20
+ return {k: v[index] for k, v in self.x.items()}, self.y[index]
21
+
22
+ def __len__(self):
23
+ return len(self.y)
24
+
25
+
26
+ class PredictDataset(Dataset):
27
+
28
+ def __init__(self, x):
29
+ super().__init__()
30
+ self.x = x
31
+
32
+ def __getitem__(self, index):
33
+ return {k: v[index] for k, v in self.x.items()}
34
+
35
+ def __len__(self):
36
+ return len(self.x[list(self.x.keys())[0]])
37
+
38
+
39
+ class MatchDataGenerator(object):
40
+
41
+ def __init__(self, x, y=[]):
42
+ super().__init__()
43
+ if len(y) != 0:
44
+ self.dataset = TorchDataset(x, y)
45
+ else: # For pair-wise model, trained without given label
46
+ self.dataset = PredictDataset(x)
47
+
48
+ def generate_dataloader(self, x_test_user, x_all_item, batch_size, num_workers=8):
49
+ train_dataloader = DataLoader(self.dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
50
+ test_dataset = PredictDataset(x_test_user)
51
+
52
+ # shuffle = False to keep same order as ground truth
53
+ test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
54
+ item_dataset = PredictDataset(x_all_item)
55
+ item_dataloader = DataLoader(item_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
56
+ return train_dataloader, test_dataloader, item_dataloader
57
+
58
+
59
+ class DataGenerator(object):
60
+
61
+ def __init__(self, x, y):
62
+ super().__init__()
63
+ self.dataset = TorchDataset(x, y)
64
+ self.length = len(self.dataset)
65
+
66
+ def generate_dataloader(self, x_val=None, y_val=None, x_test=None, y_test=None, split_ratio=None, batch_size=16, num_workers=0):
67
+ if split_ratio is not None:
68
+ train_length = int(self.length * split_ratio[0])
69
+ val_length = int(self.length * split_ratio[1])
70
+ test_length = self.length - train_length - val_length
71
+ print("the samples of train : val : test are %d : %d : %d" % (train_length, val_length, test_length))
72
+ train_dataset, val_dataset, test_dataset = random_split(self.dataset, (train_length, val_length, test_length))
73
+ else:
74
+ train_dataset = self.dataset
75
+ val_dataset = TorchDataset(x_val, y_val)
76
+ test_dataset = TorchDataset(x_test, y_test)
77
+
78
+ train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
79
+ val_dataloader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
80
+ test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
81
+ return train_dataloader, val_dataloader, test_dataloader
82
+
83
+
84
+ def get_auto_embedding_dim(num_classes):
85
+ """ Calculate the dim of embedding vector according to number of classes in the category
86
+ emb_dim = [6 * (num_classes)^(1/4)]
87
+ reference: Deep & Cross Network for Ad Click Predictions.(ADKDD'17)
88
+ Args:
89
+ num_classes: number of classes in the category
90
+
91
+ Returns:
92
+ the dim of embedding vector
93
+ """
94
+ return int(np.floor(6 * np.pow(num_classes, 0.25)))
95
+
96
+
97
+ def get_loss_func(task_type="classification"):
98
+ if task_type == "classification":
99
+ return torch.nn.BCELoss()
100
+ elif task_type == "regression":
101
+ return torch.nn.MSELoss()
102
+ else:
103
+ raise ValueError("task_type must be classification or regression")
104
+
105
+
106
+ def get_metric_func(task_type="classification"):
107
+ if task_type == "classification":
108
+ return roc_auc_score
109
+ elif task_type == "regression":
110
+ return mean_squared_error
111
+ else:
112
+ raise ValueError("task_type must be classification or regression")
113
+
114
+
115
+ def generate_seq_feature(data, user_col, item_col, time_col, item_attribute_cols=[], min_item=0, shuffle=True, max_len=50):
116
+ """generate sequence feature and negative sample for ranking.
117
+
118
+ Args:
119
+ data (pd.DataFrame): the raw data.
120
+ user_col (str): the col name of user_id
121
+ item_col (str): the col name of item_id
122
+ time_col (str): the col name of timestamp
123
+ item_attribute_cols (list[str], optional): the other attribute cols of item which you want to generate sequence feature. Defaults to `[]`.
124
+ sample_method (int, optional): the negative sample method `{
125
+ 0: "random sampling",
126
+ 1: "popularity sampling method used in word2vec",
127
+ 2: "popularity sampling method by `log(count+1)+1e-6`",
128
+ 3: "tencent RALM sampling"}`.
129
+ Defaults to 0.
130
+ min_item (int, optional): the min item each user must have. Defaults to 0.
131
+ shuffle (bool, optional): shulle if True
132
+ max_len (int, optional): the max length of a user history sequence.
133
+
134
+ Returns:
135
+ pd.DataFrame: split train, val and test data with sequence features by time.
136
+ """
137
+ for feat in data:
138
+ le = LabelEncoder()
139
+ data[feat] = le.fit_transform(data[feat])
140
+ # 0 to be used as the symbol for padding
141
+ data[feat] = data[feat].apply(lambda x: x + 1)
142
+ data = data.astype('int32')
143
+
144
+ # generate item to attribute mapping
145
+ n_items = data[item_col].max()
146
+ item2attr = {}
147
+ if len(item_attribute_cols) > 0:
148
+ for col in item_attribute_cols:
149
+ map = data[[item_col, col]]
150
+ item2attr[col] = map.set_index([item_col])[col].to_dict()
151
+
152
+ train_data, val_data, test_data = [], [], []
153
+ data.sort_values(time_col, inplace=True)
154
+ # Sliding window to construct negative samples
155
+ for uid, hist in tqdm.tqdm(data.groupby(user_col), desc='generate sequence features'):
156
+ pos_list = hist[item_col].tolist()
157
+ len_pos_list = len(pos_list)
158
+ if len_pos_list < min_item: # drop this user when his pos items < min_item
159
+ continue
160
+
161
+ neg_list = [neg_sample(pos_list, n_items) for _ in range(len_pos_list)]
162
+ for i in range(1, min(len_pos_list, max_len)):
163
+ hist_item = pos_list[:i]
164
+ hist_item = hist_item + [0] * (max_len - len(hist_item))
165
+ pos_item = pos_list[i]
166
+ neg_item = neg_list[i]
167
+ pos_seq = [1, pos_item, uid, hist_item]
168
+ neg_seq = [0, neg_item, uid, hist_item]
169
+ if len(item_attribute_cols) > 0:
170
+ for attr_col in item_attribute_cols: # the history of item attribute features
171
+ hist_attr = hist[attr_col].tolist()[:i]
172
+ hist_attr = hist_attr + [0] * (max_len - len(hist_attr))
173
+ pos2attr = [hist_attr, item2attr[attr_col][pos_item]]
174
+ neg2attr = [hist_attr, item2attr[attr_col][neg_item]]
175
+ pos_seq += pos2attr
176
+ neg_seq += neg2attr
177
+ if i == len_pos_list - 1:
178
+ test_data.append(pos_seq)
179
+ test_data.append(neg_seq)
180
+ elif i == len_pos_list - 2:
181
+ val_data.append(pos_seq)
182
+ val_data.append(neg_seq)
183
+ else:
184
+ train_data.append(pos_seq)
185
+ train_data.append(neg_seq)
186
+
187
+ col_name = ['label', 'target_item_id', user_col, 'hist_item_id']
188
+ if len(item_attribute_cols) > 0:
189
+ for attr_col in item_attribute_cols: # the history of item attribute features
190
+ name = ['hist_' + attr_col, 'target_' + attr_col]
191
+ col_name += name
192
+
193
+
194
+ # shuffle
195
+ if shuffle:
196
+ random.shuffle(train_data)
197
+ random.shuffle(val_data)
198
+ random.shuffle(test_data)
199
+
200
+ train = pd.DataFrame(train_data, columns=col_name)
201
+ val = pd.DataFrame(val_data, columns=col_name)
202
+ test = pd.DataFrame(test_data, columns=col_name)
203
+
204
+ return train, val, test
205
+
206
+
207
+ def df_to_dict(data):
208
+ """
209
+ Convert the DataFrame to a dict type input that the network can accept
210
+ Args:
211
+ data (pd.DataFrame): datasets of type DataFrame
212
+ Returns:
213
+ The converted dict, which can be used directly into the input network
214
+ """
215
+ data_dict = data.to_dict('list')
216
+ for key in data.keys():
217
+ data_dict[key] = np.array(data_dict[key])
218
+ return data_dict
219
+
220
+
221
+ def neg_sample(click_hist, item_size):
222
+ neg = random.randint(1, item_size)
223
+ while neg in click_hist:
224
+ neg = random.randint(1, item_size)
225
+ return neg
226
+
227
+
228
+ def pad_sequences(sequences, maxlen=None, dtype='int32', padding='pre', truncating='pre', value=0.):
229
+ """ Pads sequences (list of list) to the ndarray of same length.
230
+ This is an equivalent implementation of tf.keras.preprocessing.sequence.pad_sequences
231
+ reference: https://github.com/huawei-noah/benchmark/tree/main/FuxiCTR/fuxictr
232
+
233
+ Args:
234
+ sequences (pd.DataFrame): data that needs to pad or truncate
235
+ maxlen (int): maximum sequence length. Defaults to None.
236
+ dtype (str, optional): Defaults to 'int32'.
237
+ padding (str, optional): if len(sequences) less than maxlen, padding style, {'pre', 'post'}. Defaults to 'pre'.
238
+ truncating (str, optional): if len(sequences) more than maxlen, truncate style, {'pre', 'post'}. Defaults to 'pre'.
239
+ value (_type_, optional): Defaults to 0..
240
+
241
+ Returns:
242
+ _type_: _description_
243
+ """
244
+
245
+ assert padding in ["pre", "post"], "Invalid padding={}.".format(padding)
246
+ assert truncating in ["pre", "post"], "Invalid truncating={}.".format(truncating)
247
+
248
+ if maxlen is None:
249
+ maxlen = max(len(x) for x in sequences)
250
+ arr = np.full((len(sequences), maxlen), value, dtype=dtype)
251
+ for idx, x in enumerate(sequences):
252
+ if len(x) == 0:
253
+ continue # empty list
254
+ if truncating == 'pre':
255
+ trunc = x[-maxlen:]
256
+ else:
257
+ trunc = x[:maxlen]
258
+ trunc = np.asarray(trunc, dtype=dtype)
259
+
260
+ if padding == 'pre':
261
+ arr[idx, -len(trunc):] = trunc
262
+ else:
263
+ arr[idx, :len(trunc)] = trunc
264
+ return arr
265
+
266
+
267
+ def array_replace_with_dict(array, dic):
268
+ """Replace values in NumPy array based on dictionary.
269
+ Args:
270
+ array (np.array): a numpy array
271
+ dic (dict): a map dict
272
+
273
+ Returns:
274
+ np.array: array with replace
275
+ """
276
+ # Extract out keys and values
277
+ k = np.array(list(dic.keys()))
278
+ v = np.array(list(dic.values()))
279
+
280
+ # Get argsort indices
281
+ idx = k.argsort()
282
+ return v[idx[np.searchsorted(k, array, sorter=idx)]]
283
+
284
+
285
+ # Temporarily reserved for testing purposes(1985312383@qq.com)
286
+ def create_seq_features(data, seq_feature_col=['item_id', 'cate_id'], max_len=50, drop_short=3, shuffle=True):
287
+ """Build a sequence of user's history by time.
288
+
289
+ Args:
290
+ data (pd.DataFrame): must contain keys: `user_id, item_id, cate_id, time`.
291
+ seq_feature_col (list): specify the column name that needs to generate sequence features, and its sequence features will be generated according to userid.
292
+ max_len (int): the max length of a user history sequence.
293
+ drop_short (int): remove some inactive user who's sequence length < drop_short.
294
+ shuffle (bool): shuffle data if true.
295
+
296
+ Returns:
297
+ train (pd.DataFrame): target item will be each item before last two items.
298
+ val (pd.DataFrame): target item is the second to last item of user's history sequence.
299
+ test (pd.DataFrame): target item is the last item of user's history sequence.
300
+ """
301
+ for feat in data:
302
+ le = LabelEncoder()
303
+ data[feat] = le.fit_transform(data[feat])
304
+ # 0 to be used as the symbol for padding
305
+ data[feat] = data[feat].apply(lambda x: x + 1)
306
+ data = data.astype('int32')
307
+
308
+ n_items = data["item_id"].max()
309
+
310
+ item_cate_map = data[['item_id', 'cate_id']]
311
+ item2cate_dict = item_cate_map.set_index(['item_id'])['cate_id'].to_dict()
312
+
313
+ data = data.sort_values(['user_id', 'time']).groupby('user_id').agg(click_hist_list=('item_id', list), cate_hist_hist=('cate_id', list)).reset_index()
314
+
315
+ # Sliding window to construct negative samples
316
+ train_data, val_data, test_data = [], [], []
317
+ for item in data.itertuples():
318
+ if len(item[2]) < drop_short:
319
+ continue
320
+ user_id = item[1]
321
+ click_hist_list = item[2][:max_len]
322
+ cate_hist_list = item[3][:max_len]
323
+
324
+ neg_list = [neg_sample(click_hist_list, n_items) for _ in range(len(click_hist_list))]
325
+ hist_list = []
326
+ cate_list = []
327
+ for i in range(1, len(click_hist_list)):
328
+ hist_list.append(click_hist_list[i - 1])
329
+ cate_list.append(cate_hist_list[i - 1])
330
+ hist_list_pad = hist_list + [0] * (max_len - len(hist_list))
331
+ cate_list_pad = cate_list + [0] * (max_len - len(cate_list))
332
+ if i == len(click_hist_list) - 1:
333
+ test_data.append([user_id, hist_list_pad, cate_list_pad, click_hist_list[i], cate_hist_list[i], 1])
334
+ test_data.append([user_id, hist_list_pad, cate_list_pad, neg_list[i], item2cate_dict[neg_list[i]], 0])
335
+ if i == len(click_hist_list) - 2:
336
+ val_data.append([user_id, hist_list_pad, cate_list_pad, click_hist_list[i], cate_hist_list[i], 1])
337
+ val_data.append([user_id, hist_list_pad, cate_list_pad, neg_list[i], item2cate_dict[neg_list[i]], 0])
338
+ else:
339
+ train_data.append([user_id, hist_list_pad, cate_list_pad, click_hist_list[i], cate_hist_list[i], 1])
340
+ train_data.append([user_id, hist_list_pad, cate_list_pad, neg_list[i], item2cate_dict[neg_list[i]], 0])
341
+
342
+ # shuffle
343
+ if shuffle:
344
+ random.shuffle(train_data)
345
+ random.shuffle(val_data)
346
+ random.shuffle(test_data)
347
+
348
+ col_name = ['user_id', 'history_item', 'history_cate', 'target_item', 'target_cate', 'label']
349
+ train = pd.DataFrame(train_data, columns=col_name)
350
+ val = pd.DataFrame(val_data, columns=col_name)
351
+ test = pd.DataFrame(test_data, columns=col_name)
352
+
353
+ return train, val, test
354
+
355
+
356
+ # ============ Sequence Data Classes (新增) ============
357
+
358
+
359
+ class SeqDataset(Dataset):
360
+ """Sequence dataset for HSTU-style generative models.
361
+
362
+ This class wraps precomputed sequence features for next-item prediction
363
+ tasks, including tokens, positions, time differences and targets.
364
+
365
+ Args:
366
+ seq_tokens (np.ndarray): Token ids of shape ``(num_samples, seq_len)``.
367
+ seq_positions (np.ndarray): Position indices of shape
368
+ ``(num_samples, seq_len)``.
369
+ targets (np.ndarray): Target token ids of shape ``(num_samples,)``.
370
+ seq_time_diffs (np.ndarray): Time-difference features of shape
371
+ ``(num_samples, seq_len)``.
372
+
373
+ Shape:
374
+ - Output: A tuple ``(seq_tokens, seq_positions, seq_time_diffs, target)``.
375
+
376
+ Example:
377
+ >>> seq_tokens = np.random.randint(0, 1000, (100, 256))
378
+ >>> seq_positions = np.arange(256)[np.newaxis, :].repeat(100, axis=0)
379
+ >>> seq_time_diffs = np.random.randint(0, 86400, (100, 256))
380
+ >>> targets = np.random.randint(0, 1000, (100,))
381
+ >>> dataset = SeqDataset(seq_tokens, seq_positions, targets, seq_time_diffs)
382
+ >>> len(dataset)
383
+ 100
384
+ """
385
+
386
+ def __init__(self, seq_tokens, seq_positions, targets, seq_time_diffs):
387
+ super().__init__()
388
+ self.seq_tokens = seq_tokens
389
+ self.seq_positions = seq_positions
390
+ self.targets = targets
391
+ self.seq_time_diffs = seq_time_diffs
392
+
393
+ # Validate basic shape consistency
394
+ assert len(seq_tokens) == len(targets), "seq_tokens and targets must have same length"
395
+ assert len(seq_tokens) == len(seq_positions), "seq_tokens and seq_positions must have same length"
396
+ assert len(seq_tokens) == len(seq_time_diffs), "seq_tokens and seq_time_diffs must have same length"
397
+ assert seq_tokens.shape[1] == seq_positions.shape[1], "seq_tokens and seq_positions must have same seq_len"
398
+ assert seq_tokens.shape[1] == seq_time_diffs.shape[1], "seq_tokens and seq_time_diffs must have same seq_len"
399
+
400
+ def __getitem__(self, index):
401
+ """Return a single sample.
402
+
403
+ Args:
404
+ index (int): Sample index.
405
+
406
+ Returns:
407
+ tuple: ``(seq_tokens, seq_positions, seq_time_diffs, target)``.
408
+ """
409
+ return (torch.LongTensor(self.seq_tokens[index]), torch.LongTensor(self.seq_positions[index]), torch.LongTensor(self.seq_time_diffs[index]), torch.LongTensor([self.targets[index]]))
410
+
411
+ def __len__(self):
412
+ """Return the dataset size."""
413
+ return len(self.targets)
414
+
415
+
416
+ class SequenceDataGenerator(object):
417
+ """Sequence data generator used for HSTU-style models.
418
+
419
+ This helper wraps a :class:`SeqDataset` and provides convenient utilities
420
+ to construct train/val/test ``DataLoader`` objects.
421
+
422
+ Args:
423
+ seq_tokens (np.ndarray): Token ids of shape ``(num_samples, seq_len)``.
424
+ seq_positions (np.ndarray): Position indices of shape
425
+ ``(num_samples, seq_len)``.
426
+ targets (np.ndarray): Target token ids of shape ``(num_samples,)``.
427
+ seq_time_diffs (np.ndarray): Time-difference features of shape
428
+ ``(num_samples, seq_len)``.
429
+
430
+ Methods:
431
+ generate_dataloader: Build train/val/test data loaders.
432
+
433
+ Example:
434
+ >>> seq_tokens = np.random.randint(0, 1000, (1000, 256))
435
+ >>> seq_positions = np.arange(256)[np.newaxis, :].repeat(1000, axis=0)
436
+ >>> seq_time_diffs = np.random.randint(0, 86400, (1000, 256))
437
+ >>> targets = np.random.randint(0, 1000, (1000,))
438
+ >>> gen = SequenceDataGenerator(seq_tokens, seq_positions, targets, seq_time_diffs)
439
+ >>> train_loader, val_loader, test_loader = gen.generate_dataloader(batch_size=32)
440
+ """
441
+
442
+ def __init__(self, seq_tokens, seq_positions, targets, seq_time_diffs):
443
+ super().__init__()
444
+ self.seq_tokens = seq_tokens
445
+ self.seq_positions = seq_positions
446
+ self.targets = targets
447
+ self.seq_time_diffs = seq_time_diffs
448
+
449
+ # Underlying dataset
450
+ self.dataset = SeqDataset(seq_tokens, seq_positions, targets, seq_time_diffs)
451
+
452
+ def generate_dataloader(self, batch_size=32, num_workers=0, split_ratio=None):
453
+ """生成数据加载器.
454
+
455
+ Args:
456
+ batch_size (int): 批大小,默认32
457
+ num_workers (int): 数据加载线程数,默认0
458
+ split_ratio (tuple): 分割比例 (train, val, test),默认(0.7, 0.1, 0.2)
459
+
460
+ Returns:
461
+ tuple: (train_loader, val_loader, test_loader)
462
+
463
+ Example:
464
+ >>> train_loader, val_loader, test_loader = gen.generate_dataloader(
465
+ ... batch_size=32,
466
+ ... num_workers=4,
467
+ ... split_ratio=(0.7, 0.1, 0.2)
468
+ ... )
469
+ """
470
+ if split_ratio is None:
471
+ split_ratio = (0.7, 0.1, 0.2)
472
+
473
+ # 验证分割比例
474
+ assert abs(sum(split_ratio) - 1.0) < 1e-6, "split_ratio must sum to 1.0"
475
+
476
+ # 计算分割大小
477
+ total_size = len(self.dataset)
478
+ train_size = int(total_size * split_ratio[0])
479
+ val_size = int(total_size * split_ratio[1])
480
+ test_size = total_size - train_size - val_size
481
+
482
+ # 分割数据集
483
+ train_dataset, val_dataset, test_dataset = random_split(self.dataset, [train_size, val_size, test_size])
484
+
485
+ # 创建数据加载器
486
+ train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
487
+
488
+ val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
489
+
490
+ test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
491
+
492
+ return train_loader, val_loader, test_loader
@@ -0,0 +1,198 @@
1
+ """Utility classes and functions for the HSTU model."""
2
+
3
+ import numpy as np
4
+ import torch
5
+ import torch.nn as nn
6
+
7
+
8
+ class RelPosBias(nn.Module):
9
+ """Relative position bias module.
10
+
11
+ This module is used in HSTU self-attention layers to provide a learnable
12
+ bias that depends on the relative distance between sequence positions. It
13
+ can be combined with time-based bucketing when needed.
14
+
15
+ Args:
16
+ n_heads (int): Number of attention heads.
17
+ max_seq_len (int): Maximum supported sequence length.
18
+ num_buckets (int): Number of relative position buckets. Default: 32.
19
+
20
+ Shape:
21
+ - Output: ``(1, n_heads, seq_len, seq_len)``
22
+
23
+ Example:
24
+ >>> rel_pos_bias = RelPosBias(n_heads=8, max_seq_len=256)
25
+ >>> bias = rel_pos_bias(256)
26
+ >>> bias.shape
27
+ torch.Size([1, 8, 256, 256])
28
+ """
29
+
30
+ def __init__(self, n_heads, max_seq_len, num_buckets=32):
31
+ super().__init__()
32
+ self.n_heads = n_heads
33
+ self.max_seq_len = max_seq_len
34
+ self.num_buckets = num_buckets
35
+
36
+ # 相对位置偏置表: (num_buckets, n_heads)
37
+ self.rel_pos_bias_table = nn.Parameter(torch.randn(num_buckets, n_heads))
38
+
39
+ def _relative_position_bucket(self, relative_position):
40
+ """Map relative positions to bucket indices.
41
+
42
+ Args:
43
+ relative_position (Tensor): Relative position tensor ``(L, L)``.
44
+
45
+ Returns:
46
+ Tensor: Integer bucket indices with the same ``(L, L)`` shape.
47
+ """
48
+ num_buckets = self.num_buckets
49
+ max_distance = self.max_seq_len
50
+
51
+ # Use absolute distance and linearly map it to bucket indices
52
+ relative_position = torch.abs(relative_position)
53
+
54
+ bucket = torch.clamp(
55
+ relative_position * (num_buckets - 1) // max_distance,
56
+ 0,
57
+ num_buckets - 1,
58
+ )
59
+
60
+ return bucket.long()
61
+
62
+ def forward(self, seq_len):
63
+ """Compute relative position bias for a given sequence length.
64
+
65
+ Args:
66
+ seq_len (int): Sequence length ``L``.
67
+
68
+ Returns:
69
+ Tensor: Relative position bias of shape ``(1, n_heads, L, L)``.
70
+ """
71
+ # 创建位置索引
72
+ positions = torch.arange(seq_len, dtype=torch.long, device=self.rel_pos_bias_table.device)
73
+
74
+ # 计算相对位置: (seq_len, seq_len)
75
+ relative_positions = positions.unsqueeze(0) - positions.unsqueeze(1)
76
+
77
+ # 映射到bucket
78
+ buckets = self._relative_position_bucket(relative_positions)
79
+
80
+ # 查表获取偏置: (seq_len, seq_len, n_heads)
81
+ bias = self.rel_pos_bias_table[buckets]
82
+
83
+ # 转置为 (1, n_heads, seq_len, seq_len)
84
+ bias = bias.permute(2, 0, 1).unsqueeze(0)
85
+
86
+ return bias
87
+
88
+
89
+ class VocabMask(nn.Module):
90
+ """Vocabulary mask used to constrain generation during inference.
91
+
92
+ At inference time this module can be used to mask out invalid item IDs
93
+ so that the model never generates them.
94
+
95
+ Args:
96
+ vocab_size (int): Vocabulary size.
97
+ invalid_items (list, optional): List of invalid item IDs to be masked.
98
+
99
+ Methods:
100
+ apply_mask: Apply the mask to logits.
101
+
102
+ Example:
103
+ >>> mask = VocabMask(vocab_size=1000, invalid_items=[0, 1, 2])
104
+ >>> logits = torch.randn(32, 1000)
105
+ >>> masked_logits = mask.apply_mask(logits)
106
+ """
107
+
108
+ def __init__(self, vocab_size, invalid_items=None):
109
+ super().__init__()
110
+ self.vocab_size = vocab_size
111
+
112
+ # Create a boolean mask over the vocabulary
113
+ self.register_buffer(
114
+ 'mask',
115
+ torch.ones(vocab_size,
116
+ dtype=torch.bool),
117
+ )
118
+
119
+ # Mark invalid items
120
+ if invalid_items is not None:
121
+ for item_id in invalid_items:
122
+ if 0 <= item_id < vocab_size:
123
+ self.mask[item_id] = False
124
+
125
+ def apply_mask(self, logits):
126
+ """应用掩码到logits.
127
+
128
+ Args:
129
+ logits (Tensor): 模型输出logits,shape: (..., vocab_size)
130
+
131
+ Returns:
132
+ Tensor: 掩码后的logits
133
+ """
134
+ # 将无效item的logits设置为极小值
135
+ masked_logits = logits.clone()
136
+ masked_logits[..., ~self.mask] = -1e9
137
+
138
+ return masked_logits
139
+
140
+
141
+ class VocabMapper(object):
142
+ """Simple mapper between ``item_id`` and ``token_id``.
143
+
144
+ In sequence generation tasks we often treat item IDs as tokens. This
145
+ helper keeps a trivial identity mapping but makes the intent explicit and
146
+ allows future extensions (e.g., reserved IDs, remapping, etc.).
147
+
148
+ Args:
149
+ vocab_size (int): Size of the vocabulary.
150
+ pad_id (int): ID used for the PAD token. Default: 0.
151
+ unk_id (int): ID used for unknown tokens. Default: 1.
152
+
153
+ Methods:
154
+ encode: Map ``item_id`` to ``token_id``.
155
+ decode: Map ``token_id`` back to ``item_id``.
156
+
157
+ Example:
158
+ >>> mapper = VocabMapper(vocab_size=1000)
159
+ >>> item_ids = np.array([10, 20, 30])
160
+ >>> token_ids = mapper.encode(item_ids)
161
+ >>> decoded_ids = mapper.decode(token_ids)
162
+ """
163
+
164
+ def __init__(self, vocab_size, pad_id=0, unk_id=1):
165
+ super().__init__()
166
+ self.vocab_size = vocab_size
167
+ self.pad_id = pad_id
168
+ self.unk_id = unk_id
169
+
170
+ # 创建映射表(简单的恒等映射)
171
+ self.item2token = np.arange(vocab_size)
172
+ self.token2item = np.arange(vocab_size)
173
+
174
+ def encode(self, item_ids):
175
+ """将item_id转换为token_id.
176
+
177
+ Args:
178
+ item_ids (np.ndarray): item ID数组
179
+
180
+ Returns:
181
+ np.ndarray: token ID数组
182
+ """
183
+ # 处理超出范围的item_id
184
+ token_ids = np.where((item_ids >= 0) & (item_ids < self.vocab_size), item_ids, self.unk_id)
185
+ return token_ids
186
+
187
+ def decode(self, token_ids):
188
+ """将token_id转换为item_id.
189
+
190
+ Args:
191
+ token_ids (np.ndarray): token ID数组
192
+
193
+ Returns:
194
+ np.ndarray: item ID数组
195
+ """
196
+ # 处理超出范围的token_id
197
+ item_ids = np.where((token_ids >= 0) & (token_ids < self.vocab_size), token_ids, self.unk_id)
198
+ return item_ids