torch-rechub 0.0.1__py3-none-any.whl → 0.0.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- torch_rechub/basic/activation.py +54 -52
- torch_rechub/basic/callback.py +32 -32
- torch_rechub/basic/features.py +94 -57
- torch_rechub/basic/initializers.py +92 -0
- torch_rechub/basic/layers.py +720 -240
- torch_rechub/basic/loss_func.py +34 -0
- torch_rechub/basic/metaoptimizer.py +72 -0
- torch_rechub/basic/metric.py +250 -0
- torch_rechub/models/matching/__init__.py +11 -0
- torch_rechub/models/matching/comirec.py +188 -0
- torch_rechub/models/matching/dssm.py +66 -0
- torch_rechub/models/matching/dssm_facebook.py +79 -0
- torch_rechub/models/matching/dssm_senet.py +75 -0
- torch_rechub/models/matching/gru4rec.py +87 -0
- torch_rechub/models/matching/mind.py +101 -0
- torch_rechub/models/matching/narm.py +76 -0
- torch_rechub/models/matching/sasrec.py +140 -0
- torch_rechub/models/matching/sine.py +151 -0
- torch_rechub/models/matching/stamp.py +83 -0
- torch_rechub/models/matching/youtube_dnn.py +71 -0
- torch_rechub/models/matching/youtube_sbc.py +98 -0
- torch_rechub/models/multi_task/__init__.py +5 -4
- torch_rechub/models/multi_task/aitm.py +84 -0
- torch_rechub/models/multi_task/esmm.py +55 -45
- torch_rechub/models/multi_task/mmoe.py +58 -52
- torch_rechub/models/multi_task/ple.py +130 -104
- torch_rechub/models/multi_task/shared_bottom.py +45 -44
- torch_rechub/models/ranking/__init__.py +11 -3
- torch_rechub/models/ranking/afm.py +63 -0
- torch_rechub/models/ranking/bst.py +63 -0
- torch_rechub/models/ranking/dcn.py +38 -0
- torch_rechub/models/ranking/dcn_v2.py +69 -0
- torch_rechub/models/ranking/deepffm.py +123 -0
- torch_rechub/models/ranking/deepfm.py +41 -41
- torch_rechub/models/ranking/dien.py +191 -0
- torch_rechub/models/ranking/din.py +91 -81
- torch_rechub/models/ranking/edcn.py +117 -0
- torch_rechub/models/ranking/fibinet.py +50 -0
- torch_rechub/models/ranking/widedeep.py +41 -41
- torch_rechub/trainers/__init__.py +2 -1
- torch_rechub/trainers/{trainer.py → ctr_trainer.py} +128 -111
- torch_rechub/trainers/match_trainer.py +170 -0
- torch_rechub/trainers/mtl_trainer.py +206 -144
- torch_rechub/utils/__init__.py +0 -0
- torch_rechub/utils/data.py +360 -0
- torch_rechub/utils/match.py +274 -0
- torch_rechub/utils/mtl.py +126 -0
- {torch_rechub-0.0.1.dist-info → torch_rechub-0.0.3.dist-info}/LICENSE +21 -21
- torch_rechub-0.0.3.dist-info/METADATA +177 -0
- torch_rechub-0.0.3.dist-info/RECORD +55 -0
- {torch_rechub-0.0.1.dist-info → torch_rechub-0.0.3.dist-info}/WHEEL +1 -1
- torch_rechub/basic/utils.py +0 -168
- torch_rechub-0.0.1.dist-info/METADATA +0 -105
- torch_rechub-0.0.1.dist-info/RECORD +0 -26
- {torch_rechub-0.0.1.dist-info → torch_rechub-0.0.3.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,117 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Date: create on 09/13/2022
|
|
3
|
+
References:
|
|
4
|
+
paper: (KDD'21) EDCN: Enhancing Explicit and Implicit Feature Interactions via Information Sharing for Parallel Deep CTR Models
|
|
5
|
+
url: https://dlp-kdd.github.io/assets/pdf/DLP-KDD_2021_paper_12.pdf
|
|
6
|
+
Authors: lailai, lailai_zxy@tju.edu.cn
|
|
7
|
+
"""
|
|
8
|
+
|
|
9
|
+
import torch
|
|
10
|
+
from torch import nn
|
|
11
|
+
from ...basic.layers import LR, MLP, CrossLayer, EmbeddingLayer
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class EDCN(torch.nn.Module):
|
|
15
|
+
"""Deep & Cross Network with a mixture of low-rank architecture
|
|
16
|
+
|
|
17
|
+
Args:
|
|
18
|
+
features (list[Feature Class]): training by the whole module.
|
|
19
|
+
n_cross_layers (int) : the number of layers of feature intersection layers
|
|
20
|
+
mlp_params (dict): the params of the last MLP module, keys include:`{"dims":list, "activation":str, "dropout":float, "output_layer":bool`}
|
|
21
|
+
bridge_type (str): the type interaction function, in ["hadamard_product", "pointwise_addition", "concatenation", "attention_pooling"]
|
|
22
|
+
use_regulation_module (bool): True, whether to use regulation module
|
|
23
|
+
temperature (int): the temperature coefficient to control distribution
|
|
24
|
+
"""
|
|
25
|
+
|
|
26
|
+
def __init__(self, features, n_cross_layers, mlp_params, bridge_type="hadamard_product", use_regulation_module=True,
|
|
27
|
+
temperature=1):
|
|
28
|
+
super().__init__()
|
|
29
|
+
self.features = features
|
|
30
|
+
self.n_cross_layers = n_cross_layers
|
|
31
|
+
self.num_fields = len(features)
|
|
32
|
+
self.dims = sum([fea.embed_dim for fea in features])
|
|
33
|
+
self.fea_dims = [fea.embed_dim for fea in features]
|
|
34
|
+
self.embedding = EmbeddingLayer(features)
|
|
35
|
+
self.cross_layers = nn.ModuleList([CrossLayer(self.dims) for _ in range(n_cross_layers)])
|
|
36
|
+
self.bridge_modules = nn.ModuleList([BridgeModule(self.dims, bridge_type) for _ in range(n_cross_layers)])
|
|
37
|
+
self.regulation_modules = nn.ModuleList([RegulationModule(self.num_fields,
|
|
38
|
+
self.fea_dims,
|
|
39
|
+
tau=temperature,
|
|
40
|
+
use_regulation=use_regulation_module) for _ in range(n_cross_layers)])
|
|
41
|
+
mlp_params["dims"] = [self.dims, self.dims]
|
|
42
|
+
self.mlps = nn.ModuleList([MLP(self.dims, output_layer=False, **mlp_params) for _ in range(n_cross_layers)])
|
|
43
|
+
self.linear = LR(self.dims * 3)
|
|
44
|
+
|
|
45
|
+
def forward(self, x):
|
|
46
|
+
embed_x = self.embedding(x, self.features, squeeze_dim=True)
|
|
47
|
+
cross_i, deep_i = self.regulation_modules[0](embed_x)
|
|
48
|
+
cross_0 = cross_i
|
|
49
|
+
for i in range(self.n_cross_layers):
|
|
50
|
+
if i>0:
|
|
51
|
+
cross_i, deep_i = self.regulation_modules[i](bridge_i)
|
|
52
|
+
cross_i = cross_i + self.cross_layers[i](cross_0, cross_i)
|
|
53
|
+
deep_i = self.mlps[i](deep_i)
|
|
54
|
+
bridge_i = self.bridge_modules[i](cross_i, deep_i)
|
|
55
|
+
x_stack = torch.cat([cross_i, deep_i, bridge_i], dim=1)
|
|
56
|
+
y = self.linear(x_stack)
|
|
57
|
+
return torch.sigmoid(y.squeeze(1))
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
class BridgeModule(torch.nn.Module):
|
|
61
|
+
def __init__(self, input_dim, bridge_type):
|
|
62
|
+
super(BridgeModule, self).__init__()
|
|
63
|
+
assert bridge_type in ["hadamard_product", "pointwise_addition", "concatenation",
|
|
64
|
+
"attention_pooling"], 'bridge_type= is not supported'.format(bridge_type)
|
|
65
|
+
self.bridge_type = bridge_type
|
|
66
|
+
if bridge_type=="concatenation":
|
|
67
|
+
self.concat_pooling = nn.Sequential(nn.Linear(input_dim * 2, input_dim),
|
|
68
|
+
nn.ReLU())
|
|
69
|
+
elif bridge_type=="attention_pooling":
|
|
70
|
+
self.attention_x = nn.Sequential(nn.Linear(input_dim, input_dim),
|
|
71
|
+
nn.ReLU(),
|
|
72
|
+
nn.Linear(input_dim, input_dim,bias=False),
|
|
73
|
+
nn.Softmax(dim=-1))
|
|
74
|
+
self.attention_h = nn.Sequential(nn.Linear(input_dim, input_dim),
|
|
75
|
+
nn.ReLU(),
|
|
76
|
+
nn.Linear(input_dim, input_dim,bias=False),
|
|
77
|
+
nn.Softmax(dim=-1))
|
|
78
|
+
def forward(self, x, h):
|
|
79
|
+
if self.bridge_type == "hadamard_product":
|
|
80
|
+
out = x * h
|
|
81
|
+
elif self.bridge_type == "pointwise_addition":
|
|
82
|
+
out = x + h
|
|
83
|
+
elif self.bridge_type == "concatenation":
|
|
84
|
+
out = self.concat_pooling(torch.cat([x, h], dim=-1))
|
|
85
|
+
elif self.bridge_type == "attention_pooling":
|
|
86
|
+
out = self.attention_x(x) * x + self.attention_h(h) * h
|
|
87
|
+
return out
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
class RegulationModule(torch.nn.Module):
|
|
91
|
+
def __init__(self, num_fields,
|
|
92
|
+
dims,
|
|
93
|
+
tau,
|
|
94
|
+
use_regulation=True):
|
|
95
|
+
super(RegulationModule, self).__init__()
|
|
96
|
+
self.use_regulation = use_regulation
|
|
97
|
+
if self.use_regulation:
|
|
98
|
+
self.num_fields = num_fields
|
|
99
|
+
self.dims = dims
|
|
100
|
+
self.tau = tau
|
|
101
|
+
self.g1 = nn.Parameter(torch.ones(num_fields))
|
|
102
|
+
self.g2 = nn.Parameter(torch.ones(num_fields))
|
|
103
|
+
|
|
104
|
+
def forward(self, x):
|
|
105
|
+
if self.use_regulation:
|
|
106
|
+
g1 = torch.cat([(self.g1[i]/ self.tau).softmax(dim=-1).unsqueeze(-1).repeat(1, self.dims[i]) for i in range(self.num_fields)], dim=-1)
|
|
107
|
+
g2 = torch.cat([(self.g2[i] / self.tau).softmax(dim=-1).unsqueeze(-1).repeat(1, self.dims[i]) for i in range(self.num_fields)], dim=-1)
|
|
108
|
+
|
|
109
|
+
out1, out2 = g1*x, g2*x
|
|
110
|
+
else:
|
|
111
|
+
out1, out2 = x, x
|
|
112
|
+
return out1, out2
|
|
113
|
+
|
|
114
|
+
|
|
115
|
+
|
|
116
|
+
|
|
117
|
+
|
|
@@ -0,0 +1,50 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Date: create on 10/19/2022
|
|
3
|
+
References:
|
|
4
|
+
paper: (RecSys '19) FiBiNET: combining feature importance and bilinear feature interaction for click-through rate prediction
|
|
5
|
+
url: https://dl.acm.org/doi/abs/10.1145/3298689.3347043
|
|
6
|
+
Authors: lailai, lailai_zxy@tju.edu.cn
|
|
7
|
+
"""
|
|
8
|
+
import torch
|
|
9
|
+
from torch import nn
|
|
10
|
+
from ...basic.layers import MLP, EmbeddingLayer, SENETLayer, BiLinearInteractionLayer
|
|
11
|
+
from ...basic.features import SparseFeature
|
|
12
|
+
class FiBiNet(torch.nn.Module):
|
|
13
|
+
"""
|
|
14
|
+
Args:
|
|
15
|
+
features (list[Feature Class]): training by the whole module.
|
|
16
|
+
reduction_ratio (int) : Hidden layer reduction factor of SENET layer
|
|
17
|
+
mlp_params (dict): the params of the last MLP module, keys include:`{"dims":list, "activation":str, "dropout":float, "output_layer":bool`}
|
|
18
|
+
bilinear_type (str): the type bilinear interaction function, in ["field_all", "field_each", "field_interaction"], field_all means that all features share a W, field_each means that a feature field corresponds to a W_i, field_interaction means that a feature field intersection corresponds to a W_ij
|
|
19
|
+
"""
|
|
20
|
+
def __init__(self, features, mlp_params, reduction_ratio=3, bilinear_type="field_interaction", **kwargs):
|
|
21
|
+
super(FiBiNet, self).__init__()
|
|
22
|
+
self.features = features
|
|
23
|
+
self.embedding = EmbeddingLayer(features)
|
|
24
|
+
embedding_dim = max([fea.embed_dim for fea in features])
|
|
25
|
+
num_fields = len([fea.embed_dim for fea in features if isinstance(fea, SparseFeature) and fea.shared_with == None])
|
|
26
|
+
self.senet_layer = SENETLayer(num_fields, reduction_ratio)
|
|
27
|
+
self.bilinear_interaction = BiLinearInteractionLayer(embedding_dim, num_fields, bilinear_type)
|
|
28
|
+
self.dims = num_fields * (num_fields - 1) * embedding_dim
|
|
29
|
+
self.mlp = MLP(self.dims, **mlp_params)
|
|
30
|
+
|
|
31
|
+
def forward(self, x):
|
|
32
|
+
embed_x = self.embedding(x, self.features)
|
|
33
|
+
embed_senet = self.senet_layer(embed_x)
|
|
34
|
+
embed_bi1 = self.bilinear_interaction(embed_x)
|
|
35
|
+
embed_bi2 = self.bilinear_interaction(embed_senet)
|
|
36
|
+
shallow_part = torch.flatten(torch.cat([embed_bi1, embed_bi2], dim=1), start_dim=1)
|
|
37
|
+
mlp_out = self.mlp(shallow_part)
|
|
38
|
+
return torch.sigmoid(mlp_out.squeeze(1))
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
|
|
@@ -1,41 +1,41 @@
|
|
|
1
|
-
"""
|
|
2
|
-
Date: create on 22/04/2022
|
|
3
|
-
References:
|
|
4
|
-
paper: (DLRS'2016) Wide & Deep Learning for Recommender Systems
|
|
5
|
-
url: https://arxiv.org/abs/1606.07792
|
|
6
|
-
Authors: Mincai Lai, laimincai@shanghaitech.edu.cn
|
|
7
|
-
"""
|
|
8
|
-
|
|
9
|
-
import torch
|
|
10
|
-
|
|
11
|
-
from ...basic.layers import LR, MLP, EmbeddingLayer
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
class WideDeep(torch.nn.Module):
|
|
15
|
-
"""Wide & Deep Learning model.
|
|
16
|
-
|
|
17
|
-
Args:
|
|
18
|
-
wide_features (list): the list of `Feature Class`, training by the wide part module.
|
|
19
|
-
deep_features (list): the list of `Feature Class`, training by the deep part module.
|
|
20
|
-
mlp_params (dict): the params of the last MLP module, keys include:`{"dims":list, "activation":str, "dropout":float, "output_layer":bool`}
|
|
21
|
-
"""
|
|
22
|
-
|
|
23
|
-
def __init__(self, wide_features, deep_features, mlp_params):
|
|
24
|
-
super(WideDeep, self).__init__()
|
|
25
|
-
self.wide_features = wide_features
|
|
26
|
-
self.deep_features = deep_features
|
|
27
|
-
self.wide_dims = sum([fea.embed_dim for fea in wide_features])
|
|
28
|
-
self.deep_dims = sum([fea.embed_dim for fea in deep_features])
|
|
29
|
-
self.linear = LR(self.wide_dims)
|
|
30
|
-
self.embedding = EmbeddingLayer(wide_features + deep_features)
|
|
31
|
-
self.mlp = MLP(self.deep_dims, **mlp_params)
|
|
32
|
-
|
|
33
|
-
def forward(self, x):
|
|
34
|
-
input_wide = self.embedding(x, self.wide_features, squeeze_dim=True) #[batch_size, wide_dims]
|
|
35
|
-
input_deep = self.embedding(x, self.deep_features, squeeze_dim=True) #[batch_size, deep_dims]
|
|
36
|
-
|
|
37
|
-
y_wide = self.linear(input_wide) #[batch_size, 1]
|
|
38
|
-
y_deep = self.mlp(input_deep) #[batch_size, 1]
|
|
39
|
-
y = y_wide + y_deep
|
|
40
|
-
y = torch.sigmoid(y.squeeze(1))
|
|
41
|
-
return y
|
|
1
|
+
"""
|
|
2
|
+
Date: create on 22/04/2022
|
|
3
|
+
References:
|
|
4
|
+
paper: (DLRS'2016) Wide & Deep Learning for Recommender Systems
|
|
5
|
+
url: https://arxiv.org/abs/1606.07792
|
|
6
|
+
Authors: Mincai Lai, laimincai@shanghaitech.edu.cn
|
|
7
|
+
"""
|
|
8
|
+
|
|
9
|
+
import torch
|
|
10
|
+
|
|
11
|
+
from ...basic.layers import LR, MLP, EmbeddingLayer
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class WideDeep(torch.nn.Module):
|
|
15
|
+
"""Wide & Deep Learning model.
|
|
16
|
+
|
|
17
|
+
Args:
|
|
18
|
+
wide_features (list): the list of `Feature Class`, training by the wide part module.
|
|
19
|
+
deep_features (list): the list of `Feature Class`, training by the deep part module.
|
|
20
|
+
mlp_params (dict): the params of the last MLP module, keys include:`{"dims":list, "activation":str, "dropout":float, "output_layer":bool`}
|
|
21
|
+
"""
|
|
22
|
+
|
|
23
|
+
def __init__(self, wide_features, deep_features, mlp_params):
|
|
24
|
+
super(WideDeep, self).__init__()
|
|
25
|
+
self.wide_features = wide_features
|
|
26
|
+
self.deep_features = deep_features
|
|
27
|
+
self.wide_dims = sum([fea.embed_dim for fea in wide_features])
|
|
28
|
+
self.deep_dims = sum([fea.embed_dim for fea in deep_features])
|
|
29
|
+
self.linear = LR(self.wide_dims)
|
|
30
|
+
self.embedding = EmbeddingLayer(wide_features + deep_features)
|
|
31
|
+
self.mlp = MLP(self.deep_dims, **mlp_params)
|
|
32
|
+
|
|
33
|
+
def forward(self, x):
|
|
34
|
+
input_wide = self.embedding(x, self.wide_features, squeeze_dim=True) #[batch_size, wide_dims]
|
|
35
|
+
input_deep = self.embedding(x, self.deep_features, squeeze_dim=True) #[batch_size, deep_dims]
|
|
36
|
+
|
|
37
|
+
y_wide = self.linear(input_wide) #[batch_size, 1]
|
|
38
|
+
y_deep = self.mlp(input_deep) #[batch_size, 1]
|
|
39
|
+
y = y_wide + y_deep
|
|
40
|
+
y = torch.sigmoid(y.squeeze(1))
|
|
41
|
+
return y
|
|
@@ -1,111 +1,128 @@
|
|
|
1
|
-
import os
|
|
2
|
-
import torch
|
|
3
|
-
import tqdm
|
|
4
|
-
from sklearn.metrics import roc_auc_score
|
|
5
|
-
from ..basic.callback import EarlyStopper
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
class CTRTrainer(object):
|
|
9
|
-
"""A general trainer for single task learning.
|
|
10
|
-
|
|
11
|
-
Args:
|
|
12
|
-
model (nn.Module): any multi task learning model.
|
|
13
|
-
optimizer_fn (torch.optim): optimizer function of pytorch (default = `torch.optim.Adam`).
|
|
14
|
-
optimizer_params (dict): parameters of optimizer_fn.
|
|
15
|
-
scheduler_fn (torch.optim.lr_scheduler) : torch scheduling class, eg. `torch.optim.lr_scheduler.StepLR`.
|
|
16
|
-
scheduler_params (dict): parameters of optimizer scheduler_fn.
|
|
17
|
-
n_epoch (int): epoch number of training.
|
|
18
|
-
earlystop_patience (int): how long to wait after last time validation auc improved (default=10).
|
|
19
|
-
device (str): `"cpu"` or `"cuda:0"`
|
|
20
|
-
gpus (list): id of multi gpu (default=[]). If the length >=1, then the model will wrapped by nn.DataParallel.
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
self.
|
|
43
|
-
if
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
self.
|
|
47
|
-
self.
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
self.
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
self.
|
|
54
|
-
self.
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
self.
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
self.
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
self.
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
1
|
+
import os
|
|
2
|
+
import torch
|
|
3
|
+
import tqdm
|
|
4
|
+
from sklearn.metrics import roc_auc_score
|
|
5
|
+
from ..basic.callback import EarlyStopper
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class CTRTrainer(object):
|
|
9
|
+
"""A general trainer for single task learning.
|
|
10
|
+
|
|
11
|
+
Args:
|
|
12
|
+
model (nn.Module): any multi task learning model.
|
|
13
|
+
optimizer_fn (torch.optim): optimizer function of pytorch (default = `torch.optim.Adam`).
|
|
14
|
+
optimizer_params (dict): parameters of optimizer_fn.
|
|
15
|
+
scheduler_fn (torch.optim.lr_scheduler) : torch scheduling class, eg. `torch.optim.lr_scheduler.StepLR`.
|
|
16
|
+
scheduler_params (dict): parameters of optimizer scheduler_fn.
|
|
17
|
+
n_epoch (int): epoch number of training.
|
|
18
|
+
earlystop_patience (int): how long to wait after last time validation auc improved (default=10).
|
|
19
|
+
device (str): `"cpu"` or `"cuda:0"`
|
|
20
|
+
gpus (list): id of multi gpu (default=[]). If the length >=1, then the model will wrapped by nn.DataParallel.
|
|
21
|
+
loss_mode (int, optional): the training mode, `{0:point-wise, 1:pair-wise, 2:list-wise}`. Defaults to 0.
|
|
22
|
+
model_path (str): the path you want to save the model (default="./"). Note only save the best weight in the validation data.
|
|
23
|
+
"""
|
|
24
|
+
|
|
25
|
+
def __init__(
|
|
26
|
+
self,
|
|
27
|
+
model,
|
|
28
|
+
optimizer_fn=torch.optim.Adam,
|
|
29
|
+
optimizer_params=None,
|
|
30
|
+
scheduler_fn=None,
|
|
31
|
+
scheduler_params=None,
|
|
32
|
+
n_epoch=10,
|
|
33
|
+
earlystop_patience=10,
|
|
34
|
+
device="cpu",
|
|
35
|
+
gpus=None,
|
|
36
|
+
loss_mode=True,
|
|
37
|
+
model_path="./",
|
|
38
|
+
):
|
|
39
|
+
self.model = model # for uniform weights save method in one gpu or multi gpu
|
|
40
|
+
if gpus is None:
|
|
41
|
+
gpus = []
|
|
42
|
+
self.gpus = gpus
|
|
43
|
+
if len(gpus) > 1:
|
|
44
|
+
print('parallel running on these gpus:', gpus)
|
|
45
|
+
self.model = torch.nn.DataParallel(self.model, device_ids=gpus)
|
|
46
|
+
self.device = torch.device(device) #torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
47
|
+
self.model.to(self.device)
|
|
48
|
+
if optimizer_params is None:
|
|
49
|
+
optimizer_params = {"lr": 1e-3, "weight_decay": 1e-5}
|
|
50
|
+
self.optimizer = optimizer_fn(self.model.parameters(), **optimizer_params) #default optimizer
|
|
51
|
+
self.scheduler = None
|
|
52
|
+
if scheduler_fn is not None:
|
|
53
|
+
self.scheduler = scheduler_fn(self.optimizer, **scheduler_params)
|
|
54
|
+
self.loss_mode = loss_mode
|
|
55
|
+
self.criterion = torch.nn.BCELoss() #default loss cross_entropy
|
|
56
|
+
self.evaluate_fn = roc_auc_score #default evaluate function
|
|
57
|
+
self.n_epoch = n_epoch
|
|
58
|
+
self.early_stopper = EarlyStopper(patience=earlystop_patience)
|
|
59
|
+
self.model_path = model_path
|
|
60
|
+
|
|
61
|
+
def train_one_epoch(self, data_loader, log_interval=10):
|
|
62
|
+
self.model.train()
|
|
63
|
+
total_loss = 0
|
|
64
|
+
tk0 = tqdm.tqdm(data_loader, desc="train", smoothing=0, mininterval=1.0)
|
|
65
|
+
for i, (x_dict, y) in enumerate(tk0):
|
|
66
|
+
x_dict = {k: v.to(self.device) for k, v in x_dict.items()} #tensor to GPU
|
|
67
|
+
y = y.to(self.device).float()
|
|
68
|
+
if self.loss_mode:
|
|
69
|
+
y_pred = self.model(x_dict)
|
|
70
|
+
loss = self.criterion(y_pred, y)
|
|
71
|
+
else:
|
|
72
|
+
y_pred, other_loss = self.model(x_dict)
|
|
73
|
+
loss = self.criterion(y_pred, y) + other_loss
|
|
74
|
+
self.model.zero_grad()
|
|
75
|
+
loss.backward()
|
|
76
|
+
self.optimizer.step()
|
|
77
|
+
total_loss += loss.item()
|
|
78
|
+
if (i + 1) % log_interval == 0:
|
|
79
|
+
tk0.set_postfix(loss=total_loss / log_interval)
|
|
80
|
+
total_loss = 0
|
|
81
|
+
|
|
82
|
+
def fit(self, train_dataloader, val_dataloader=None):
|
|
83
|
+
for epoch_i in range(self.n_epoch):
|
|
84
|
+
print('epoch:', epoch_i)
|
|
85
|
+
self.train_one_epoch(train_dataloader)
|
|
86
|
+
if self.scheduler is not None:
|
|
87
|
+
if epoch_i % self.scheduler.step_size == 0:
|
|
88
|
+
print("Current lr : {}".format(self.optimizer.state_dict()['param_groups'][0]['lr']))
|
|
89
|
+
self.scheduler.step() #update lr in epoch level by scheduler
|
|
90
|
+
if val_dataloader:
|
|
91
|
+
auc = self.evaluate(self.model, val_dataloader)
|
|
92
|
+
print('epoch:', epoch_i, 'validation: auc:', auc)
|
|
93
|
+
if self.early_stopper.stop_training(auc, self.model.state_dict()):
|
|
94
|
+
print(f'validation: best auc: {self.early_stopper.best_auc}')
|
|
95
|
+
self.model.load_state_dict(self.early_stopper.best_weights)
|
|
96
|
+
break
|
|
97
|
+
torch.save(self.model.state_dict(), os.path.join(self.model_path, "model.pth")) #save best auc model
|
|
98
|
+
|
|
99
|
+
def evaluate(self, model, data_loader):
|
|
100
|
+
model.eval()
|
|
101
|
+
targets, predicts = list(), list()
|
|
102
|
+
with torch.no_grad():
|
|
103
|
+
tk0 = tqdm.tqdm(data_loader, desc="validation", smoothing=0, mininterval=1.0)
|
|
104
|
+
for i, (x_dict, y) in enumerate(tk0):
|
|
105
|
+
x_dict = {k: v.to(self.device) for k, v in x_dict.items()}
|
|
106
|
+
y = y.to(self.device).float().view(-1, 1) # 确保y是float类型且维度为[batch_size, 1]
|
|
107
|
+
if self.loss_mode:
|
|
108
|
+
y_pred = model(x_dict)
|
|
109
|
+
else:
|
|
110
|
+
y_pred, _ = model(x_dict)
|
|
111
|
+
targets.extend(y.tolist())
|
|
112
|
+
predicts.extend(y_pred.tolist())
|
|
113
|
+
return self.evaluate_fn(targets, predicts)
|
|
114
|
+
|
|
115
|
+
def predict(self, model, data_loader):
|
|
116
|
+
model.eval()
|
|
117
|
+
predicts = list()
|
|
118
|
+
with torch.no_grad():
|
|
119
|
+
tk0 = tqdm.tqdm(data_loader, desc="predict", smoothing=0, mininterval=1.0)
|
|
120
|
+
for i, (x_dict, y) in enumerate(tk0):
|
|
121
|
+
x_dict = {k: v.to(self.device) for k, v in x_dict.items()}
|
|
122
|
+
y = y.to(self.device)
|
|
123
|
+
if self.loss_mode:
|
|
124
|
+
y_pred = model(x_dict)
|
|
125
|
+
else:
|
|
126
|
+
y_pred, _ = model(x_dict)
|
|
127
|
+
predicts.extend(y_pred.tolist())
|
|
128
|
+
return predicts
|