torch-rechub 0.0.1__py3-none-any.whl → 0.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (55) hide show
  1. torch_rechub/basic/activation.py +54 -52
  2. torch_rechub/basic/callback.py +32 -32
  3. torch_rechub/basic/features.py +94 -57
  4. torch_rechub/basic/initializers.py +92 -0
  5. torch_rechub/basic/layers.py +720 -240
  6. torch_rechub/basic/loss_func.py +34 -0
  7. torch_rechub/basic/metaoptimizer.py +72 -0
  8. torch_rechub/basic/metric.py +250 -0
  9. torch_rechub/models/matching/__init__.py +11 -0
  10. torch_rechub/models/matching/comirec.py +188 -0
  11. torch_rechub/models/matching/dssm.py +66 -0
  12. torch_rechub/models/matching/dssm_facebook.py +79 -0
  13. torch_rechub/models/matching/dssm_senet.py +75 -0
  14. torch_rechub/models/matching/gru4rec.py +87 -0
  15. torch_rechub/models/matching/mind.py +101 -0
  16. torch_rechub/models/matching/narm.py +76 -0
  17. torch_rechub/models/matching/sasrec.py +140 -0
  18. torch_rechub/models/matching/sine.py +151 -0
  19. torch_rechub/models/matching/stamp.py +83 -0
  20. torch_rechub/models/matching/youtube_dnn.py +71 -0
  21. torch_rechub/models/matching/youtube_sbc.py +98 -0
  22. torch_rechub/models/multi_task/__init__.py +5 -4
  23. torch_rechub/models/multi_task/aitm.py +84 -0
  24. torch_rechub/models/multi_task/esmm.py +55 -45
  25. torch_rechub/models/multi_task/mmoe.py +58 -52
  26. torch_rechub/models/multi_task/ple.py +130 -104
  27. torch_rechub/models/multi_task/shared_bottom.py +45 -44
  28. torch_rechub/models/ranking/__init__.py +11 -3
  29. torch_rechub/models/ranking/afm.py +63 -0
  30. torch_rechub/models/ranking/bst.py +63 -0
  31. torch_rechub/models/ranking/dcn.py +38 -0
  32. torch_rechub/models/ranking/dcn_v2.py +69 -0
  33. torch_rechub/models/ranking/deepffm.py +123 -0
  34. torch_rechub/models/ranking/deepfm.py +41 -41
  35. torch_rechub/models/ranking/dien.py +191 -0
  36. torch_rechub/models/ranking/din.py +91 -81
  37. torch_rechub/models/ranking/edcn.py +117 -0
  38. torch_rechub/models/ranking/fibinet.py +50 -0
  39. torch_rechub/models/ranking/widedeep.py +41 -41
  40. torch_rechub/trainers/__init__.py +2 -1
  41. torch_rechub/trainers/{trainer.py → ctr_trainer.py} +128 -111
  42. torch_rechub/trainers/match_trainer.py +170 -0
  43. torch_rechub/trainers/mtl_trainer.py +206 -144
  44. torch_rechub/utils/__init__.py +0 -0
  45. torch_rechub/utils/data.py +360 -0
  46. torch_rechub/utils/match.py +274 -0
  47. torch_rechub/utils/mtl.py +126 -0
  48. {torch_rechub-0.0.1.dist-info → torch_rechub-0.0.3.dist-info}/LICENSE +21 -21
  49. torch_rechub-0.0.3.dist-info/METADATA +177 -0
  50. torch_rechub-0.0.3.dist-info/RECORD +55 -0
  51. {torch_rechub-0.0.1.dist-info → torch_rechub-0.0.3.dist-info}/WHEEL +1 -1
  52. torch_rechub/basic/utils.py +0 -168
  53. torch_rechub-0.0.1.dist-info/METADATA +0 -105
  54. torch_rechub-0.0.1.dist-info/RECORD +0 -26
  55. {torch_rechub-0.0.1.dist-info → torch_rechub-0.0.3.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,69 @@
1
+ """
2
+ Date: create on 09/01/2022
3
+ References:
4
+ paper: (WWW'21) Dcn v2: Improved deep & cross network and practical lessons for web-scale learning to rank systems
5
+ url: https://arxiv.org/abs/2008.13535
6
+ Authors: lailai, lailai_zxy@tju.edu.cn
7
+ """
8
+ import torch
9
+ from ...basic.layers import LR, MLP,CrossNetV2, CrossNetMix, EmbeddingLayer
10
+
11
+ class DCNv2(torch.nn.Module):
12
+ """Deep & Cross Network with a mixture of low-rank architecture
13
+
14
+ Args:
15
+ features (list[Feature Class]): training by the whole module.
16
+ n_cross_layers (int) : the number of layers of feature intersection layers
17
+ mlp_params (dict): the params of the last MLP module, keys include:`{"dims":list, "activation":str, "dropout":float, "output_layer":bool`}
18
+ use_low_rank_mixture (bool): True, whether to use a mixture of low-rank architecture
19
+ low_rank (int): the rank size of low-rank matrices
20
+ num_experts (int): the number of expert networks
21
+ """
22
+ def __init__(self,
23
+ features,
24
+ n_cross_layers,
25
+ mlp_params,
26
+ model_structure="parallel",
27
+ use_low_rank_mixture=True,
28
+ low_rank=32,
29
+ num_experts=4,
30
+ **kwargs):
31
+ super(DCNv2, self).__init__()
32
+ self.features = features
33
+ self.dims = sum([fea.embed_dim for fea in features])
34
+ self.embedding = EmbeddingLayer(features)
35
+ if use_low_rank_mixture:
36
+ self.crossnet = CrossNetMix(self.dims, n_cross_layers, low_rank=low_rank, num_experts=num_experts)
37
+ else:
38
+ self.crossnet = CrossNetV2(self.dims, n_cross_layers)
39
+ self.model_structure = model_structure
40
+ assert self.model_structure in ["crossnet_only", "stacked", "parallel"], \
41
+ "model_structure={} not supported!".format(self.model_structure)
42
+ if self.model_structure == "stacked":
43
+ self.stacked_dnn = MLP(self.dims,
44
+ output_layer=False,
45
+ ** mlp_params)
46
+ final_dim = mlp_params["dims"][-1]
47
+ if self.model_structure == "parallel":
48
+ self.parallel_dnn = MLP(self.dims,
49
+ output_layer = False,
50
+ ** mlp_params)
51
+ final_dim = mlp_params["dims"][-1] + self.dims
52
+ if self.model_structure == "crossnet_only": # only CrossNet
53
+ final_dim = self.dims
54
+ self.linear = LR(final_dim)
55
+
56
+
57
+ def forward(self, x):
58
+ embed_x = self.embedding(x, self.features, squeeze_dim=True)
59
+ cross_out = self.crossnet(embed_x)
60
+ if self.model_structure == "crossnet_only":
61
+ final_out = cross_out
62
+ elif self.model_structure == "stacked":
63
+ final_out = self.stacked_dnn(cross_out)
64
+ elif self.model_structure == "parallel":
65
+ dnn_out = self.parallel_dnn(embed_x)
66
+ final_out = torch.cat([cross_out, dnn_out], dim=1)
67
+ y_pred = self.linear(final_out)
68
+ y_pred = torch.sigmoid(y_pred.squeeze(1))
69
+ return y_pred
@@ -0,0 +1,123 @@
1
+ """
2
+ Date: created on 31/07/2022
3
+ References:
4
+ paper: FAT-DeepFFM: Field Attentive Deep Field-aware Factorization Machine
5
+ url: https://arxiv.org/abs/1905.06336
6
+ Authors: Bo Kang, klinux@live.com
7
+ """
8
+
9
+ import torch
10
+ import torch.nn as nn
11
+
12
+ from ...basic.layers import CEN, EmbeddingLayer, FFM, MLP
13
+
14
+
15
+ class DeepFFM(nn.Module):
16
+ """The DeepFFM model, mentioned on the `webpage
17
+ <https://cs.nju.edu.cn/31/60/c1654a209248/page.htm>` which is the first
18
+ work that introduces FFM model into neural CTR system. It is also described
19
+ in the `FAT-DeepFFM paper <https://arxiv.org/abs/1905.06336>`.
20
+
21
+ Args:
22
+ linear_features (list): the list of `Feature Class`, fed to the linear module.
23
+ cross_features (list): the list of `Feature Class`, fed to the ffm module.
24
+ embed_dim (int): the dimensionality of categorical value embedding.
25
+ mlp_params (dict): the params of the last MLP module, keys include:`{"dims":list, "activation":str, "dropout":float, "output_layer":bool`}
26
+ """
27
+ def __init__(self, linear_features, cross_features, embed_dim, mlp_params):
28
+ super().__init__()
29
+ self.linear_features = linear_features
30
+ self.cross_features = cross_features
31
+
32
+ self.num_fields = len(cross_features)
33
+ self.num_field_cross = self.num_fields * (self.num_fields - 1) // 2
34
+
35
+ self.ffm = FFM(num_fields=self.num_fields, reduce_sum=False)
36
+ self.mlp_out = MLP(self.num_field_cross * embed_dim, **mlp_params)
37
+
38
+ self.linear_embedding = EmbeddingLayer(linear_features)
39
+ self.ffm_embedding = EmbeddingLayer(cross_features)
40
+
41
+ self.b =torch.nn.Parameter(torch.zeros(1))
42
+
43
+ # This keeping constant value in module on correct device
44
+ # url: https://discuss.pytorch.org/t/keeping-constant-value-in-module-on-correct-device/10129
45
+ fields_offset = torch.arange(0, self.num_fields, dtype=torch.long)
46
+ self.register_buffer('fields_offset', fields_offset)
47
+
48
+
49
+ def forward(self, x):
50
+ # compute scores from the linear part of the model, where input is the raw features (Eq. 5, FAT-DeepFFM)
51
+ y_linear = self.linear_embedding(x, self.linear_features, squeeze_dim=True).sum(1, keepdim=True) #[batch_size, 1]
52
+
53
+ # gather the embeddings. Each feature value corresponds to multiple embeddings, with multiplicity equal to number of features/fields.
54
+ # output shape [batch_size, num_field, num_field, emb_dim]
55
+ x_ffm = {fea.name: x[fea.name].unsqueeze(1) * self.num_fields + self.fields_offset for fea in self.cross_features}
56
+ input_ffm = self.ffm_embedding(x_ffm, self.cross_features, squeeze_dim=False)
57
+
58
+ # compute second order field-aware feature crossings, output shape [batch_size, num_field_cross, emb_dim]
59
+ em = self.ffm(input_ffm)
60
+
61
+ # compute scores from the ffm part of the model, output shape [batch_size, 1]
62
+ y_ffm = self.mlp_out(em.flatten(start_dim=1))
63
+
64
+ # compute final prediction
65
+ y = y_linear + y_ffm
66
+ return torch.sigmoid(y.squeeze(1) + self.b)
67
+
68
+
69
+ class FatDeepFFM(nn.Module):
70
+ """The FAT-DeepFFM model, mentioned in the `FAT-DeepFFM paper
71
+ <https://arxiv.org/abs/1905.06336>`. It combines DeepFFM with
72
+ Compose-Excitation Network (CENet) field attention mechanism
73
+ to highlight the importance of second-order feature crosses.
74
+
75
+ Args:
76
+ linear_features (list): the list of `Feature Class`, fed to the linear module.
77
+ cross_features (list): the list of `Feature Class`, fed to the ffm module.
78
+ embed_dim (int): the dimensionality of categorical value embedding.
79
+ reduction_ratio (int): the between the dimensions of input layer and hidden layer of the CEN MLP module.
80
+ mlp_params (dict): the params of the last MLP module, keys include:`{"dims":list, "activation":str, "dropout":float, "output_layer":bool`}
81
+ """
82
+
83
+ def __init__(self, linear_features, cross_features, embed_dim, reduction_ratio, mlp_params):
84
+ super().__init__()
85
+ self.linear_features = linear_features
86
+ self.cross_features = cross_features
87
+
88
+ self.num_fields = len(cross_features)
89
+ self.num_field_cross = self.num_fields * (self.num_fields - 1) // 2
90
+
91
+ self.ffm = FFM(num_fields=self.num_fields, reduce_sum=False)
92
+ self.cen = CEN(embed_dim, self.num_field_cross, reduction_ratio)
93
+ self.mlp_out = MLP(self.num_field_cross * embed_dim, **mlp_params)
94
+
95
+ self.linear_embedding = EmbeddingLayer(linear_features)
96
+ self.ffm_embedding = EmbeddingLayer(cross_features)
97
+
98
+ self.b =torch.nn.Parameter(torch.zeros(1))
99
+
100
+ fields_offset = torch.arange(0, self.num_fields, dtype=torch.long)
101
+ self.register_buffer('fields_offset', fields_offset)
102
+
103
+ def forward(self, x):
104
+ # compute scores from the linear part of the model, where input is the raw features (Eq. 5, FAT-DeepFFM)
105
+ y_linear = self.linear_embedding(x, self.linear_features, squeeze_dim=True).sum(1, keepdim=True) #[batch_size, 1]
106
+
107
+ # gather the embeddings. Each feature value corresponds to multiple embeddings, with multiplicity is equal to the number of features/fields.
108
+ # output shape [batch_size, num_field, num_field, emb_dim]
109
+ x_ffm = {fea.name: x[fea.name].unsqueeze(1) * self.num_fields + self.fields_offset for fea in self.cross_features}
110
+ input_ffm = self.ffm_embedding(x_ffm, self.cross_features, squeeze_dim=False)
111
+
112
+ # compute second order field-aware feature crossings, output shape [batch_size, num_field_cross, emb_dim]
113
+ em = self.ffm(input_ffm)
114
+
115
+ # rescale FFM embeddings with field attention (Eq.10), output shape [batch_size, num_field_cross * emb_dim]
116
+ aem = self.cen(em)
117
+
118
+ # compute scores from the ffm part of the model, output shape [batch_size, 1]
119
+ y_ffm = self.mlp_out(aem)
120
+
121
+ # compute final prediction
122
+ y = y_linear + y_ffm
123
+ return torch.sigmoid(y.squeeze(1) + self.b)
@@ -1,42 +1,42 @@
1
- """
2
- Date: create on 22/04/2022
3
- References:
4
- paper: (IJCAI'2017) DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
5
- url: https://arxiv.org/abs/1703.04247
6
- Authors: Mincai Lai, laimincai@shanghaitech.edu.cn
7
- """
8
-
9
- import torch
10
-
11
- from ...basic.layers import FM, MLP, LR, EmbeddingLayer
12
-
13
-
14
- class DeepFM(torch.nn.Module):
15
- """Deep Factorization Machine Model
16
-
17
- Args:
18
- deep_features (list): the list of `Feature Class`, training by the deep part module.
19
- fm_features (list): the list of `Feature Class`, training by the fm part module.
20
- mlp_params (dict): the params of the last MLP module, keys include:`{"dims":list, "activation":str, "dropout":float, "output_layer":bool`}
21
- """
22
-
23
- def __init__(self, deep_features, fm_features, mlp_params):
24
- super(DeepFM, self).__init__()
25
- self.deep_features = deep_features
26
- self.fm_features = fm_features
27
- self.deep_dims = sum([fea.embed_dim for fea in deep_features])
28
- self.fm_dims = sum([fea.embed_dim for fea in fm_features])
29
- self.linear = LR(self.fm_dims) # 1-odrder interaction
30
- self.fm = FM(reduce_sum=True) # 2-odrder interaction
31
- self.embedding = EmbeddingLayer(deep_features + fm_features)
32
- self.mlp = MLP(self.deep_dims, **mlp_params)
33
-
34
- def forward(self, x):
35
- input_deep = self.embedding(x, self.deep_features, squeeze_dim=True) #[batch_size, deep_dims]
36
- input_fm = self.embedding(x, self.fm_features, squeeze_dim=False) #[batch_size, num_fields, embed_dim]
37
-
38
- y_linear = self.linear(input_fm.flatten(start_dim=1))
39
- y_fm = self.fm(input_fm)
40
- y_deep = self.mlp(input_deep) #[batch_size, 1]
41
- y = y_linear + y_fm + y_deep
1
+ """
2
+ Date: create on 22/04/2022
3
+ References:
4
+ paper: (IJCAI'2017) DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
5
+ url: https://arxiv.org/abs/1703.04247
6
+ Authors: Mincai Lai, laimincai@shanghaitech.edu.cn
7
+ """
8
+
9
+ import torch
10
+
11
+ from ...basic.layers import FM, MLP, LR, EmbeddingLayer
12
+
13
+
14
+ class DeepFM(torch.nn.Module):
15
+ """Deep Factorization Machine Model
16
+
17
+ Args:
18
+ deep_features (list): the list of `Feature Class`, training by the deep part module.
19
+ fm_features (list): the list of `Feature Class`, training by the fm part module.
20
+ mlp_params (dict): the params of the last MLP module, keys include:`{"dims":list, "activation":str, "dropout":float, "output_layer":bool`}
21
+ """
22
+
23
+ def __init__(self, deep_features, fm_features, mlp_params):
24
+ super(DeepFM, self).__init__()
25
+ self.deep_features = deep_features
26
+ self.fm_features = fm_features
27
+ self.deep_dims = sum([fea.embed_dim for fea in deep_features])
28
+ self.fm_dims = sum([fea.embed_dim for fea in fm_features])
29
+ self.linear = LR(self.fm_dims) # 1-odrder interaction
30
+ self.fm = FM(reduce_sum=True) # 2-odrder interaction
31
+ self.embedding = EmbeddingLayer(deep_features + fm_features)
32
+ self.mlp = MLP(self.deep_dims, **mlp_params)
33
+
34
+ def forward(self, x):
35
+ input_deep = self.embedding(x, self.deep_features, squeeze_dim=True) #[batch_size, deep_dims]
36
+ input_fm = self.embedding(x, self.fm_features, squeeze_dim=False) #[batch_size, num_fields, embed_dim]
37
+
38
+ y_linear = self.linear(input_fm.flatten(start_dim=1))
39
+ y_fm = self.fm(input_fm)
40
+ y_deep = self.mlp(input_deep) #[batch_size, 1]
41
+ y = y_linear + y_fm + y_deep
42
42
  return torch.sigmoid(y.squeeze(1))
@@ -0,0 +1,191 @@
1
+ """
2
+ Date: create on 01/05/2024
3
+ References:
4
+ paper: (AAAI'2019) Deep Interest Evolution Network for Click-Through Rate Prediction
5
+ url: https://arxiv.org/pdf/1809.03672
6
+ Authors: Tao Fan, thisisevy@foxmail.com
7
+ """
8
+
9
+ import torch
10
+ from torch import nn
11
+ from torch.nn import Parameter, init
12
+
13
+ from ...basic.layers import MLP, EmbeddingLayer
14
+
15
+
16
+ class AUGRU(nn.Module):
17
+
18
+ def __init__(self, embed_dim):
19
+ super(AUGRU, self).__init__()
20
+ self.embed_dim = embed_dim
21
+ # 初始化AUGRU单元
22
+ self.augru_cell = AUGRU_Cell(self.embed_dim)
23
+
24
+ def forward(self, x, item):
25
+ '''
26
+ :param x: 输入的序列向量,维度为 [ batch_size, seq_lens, embed_dim ]
27
+ :param item: 目标物品的向量
28
+ :return: outs: 所有AUGRU单元输出的隐藏向量[ batch_size, seq_lens, embed_dim ]
29
+ h: 最后一个AUGRU单元输出的隐藏向量[ batch_size, embed_dim ]
30
+ '''
31
+ outs = []
32
+ h = None
33
+ # 开始循环,x.shape[1]是序列的长度
34
+ for i in range(x.shape[1]):
35
+ if h == None:
36
+ # 初始化第一层的输入h
37
+ h = Parameter(torch.rand(x.shape[0], self.embed_dim).to(x.device))
38
+ h = self.augru_cell(x[:, i], h, item)
39
+ outs.append(torch.unsqueeze(h, dim=1))
40
+ outs = torch.cat(outs, dim=1)
41
+ return outs, h
42
+
43
+
44
+ # AUGRU单元
45
+ class AUGRU_Cell(nn.Module):
46
+
47
+ def __init__(self, embed_dim):
48
+ """
49
+ :param embed_dim: 输入向量的维度
50
+ """
51
+ super(AUGRU_Cell, self).__init__()
52
+
53
+ # 初始化更新门的模型参数
54
+ self.Wu = Parameter(torch.rand(embed_dim, embed_dim))
55
+ self.Uu = Parameter(torch.rand(embed_dim, embed_dim))
56
+ self.bu = init.xavier_uniform_(Parameter(torch.empty(1, embed_dim)))
57
+
58
+ # 初始化重置门的模型参数
59
+ self.Wr = init.xavier_uniform_(Parameter(torch.empty(embed_dim, embed_dim)))
60
+ self.Ur = init.xavier_uniform_(Parameter(torch.empty(embed_dim, embed_dim)))
61
+ self.br = init.xavier_uniform_(Parameter(torch.empty(1, embed_dim)))
62
+
63
+ # 初始化计算h~的模型参数
64
+ self.Wh = init.xavier_uniform_(Parameter(torch.empty(embed_dim, embed_dim)))
65
+ self.Uh = init.xavier_uniform_(Parameter(torch.empty(embed_dim, embed_dim)))
66
+ self.bh = init.xavier_uniform_(Parameter(torch.empty(1, embed_dim)))
67
+
68
+ # 初始化注意计算里的模型参数
69
+ self.Wa = init.xavier_uniform_(Parameter(torch.empty(embed_dim, embed_dim)))
70
+
71
+ # 注意力的计算
72
+ def attention(self, x, item):
73
+ '''
74
+ :param x: 输入的序列中第t个向量 [ batch_size, embed_dim ]
75
+ :param item: 目标物品的向量 [ batch_size, embed_dim ]
76
+ :return: 注意力权重 [ batch_size, 1 ]
77
+ '''
78
+ hW = torch.matmul(x, self.Wa)
79
+ hWi = torch.sum(hW * item, dim=1)
80
+ hWi = torch.unsqueeze(hWi, 1)
81
+ return torch.softmax(hWi, dim=1)
82
+
83
+ def forward(self, x, h_1, item):
84
+ '''
85
+ :param x: 输入的序列中第t个物品向量 [ batch_size, embed_dim ]
86
+ :param h_1: 上一个AUGRU单元输出的隐藏向量 [ batch_size, embed_dim ]
87
+ :param item: 目标物品的向量 [ batch_size, embed_dim ]
88
+ :return: h 当前层输出的隐藏向量 [ batch_size, embed_dim ]
89
+ '''
90
+ # [ batch_size, embed_dim ]
91
+ u = torch.sigmoid(torch.matmul(x, self.Wu) + torch.matmul(h_1, self.Uu) + self.bu)
92
+ # [ batch_size, embed_dim ]
93
+ r = torch.sigmoid(torch.matmul(x, self.Wr) + torch.matmul(h_1, self.Ur) + self.br)
94
+ # [ batch_size, embed_dim ]
95
+ h_hat = torch.tanh(torch.matmul(x, self.Wh) + r * torch.matmul(h_1, self.Uh) + self.bh)
96
+ # [ batch_size, 1 ]
97
+ a = self.attention(x, item)
98
+ # [ batch_size, embed_dim ]
99
+ u_hat = a * u
100
+ # [ batch_size, embed_dim ]
101
+ h = (1 - u_hat) * h_1 + u_hat * h_hat
102
+ # [ batch_size, embed_dim ]
103
+ return h
104
+
105
+
106
+ class DIEN(nn.Module):
107
+ """Deep Interest Evolution Network
108
+ Args:
109
+ features (list): the list of `Feature Class`. training by MLP. It means the user profile features and context features in origin paper, exclude history and target features.
110
+ history_features (list): the list of `Feature Class`,training by ActivationUnit. It means the user behaviour sequence features, eg.item id sequence, shop id sequence.
111
+ target_features (list): the list of `Feature Class`, training by ActivationUnit. It means the target feature which will execute target-attention with history feature.
112
+ mlp_params (dict): the params of the last MLP module, keys include:`{"dims":list, "activation":str, "dropout":float, "output_layer":bool`}
113
+ history_labels (list): the list of history_features whether it is clicked history or not. It should be 0 or 1.
114
+ alpha (float): the weighting of auxiliary loss.
115
+ """
116
+
117
+ def __init__(self, features, history_features, target_features, mlp_params, history_labels,
118
+ alpha=0.2):
119
+ super().__init__()
120
+ self.alpha = alpha # 计算辅助损失函数时的权重
121
+ self.features = features
122
+ self.history_features = history_features
123
+ self.target_features = target_features
124
+ self.num_history_features = len(history_features)
125
+ self.all_dims = sum([fea.embed_dim for fea in features + history_features + target_features])
126
+ # self.GRU = nn.GRU(batch_first=True)
127
+ self.embedding = EmbeddingLayer(features + history_features + target_features)
128
+ self.interest_extractor_layers = nn.ModuleList(
129
+ [nn.GRU(fea.embed_dim, fea.embed_dim, batch_first=True) for fea in self.history_features])
130
+ self.interest_evolving_layers = nn.ModuleList(
131
+ [AUGRU(fea.embed_dim) for fea in self.history_features])
132
+
133
+ self.mlp = MLP(self.all_dims, activation="dice", **mlp_params)
134
+ self.history_labels = torch.Tensor(history_labels)
135
+ self.BCELoss = nn.BCELoss()
136
+ # # 注意力计算中的线性层
137
+ # self.attention_liner = nn.Linear(self.embed_dim, t)
138
+ # # AFM公式中的h
139
+ # self.h = init.xavier_uniform_(Parameter(torch.empty(t, 1)))
140
+ # # AFM公式中的p
141
+ # self.p = init.xavier_uniform_(Parameter(torch.empty(self.embed_dim, 1)))
142
+
143
+ def auxiliary(self, outs, history_features, history_labels):
144
+ '''
145
+ :param history_features: 历史序列物品的向量 [ batch_size, len_seqs, dim ]
146
+ :param outs: 兴趣抽取层GRU网络输出的outs [ batch_size, len_seqs, dim ]
147
+ :param history_labels: 历史序列物品标注 [ batch_size, len_seqs, 1 ]
148
+ :return: 辅助损失函数
149
+ '''
150
+ # [ batch_size * len_seqs, dim ]
151
+ history_features = history_features.reshape(-1, history_features.shape[2])
152
+ # [ batch_size * len_seqs, dim ]
153
+ outs = outs.reshape(-1, outs.shape[2])
154
+ # [ batch_size * len_seqs ]
155
+ out = torch.sum(outs * history_features, dim=1)
156
+ # [ batch_size * len_seqs, 1 ]
157
+ out = torch.unsqueeze(torch.sigmoid(out), 1)
158
+ # [ batch_size * len_seqs,1 ]
159
+ history_labels = history_labels.reshape(-1, 1).float()
160
+ return self.BCELoss(out, history_labels)
161
+
162
+ def forward(self, x):
163
+ embed_x_features = self.embedding(x, self.features) # (batch_size, num_features, emb_dim)
164
+ embed_x_history = self.embedding(
165
+ x, self.history_features) # (batch_size, num_history_features, seq_length, emb_dim)
166
+ embed_x_target = self.embedding(x, self.target_features) # (batch_size, num_target_features, emb_dim)
167
+
168
+ interest_extractor = []
169
+ auxi_loss = 0
170
+ for i in range(self.num_history_features):
171
+ outs, _ = self.interest_extractor_layers[i](embed_x_history[:, i, :, :])
172
+ # 利用GRU输出的outs得到辅助损失函数
173
+ auxi_loss += self.auxiliary(outs, embed_x_history[:, i, :, :], self.history_labels)
174
+ interest_extractor.append(outs.unsqueeze(1)) # (batch_size, 1, seq_length, emb_dim)
175
+ interest_extractor = torch.cat(interest_extractor,
176
+ dim=1) # (batch_size, num_history_features, seq_length, emb_dim)
177
+ interest_evolving = []
178
+ for i in range(self.num_history_features):
179
+ _, h = self.interest_evolving_layers[i](interest_extractor[:, i, :, :], embed_x_target[:, i, :])
180
+ interest_evolving.append(h.unsqueeze(1)) # (batch_size, 1, emb_dim)
181
+ interest_evolving = torch.cat(interest_evolving, dim=1) # (batch_size, num_history_features, emb_dim)
182
+
183
+ mlp_in = torch.cat([
184
+ interest_evolving.flatten(start_dim=1),
185
+ embed_x_target.flatten(start_dim=1),
186
+ embed_x_features.flatten(start_dim=1)
187
+ ],
188
+ dim=1) # (batch_size, N)
189
+ y = self.mlp(mlp_in)
190
+
191
+ return torch.sigmoid(y.squeeze(1)), self.alpha * auxi_loss
@@ -1,81 +1,91 @@
1
- """
2
- Date: create on 23/04/2022, update on 30/04/2022
3
- References:
4
- paper: (KDD'2018) Deep Interest Network for Click-Through Rate Prediction
5
- url: https://arxiv.org/abs/1706.06978
6
- code: https://github.com/huawei-noah/benchmark/blob/main/FuxiCTR/fuxictr/pytorch/models/DIN.py
7
- Authors: Mincai Lai, laimincai@shanghaitech.edu.cn
8
- """
9
-
10
- import torch
11
- import torch.nn as nn
12
-
13
- from ...basic.layers import EmbeddingLayer, MLP
14
-
15
-
16
- class DIN(nn.Module):
17
- """Deep Interest Network
18
- Args:
19
- features (list): the list of `Feature Class`. training by MLP. It means the user profile features and context features in origin paper, exclude history and target features.
20
- history_features (list): the list of `Feature Class`,training by ActivationUnit. It means the user behaviour sequence features, eg.item id sequence, shop id sequence.
21
- target_features (list): the list of `Feature Class`, training by ActivationUnit. It means the target feature which will execute target-attention with history feature.
22
- mlp_params (dict): the params of the last MLP module, keys include:`{"dims":list, "activation":str, "dropout":float, "output_layer":bool`}
23
- attention_mlp_params (dict): the params of the ActivationUnit module, keys include:`{"dims":list, "activation":str, "dropout":float, "use_softmax":bool`}
24
- """
25
-
26
- def __init__(self, features, history_features, target_features, mlp_params={"dims": [200, 80], "activation": "dice"}, attention_mlp_params={"dims": [36], "activation": "dice"}):
27
- super().__init__()
28
- self.features = features
29
- self.history_features = history_features
30
- self.target_features = target_features
31
- self.num_history_features = len(history_features)
32
- self.all_dims = sum([fea.embed_dim for fea in features + history_features + target_features])
33
-
34
- self.embedding = EmbeddingLayer(features + history_features + target_features)
35
- self.attention_layers = nn.ModuleList([ActivationUnit(fea.embed_dim, **attention_mlp_params) for fea in self.history_features])
36
- self.mlp = MLP(self.all_dims, **mlp_params)
37
-
38
- def forward(self, x):
39
- embed_x_features = self.embedding(x, self.features) #(batch_size, num_features, emb_dim)
40
- embed_x_history = self.embedding(x, self.history_features) #(batch_size, num_history_features, seq_length, emb_dim)
41
- embed_x_target = self.embedding(x, self.target_features) #(batch_size, num_target_features, emb_dim)
42
- attention_pooling = []
43
- for i in range(self.num_history_features):
44
- attention_seq = self.attention_layers[i](embed_x_history[:, i, :, :], embed_x_target[:, i, :])
45
- attention_pooling.append(attention_seq.unsqueeze(1)) #(batch_size, 1, emb_dim)
46
- attention_pooling = torch.cat(attention_pooling, dim=1) #(batch_size, num_history_features, emb_dim)
47
-
48
- mlp_in = torch.cat([attention_pooling.flatten(start_dim=1), embed_x_target.flatten(start_dim=1), embed_x_features.flatten(start_dim=1)], dim=1) #(batch_size, N)
49
-
50
- y = self.mlp(mlp_in)
51
- return torch.sigmoid(y.squeeze(1))
52
-
53
-
54
- class ActivationUnit(nn.Module):
55
- """Activation Unit Layer mentioned in DIN paper, it is a Target Attention method.
56
-
57
- Args:
58
- embed_dim (int): the length of embedding vector.
59
- history (tensor):
60
- Shape:
61
- - Input: `(batch_size, seq_length, emb_dim)`
62
- - Output: `(batch_size, emb_dim)`
63
- """
64
-
65
- def __init__(self, emb_dim, dims=[36], activation="dice", use_softmax=False):
66
- super(ActivationUnit, self).__init__()
67
- self.emb_dim = emb_dim
68
- self.use_softmax = use_softmax
69
- self.attention = MLP(4 * self.emb_dim, dims, activation=activation)
70
-
71
- def forward(self, history, target):
72
- seq_length = history.size(1)
73
- target = target.unsqueeze(1).expand(-1, seq_length, -1) #batch_size,seq_length,emb_dim
74
- att_input = torch.cat([target, history, target - history, target * history], dim=-1) # batch_size,seq_length,4*emb_dim
75
- att_weight = self.attention(att_input.view(-1, 4 * self.emb_dim)) # #(batch_size*seq_length,4*emb_dim)
76
- att_weight = att_weight.view(-1, seq_length) #(batch_size*seq_length, 1) -> (batch_size,seq_length)
77
- if self.use_softmax:
78
- att_weight = att_weight.softmax(dim=-1)
79
- # (batch_size, seq_length, 1) * (batch_size, seq_length, emb_dim)
80
- output = (att_weight.unsqueeze(-1) * history).sum(dim=1) #(batch_size,emb_dim)
81
- return output
1
+ """
2
+ Date: create on 23/04/2022, update on 30/04/2022
3
+ References:
4
+ paper: (KDD'2018) Deep Interest Network for Click-Through Rate Prediction
5
+ url: https://arxiv.org/abs/1706.06978
6
+ code: https://github.com/huawei-noah/benchmark/blob/main/FuxiCTR/fuxictr/pytorch/models/DIN.py
7
+ Authors: Mincai Lai, laimincai@shanghaitech.edu.cn
8
+ """
9
+
10
+ import torch
11
+ import torch.nn as nn
12
+
13
+ from ...basic.layers import EmbeddingLayer, MLP
14
+
15
+
16
+ class DIN(nn.Module):
17
+ """Deep Interest Network
18
+ Args:
19
+ features (list): the list of `Feature Class`. training by MLP. It means the user profile features and context features in origin paper, exclude history and target features.
20
+ history_features (list): the list of `Feature Class`,training by ActivationUnit. It means the user behaviour sequence features, eg.item id sequence, shop id sequence.
21
+ target_features (list): the list of `Feature Class`, training by ActivationUnit. It means the target feature which will execute target-attention with history feature.
22
+ mlp_params (dict): the params of the last MLP module, keys include:`{"dims":list, "activation":str, "dropout":float, "output_layer":bool`}
23
+ attention_mlp_params (dict): the params of the ActivationUnit module, keys include:`{"dims":list, "activation":str, "dropout":float, "use_softmax":bool`}
24
+ """
25
+
26
+ def __init__(self, features, history_features, target_features, mlp_params, attention_mlp_params):
27
+ super().__init__()
28
+ self.features = features
29
+ self.history_features = history_features
30
+ self.target_features = target_features
31
+ self.num_history_features = len(history_features)
32
+ self.all_dims = sum([fea.embed_dim for fea in features + history_features + target_features])
33
+
34
+ self.embedding = EmbeddingLayer(features + history_features + target_features)
35
+ self.attention_layers = nn.ModuleList(
36
+ [ActivationUnit(fea.embed_dim, **attention_mlp_params) for fea in self.history_features])
37
+ self.mlp = MLP(self.all_dims, activation="dice", **mlp_params)
38
+
39
+ def forward(self, x):
40
+ embed_x_features = self.embedding(x, self.features) #(batch_size, num_features, emb_dim)
41
+ embed_x_history = self.embedding(
42
+ x, self.history_features) #(batch_size, num_history_features, seq_length, emb_dim)
43
+ embed_x_target = self.embedding(x, self.target_features) #(batch_size, num_target_features, emb_dim)
44
+ attention_pooling = []
45
+ for i in range(self.num_history_features):
46
+ attention_seq = self.attention_layers[i](embed_x_history[:, i, :, :], embed_x_target[:, i, :])
47
+ attention_pooling.append(attention_seq.unsqueeze(1)) #(batch_size, 1, emb_dim)
48
+ attention_pooling = torch.cat(attention_pooling, dim=1) #(batch_size, num_history_features, emb_dim)
49
+
50
+ mlp_in = torch.cat([
51
+ attention_pooling.flatten(start_dim=1),
52
+ embed_x_target.flatten(start_dim=1),
53
+ embed_x_features.flatten(start_dim=1)
54
+ ],
55
+ dim=1) #(batch_size, N)
56
+
57
+ y = self.mlp(mlp_in)
58
+ return torch.sigmoid(y.squeeze(1))
59
+
60
+
61
+ class ActivationUnit(nn.Module):
62
+ """Activation Unit Layer mentioned in DIN paper, it is a Target Attention method.
63
+
64
+ Args:
65
+ embed_dim (int): the length of embedding vector.
66
+ history (tensor):
67
+ Shape:
68
+ - Input: `(batch_size, seq_length, emb_dim)`
69
+ - Output: `(batch_size, emb_dim)`
70
+ """
71
+
72
+ def __init__(self, emb_dim, dims=None, activation="dice", use_softmax=False):
73
+ super(ActivationUnit, self).__init__()
74
+ if dims is None:
75
+ dims = [36]
76
+ self.emb_dim = emb_dim
77
+ self.use_softmax = use_softmax
78
+ self.attention = MLP(4 * self.emb_dim, dims=dims, activation=activation)
79
+
80
+ def forward(self, history, target):
81
+ seq_length = history.size(1)
82
+ target = target.unsqueeze(1).expand(-1, seq_length, -1) #batch_size,seq_length,emb_dim
83
+ att_input = torch.cat([target, history, target - history, target * history],
84
+ dim=-1) # batch_size,seq_length,4*emb_dim
85
+ att_weight = self.attention(att_input.view(-1, 4 * self.emb_dim)) # #(batch_size*seq_length,4*emb_dim)
86
+ att_weight = att_weight.view(-1, seq_length) #(batch_size*seq_length, 1) -> (batch_size,seq_length)
87
+ if self.use_softmax:
88
+ att_weight = att_weight.softmax(dim=-1)
89
+ # (batch_size, seq_length, 1) * (batch_size, seq_length, emb_dim)
90
+ output = (att_weight.unsqueeze(-1) * history).sum(dim=1) #(batch_size,emb_dim)
91
+ return output