torch-rechub 0.0.1__py3-none-any.whl → 0.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (55) hide show
  1. torch_rechub/basic/activation.py +54 -52
  2. torch_rechub/basic/callback.py +32 -32
  3. torch_rechub/basic/features.py +94 -57
  4. torch_rechub/basic/initializers.py +92 -0
  5. torch_rechub/basic/layers.py +720 -240
  6. torch_rechub/basic/loss_func.py +34 -0
  7. torch_rechub/basic/metaoptimizer.py +72 -0
  8. torch_rechub/basic/metric.py +250 -0
  9. torch_rechub/models/matching/__init__.py +11 -0
  10. torch_rechub/models/matching/comirec.py +188 -0
  11. torch_rechub/models/matching/dssm.py +66 -0
  12. torch_rechub/models/matching/dssm_facebook.py +79 -0
  13. torch_rechub/models/matching/dssm_senet.py +75 -0
  14. torch_rechub/models/matching/gru4rec.py +87 -0
  15. torch_rechub/models/matching/mind.py +101 -0
  16. torch_rechub/models/matching/narm.py +76 -0
  17. torch_rechub/models/matching/sasrec.py +140 -0
  18. torch_rechub/models/matching/sine.py +151 -0
  19. torch_rechub/models/matching/stamp.py +83 -0
  20. torch_rechub/models/matching/youtube_dnn.py +71 -0
  21. torch_rechub/models/matching/youtube_sbc.py +98 -0
  22. torch_rechub/models/multi_task/__init__.py +5 -4
  23. torch_rechub/models/multi_task/aitm.py +84 -0
  24. torch_rechub/models/multi_task/esmm.py +55 -45
  25. torch_rechub/models/multi_task/mmoe.py +58 -52
  26. torch_rechub/models/multi_task/ple.py +130 -104
  27. torch_rechub/models/multi_task/shared_bottom.py +45 -44
  28. torch_rechub/models/ranking/__init__.py +11 -3
  29. torch_rechub/models/ranking/afm.py +63 -0
  30. torch_rechub/models/ranking/bst.py +63 -0
  31. torch_rechub/models/ranking/dcn.py +38 -0
  32. torch_rechub/models/ranking/dcn_v2.py +69 -0
  33. torch_rechub/models/ranking/deepffm.py +123 -0
  34. torch_rechub/models/ranking/deepfm.py +41 -41
  35. torch_rechub/models/ranking/dien.py +191 -0
  36. torch_rechub/models/ranking/din.py +91 -81
  37. torch_rechub/models/ranking/edcn.py +117 -0
  38. torch_rechub/models/ranking/fibinet.py +50 -0
  39. torch_rechub/models/ranking/widedeep.py +41 -41
  40. torch_rechub/trainers/__init__.py +2 -1
  41. torch_rechub/trainers/{trainer.py → ctr_trainer.py} +128 -111
  42. torch_rechub/trainers/match_trainer.py +170 -0
  43. torch_rechub/trainers/mtl_trainer.py +206 -144
  44. torch_rechub/utils/__init__.py +0 -0
  45. torch_rechub/utils/data.py +360 -0
  46. torch_rechub/utils/match.py +274 -0
  47. torch_rechub/utils/mtl.py +126 -0
  48. {torch_rechub-0.0.1.dist-info → torch_rechub-0.0.3.dist-info}/LICENSE +21 -21
  49. torch_rechub-0.0.3.dist-info/METADATA +177 -0
  50. torch_rechub-0.0.3.dist-info/RECORD +55 -0
  51. {torch_rechub-0.0.1.dist-info → torch_rechub-0.0.3.dist-info}/WHEEL +1 -1
  52. torch_rechub/basic/utils.py +0 -168
  53. torch_rechub-0.0.1.dist-info/METADATA +0 -105
  54. torch_rechub-0.0.1.dist-info/RECORD +0 -26
  55. {torch_rechub-0.0.1.dist-info → torch_rechub-0.0.3.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,79 @@
1
+ """
2
+ Date: create on 24/05/2022
3
+ References:
4
+ paper: (KDD'2020) Embedding-based Retrieval in Facebook Search
5
+ url: https://arxiv.org/abs/2006.11632
6
+ Authors: Mincai Lai, laimincai@shanghaitech.edu.cn
7
+ """
8
+
9
+ import torch
10
+ import torch.nn.functional as F
11
+ from ...basic.layers import MLP, EmbeddingLayer
12
+
13
+
14
+ class FaceBookDSSM(torch.nn.Module):
15
+ """Embedding-based Retrieval in Facebook Search
16
+ It's a DSSM match model trained by hinge loss on pair-wise samples.
17
+
18
+ Args:
19
+ user_features (list[Feature Class]): training by the user tower module.
20
+ pos_item_features (list[Feature Class]): negative sample features, training by the item tower module.
21
+ neg_item_features (list[Feature Class]): positive sample features, training by the item tower module.
22
+ temperature (float): temperature factor for similarity score, default to 1.0.
23
+ user_params (dict): the params of the User Tower module, keys include:`{"dims":list, "activation":str, "dropout":float, "output_layer":bool`}.
24
+ item_params (dict): the params of the Item Tower module, keys include:`{"dims":list, "activation":str, "dropout":float, "output_layer":bool`}.
25
+ """
26
+
27
+ def __init__(self,
28
+ user_features,
29
+ pos_item_features,
30
+ neg_item_features,
31
+ user_params,
32
+ item_params,
33
+ temperature=1.0):
34
+ super().__init__()
35
+ self.user_features = user_features
36
+ self.pos_item_features = pos_item_features
37
+ self.neg_item_features = neg_item_features
38
+ self.temperature = temperature
39
+ self.user_dims = sum([fea.embed_dim for fea in user_features])
40
+ self.item_dims = sum([fea.embed_dim for fea in pos_item_features])
41
+
42
+ self.embedding = EmbeddingLayer(user_features + pos_item_features + neg_item_features)
43
+ self.user_mlp = MLP(self.user_dims, output_layer=False, **user_params)
44
+ self.item_mlp = MLP(self.item_dims, output_layer=False, **item_params)
45
+ self.mode = None
46
+
47
+ def forward(self, x):
48
+ user_embedding = self.user_tower(x)
49
+ pos_item_embedding, neg_item_embedding = self.item_tower(x)
50
+ if self.mode == "user":
51
+ return user_embedding
52
+ if self.mode == "item":
53
+ return pos_item_embedding
54
+
55
+ # calculate cosine score
56
+ pos_score = torch.mul(user_embedding, pos_item_embedding).sum(dim=1)
57
+ neg_score = torch.mul(user_embedding, neg_item_embedding).sum(dim=1)
58
+
59
+ return pos_score, neg_score
60
+
61
+ def user_tower(self, x):
62
+ if self.mode == "item":
63
+ return None
64
+ input_user = self.embedding(x, self.user_features, squeeze_dim=True) #[batch_size, num_features*deep_dims]
65
+ user_embedding = self.user_mlp(input_user) #[batch_size, user_params["dims"][-1]]
66
+ user_embedding = F.normalize(user_embedding, p=2, dim=1)
67
+ return user_embedding
68
+
69
+ def item_tower(self, x):
70
+ if self.mode == "user":
71
+ return None, None
72
+ input_item_pos = self.embedding(x, self.pos_item_features, squeeze_dim=True)
73
+ if self.mode == "item": #inference embedding mode, the zeros is just for placefolder
74
+ return self.item_mlp(input_item_pos), None
75
+ input_item_neg = self.embedding(x, self.neg_item_features, squeeze_dim=True)
76
+ pos_embedding, neg_embedding = self.item_mlp(input_item_pos), self.item_mlp(input_item_neg)
77
+ pos_embedding = F.normalize(pos_embedding, p=2, dim=1)
78
+ neg_embedding = F.normalize(neg_embedding, p=2, dim=1)
79
+ return pos_embedding, neg_embedding
@@ -0,0 +1,75 @@
1
+ """
2
+ Date: create on 12/19/2024
3
+ References:
4
+ url: https://zhuanlan.zhihu.com/p/358779957
5
+ Authors: @1985312383
6
+ """
7
+
8
+ import torch
9
+ import torch.nn.functional as F
10
+ from ...basic.layers import MLP, EmbeddingLayer, SENETLayer
11
+ from ...basic.features import SparseFeature, SequenceFeature
12
+
13
+
14
+ class DSSM(torch.nn.Module):
15
+ """Deep Structured Semantic Model
16
+
17
+ Args:
18
+ user_features (list[Feature Class]): training by the user tower module.
19
+ item_features (list[Feature Class]): training by the item tower module.
20
+ temperature (float): temperature factor for similarity score, default to 1.0.
21
+ user_params (dict): the params of the User Tower module, keys include:`{"dims":list, "activation":str, "dropout":float, "output_layer":bool`}.
22
+ item_params (dict): the params of the Item Tower module, keys include:`{"dims":list, "activation":str, "dropout":float, "output_layer":bool`}.
23
+ """
24
+
25
+ def __init__(self, user_features, item_features, user_params, item_params, temperature=1.0):
26
+ super().__init__()
27
+ self.user_features = user_features
28
+ self.item_features = item_features
29
+ self.temperature = temperature
30
+ self.user_dims = sum([fea.embed_dim for fea in user_features])
31
+ self.item_dims = sum([fea.embed_dim for fea in item_features])
32
+
33
+ self.embedding = EmbeddingLayer(user_features + item_features)
34
+ self.user_mlp = MLP(self.user_dims, output_layer=False, **user_params)
35
+ self.item_mlp = MLP(self.item_dims, output_layer=False, **item_params)
36
+ self.user_num_features = len([fea.embed_dim for fea in self.user_features if isinstance(fea, SparseFeature) or isinstance(fea, SequenceFeature) and fea.shared_with == None])
37
+ self.item_num_features = len([fea.embed_dim for fea in self.item_features if isinstance(fea, SparseFeature) or isinstance(fea, SequenceFeature) and fea.shared_with == None])
38
+ self.user_senet = SENETLayer(self.user_num_features)
39
+ self.item_senet = SENETLayer(self.item_num_features)
40
+ self.mode = None
41
+
42
+ def forward(self, x):
43
+ user_embedding = self.user_tower(x)
44
+ item_embedding = self.item_tower(x)
45
+ if self.mode == "user":
46
+ return user_embedding
47
+ if self.mode == "item":
48
+ return item_embedding
49
+
50
+ # calculate cosine score
51
+ y = torch.mul(user_embedding, item_embedding).sum(dim=1)
52
+ y = y / self.temperature
53
+ return torch.sigmoid(y)
54
+
55
+ def user_tower(self, x):
56
+ if self.mode == "item":
57
+ return None
58
+ input_user = self.embedding(x, self.user_features, squeeze_dim=True) #[batch_size, num_features * embed_dim]
59
+ input_user = input_user.view(input_user.size(0), self.user_num_features, -1) #[batch_size, num_features, embed_dim]
60
+ input_user = self.user_senet(input_user) #[batch_size, num_features, embed_dim]
61
+ input_user = input_user.view(input_user.size(0), -1) #[batch_size, num_features * embed_dim]
62
+ user_embedding = self.user_mlp(input_user) #[batch_size, user_params["dims"][-1]]
63
+ user_embedding = F.normalize(user_embedding, p=2, dim=1) # L2 normalize
64
+ return user_embedding
65
+
66
+ def item_tower(self, x):
67
+ if self.mode == "user":
68
+ return None
69
+ input_item = self.embedding(x, self.item_features, squeeze_dim=True) #[batch_size, num_features * embed_dim]
70
+ input_item = input_item.view(input_item.size(0), self.item_num_features, -1) #[batch_size, num_features, embed_dim]
71
+ input_item = self.item_senet(input_item) #[batch_size, num_features, embed_dim]
72
+ input_item = input_item.view(input_item.size(0), -1) #[batch_size, num_features * embed_dim]
73
+ item_embedding = self.item_mlp(input_item) #[batch_size, item_params["dims"][-1]]
74
+ item_embedding = F.normalize(item_embedding, p=2, dim=1)
75
+ return item_embedding
@@ -0,0 +1,87 @@
1
+ """
2
+ Date: create on 03/06/2022
3
+ References:
4
+ paper: SESSION-BASED RECOMMENDATIONS WITH RECURRENT NEURAL NETWORKS
5
+ url: http://arxiv.org/abs/1511.06939
6
+ Authors: Kai Wang, 306178200@qq.com
7
+ """
8
+
9
+ import torch
10
+
11
+ from ...basic.layers import MLP, EmbeddingLayer
12
+ from torch import nn
13
+ import torch.nn.functional as F
14
+
15
+
16
+ class GRU4Rec(torch.nn.Module):
17
+ """The match model mentioned in `Deep Neural Networks for YouTube Recommendations` paper.
18
+ It's a DSSM match model trained by global softmax loss on list-wise samples.
19
+ Note in origin paper, it's without item dnn tower and train item embedding directly.
20
+
21
+ Args:
22
+ user_features (list[Feature Class]): training by the user tower module.
23
+ history_features (list[Feature Class]): training history
24
+ item_features (list[Feature Class]): training by the embedding table, it's the item id feature.
25
+ neg_item_feature (list[Feature Class]): training by the embedding table, it's the negative items id feature.
26
+ user_params (dict): the params of the User Tower module, keys include:`{"dims":list, "activation":str, "dropout":float, "output_layer":bool`}.
27
+ temperature (float): temperature factor for similarity score, default to 1.0.
28
+ """
29
+
30
+ def __init__(self, user_features, history_features, item_features, neg_item_feature, user_params, temperature=1.0):
31
+ super().__init__()
32
+ self.user_features = user_features
33
+ self.item_features = item_features
34
+ self.history_features = history_features
35
+ self.neg_item_feature = neg_item_feature
36
+ self.temperature = temperature
37
+ self.user_dims = sum([fea.embed_dim for fea in user_features+history_features])
38
+
39
+ self.embedding = EmbeddingLayer(user_features + item_features + history_features)
40
+ self.gru = nn.GRU(input_size = history_features[0].embed_dim,
41
+ hidden_size = history_features[0].embed_dim,
42
+ num_layers = user_params.get('num_layers',2),
43
+ batch_first = True,
44
+ bias = False)
45
+ self.user_mlp = MLP(self.user_dims, output_layer=False, **user_params)
46
+ self.mode = None
47
+
48
+ def forward(self, x):
49
+ user_embedding = self.user_tower(x)
50
+ item_embedding = self.item_tower(x)
51
+ if self.mode == "user":
52
+ return user_embedding
53
+ if self.mode == "item":
54
+ return item_embedding
55
+
56
+ y = torch.mul(user_embedding, item_embedding).sum(dim=1)
57
+
58
+ return y
59
+
60
+ def user_tower(self, x):
61
+ if self.mode == "item":
62
+ return None
63
+ input_user = self.embedding(x, self.user_features, squeeze_dim=True) #[batch_size, num_features*deep_dims]
64
+
65
+ history_emb = self.embedding(x, self.history_features).squeeze(1)
66
+ _, history_emb = self.gru(history_emb)
67
+ history_emb = history_emb[-1]
68
+
69
+ input_user = torch.cat([input_user,history_emb],dim=-1)
70
+
71
+ user_embedding = self.user_mlp(input_user).unsqueeze(1) #[batch_size, 1, embed_dim]
72
+ user_embedding = F.normalize(user_embedding, p=2, dim=-1) # L2 normalize
73
+ if self.mode == "user":
74
+ return user_embedding.squeeze(1) #inference embedding mode -> [batch_size, embed_dim]
75
+ return user_embedding
76
+
77
+ def item_tower(self, x):
78
+ if self.mode == "user":
79
+ return None
80
+ pos_embedding = self.embedding(x, self.item_features, squeeze_dim=False) #[batch_size, 1, embed_dim]
81
+ pos_embedding = F.normalize(pos_embedding, p=2, dim=-1) # L2 normalize
82
+ if self.mode == "item": #inference embedding mode
83
+ return pos_embedding.squeeze(1) #[batch_size, embed_dim]
84
+ neg_embeddings = self.embedding(x, self.neg_item_feature,
85
+ squeeze_dim=False).squeeze(1) #[batch_size, n_neg_items, embed_dim]
86
+ neg_embeddings = F.normalize(neg_embeddings, p=2, dim=-1) # L2 normalize
87
+ return torch.cat((pos_embedding, neg_embeddings), dim=1) #[batch_size, 1+n_neg_items, embed_dim]
@@ -0,0 +1,101 @@
1
+ """
2
+ Date: create on 08/06/2022
3
+ References:
4
+ paper: Multi-Interest Network with Dynamic Routing
5
+ url: https://arxiv.org/pdf/1904.08030v1
6
+ code: https://github.com/ShiningCosmos/pytorch_ComiRec/blob/main/MIND.py
7
+ Authors: Kai Wang, 306178200@qq.com
8
+ """
9
+
10
+ import torch
11
+
12
+ from ...basic.layers import MLP, EmbeddingLayer, MultiInterestSA, CapsuleNetwork
13
+ from torch import nn
14
+ import torch.nn.functional as F
15
+
16
+
17
+ class MIND(torch.nn.Module):
18
+ """The match model mentioned in `Multi-Interest Network with Dynamic Routing` paper.
19
+ It's a ComirecDR match model trained by global softmax loss on list-wise samples.
20
+ Note in origin paper, it's without item dnn tower and train item embedding directly.
21
+
22
+ Args:
23
+ user_features (list[Feature Class]): training by the user tower module.
24
+ history_features (list[Feature Class]): training history
25
+ item_features (list[Feature Class]): training by the embedding table, it's the item id feature.
26
+ neg_item_feature (list[Feature Class]): training by the embedding table, it's the negative items id feature.
27
+ max_length (int): max sequence length of input item sequence
28
+ temperature (float): temperature factor for similarity score, default to 1.0.
29
+ interest_num (int): interest num
30
+ """
31
+
32
+ def __init__(self, user_features, history_features, item_features, neg_item_feature, max_length, temperature=1.0, interest_num=4):
33
+ super().__init__()
34
+ self.user_features = user_features
35
+ self.item_features = item_features
36
+ self.history_features = history_features
37
+ self.neg_item_feature = neg_item_feature
38
+ self.temperature = temperature
39
+ self.interest_num = interest_num
40
+ self.max_length = max_length
41
+ self.user_dims = sum([fea.embed_dim for fea in user_features+history_features])
42
+
43
+ self.embedding = EmbeddingLayer(user_features + item_features + history_features)
44
+ self.capsule = CapsuleNetwork(self.history_features[0].embed_dim,self.max_length,bilinear_type=0,interest_num=self.interest_num)
45
+ self.convert_user_weight = nn.Parameter(torch.rand(self.user_dims, self.history_features[0].embed_dim), requires_grad=True)
46
+ self.mode = None
47
+
48
+ def forward(self, x):
49
+ user_embedding = self.user_tower(x)
50
+ item_embedding = self.item_tower(x)
51
+ if self.mode == "user":
52
+ return user_embedding
53
+ if self.mode == "item":
54
+ return item_embedding
55
+
56
+ pos_item_embedding = item_embedding[:,0,:]
57
+ dot_res = torch.bmm(user_embedding, pos_item_embedding.squeeze(1).unsqueeze(-1))
58
+ k_index = torch.argmax(dot_res, dim=1)
59
+ best_interest_emb = torch.rand(user_embedding.shape[0], user_embedding.shape[2]).to(user_embedding.device)
60
+ for k in range(user_embedding.shape[0]):
61
+ best_interest_emb[k, :] = user_embedding[k, k_index[k], :]
62
+ best_interest_emb = best_interest_emb.unsqueeze(1)
63
+
64
+ y = torch.mul(best_interest_emb, item_embedding).sum(dim=1)
65
+ return y
66
+
67
+ def user_tower(self, x):
68
+ if self.mode == "item":
69
+ return None
70
+ input_user = self.embedding(x, self.user_features, squeeze_dim=True).unsqueeze(1) #[batch_size, num_features*deep_dims]
71
+ input_user = input_user.expand([input_user.shape[0], self.interest_num, input_user.shape[-1]])
72
+
73
+ history_emb = self.embedding(x, self.history_features).squeeze(1)
74
+ mask = self.gen_mask(x)
75
+ multi_interest_emb = self.capsule(history_emb,mask)
76
+
77
+ input_user = torch.cat([input_user,multi_interest_emb],dim=-1)
78
+
79
+ # user_embedding = self.user_mlp(input_user).unsqueeze(1) #[batch_size, interest_num, embed_dim]
80
+ user_embedding = torch.matmul(input_user,self.convert_user_weight)
81
+ user_embedding = F.normalize(user_embedding, p=2, dim=-1) # L2 normalize
82
+ if self.mode == "user":
83
+ return user_embedding #inference embedding mode -> [batch_size, interest_num, embed_dim]
84
+ return user_embedding
85
+
86
+ def item_tower(self, x):
87
+ if self.mode == "user":
88
+ return None
89
+ pos_embedding = self.embedding(x, self.item_features, squeeze_dim=False) #[batch_size, 1, embed_dim]
90
+ pos_embedding = F.normalize(pos_embedding, p=2, dim=-1) # L2 normalize
91
+ if self.mode == "item": #inference embedding mode
92
+ return pos_embedding.squeeze(1) #[batch_size, embed_dim]
93
+ neg_embeddings = self.embedding(x, self.neg_item_feature,
94
+ squeeze_dim=False).squeeze(1) #[batch_size, n_neg_items, embed_dim]
95
+ neg_embeddings = F.normalize(neg_embeddings, p=2, dim=-1) # L2 normalize
96
+ return torch.cat((pos_embedding, neg_embeddings), dim=1) #[batch_size, 1+n_neg_items, embed_dim]
97
+
98
+ def gen_mask(self, x):
99
+ his_list = x[self.history_features[0].name]
100
+ mask = (his_list > 0).long()
101
+ return mask
@@ -0,0 +1,76 @@
1
+ """
2
+ Date: created on 06/09/2022
3
+ References:
4
+ paper: Neural Attentive Session-based Recommendation
5
+ url: http://arxiv.org/abs/1711.04725
6
+ official Theano implementation: https://github.com/lijingsdu/sessionRec_NARM
7
+ another Pytorch implementation: https://github.com/Wang-Shuo/Neural-Attentive-Session-Based-Recommendation-PyTorch
8
+ Authors: Bo Kang, klinux@live.com
9
+ """
10
+
11
+ import torch
12
+ import torch.nn as nn
13
+ import torch.nn.utils.rnn as rnn_utils
14
+ from torch import sigmoid
15
+ from torch.nn import GRU, Embedding, Dropout, Parameter
16
+
17
+
18
+ class NARM(nn.Module):
19
+ def __init__(self, item_history_feature, hidden_dim, emb_dropout_p, session_rep_dropout_p):
20
+ super(NARM, self).__init__()
21
+
22
+ # item embedding layer
23
+ self.item_history_feature = item_history_feature
24
+ self.item_emb = Embedding(item_history_feature.vocab_size, item_history_feature.embed_dim, padding_idx=0)
25
+
26
+ # embedding dropout layer
27
+ self.emb_dropout = Dropout(emb_dropout_p)
28
+
29
+ # gru unit
30
+ self.gru = GRU(input_size=item_history_feature.embed_dim, hidden_size=hidden_dim)
31
+
32
+ # attention projection matrices
33
+ self.a_1, self.a_2 = Parameter(torch.randn(hidden_dim, hidden_dim)), Parameter(torch.randn(hidden_dim, hidden_dim))
34
+
35
+ # attention context vector
36
+ self.v = Parameter(torch.randn(hidden_dim, 1))
37
+
38
+ # session representation dropout layer
39
+ self.session_rep_dropout = Dropout(session_rep_dropout_p)
40
+
41
+ # bilinear projection matrix
42
+ self.b = Parameter(torch.randn(item_history_feature.embed_dim, hidden_dim * 2))
43
+
44
+ def forward(self, input_dict):
45
+ # Eq. 1-4, index item embeddings and pass through gru
46
+ ## Fetch the embeddings for items in the session
47
+ input = input_dict[self.item_history_feature.name]
48
+ value_mask = (input != 0)
49
+ value_counts = value_mask.sum(dim=1, keepdim=False).to("cpu").detach()
50
+ embs = rnn_utils.pack_padded_sequence(self.emb_dropout(self.item_emb(input)), value_counts, batch_first=True, enforce_sorted=False)
51
+
52
+ ## compute hidden states at each time step
53
+ h, h_t = self.gru(embs)
54
+ h_t = h_t.permute(1, 0, 2)
55
+ h, _ = rnn_utils.pad_packed_sequence(h, batch_first=True)
56
+
57
+ # Eq. 5, set last hidden state of gru as the output of the global encoder
58
+ c_g = h_t.squeeze(1)
59
+
60
+ # Eq. 8, compute similarity between final hidden state and previous hidden states
61
+ q = sigmoid(h_t @ self.a_1.T + h @ self.a_2.T) @ self.v
62
+
63
+ # Eq. 7, compute attention
64
+ alpha = torch.exp(q) * value_mask.unsqueeze(-1)
65
+ alpha /= alpha.sum(dim=1, keepdim=True)
66
+
67
+ # Eq. 6, compute the output of the local encoder
68
+ c_l = (alpha * h).sum(1)
69
+
70
+ # Eq. 9, compute session representation by concatenating user sequential behavior (global) and main purpose in the current session (local)
71
+ c = self.session_rep_dropout(torch.hstack((c_g, c_l)))
72
+
73
+ # Eq. 10, compute bilinear similarity between current session and each candidate items
74
+ s = c @ self.b.T @ self.item_emb.weight.T
75
+
76
+ return s
@@ -0,0 +1,140 @@
1
+ """
2
+ Date: create on 2022/5/8, update on 2022/5/8
3
+ References:
4
+ paper: (ICDM'2018) Self-attentive sequential recommendation
5
+ url: https://arxiv.org/pdf/1808.09781.pdf
6
+ code: https://github.com/kang205/SASRec
7
+ Authors: Yuchen Wang, 615922749@qq.com
8
+ """
9
+ import numpy as np
10
+ import torch
11
+ import torch.nn as nn
12
+
13
+ from torch_rechub.basic.features import DenseFeature, SparseFeature, SequenceFeature
14
+ from torch_rechub.basic.layers import EmbeddingLayer, MLP
15
+
16
+
17
+ class SASRec(torch.nn.Module):
18
+ """SASRec: Self-Attentive Sequential Recommendation
19
+ Args:
20
+ features (list): the list of `Feature Class`. In sasrec, the features list needs to have three elements in order: user historical behavior sequence features, positive sample sequence, and negative sample sequence.
21
+ max_len: The length of the sequence feature.
22
+ num_blocks: The number of stacks of attention modules.
23
+ num_heads: The number of heads in MultiheadAttention.
24
+
25
+ """
26
+ def __init__(self,
27
+ features,
28
+ max_len=50,
29
+ dropout_rate=0.5,
30
+ num_blocks=2,
31
+ num_heads=1,
32
+ ):
33
+ super(SASRec, self).__init__()
34
+
35
+ self.features = features
36
+
37
+ self.item_num = self.features[0].vocab_size
38
+ self.embed_dim = self.features[0].embed_dim
39
+
40
+ self.item_emb = EmbeddingLayer(self.features)
41
+ self.position_emb = torch.nn.Embedding(max_len, self.embed_dim)
42
+ self.emb_dropout = torch.nn.Dropout(p=dropout_rate)
43
+
44
+ self.attention_layernorms = torch.nn.ModuleList()
45
+ self.attention_layers = torch.nn.ModuleList()
46
+ self.forward_layernorms = torch.nn.ModuleList()
47
+ self.forward_layers = torch.nn.ModuleList()
48
+ self.last_layernorm = torch.nn.LayerNorm(self.embed_dim, eps=1e-8)
49
+
50
+ for _ in range(num_blocks):
51
+ new_attn_layernorm = torch.nn.LayerNorm(self.embed_dim, eps=1e-8)
52
+ self.attention_layernorms.append(new_attn_layernorm)
53
+
54
+ new_attn_layer = torch.nn.MultiheadAttention(self.embed_dim,
55
+ num_heads,
56
+ dropout_rate)
57
+ self.attention_layers.append(new_attn_layer)
58
+
59
+ new_fwd_layernorm = torch.nn.LayerNorm(self.embed_dim, eps=1e-8)
60
+ self.forward_layernorms.append(new_fwd_layernorm)
61
+
62
+ new_fwd_layer = PointWiseFeedForward(self.embed_dim, dropout_rate)
63
+ self.forward_layers.append(new_fwd_layer)
64
+
65
+ def seq_forward(self, x, embed_x_feature):
66
+ x = x['seq']
67
+
68
+ embed_x_feature *= self.features[0].embed_dim ** 0.5
69
+ embed_x_feature = embed_x_feature.squeeze() # (bacth_size, max_len, embed_dim)
70
+
71
+ positions = np.tile(np.array(range(x.shape[1])), [x.shape[0], 1])
72
+
73
+ embed_x_feature += self.position_emb(torch.LongTensor(positions))
74
+ embed_x_feature = self.emb_dropout(embed_x_feature)
75
+
76
+ timeline_mask = torch.BoolTensor(x == 0)
77
+ embed_x_feature *= ~timeline_mask.unsqueeze(-1)
78
+
79
+ attention_mask = ~torch.tril(torch.ones((embed_x_feature.shape[1], embed_x_feature.shape[1]), dtype=torch.bool))
80
+
81
+ for i in range(len(self.attention_layers)):
82
+ embed_x_feature = torch.transpose(embed_x_feature, 0, 1)
83
+ Q = self.attention_layernorms[i](embed_x_feature)
84
+ mha_outputs, _ = self.attention_layers[i](Q, embed_x_feature, embed_x_feature,
85
+ attn_mask=attention_mask)
86
+
87
+ embed_x_feature = Q + mha_outputs
88
+ embed_x_feature = torch.transpose(embed_x_feature, 0, 1)
89
+
90
+ embed_x_feature = self.forward_layernorms[i](embed_x_feature)
91
+ embed_x_feature = self.forward_layers[i](embed_x_feature)
92
+ embed_x_feature *= ~timeline_mask.unsqueeze(-1)
93
+
94
+ seq_output = self.last_layernorm(embed_x_feature)
95
+
96
+ return seq_output
97
+
98
+ def forward(self, x):
99
+ embedding = self.item_emb(x, self.features) # (batch_size, 3, max_len, embed_dim)
100
+ seq_embed, pos_embed, neg_embed = embedding[:, 0], embedding[:, 1], embedding[:, 2] # (batch_size, max_len, embed_dim)
101
+
102
+ seq_output = self.seq_forward(x, seq_embed) # (batch_size, max_len, embed_dim)
103
+
104
+ pos_logits = (seq_output * pos_embed).sum(dim=-1)
105
+ neg_logits = (seq_output * neg_embed).sum(dim=-1) # (batch_size, max_len)
106
+
107
+ return pos_logits, neg_logits
108
+
109
+
110
+ class PointWiseFeedForward(torch.nn.Module):
111
+ def __init__(self, hidden_units, dropout_rate):
112
+ super(PointWiseFeedForward, self).__init__()
113
+
114
+ self.conv1 = torch.nn.Conv1d(hidden_units, hidden_units, kernel_size=1)
115
+ self.dropout1 = torch.nn.Dropout(p=dropout_rate)
116
+ self.relu = torch.nn.ReLU()
117
+ self.conv2 = torch.nn.Conv1d(hidden_units, hidden_units, kernel_size=1)
118
+ self.dropout2 = torch.nn.Dropout(p=dropout_rate)
119
+
120
+ def forward(self, inputs):
121
+ outputs = self.dropout2(self.conv2(self.relu(self.dropout1(self.conv1(inputs.transpose(-1, -2))))))
122
+ outputs = outputs.transpose(-1, -2)
123
+ outputs += inputs
124
+ return outputs
125
+
126
+
127
+ if __name__ == '__main__':
128
+ seq = SequenceFeature('seq', vocab_size=17, embed_dim=7, pooling='concat')
129
+ pos = SequenceFeature('pos', vocab_size=17, embed_dim=7, pooling='concat', shared_with='seq')
130
+ neg = SequenceFeature('neg', vocab_size=17, embed_dim=7, pooling='concat', shared_with='seq')
131
+
132
+ seq = [seq, pos, neg]
133
+
134
+ hist_seq = torch.tensor([[1, 2, 3, 4], [2, 3, 7, 8]])
135
+ pos_seq = hist_seq
136
+ neg_seq = hist_seq
137
+
138
+ x = {'seq': hist_seq, 'pos': pos_seq, 'neg': neg_seq}
139
+ model = SASRec(features=seq)
140
+ print('out', model(x))