tnfr 4.5.2__py3-none-any.whl → 8.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tnfr might be problematic. Click here for more details.
- tnfr/__init__.py +334 -50
- tnfr/__init__.pyi +33 -0
- tnfr/_compat.py +10 -0
- tnfr/_generated_version.py +34 -0
- tnfr/_version.py +49 -0
- tnfr/_version.pyi +7 -0
- tnfr/alias.py +214 -37
- tnfr/alias.pyi +108 -0
- tnfr/backends/__init__.py +354 -0
- tnfr/backends/jax_backend.py +173 -0
- tnfr/backends/numpy_backend.py +238 -0
- tnfr/backends/optimized_numpy.py +420 -0
- tnfr/backends/torch_backend.py +408 -0
- tnfr/cache.py +149 -556
- tnfr/cache.pyi +13 -0
- tnfr/cli/__init__.py +51 -16
- tnfr/cli/__init__.pyi +26 -0
- tnfr/cli/arguments.py +344 -32
- tnfr/cli/arguments.pyi +29 -0
- tnfr/cli/execution.py +676 -50
- tnfr/cli/execution.pyi +70 -0
- tnfr/cli/interactive_validator.py +614 -0
- tnfr/cli/utils.py +18 -3
- tnfr/cli/utils.pyi +7 -0
- tnfr/cli/validate.py +236 -0
- tnfr/compat/__init__.py +85 -0
- tnfr/compat/dataclass.py +136 -0
- tnfr/compat/jsonschema_stub.py +61 -0
- tnfr/compat/matplotlib_stub.py +73 -0
- tnfr/compat/numpy_stub.py +155 -0
- tnfr/config/__init__.py +224 -0
- tnfr/config/__init__.pyi +10 -0
- tnfr/{constants_glyphs.py → config/constants.py} +26 -20
- tnfr/config/constants.pyi +12 -0
- tnfr/config/defaults.py +54 -0
- tnfr/{constants/core.py → config/defaults_core.py} +59 -6
- tnfr/config/defaults_init.py +33 -0
- tnfr/config/defaults_metric.py +104 -0
- tnfr/config/feature_flags.py +81 -0
- tnfr/config/feature_flags.pyi +16 -0
- tnfr/config/glyph_constants.py +31 -0
- tnfr/config/init.py +77 -0
- tnfr/config/init.pyi +8 -0
- tnfr/config/operator_names.py +254 -0
- tnfr/config/operator_names.pyi +36 -0
- tnfr/config/physics_derivation.py +354 -0
- tnfr/config/presets.py +83 -0
- tnfr/config/presets.pyi +7 -0
- tnfr/config/security.py +927 -0
- tnfr/config/thresholds.py +114 -0
- tnfr/config/tnfr_config.py +498 -0
- tnfr/constants/__init__.py +51 -133
- tnfr/constants/__init__.pyi +92 -0
- tnfr/constants/aliases.py +33 -0
- tnfr/constants/aliases.pyi +27 -0
- tnfr/constants/init.py +3 -1
- tnfr/constants/init.pyi +12 -0
- tnfr/constants/metric.py +9 -15
- tnfr/constants/metric.pyi +19 -0
- tnfr/core/__init__.py +33 -0
- tnfr/core/container.py +226 -0
- tnfr/core/default_implementations.py +329 -0
- tnfr/core/interfaces.py +279 -0
- tnfr/dynamics/__init__.py +213 -633
- tnfr/dynamics/__init__.pyi +83 -0
- tnfr/dynamics/adaptation.py +267 -0
- tnfr/dynamics/adaptation.pyi +7 -0
- tnfr/dynamics/adaptive_sequences.py +189 -0
- tnfr/dynamics/adaptive_sequences.pyi +14 -0
- tnfr/dynamics/aliases.py +23 -0
- tnfr/dynamics/aliases.pyi +19 -0
- tnfr/dynamics/bifurcation.py +232 -0
- tnfr/dynamics/canonical.py +229 -0
- tnfr/dynamics/canonical.pyi +48 -0
- tnfr/dynamics/coordination.py +385 -0
- tnfr/dynamics/coordination.pyi +25 -0
- tnfr/dynamics/dnfr.py +2699 -398
- tnfr/dynamics/dnfr.pyi +26 -0
- tnfr/dynamics/dynamic_limits.py +225 -0
- tnfr/dynamics/feedback.py +252 -0
- tnfr/dynamics/feedback.pyi +24 -0
- tnfr/dynamics/fused_dnfr.py +454 -0
- tnfr/dynamics/homeostasis.py +157 -0
- tnfr/dynamics/homeostasis.pyi +14 -0
- tnfr/dynamics/integrators.py +496 -102
- tnfr/dynamics/integrators.pyi +36 -0
- tnfr/dynamics/learning.py +310 -0
- tnfr/dynamics/learning.pyi +33 -0
- tnfr/dynamics/metabolism.py +254 -0
- tnfr/dynamics/nbody.py +796 -0
- tnfr/dynamics/nbody_tnfr.py +783 -0
- tnfr/dynamics/propagation.py +326 -0
- tnfr/dynamics/runtime.py +908 -0
- tnfr/dynamics/runtime.pyi +77 -0
- tnfr/dynamics/sampling.py +10 -5
- tnfr/dynamics/sampling.pyi +7 -0
- tnfr/dynamics/selectors.py +711 -0
- tnfr/dynamics/selectors.pyi +85 -0
- tnfr/dynamics/structural_clip.py +207 -0
- tnfr/errors/__init__.py +37 -0
- tnfr/errors/contextual.py +492 -0
- tnfr/execution.py +77 -55
- tnfr/execution.pyi +45 -0
- tnfr/extensions/__init__.py +205 -0
- tnfr/extensions/__init__.pyi +18 -0
- tnfr/extensions/base.py +173 -0
- tnfr/extensions/base.pyi +35 -0
- tnfr/extensions/business/__init__.py +71 -0
- tnfr/extensions/business/__init__.pyi +11 -0
- tnfr/extensions/business/cookbook.py +88 -0
- tnfr/extensions/business/cookbook.pyi +8 -0
- tnfr/extensions/business/health_analyzers.py +202 -0
- tnfr/extensions/business/health_analyzers.pyi +9 -0
- tnfr/extensions/business/patterns.py +183 -0
- tnfr/extensions/business/patterns.pyi +8 -0
- tnfr/extensions/medical/__init__.py +73 -0
- tnfr/extensions/medical/__init__.pyi +11 -0
- tnfr/extensions/medical/cookbook.py +88 -0
- tnfr/extensions/medical/cookbook.pyi +8 -0
- tnfr/extensions/medical/health_analyzers.py +181 -0
- tnfr/extensions/medical/health_analyzers.pyi +9 -0
- tnfr/extensions/medical/patterns.py +163 -0
- tnfr/extensions/medical/patterns.pyi +8 -0
- tnfr/flatten.py +29 -50
- tnfr/flatten.pyi +21 -0
- tnfr/gamma.py +66 -53
- tnfr/gamma.pyi +36 -0
- tnfr/glyph_history.py +144 -57
- tnfr/glyph_history.pyi +35 -0
- tnfr/glyph_runtime.py +19 -0
- tnfr/glyph_runtime.pyi +8 -0
- tnfr/immutable.py +70 -30
- tnfr/immutable.pyi +36 -0
- tnfr/initialization.py +22 -16
- tnfr/initialization.pyi +65 -0
- tnfr/io.py +5 -241
- tnfr/io.pyi +13 -0
- tnfr/locking.pyi +7 -0
- tnfr/mathematics/__init__.py +79 -0
- tnfr/mathematics/backend.py +453 -0
- tnfr/mathematics/backend.pyi +99 -0
- tnfr/mathematics/dynamics.py +408 -0
- tnfr/mathematics/dynamics.pyi +90 -0
- tnfr/mathematics/epi.py +391 -0
- tnfr/mathematics/epi.pyi +65 -0
- tnfr/mathematics/generators.py +242 -0
- tnfr/mathematics/generators.pyi +29 -0
- tnfr/mathematics/metrics.py +119 -0
- tnfr/mathematics/metrics.pyi +16 -0
- tnfr/mathematics/operators.py +239 -0
- tnfr/mathematics/operators.pyi +59 -0
- tnfr/mathematics/operators_factory.py +124 -0
- tnfr/mathematics/operators_factory.pyi +11 -0
- tnfr/mathematics/projection.py +87 -0
- tnfr/mathematics/projection.pyi +33 -0
- tnfr/mathematics/runtime.py +182 -0
- tnfr/mathematics/runtime.pyi +64 -0
- tnfr/mathematics/spaces.py +256 -0
- tnfr/mathematics/spaces.pyi +83 -0
- tnfr/mathematics/transforms.py +305 -0
- tnfr/mathematics/transforms.pyi +62 -0
- tnfr/metrics/__init__.py +47 -9
- tnfr/metrics/__init__.pyi +20 -0
- tnfr/metrics/buffer_cache.py +163 -0
- tnfr/metrics/buffer_cache.pyi +24 -0
- tnfr/metrics/cache_utils.py +214 -0
- tnfr/metrics/coherence.py +1510 -330
- tnfr/metrics/coherence.pyi +129 -0
- tnfr/metrics/common.py +23 -16
- tnfr/metrics/common.pyi +35 -0
- tnfr/metrics/core.py +251 -36
- tnfr/metrics/core.pyi +13 -0
- tnfr/metrics/diagnosis.py +709 -110
- tnfr/metrics/diagnosis.pyi +86 -0
- tnfr/metrics/emergence.py +245 -0
- tnfr/metrics/export.py +60 -18
- tnfr/metrics/export.pyi +7 -0
- tnfr/metrics/glyph_timing.py +233 -43
- tnfr/metrics/glyph_timing.pyi +81 -0
- tnfr/metrics/learning_metrics.py +280 -0
- tnfr/metrics/learning_metrics.pyi +21 -0
- tnfr/metrics/phase_coherence.py +351 -0
- tnfr/metrics/phase_compatibility.py +349 -0
- tnfr/metrics/reporting.py +63 -28
- tnfr/metrics/reporting.pyi +25 -0
- tnfr/metrics/sense_index.py +1126 -43
- tnfr/metrics/sense_index.pyi +9 -0
- tnfr/metrics/trig.py +215 -23
- tnfr/metrics/trig.pyi +13 -0
- tnfr/metrics/trig_cache.py +148 -24
- tnfr/metrics/trig_cache.pyi +10 -0
- tnfr/multiscale/__init__.py +32 -0
- tnfr/multiscale/hierarchical.py +517 -0
- tnfr/node.py +646 -140
- tnfr/node.pyi +139 -0
- tnfr/observers.py +160 -45
- tnfr/observers.pyi +31 -0
- tnfr/ontosim.py +23 -19
- tnfr/ontosim.pyi +28 -0
- tnfr/operators/__init__.py +1358 -106
- tnfr/operators/__init__.pyi +31 -0
- tnfr/operators/algebra.py +277 -0
- tnfr/operators/canonical_patterns.py +420 -0
- tnfr/operators/cascade.py +267 -0
- tnfr/operators/cycle_detection.py +358 -0
- tnfr/operators/definitions.py +4108 -0
- tnfr/operators/definitions.pyi +78 -0
- tnfr/operators/grammar.py +1164 -0
- tnfr/operators/grammar.pyi +140 -0
- tnfr/operators/hamiltonian.py +710 -0
- tnfr/operators/health_analyzer.py +809 -0
- tnfr/operators/jitter.py +107 -38
- tnfr/operators/jitter.pyi +11 -0
- tnfr/operators/lifecycle.py +314 -0
- tnfr/operators/metabolism.py +618 -0
- tnfr/operators/metrics.py +2138 -0
- tnfr/operators/network_analysis/__init__.py +27 -0
- tnfr/operators/network_analysis/source_detection.py +186 -0
- tnfr/operators/nodal_equation.py +395 -0
- tnfr/operators/pattern_detection.py +660 -0
- tnfr/operators/patterns.py +669 -0
- tnfr/operators/postconditions/__init__.py +38 -0
- tnfr/operators/postconditions/mutation.py +236 -0
- tnfr/operators/preconditions/__init__.py +1226 -0
- tnfr/operators/preconditions/coherence.py +305 -0
- tnfr/operators/preconditions/dissonance.py +236 -0
- tnfr/operators/preconditions/emission.py +128 -0
- tnfr/operators/preconditions/mutation.py +580 -0
- tnfr/operators/preconditions/reception.py +125 -0
- tnfr/operators/preconditions/resonance.py +364 -0
- tnfr/operators/registry.py +74 -0
- tnfr/operators/registry.pyi +9 -0
- tnfr/operators/remesh.py +1415 -91
- tnfr/operators/remesh.pyi +26 -0
- tnfr/operators/structural_units.py +268 -0
- tnfr/operators/unified_grammar.py +105 -0
- tnfr/parallel/__init__.py +54 -0
- tnfr/parallel/auto_scaler.py +234 -0
- tnfr/parallel/distributed.py +384 -0
- tnfr/parallel/engine.py +238 -0
- tnfr/parallel/gpu_engine.py +420 -0
- tnfr/parallel/monitoring.py +248 -0
- tnfr/parallel/partitioner.py +459 -0
- tnfr/py.typed +0 -0
- tnfr/recipes/__init__.py +22 -0
- tnfr/recipes/cookbook.py +743 -0
- tnfr/rng.py +75 -151
- tnfr/rng.pyi +26 -0
- tnfr/schemas/__init__.py +8 -0
- tnfr/schemas/grammar.json +94 -0
- tnfr/sdk/__init__.py +107 -0
- tnfr/sdk/__init__.pyi +19 -0
- tnfr/sdk/adaptive_system.py +173 -0
- tnfr/sdk/adaptive_system.pyi +21 -0
- tnfr/sdk/builders.py +370 -0
- tnfr/sdk/builders.pyi +51 -0
- tnfr/sdk/fluent.py +1121 -0
- tnfr/sdk/fluent.pyi +74 -0
- tnfr/sdk/templates.py +342 -0
- tnfr/sdk/templates.pyi +41 -0
- tnfr/sdk/utils.py +341 -0
- tnfr/secure_config.py +46 -0
- tnfr/security/__init__.py +70 -0
- tnfr/security/database.py +514 -0
- tnfr/security/subprocess.py +503 -0
- tnfr/security/validation.py +290 -0
- tnfr/selector.py +59 -22
- tnfr/selector.pyi +19 -0
- tnfr/sense.py +92 -67
- tnfr/sense.pyi +23 -0
- tnfr/services/__init__.py +17 -0
- tnfr/services/orchestrator.py +325 -0
- tnfr/sparse/__init__.py +39 -0
- tnfr/sparse/representations.py +492 -0
- tnfr/structural.py +639 -263
- tnfr/structural.pyi +83 -0
- tnfr/telemetry/__init__.py +35 -0
- tnfr/telemetry/cache_metrics.py +226 -0
- tnfr/telemetry/cache_metrics.pyi +64 -0
- tnfr/telemetry/nu_f.py +422 -0
- tnfr/telemetry/nu_f.pyi +108 -0
- tnfr/telemetry/verbosity.py +36 -0
- tnfr/telemetry/verbosity.pyi +15 -0
- tnfr/tokens.py +2 -4
- tnfr/tokens.pyi +36 -0
- tnfr/tools/__init__.py +20 -0
- tnfr/tools/domain_templates.py +478 -0
- tnfr/tools/sequence_generator.py +846 -0
- tnfr/topology/__init__.py +13 -0
- tnfr/topology/asymmetry.py +151 -0
- tnfr/trace.py +300 -126
- tnfr/trace.pyi +42 -0
- tnfr/tutorials/__init__.py +38 -0
- tnfr/tutorials/autonomous_evolution.py +285 -0
- tnfr/tutorials/interactive.py +1576 -0
- tnfr/tutorials/structural_metabolism.py +238 -0
- tnfr/types.py +743 -12
- tnfr/types.pyi +357 -0
- tnfr/units.py +68 -0
- tnfr/units.pyi +13 -0
- tnfr/utils/__init__.py +282 -0
- tnfr/utils/__init__.pyi +215 -0
- tnfr/utils/cache.py +4223 -0
- tnfr/utils/cache.pyi +470 -0
- tnfr/{callback_utils.py → utils/callbacks.py} +26 -39
- tnfr/utils/callbacks.pyi +49 -0
- tnfr/utils/chunks.py +108 -0
- tnfr/utils/chunks.pyi +22 -0
- tnfr/utils/data.py +428 -0
- tnfr/utils/data.pyi +74 -0
- tnfr/utils/graph.py +85 -0
- tnfr/utils/graph.pyi +10 -0
- tnfr/utils/init.py +821 -0
- tnfr/utils/init.pyi +80 -0
- tnfr/utils/io.py +559 -0
- tnfr/utils/io.pyi +66 -0
- tnfr/{helpers → utils}/numeric.py +51 -24
- tnfr/utils/numeric.pyi +21 -0
- tnfr/validation/__init__.py +257 -0
- tnfr/validation/__init__.pyi +85 -0
- tnfr/validation/compatibility.py +460 -0
- tnfr/validation/compatibility.pyi +6 -0
- tnfr/validation/config.py +73 -0
- tnfr/validation/graph.py +139 -0
- tnfr/validation/graph.pyi +18 -0
- tnfr/validation/input_validation.py +755 -0
- tnfr/validation/invariants.py +712 -0
- tnfr/validation/rules.py +253 -0
- tnfr/validation/rules.pyi +44 -0
- tnfr/validation/runtime.py +279 -0
- tnfr/validation/runtime.pyi +28 -0
- tnfr/validation/sequence_validator.py +162 -0
- tnfr/validation/soft_filters.py +170 -0
- tnfr/validation/soft_filters.pyi +32 -0
- tnfr/validation/spectral.py +164 -0
- tnfr/validation/spectral.pyi +42 -0
- tnfr/validation/validator.py +1266 -0
- tnfr/validation/window.py +39 -0
- tnfr/validation/window.pyi +1 -0
- tnfr/visualization/__init__.py +98 -0
- tnfr/visualization/cascade_viz.py +256 -0
- tnfr/visualization/hierarchy.py +284 -0
- tnfr/visualization/sequence_plotter.py +784 -0
- tnfr/viz/__init__.py +60 -0
- tnfr/viz/matplotlib.py +278 -0
- tnfr/viz/matplotlib.pyi +35 -0
- tnfr-8.5.0.dist-info/METADATA +573 -0
- tnfr-8.5.0.dist-info/RECORD +353 -0
- {tnfr-4.5.2.dist-info → tnfr-8.5.0.dist-info}/entry_points.txt +1 -0
- {tnfr-4.5.2.dist-info → tnfr-8.5.0.dist-info}/licenses/LICENSE.md +1 -1
- tnfr/collections_utils.py +0 -300
- tnfr/config.py +0 -32
- tnfr/grammar.py +0 -344
- tnfr/graph_utils.py +0 -84
- tnfr/helpers/__init__.py +0 -71
- tnfr/import_utils.py +0 -228
- tnfr/json_utils.py +0 -162
- tnfr/logging_utils.py +0 -116
- tnfr/presets.py +0 -60
- tnfr/validators.py +0 -84
- tnfr/value_utils.py +0 -59
- tnfr-4.5.2.dist-info/METADATA +0 -379
- tnfr-4.5.2.dist-info/RECORD +0 -67
- {tnfr-4.5.2.dist-info → tnfr-8.5.0.dist-info}/WHEEL +0 -0
- {tnfr-4.5.2.dist-info → tnfr-8.5.0.dist-info}/top_level.txt +0 -0
tnfr/dynamics/dnfr.py
CHANGED
|
@@ -2,51 +2,296 @@
|
|
|
2
2
|
|
|
3
3
|
This module provides helper functions to configure, cache and apply ΔNFR
|
|
4
4
|
components such as phase, epidemiological state and vortex fields during
|
|
5
|
-
simulations.
|
|
5
|
+
simulations. The neighbour accumulation helpers reuse cached edge indices
|
|
6
|
+
and NumPy workspaces whenever available so cosine, sine, EPI, νf and topology
|
|
7
|
+
means remain faithful to the canonical ΔNFR reorganisation without redundant
|
|
8
|
+
allocations.
|
|
6
9
|
"""
|
|
7
10
|
|
|
8
11
|
from __future__ import annotations
|
|
9
12
|
|
|
10
13
|
import math
|
|
11
|
-
|
|
12
|
-
from
|
|
13
|
-
|
|
14
|
-
from
|
|
15
|
-
from
|
|
16
|
-
|
|
17
|
-
from
|
|
18
|
-
|
|
19
|
-
from ..alias import
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
)
|
|
23
|
-
from ..metrics.trig_cache import compute_theta_trig
|
|
14
|
+
import sys
|
|
15
|
+
from collections.abc import Callable, Iterator, Mapping, MutableMapping, Sequence
|
|
16
|
+
from concurrent.futures import ProcessPoolExecutor
|
|
17
|
+
from types import ModuleType
|
|
18
|
+
from typing import TYPE_CHECKING, Any, cast
|
|
19
|
+
|
|
20
|
+
from time import perf_counter
|
|
21
|
+
|
|
22
|
+
from ..alias import get_attr, get_theta_attr, set_dnfr
|
|
23
|
+
from ..constants import DEFAULTS, get_param
|
|
24
|
+
from ..constants.aliases import ALIAS_EPI, ALIAS_VF
|
|
24
25
|
from ..metrics.common import merge_and_normalize_weights
|
|
25
|
-
from ..
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
26
|
+
from ..metrics.trig import neighbor_phase_mean_list
|
|
27
|
+
from ..metrics.trig_cache import compute_theta_trig
|
|
28
|
+
from ..types import (
|
|
29
|
+
DeltaNFRHook,
|
|
30
|
+
DnfrCacheVectors,
|
|
31
|
+
DnfrVectorMap,
|
|
32
|
+
NeighborStats,
|
|
33
|
+
NodeId,
|
|
34
|
+
TNFRGraph,
|
|
35
|
+
)
|
|
36
|
+
from ..utils import (
|
|
37
|
+
DNFR_PREP_STATE_KEY,
|
|
38
|
+
DnfrPrepState,
|
|
39
|
+
DnfrCache,
|
|
40
|
+
CacheManager,
|
|
41
|
+
_graph_cache_manager,
|
|
42
|
+
angle_diff,
|
|
43
|
+
angle_diff_array,
|
|
44
|
+
cached_node_list,
|
|
45
|
+
cached_nodes_and_A,
|
|
46
|
+
get_numpy,
|
|
47
|
+
normalize_weights,
|
|
48
|
+
resolve_chunk_size,
|
|
49
|
+
new_dnfr_cache,
|
|
50
|
+
)
|
|
29
51
|
|
|
52
|
+
if TYPE_CHECKING: # pragma: no cover - import-time typing hook
|
|
53
|
+
import numpy as np
|
|
54
|
+
|
|
55
|
+
_MEAN_VECTOR_EPS = 1e-12
|
|
56
|
+
_SPARSE_DENSITY_THRESHOLD = 0.25
|
|
57
|
+
_DNFR_APPROX_BYTES_PER_EDGE = 48
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
def _should_vectorize(G: TNFRGraph, np_module: ModuleType | None) -> bool:
|
|
61
|
+
"""Return ``True`` when NumPy is available unless the graph disables it."""
|
|
62
|
+
|
|
63
|
+
if np_module is None:
|
|
64
|
+
return False
|
|
65
|
+
flag = G.graph.get("vectorized_dnfr")
|
|
66
|
+
if flag is None:
|
|
67
|
+
return True
|
|
68
|
+
return bool(flag)
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
_NUMPY_CACHE_ATTRS = (
|
|
72
|
+
"theta_np",
|
|
73
|
+
"epi_np",
|
|
74
|
+
"vf_np",
|
|
75
|
+
"cos_theta_np",
|
|
76
|
+
"sin_theta_np",
|
|
77
|
+
"deg_array",
|
|
78
|
+
"neighbor_x_np",
|
|
79
|
+
"neighbor_y_np",
|
|
80
|
+
"neighbor_epi_sum_np",
|
|
81
|
+
"neighbor_vf_sum_np",
|
|
82
|
+
"neighbor_count_np",
|
|
83
|
+
"neighbor_deg_sum_np",
|
|
84
|
+
"neighbor_inv_count_np",
|
|
85
|
+
"neighbor_cos_avg_np",
|
|
86
|
+
"neighbor_sin_avg_np",
|
|
87
|
+
"neighbor_mean_tmp_np",
|
|
88
|
+
"neighbor_mean_length_np",
|
|
89
|
+
"neighbor_accum_np",
|
|
90
|
+
"neighbor_edge_values_np",
|
|
91
|
+
"dense_components_np",
|
|
92
|
+
"dense_accum_np",
|
|
93
|
+
"dense_degree_np",
|
|
94
|
+
)
|
|
30
95
|
|
|
31
96
|
|
|
97
|
+
def _profile_start_stop(
|
|
98
|
+
profile: MutableMapping[str, float] | None,
|
|
99
|
+
*,
|
|
100
|
+
keys: Sequence[str] = (),
|
|
101
|
+
) -> tuple[Callable[[], float], Callable[[str, float], None]]:
|
|
102
|
+
"""Return helpers to measure wall-clock durations for ``profile`` keys."""
|
|
32
103
|
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
104
|
+
if profile is not None:
|
|
105
|
+
for key in keys:
|
|
106
|
+
profile.setdefault(key, 0.0)
|
|
107
|
+
|
|
108
|
+
def _start() -> float:
|
|
109
|
+
return perf_counter()
|
|
110
|
+
|
|
111
|
+
def _stop(metric: str, start: float) -> None:
|
|
112
|
+
profile[metric] = float(profile.get(metric, 0.0)) + (perf_counter() - start)
|
|
113
|
+
|
|
114
|
+
else:
|
|
115
|
+
|
|
116
|
+
def _start() -> float:
|
|
117
|
+
return 0.0
|
|
118
|
+
|
|
119
|
+
def _stop(
|
|
120
|
+
metric: str, start: float
|
|
121
|
+
) -> None: # noqa: ARG001 - uniform signature
|
|
122
|
+
return None
|
|
123
|
+
|
|
124
|
+
return _start, _stop
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
def _iter_chunk_offsets(total: int, jobs: int) -> Iterator[tuple[int, int]]:
|
|
128
|
+
"""Yield ``(start, end)`` offsets splitting ``total`` items across ``jobs``."""
|
|
129
|
+
|
|
130
|
+
if total <= 0 or jobs <= 1:
|
|
131
|
+
return
|
|
132
|
+
|
|
133
|
+
jobs = max(1, min(int(jobs), total))
|
|
134
|
+
base, extra = divmod(total, jobs)
|
|
135
|
+
start = 0
|
|
136
|
+
for i in range(jobs):
|
|
137
|
+
size = base + (1 if i < extra else 0)
|
|
138
|
+
if size <= 0:
|
|
139
|
+
continue
|
|
140
|
+
end = start + size
|
|
141
|
+
yield start, end
|
|
142
|
+
start = end
|
|
143
|
+
|
|
144
|
+
|
|
145
|
+
def _neighbor_sums_worker(
|
|
146
|
+
start: int,
|
|
147
|
+
end: int,
|
|
148
|
+
neighbor_indices: Sequence[Sequence[int]],
|
|
149
|
+
cos_th: Sequence[float],
|
|
150
|
+
sin_th: Sequence[float],
|
|
151
|
+
epi: Sequence[float],
|
|
152
|
+
vf: Sequence[float],
|
|
153
|
+
x_base: Sequence[float],
|
|
154
|
+
y_base: Sequence[float],
|
|
155
|
+
epi_base: Sequence[float],
|
|
156
|
+
vf_base: Sequence[float],
|
|
157
|
+
count_base: Sequence[float],
|
|
158
|
+
deg_base: Sequence[float] | None,
|
|
159
|
+
deg_list: Sequence[float] | None,
|
|
160
|
+
degs_list: Sequence[float] | None,
|
|
161
|
+
) -> tuple[
|
|
162
|
+
int,
|
|
163
|
+
list[float],
|
|
164
|
+
list[float],
|
|
165
|
+
list[float],
|
|
166
|
+
list[float],
|
|
167
|
+
list[float],
|
|
168
|
+
list[float] | None,
|
|
169
|
+
]:
|
|
170
|
+
"""Return partial neighbour sums for the ``[start, end)`` range."""
|
|
171
|
+
|
|
172
|
+
chunk_x: list[float] = []
|
|
173
|
+
chunk_y: list[float] = []
|
|
174
|
+
chunk_epi: list[float] = []
|
|
175
|
+
chunk_vf: list[float] = []
|
|
176
|
+
chunk_count: list[float] = []
|
|
177
|
+
chunk_deg: list[float] | None = [] if deg_base is not None else None
|
|
178
|
+
|
|
179
|
+
for offset, idx in enumerate(range(start, end)):
|
|
180
|
+
neighbors = neighbor_indices[idx]
|
|
181
|
+
x_i = float(x_base[offset])
|
|
182
|
+
y_i = float(y_base[offset])
|
|
183
|
+
epi_i = float(epi_base[offset])
|
|
184
|
+
vf_i = float(vf_base[offset])
|
|
185
|
+
count_i = float(count_base[offset])
|
|
186
|
+
if deg_base is not None and chunk_deg is not None:
|
|
187
|
+
deg_i_acc = float(deg_base[offset])
|
|
188
|
+
else:
|
|
189
|
+
deg_i_acc = 0.0
|
|
190
|
+
deg_i = float(degs_list[idx]) if degs_list is not None else 0.0
|
|
191
|
+
|
|
192
|
+
for neighbor_idx in neighbors:
|
|
193
|
+
x_i += float(cos_th[neighbor_idx])
|
|
194
|
+
y_i += float(sin_th[neighbor_idx])
|
|
195
|
+
epi_i += float(epi[neighbor_idx])
|
|
196
|
+
vf_i += float(vf[neighbor_idx])
|
|
197
|
+
count_i += 1.0
|
|
198
|
+
if chunk_deg is not None:
|
|
199
|
+
if deg_list is not None:
|
|
200
|
+
deg_i_acc += float(deg_list[neighbor_idx])
|
|
201
|
+
else:
|
|
202
|
+
deg_i_acc += deg_i
|
|
203
|
+
|
|
204
|
+
chunk_x.append(x_i)
|
|
205
|
+
chunk_y.append(y_i)
|
|
206
|
+
chunk_epi.append(epi_i)
|
|
207
|
+
chunk_vf.append(vf_i)
|
|
208
|
+
chunk_count.append(count_i)
|
|
209
|
+
if chunk_deg is not None:
|
|
210
|
+
chunk_deg.append(deg_i_acc)
|
|
211
|
+
|
|
212
|
+
return (
|
|
213
|
+
start,
|
|
214
|
+
chunk_x,
|
|
215
|
+
chunk_y,
|
|
216
|
+
chunk_epi,
|
|
217
|
+
chunk_vf,
|
|
218
|
+
chunk_count,
|
|
219
|
+
chunk_deg,
|
|
220
|
+
)
|
|
221
|
+
|
|
222
|
+
|
|
223
|
+
def _dnfr_gradients_worker(
|
|
224
|
+
start: int,
|
|
225
|
+
end: int,
|
|
226
|
+
nodes: Sequence[NodeId],
|
|
227
|
+
theta: list[float],
|
|
228
|
+
epi: list[float],
|
|
229
|
+
vf: list[float],
|
|
230
|
+
th_bar: list[float],
|
|
231
|
+
epi_bar: list[float],
|
|
232
|
+
vf_bar: list[float],
|
|
233
|
+
deg_bar: list[float] | None,
|
|
234
|
+
degs: Mapping[Any, float] | Sequence[float] | None,
|
|
235
|
+
w_phase: float,
|
|
236
|
+
w_epi: float,
|
|
237
|
+
w_vf: float,
|
|
238
|
+
w_topo: float,
|
|
239
|
+
) -> tuple[int, list[float]]:
|
|
240
|
+
"""Return partial ΔNFR gradients for the ``[start, end)`` range."""
|
|
241
|
+
|
|
242
|
+
chunk: list[float] = []
|
|
243
|
+
for idx in range(start, end):
|
|
244
|
+
n = nodes[idx]
|
|
245
|
+
g_phase = -angle_diff(theta[idx], th_bar[idx]) / math.pi
|
|
246
|
+
g_epi = epi_bar[idx] - epi[idx]
|
|
247
|
+
g_vf = vf_bar[idx] - vf[idx]
|
|
248
|
+
if w_topo != 0.0 and deg_bar is not None and degs is not None:
|
|
249
|
+
if isinstance(degs, dict):
|
|
250
|
+
deg_i = float(degs.get(n, 0))
|
|
251
|
+
else:
|
|
252
|
+
deg_i = float(degs[idx])
|
|
253
|
+
g_topo = deg_bar[idx] - deg_i
|
|
254
|
+
else:
|
|
255
|
+
g_topo = 0.0
|
|
256
|
+
chunk.append(w_phase * g_phase + w_epi * g_epi + w_vf * g_vf + w_topo * g_topo)
|
|
257
|
+
return start, chunk
|
|
258
|
+
|
|
259
|
+
|
|
260
|
+
def _resolve_parallel_jobs(n_jobs: int | None, total: int) -> int | None:
|
|
261
|
+
"""Return an effective worker count for ``total`` items or ``None``."""
|
|
262
|
+
|
|
263
|
+
if n_jobs is None:
|
|
264
|
+
return None
|
|
265
|
+
try:
|
|
266
|
+
jobs = int(n_jobs)
|
|
267
|
+
except (TypeError, ValueError):
|
|
268
|
+
return None
|
|
269
|
+
if jobs <= 1 or total <= 1:
|
|
270
|
+
return None
|
|
271
|
+
return max(1, min(jobs, total))
|
|
272
|
+
|
|
273
|
+
|
|
274
|
+
def _is_numpy_like(obj) -> bool:
|
|
275
|
+
return (
|
|
276
|
+
getattr(obj, "dtype", None) is not None
|
|
277
|
+
and getattr(obj, "shape", None) is not None
|
|
278
|
+
)
|
|
279
|
+
|
|
280
|
+
|
|
281
|
+
def _has_cached_numpy_buffers(data: dict, cache: DnfrCache | None) -> bool:
|
|
282
|
+
for attr in _NUMPY_CACHE_ATTRS:
|
|
283
|
+
arr = data.get(attr)
|
|
284
|
+
if _is_numpy_like(arr):
|
|
285
|
+
return True
|
|
286
|
+
if cache is not None:
|
|
287
|
+
for attr in _NUMPY_CACHE_ATTRS:
|
|
288
|
+
arr = getattr(cache, attr, None)
|
|
289
|
+
if _is_numpy_like(arr):
|
|
290
|
+
return True
|
|
291
|
+
A = data.get("A")
|
|
292
|
+
if _is_numpy_like(A):
|
|
293
|
+
return True
|
|
294
|
+
return False
|
|
50
295
|
|
|
51
296
|
|
|
52
297
|
__all__ = (
|
|
@@ -55,6 +300,7 @@ __all__ = (
|
|
|
55
300
|
"dnfr_phase_only",
|
|
56
301
|
"dnfr_epi_vf_mixed",
|
|
57
302
|
"dnfr_laplacian",
|
|
303
|
+
"compute_delta_nfr_hamiltonian",
|
|
58
304
|
)
|
|
59
305
|
|
|
60
306
|
|
|
@@ -93,37 +339,130 @@ def _configure_dnfr_weights(G) -> dict:
|
|
|
93
339
|
return weights
|
|
94
340
|
|
|
95
341
|
|
|
96
|
-
def _init_dnfr_cache(
|
|
97
|
-
|
|
98
|
-
|
|
342
|
+
def _init_dnfr_cache(
|
|
343
|
+
G: TNFRGraph,
|
|
344
|
+
nodes: Sequence[NodeId],
|
|
345
|
+
cache_or_manager: CacheManager | DnfrCache | None = None,
|
|
346
|
+
checksum: Any | None = None,
|
|
347
|
+
force_refresh: bool = False,
|
|
348
|
+
*,
|
|
349
|
+
manager: CacheManager | None = None,
|
|
350
|
+
) -> tuple[
|
|
351
|
+
DnfrCache,
|
|
352
|
+
dict[NodeId, int],
|
|
353
|
+
list[float],
|
|
354
|
+
list[float],
|
|
355
|
+
list[float],
|
|
356
|
+
list[float],
|
|
357
|
+
list[float],
|
|
358
|
+
bool,
|
|
359
|
+
]:
|
|
360
|
+
"""Initialise or reuse cached ΔNFR arrays.
|
|
361
|
+
|
|
362
|
+
``manager`` telemetry became mandatory in TNFR 9.0 to expose cache hits,
|
|
363
|
+
misses and timings. Older callers still pass a ``cache`` instance as the
|
|
364
|
+
third positional argument; this helper supports both signatures by seeding
|
|
365
|
+
the manager-backed state with the provided cache when necessary.
|
|
366
|
+
"""
|
|
367
|
+
|
|
368
|
+
if manager is None and isinstance(cache_or_manager, CacheManager):
|
|
369
|
+
manager = cache_or_manager
|
|
370
|
+
cache_or_manager = None
|
|
371
|
+
|
|
372
|
+
if manager is None:
|
|
373
|
+
manager = _graph_cache_manager(G.graph)
|
|
374
|
+
|
|
375
|
+
graph = G.graph
|
|
376
|
+
state = manager.get(DNFR_PREP_STATE_KEY)
|
|
377
|
+
if not isinstance(state, DnfrPrepState):
|
|
378
|
+
manager.clear(DNFR_PREP_STATE_KEY)
|
|
379
|
+
state = manager.get(DNFR_PREP_STATE_KEY)
|
|
380
|
+
|
|
381
|
+
if isinstance(cache_or_manager, DnfrCache):
|
|
382
|
+
state.cache = cache_or_manager
|
|
383
|
+
if checksum is None:
|
|
384
|
+
checksum = cache_or_manager.checksum
|
|
385
|
+
|
|
386
|
+
cache = state.cache
|
|
387
|
+
reuse = (
|
|
388
|
+
not force_refresh
|
|
389
|
+
and isinstance(cache, DnfrCache)
|
|
390
|
+
and cache.checksum == checksum
|
|
391
|
+
and len(cache.theta) == len(nodes)
|
|
392
|
+
)
|
|
393
|
+
if reuse:
|
|
394
|
+
manager.increment_hit(DNFR_PREP_STATE_KEY)
|
|
395
|
+
graph["_dnfr_prep_cache"] = cache
|
|
99
396
|
return (
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
397
|
+
cache,
|
|
398
|
+
cache.idx,
|
|
399
|
+
cache.theta,
|
|
400
|
+
cache.epi,
|
|
401
|
+
cache.vf,
|
|
402
|
+
cache.cos_theta,
|
|
403
|
+
cache.sin_theta,
|
|
107
404
|
False,
|
|
108
405
|
)
|
|
109
406
|
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
407
|
+
def _rebuild(current: DnfrPrepState | Any) -> DnfrPrepState:
|
|
408
|
+
if not isinstance(current, DnfrPrepState):
|
|
409
|
+
raise RuntimeError("ΔNFR prep state unavailable during rebuild")
|
|
410
|
+
prev_cache = current.cache if isinstance(current.cache, DnfrCache) else None
|
|
411
|
+
idx_local = {n: i for i, n in enumerate(nodes)}
|
|
412
|
+
size = len(nodes)
|
|
413
|
+
zeros = [0.0] * size
|
|
414
|
+
cache_new = prev_cache if prev_cache is not None else new_dnfr_cache()
|
|
415
|
+
cache_new.idx = idx_local
|
|
416
|
+
cache_new.theta = zeros.copy()
|
|
417
|
+
cache_new.epi = zeros.copy()
|
|
418
|
+
cache_new.vf = zeros.copy()
|
|
419
|
+
cache_new.cos_theta = [1.0] * size
|
|
420
|
+
cache_new.sin_theta = [0.0] * size
|
|
421
|
+
cache_new.neighbor_x = zeros.copy()
|
|
422
|
+
cache_new.neighbor_y = zeros.copy()
|
|
423
|
+
cache_new.neighbor_epi_sum = zeros.copy()
|
|
424
|
+
cache_new.neighbor_vf_sum = zeros.copy()
|
|
425
|
+
cache_new.neighbor_count = zeros.copy()
|
|
426
|
+
cache_new.neighbor_deg_sum = zeros.copy() if size else []
|
|
427
|
+
cache_new.degs = None
|
|
428
|
+
cache_new.edge_src = None
|
|
429
|
+
cache_new.edge_dst = None
|
|
430
|
+
cache_new.checksum = checksum
|
|
431
|
+
|
|
432
|
+
# Reset any numpy mirrors or aggregated buffers to avoid leaking
|
|
433
|
+
# state across refresh cycles (e.g. switching between vectorised
|
|
434
|
+
# and Python paths or reusing legacy caches).
|
|
435
|
+
if prev_cache is not None:
|
|
436
|
+
for attr in _NUMPY_CACHE_ATTRS:
|
|
437
|
+
setattr(cache_new, attr, None)
|
|
438
|
+
for attr in (
|
|
439
|
+
"th_bar_np",
|
|
440
|
+
"epi_bar_np",
|
|
441
|
+
"vf_bar_np",
|
|
442
|
+
"deg_bar_np",
|
|
443
|
+
"grad_phase_np",
|
|
444
|
+
"grad_epi_np",
|
|
445
|
+
"grad_vf_np",
|
|
446
|
+
"grad_topo_np",
|
|
447
|
+
"grad_total_np",
|
|
448
|
+
):
|
|
449
|
+
setattr(cache_new, attr, None)
|
|
450
|
+
cache_new.edge_src = None
|
|
451
|
+
cache_new.edge_dst = None
|
|
452
|
+
cache_new.edge_signature = None
|
|
453
|
+
cache_new.neighbor_accum_signature = None
|
|
454
|
+
cache_new.degs = prev_cache.degs if prev_cache else None
|
|
455
|
+
cache_new.checksum = checksum
|
|
456
|
+
current.cache = cache_new
|
|
457
|
+
graph["_dnfr_prep_cache"] = cache_new
|
|
458
|
+
return current
|
|
459
|
+
|
|
460
|
+
with manager.timer(DNFR_PREP_STATE_KEY):
|
|
461
|
+
state = manager.update(DNFR_PREP_STATE_KEY, _rebuild)
|
|
462
|
+
manager.increment_miss(DNFR_PREP_STATE_KEY)
|
|
463
|
+
cache = state.cache
|
|
464
|
+
if not isinstance(cache, DnfrCache): # pragma: no cover - defensive guard
|
|
465
|
+
raise RuntimeError("ΔNFR cache initialisation failed")
|
|
127
466
|
return (
|
|
128
467
|
cache,
|
|
129
468
|
cache.idx,
|
|
@@ -136,13 +475,14 @@ def _init_dnfr_cache(G, nodes, prev_cache: DnfrCache | None, checksum, dirty):
|
|
|
136
475
|
)
|
|
137
476
|
|
|
138
477
|
|
|
139
|
-
def _ensure_numpy_vectors(cache: DnfrCache, np):
|
|
478
|
+
def _ensure_numpy_vectors(cache: DnfrCache, np: ModuleType) -> DnfrCacheVectors:
|
|
140
479
|
"""Ensure NumPy copies of cached vectors are initialised and up to date."""
|
|
141
480
|
|
|
142
481
|
if cache is None:
|
|
143
482
|
return (None, None, None, None, None)
|
|
144
483
|
|
|
145
|
-
arrays = []
|
|
484
|
+
arrays: list[Any | None] = []
|
|
485
|
+
size = len(cache.theta)
|
|
146
486
|
for attr_np, source_attr in (
|
|
147
487
|
("theta_np", "theta"),
|
|
148
488
|
("epi_np", "epi"),
|
|
@@ -150,28 +490,60 @@ def _ensure_numpy_vectors(cache: DnfrCache, np):
|
|
|
150
490
|
("cos_theta_np", "cos_theta"),
|
|
151
491
|
("sin_theta_np", "sin_theta"),
|
|
152
492
|
):
|
|
153
|
-
src = getattr(cache, source_attr)
|
|
154
493
|
arr = getattr(cache, attr_np)
|
|
494
|
+
if arr is not None and getattr(arr, "shape", None) == (size,):
|
|
495
|
+
arrays.append(arr)
|
|
496
|
+
continue
|
|
497
|
+
src = getattr(cache, source_attr)
|
|
155
498
|
if src is None:
|
|
156
499
|
setattr(cache, attr_np, None)
|
|
157
500
|
arrays.append(None)
|
|
158
501
|
continue
|
|
159
|
-
|
|
502
|
+
arr = np.asarray(src, dtype=float)
|
|
503
|
+
if getattr(arr, "shape", None) != (size,):
|
|
160
504
|
arr = np.array(src, dtype=float)
|
|
161
|
-
else:
|
|
162
|
-
np.copyto(arr, src, casting="unsafe")
|
|
163
505
|
setattr(cache, attr_np, arr)
|
|
164
506
|
arrays.append(arr)
|
|
165
507
|
return tuple(arrays)
|
|
166
508
|
|
|
167
509
|
|
|
168
|
-
def _ensure_numpy_degrees(
|
|
169
|
-
|
|
510
|
+
def _ensure_numpy_degrees(
|
|
511
|
+
cache: DnfrCache,
|
|
512
|
+
deg_list: Sequence[float] | None,
|
|
513
|
+
np: ModuleType,
|
|
514
|
+
) -> np.ndarray | None:
|
|
515
|
+
"""Initialise/update NumPy array mirroring ``deg_list``.
|
|
516
|
+
|
|
517
|
+
Deg_array reuse pattern:
|
|
518
|
+
-------------------------
|
|
519
|
+
The degree array (deg_array) is a cached NumPy buffer that stores node
|
|
520
|
+
degrees for topology-based ΔNFR computations. The reuse pattern follows:
|
|
521
|
+
|
|
522
|
+
1. **Allocation**: Created once when topology weight (w_topo) > 0 or when
|
|
523
|
+
caching is enabled, sized to match the node count.
|
|
524
|
+
|
|
525
|
+
2. **Reuse across steps**: When the graph topology is stable (no edge
|
|
526
|
+
additions/removals), the same deg_array buffer is reused across
|
|
527
|
+
multiple ΔNFR computation steps by updating in-place via np.copyto.
|
|
528
|
+
|
|
529
|
+
3. **Count buffer optimization**: For undirected graphs where node degree
|
|
530
|
+
equals neighbor count, deg_array can serve double duty as the count
|
|
531
|
+
buffer (see _accumulate_neighbors_numpy lines 2185-2194), eliminating
|
|
532
|
+
the need for an extra accumulator row.
|
|
533
|
+
|
|
534
|
+
4. **Invalidation**: Cache is cleared when graph.edges changes or when
|
|
535
|
+
_dnfr_prep_dirty flag is set, ensuring fresh allocation on next use.
|
|
170
536
|
|
|
171
|
-
|
|
537
|
+
This pattern maintains ΔNFR computational accuracy (Invariant #8) while
|
|
538
|
+
minimizing allocations for stable topologies.
|
|
539
|
+
"""
|
|
540
|
+
|
|
541
|
+
if deg_list is None:
|
|
172
542
|
if cache is not None:
|
|
173
543
|
cache.deg_array = None
|
|
174
544
|
return None
|
|
545
|
+
if cache is None:
|
|
546
|
+
return np.array(deg_list, dtype=float)
|
|
175
547
|
arr = cache.deg_array
|
|
176
548
|
if arr is None or len(arr) != len(deg_list):
|
|
177
549
|
arr = np.array(deg_list, dtype=float)
|
|
@@ -181,121 +553,522 @@ def _ensure_numpy_degrees(cache: DnfrCache, deg_list, np):
|
|
|
181
553
|
return arr
|
|
182
554
|
|
|
183
555
|
|
|
184
|
-
def
|
|
556
|
+
def _resolve_numpy_degree_array(
|
|
557
|
+
data: MutableMapping[str, Any],
|
|
558
|
+
count: np.ndarray | None,
|
|
559
|
+
*,
|
|
560
|
+
cache: DnfrCache | None,
|
|
561
|
+
np: ModuleType,
|
|
562
|
+
) -> np.ndarray | None:
|
|
563
|
+
"""Return the vector of node degrees required for topology gradients."""
|
|
564
|
+
|
|
565
|
+
if data["w_topo"] == 0.0:
|
|
566
|
+
return None
|
|
567
|
+
deg_array = data.get("deg_array")
|
|
568
|
+
if deg_array is not None:
|
|
569
|
+
return deg_array
|
|
570
|
+
deg_list = data.get("deg_list")
|
|
571
|
+
if deg_list is not None:
|
|
572
|
+
deg_array = np.array(deg_list, dtype=float)
|
|
573
|
+
data["deg_array"] = deg_array
|
|
574
|
+
if cache is not None:
|
|
575
|
+
cache.deg_array = deg_array
|
|
576
|
+
return deg_array
|
|
577
|
+
return count
|
|
578
|
+
|
|
579
|
+
|
|
580
|
+
def _ensure_cached_array(
|
|
581
|
+
cache: DnfrCache | None,
|
|
582
|
+
attr: str,
|
|
583
|
+
shape: tuple[int, ...],
|
|
584
|
+
np: ModuleType,
|
|
585
|
+
) -> np.ndarray:
|
|
586
|
+
"""Return a cached NumPy buffer with ``shape`` creating/reusing it."""
|
|
587
|
+
|
|
588
|
+
if np is None:
|
|
589
|
+
raise RuntimeError("NumPy is required to build cached arrays")
|
|
590
|
+
arr = getattr(cache, attr) if cache is not None else None
|
|
591
|
+
if arr is None or getattr(arr, "shape", None) != shape:
|
|
592
|
+
arr = np.empty(shape, dtype=float)
|
|
593
|
+
if cache is not None:
|
|
594
|
+
setattr(cache, attr, arr)
|
|
595
|
+
return arr
|
|
596
|
+
|
|
597
|
+
|
|
598
|
+
def _ensure_numpy_state_vectors(
|
|
599
|
+
data: MutableMapping[str, Any], np: ModuleType
|
|
600
|
+
) -> DnfrVectorMap:
|
|
601
|
+
"""Synchronise list-based state vectors with their NumPy counterparts."""
|
|
602
|
+
|
|
603
|
+
nodes = data.get("nodes") or ()
|
|
604
|
+
size = len(nodes)
|
|
605
|
+
cache: DnfrCache | None = data.get("cache")
|
|
606
|
+
|
|
607
|
+
cache_arrays: DnfrCacheVectors = (None, None, None, None, None)
|
|
608
|
+
if cache is not None:
|
|
609
|
+
cache_arrays = _ensure_numpy_vectors(cache, np)
|
|
610
|
+
|
|
611
|
+
result: dict[str, Any | None] = {}
|
|
612
|
+
for plain_key, np_key, cached_arr, result_key in (
|
|
613
|
+
("theta", "theta_np", cache_arrays[0], "theta"),
|
|
614
|
+
("epi", "epi_np", cache_arrays[1], "epi"),
|
|
615
|
+
("vf", "vf_np", cache_arrays[2], "vf"),
|
|
616
|
+
("cos_theta", "cos_theta_np", cache_arrays[3], "cos"),
|
|
617
|
+
("sin_theta", "sin_theta_np", cache_arrays[4], "sin"),
|
|
618
|
+
):
|
|
619
|
+
arr = data.get(np_key)
|
|
620
|
+
if arr is None:
|
|
621
|
+
arr = cached_arr
|
|
622
|
+
if arr is None or getattr(arr, "shape", None) != (size,):
|
|
623
|
+
src = data.get(plain_key)
|
|
624
|
+
if src is None and cache is not None:
|
|
625
|
+
src = getattr(cache, plain_key)
|
|
626
|
+
if src is None:
|
|
627
|
+
arr = None
|
|
628
|
+
else:
|
|
629
|
+
arr = np.asarray(src, dtype=float)
|
|
630
|
+
if getattr(arr, "shape", None) != (size,):
|
|
631
|
+
arr = np.array(src, dtype=float)
|
|
632
|
+
if arr is not None:
|
|
633
|
+
data[np_key] = arr
|
|
634
|
+
data[plain_key] = arr
|
|
635
|
+
if cache is not None:
|
|
636
|
+
setattr(cache, np_key, arr)
|
|
637
|
+
else:
|
|
638
|
+
data[np_key] = None
|
|
639
|
+
result[result_key] = arr
|
|
640
|
+
|
|
641
|
+
return result
|
|
642
|
+
|
|
643
|
+
|
|
644
|
+
def _build_edge_index_arrays(
|
|
645
|
+
G: TNFRGraph,
|
|
646
|
+
nodes: Sequence[NodeId],
|
|
647
|
+
idx: Mapping[NodeId, int],
|
|
648
|
+
np: ModuleType,
|
|
649
|
+
) -> tuple[np.ndarray, np.ndarray]:
|
|
650
|
+
"""Create (src, dst) index arrays for ``G`` respecting ``nodes`` order."""
|
|
651
|
+
|
|
652
|
+
if np is None:
|
|
653
|
+
return None, None
|
|
654
|
+
if not nodes:
|
|
655
|
+
empty = np.empty(0, dtype=np.intp)
|
|
656
|
+
return empty, empty
|
|
657
|
+
|
|
658
|
+
src = []
|
|
659
|
+
dst = []
|
|
660
|
+
append_src = src.append
|
|
661
|
+
append_dst = dst.append
|
|
662
|
+
for node in nodes:
|
|
663
|
+
i = idx.get(node)
|
|
664
|
+
if i is None:
|
|
665
|
+
continue
|
|
666
|
+
for neighbor in G.neighbors(node):
|
|
667
|
+
j = idx.get(neighbor)
|
|
668
|
+
if j is None:
|
|
669
|
+
continue
|
|
670
|
+
append_src(i)
|
|
671
|
+
append_dst(j)
|
|
672
|
+
if not src:
|
|
673
|
+
empty = np.empty(0, dtype=np.intp)
|
|
674
|
+
return empty, empty
|
|
675
|
+
edge_src = np.asarray(src, dtype=np.intp)
|
|
676
|
+
edge_dst = np.asarray(dst, dtype=np.intp)
|
|
677
|
+
return edge_src, edge_dst
|
|
678
|
+
|
|
679
|
+
|
|
680
|
+
def _refresh_dnfr_vectors(
|
|
681
|
+
G: TNFRGraph, nodes: Sequence[NodeId], cache: DnfrCache
|
|
682
|
+
) -> None:
|
|
185
683
|
"""Update cached angle and state vectors for ΔNFR."""
|
|
186
|
-
|
|
187
|
-
trig = compute_theta_trig(((n, G.nodes[n]) for n in nodes), np=
|
|
188
|
-
use_numpy =
|
|
189
|
-
|
|
190
|
-
|
|
191
|
-
|
|
192
|
-
|
|
193
|
-
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
684
|
+
np_module = get_numpy()
|
|
685
|
+
trig = compute_theta_trig(((n, G.nodes[n]) for n in nodes), np=np_module)
|
|
686
|
+
use_numpy = _should_vectorize(G, np_module)
|
|
687
|
+
node_count = len(nodes)
|
|
688
|
+
trig_theta = getattr(trig, "theta_values", None)
|
|
689
|
+
trig_cos = getattr(trig, "cos_values", None)
|
|
690
|
+
trig_sin = getattr(trig, "sin_values", None)
|
|
691
|
+
np_ready = (
|
|
692
|
+
use_numpy
|
|
693
|
+
and np_module is not None
|
|
694
|
+
and isinstance(trig_theta, getattr(np_module, "ndarray", tuple()))
|
|
695
|
+
and isinstance(trig_cos, getattr(np_module, "ndarray", tuple()))
|
|
696
|
+
and isinstance(trig_sin, getattr(np_module, "ndarray", tuple()))
|
|
697
|
+
and getattr(trig_theta, "shape", None) == getattr(trig_cos, "shape", None)
|
|
698
|
+
and getattr(trig_theta, "shape", None) == getattr(trig_sin, "shape", None)
|
|
699
|
+
and (trig_theta.shape[0] if getattr(trig_theta, "ndim", 0) else 0) == node_count
|
|
700
|
+
)
|
|
701
|
+
|
|
702
|
+
if np_ready:
|
|
703
|
+
if node_count:
|
|
704
|
+
epi_arr = np_module.fromiter(
|
|
705
|
+
(get_attr(G.nodes[node], ALIAS_EPI, 0.0) for node in nodes),
|
|
706
|
+
dtype=float,
|
|
707
|
+
count=node_count,
|
|
708
|
+
)
|
|
709
|
+
vf_arr = np_module.fromiter(
|
|
710
|
+
(get_attr(G.nodes[node], ALIAS_VF, 0.0) for node in nodes),
|
|
711
|
+
dtype=float,
|
|
712
|
+
count=node_count,
|
|
713
|
+
)
|
|
714
|
+
else:
|
|
715
|
+
epi_arr = np_module.empty(0, dtype=float)
|
|
716
|
+
vf_arr = np_module.empty(0, dtype=float)
|
|
717
|
+
|
|
718
|
+
theta_arr = np_module.asarray(trig_theta, dtype=float)
|
|
719
|
+
cos_arr = np_module.asarray(trig_cos, dtype=float)
|
|
720
|
+
sin_arr = np_module.asarray(trig_sin, dtype=float)
|
|
721
|
+
|
|
722
|
+
def _sync_numpy(attr: str, source: Any) -> Any:
|
|
723
|
+
dest = getattr(cache, attr)
|
|
724
|
+
if dest is None or getattr(dest, "shape", None) != source.shape:
|
|
725
|
+
dest = np_module.array(source, dtype=float)
|
|
726
|
+
else:
|
|
727
|
+
np_module.copyto(dest, source, casting="unsafe")
|
|
728
|
+
setattr(cache, attr, dest)
|
|
729
|
+
return dest
|
|
730
|
+
|
|
731
|
+
_sync_numpy("theta_np", theta_arr)
|
|
732
|
+
_sync_numpy("epi_np", epi_arr)
|
|
733
|
+
_sync_numpy("vf_np", vf_arr)
|
|
734
|
+
_sync_numpy("cos_theta_np", cos_arr)
|
|
735
|
+
_sync_numpy("sin_theta_np", sin_arr)
|
|
736
|
+
|
|
737
|
+
# Python mirrors remain untouched while the vectorised path is active.
|
|
738
|
+
# They will be rebuilt the next time the runtime falls back to lists.
|
|
739
|
+
if cache.theta is not None and len(cache.theta) != node_count:
|
|
740
|
+
cache.theta = [0.0] * node_count
|
|
741
|
+
if cache.epi is not None and len(cache.epi) != node_count:
|
|
742
|
+
cache.epi = [0.0] * node_count
|
|
743
|
+
if cache.vf is not None and len(cache.vf) != node_count:
|
|
744
|
+
cache.vf = [0.0] * node_count
|
|
745
|
+
if cache.cos_theta is not None and len(cache.cos_theta) != node_count:
|
|
746
|
+
cache.cos_theta = [1.0] * node_count
|
|
747
|
+
if cache.sin_theta is not None and len(cache.sin_theta) != node_count:
|
|
748
|
+
cache.sin_theta = [0.0] * node_count
|
|
198
749
|
else:
|
|
199
|
-
|
|
200
|
-
|
|
201
|
-
|
|
202
|
-
|
|
203
|
-
|
|
750
|
+
for index, node in enumerate(nodes):
|
|
751
|
+
i: int = int(index)
|
|
752
|
+
node_id: NodeId = node
|
|
753
|
+
nd = G.nodes[node_id]
|
|
754
|
+
cache.theta[i] = trig.theta[node_id]
|
|
755
|
+
cache.epi[i] = get_attr(nd, ALIAS_EPI, 0.0)
|
|
756
|
+
cache.vf[i] = get_attr(nd, ALIAS_VF, 0.0)
|
|
757
|
+
cache.cos_theta[i] = trig.cos[node_id]
|
|
758
|
+
cache.sin_theta[i] = trig.sin[node_id]
|
|
759
|
+
if use_numpy and np_module is not None:
|
|
760
|
+
_ensure_numpy_vectors(cache, np_module)
|
|
761
|
+
else:
|
|
762
|
+
cache.theta_np = None
|
|
763
|
+
cache.epi_np = None
|
|
764
|
+
cache.vf_np = None
|
|
765
|
+
cache.cos_theta_np = None
|
|
766
|
+
cache.sin_theta_np = None
|
|
204
767
|
|
|
205
768
|
|
|
206
|
-
def _prepare_dnfr_data(
|
|
207
|
-
|
|
208
|
-
|
|
769
|
+
def _prepare_dnfr_data(
|
|
770
|
+
G: TNFRGraph,
|
|
771
|
+
*,
|
|
772
|
+
cache_size: int | None = 128,
|
|
773
|
+
profile: MutableMapping[str, float] | None = None,
|
|
774
|
+
) -> dict[str, Any]:
|
|
775
|
+
"""Precompute common data for ΔNFR strategies.
|
|
776
|
+
|
|
777
|
+
The helper decides between edge-wise and dense adjacency accumulation
|
|
778
|
+
heuristically. Graphs whose edge density exceeds
|
|
779
|
+
``_SPARSE_DENSITY_THRESHOLD`` receive a cached adjacency matrix so the
|
|
780
|
+
dense path can be exercised; callers may also force the dense mode by
|
|
781
|
+
setting ``G.graph['dnfr_force_dense']`` to a truthy value.
|
|
782
|
+
|
|
783
|
+
Parameters
|
|
784
|
+
----------
|
|
785
|
+
profile : MutableMapping[str, float] or None, optional
|
|
786
|
+
Mutable mapping that accumulates wall-clock timings for ΔNFR
|
|
787
|
+
preparation. When provided the helper increases the
|
|
788
|
+
``"dnfr_cache_rebuild"`` bucket with the time spent refreshing cached
|
|
789
|
+
node vectors and associated NumPy workspaces.
|
|
790
|
+
"""
|
|
791
|
+
start_timer, stop_timer = _profile_start_stop(
|
|
792
|
+
profile,
|
|
793
|
+
keys=("dnfr_cache_rebuild",),
|
|
794
|
+
)
|
|
795
|
+
|
|
796
|
+
graph = G.graph
|
|
797
|
+
weights = graph.get("_dnfr_weights")
|
|
209
798
|
if weights is None:
|
|
210
799
|
weights = _configure_dnfr_weights(G)
|
|
211
800
|
|
|
212
|
-
|
|
213
|
-
|
|
801
|
+
result: dict[str, Any] = {
|
|
802
|
+
"weights": weights,
|
|
803
|
+
"cache_size": cache_size,
|
|
804
|
+
}
|
|
805
|
+
|
|
806
|
+
np_module = get_numpy()
|
|
807
|
+
use_numpy = _should_vectorize(G, np_module)
|
|
808
|
+
|
|
809
|
+
nodes = cast(tuple[NodeId, ...], cached_node_list(G))
|
|
810
|
+
edge_count = G.number_of_edges()
|
|
811
|
+
|
|
812
|
+
# Centralized decision logic for sparse vs dense accumulation path.
|
|
813
|
+
# This decision affects which accumulation strategy will be used:
|
|
814
|
+
# - "sparse": edge-based accumulation (_accumulate_neighbors_broadcasted)
|
|
815
|
+
# - "dense": matrix multiplication with adjacency matrix (_accumulate_neighbors_dense)
|
|
816
|
+
# The decision is stored in dnfr_path_decision for telemetry and debugging.
|
|
817
|
+
prefer_sparse = False
|
|
818
|
+
dense_override = bool(G.graph.get("dnfr_force_dense"))
|
|
819
|
+
dnfr_path_decision = "fallback" # Default when numpy unavailable
|
|
214
820
|
|
|
215
|
-
|
|
216
|
-
|
|
821
|
+
if use_numpy:
|
|
822
|
+
# Heuristic: use sparse path when density <= _SPARSE_DENSITY_THRESHOLD (0.25)
|
|
823
|
+
prefer_sparse = _prefer_sparse_accumulation(len(nodes), edge_count)
|
|
824
|
+
|
|
825
|
+
if dense_override:
|
|
826
|
+
# User explicitly requested dense mode
|
|
827
|
+
prefer_sparse = False
|
|
828
|
+
dnfr_path_decision = "dense_forced"
|
|
829
|
+
elif not prefer_sparse:
|
|
830
|
+
# Heuristic chose dense path (high density graph)
|
|
831
|
+
dnfr_path_decision = "dense_auto"
|
|
832
|
+
else:
|
|
833
|
+
# Heuristic chose sparse path (low density graph)
|
|
834
|
+
dnfr_path_decision = "sparse"
|
|
835
|
+
|
|
836
|
+
nodes_cached, A_untyped = cached_nodes_and_A(
|
|
837
|
+
G,
|
|
838
|
+
cache_size=cache_size,
|
|
839
|
+
require_numpy=False,
|
|
840
|
+
prefer_sparse=prefer_sparse,
|
|
841
|
+
nodes=nodes,
|
|
842
|
+
)
|
|
843
|
+
nodes = cast(tuple[NodeId, ...], nodes_cached)
|
|
844
|
+
A: np.ndarray | None = A_untyped
|
|
845
|
+
result["nodes"] = nodes
|
|
846
|
+
result["A"] = A
|
|
847
|
+
manager = _graph_cache_manager(G.graph)
|
|
217
848
|
checksum = G.graph.get("_dnfr_nodes_checksum")
|
|
218
|
-
|
|
219
|
-
|
|
220
|
-
|
|
849
|
+
dirty_flag = bool(G.graph.pop("_dnfr_prep_dirty", False))
|
|
850
|
+
existing_cache = cast(DnfrCache | None, graph.get("_dnfr_prep_cache"))
|
|
851
|
+
cache_timer = start_timer()
|
|
852
|
+
cache, idx, theta, epi, vf, cos_theta, sin_theta, refreshed = _init_dnfr_cache(
|
|
853
|
+
G,
|
|
854
|
+
nodes,
|
|
855
|
+
existing_cache,
|
|
856
|
+
checksum,
|
|
857
|
+
force_refresh=dirty_flag,
|
|
858
|
+
manager=manager,
|
|
221
859
|
)
|
|
860
|
+
stop_timer("dnfr_cache_rebuild", cache_timer)
|
|
861
|
+
dirty = dirty_flag or refreshed
|
|
862
|
+
caching_enabled = cache is not None and (cache_size is None or cache_size > 0)
|
|
863
|
+
result["cache"] = cache
|
|
864
|
+
result["idx"] = idx
|
|
865
|
+
result["theta"] = theta
|
|
866
|
+
result["epi"] = epi
|
|
867
|
+
result["vf"] = vf
|
|
868
|
+
result["cos_theta"] = cos_theta
|
|
869
|
+
result["sin_theta"] = sin_theta
|
|
222
870
|
if cache is not None:
|
|
223
871
|
_refresh_dnfr_vectors(G, nodes, cache)
|
|
872
|
+
if np_module is None and not caching_enabled:
|
|
873
|
+
for attr in (
|
|
874
|
+
"neighbor_x_np",
|
|
875
|
+
"neighbor_y_np",
|
|
876
|
+
"neighbor_epi_sum_np",
|
|
877
|
+
"neighbor_vf_sum_np",
|
|
878
|
+
"neighbor_count_np",
|
|
879
|
+
"neighbor_deg_sum_np",
|
|
880
|
+
"neighbor_inv_count_np",
|
|
881
|
+
"neighbor_cos_avg_np",
|
|
882
|
+
"neighbor_sin_avg_np",
|
|
883
|
+
"neighbor_mean_tmp_np",
|
|
884
|
+
"neighbor_mean_length_np",
|
|
885
|
+
"neighbor_accum_np",
|
|
886
|
+
"neighbor_edge_values_np",
|
|
887
|
+
):
|
|
888
|
+
setattr(cache, attr, None)
|
|
889
|
+
cache.neighbor_accum_signature = None
|
|
890
|
+
for attr in (
|
|
891
|
+
"th_bar_np",
|
|
892
|
+
"epi_bar_np",
|
|
893
|
+
"vf_bar_np",
|
|
894
|
+
"deg_bar_np",
|
|
895
|
+
"grad_phase_np",
|
|
896
|
+
"grad_epi_np",
|
|
897
|
+
"grad_vf_np",
|
|
898
|
+
"grad_topo_np",
|
|
899
|
+
"grad_total_np",
|
|
900
|
+
):
|
|
901
|
+
setattr(cache, attr, None)
|
|
224
902
|
|
|
225
903
|
w_phase = float(weights.get("phase", 0.0))
|
|
226
904
|
w_epi = float(weights.get("epi", 0.0))
|
|
227
905
|
w_vf = float(weights.get("vf", 0.0))
|
|
228
906
|
w_topo = float(weights.get("topo", 0.0))
|
|
229
|
-
|
|
230
|
-
|
|
231
|
-
|
|
232
|
-
|
|
233
|
-
|
|
234
|
-
|
|
235
|
-
|
|
236
|
-
|
|
237
|
-
|
|
238
|
-
|
|
907
|
+
result["w_phase"] = w_phase
|
|
908
|
+
result["w_epi"] = w_epi
|
|
909
|
+
result["w_vf"] = w_vf
|
|
910
|
+
result["w_topo"] = w_topo
|
|
911
|
+
degree_map = cast(dict[NodeId, float] | None, cache.degs if cache else None)
|
|
912
|
+
if cache is not None and dirty:
|
|
913
|
+
cache.degs = None
|
|
914
|
+
cache.deg_list = None
|
|
915
|
+
cache.deg_array = None
|
|
916
|
+
cache.edge_src = None
|
|
917
|
+
cache.edge_dst = None
|
|
918
|
+
cache.edge_signature = None
|
|
919
|
+
cache.neighbor_accum_signature = None
|
|
920
|
+
cache.neighbor_accum_np = None
|
|
921
|
+
cache.neighbor_edge_values_np = None
|
|
922
|
+
degree_map = None
|
|
239
923
|
|
|
240
924
|
deg_list: list[float] | None = None
|
|
241
|
-
|
|
242
|
-
|
|
243
|
-
|
|
244
|
-
|
|
245
|
-
|
|
925
|
+
degs: dict[NodeId, float] | None = None
|
|
926
|
+
deg_array: np.ndarray | None = None
|
|
927
|
+
|
|
928
|
+
if w_topo != 0.0 or caching_enabled:
|
|
929
|
+
if degree_map is None or len(degree_map) != len(G):
|
|
930
|
+
degree_map = {cast(NodeId, node): float(deg) for node, deg in G.degree()}
|
|
931
|
+
if cache is not None:
|
|
932
|
+
cache.degs = degree_map
|
|
933
|
+
|
|
934
|
+
if (
|
|
935
|
+
cache is not None
|
|
936
|
+
and cache.deg_list is not None
|
|
937
|
+
and not dirty
|
|
938
|
+
and len(cache.deg_list) == len(nodes)
|
|
939
|
+
):
|
|
940
|
+
deg_list = cache.deg_list
|
|
941
|
+
else:
|
|
942
|
+
deg_list = [float(degree_map.get(node, 0.0)) for node in nodes]
|
|
943
|
+
if cache is not None:
|
|
944
|
+
cache.deg_list = deg_list
|
|
945
|
+
|
|
946
|
+
degs = degree_map
|
|
947
|
+
|
|
948
|
+
if np_module is not None and deg_list is not None:
|
|
949
|
+
if cache is not None:
|
|
950
|
+
deg_array = _ensure_numpy_degrees(cache, deg_list, np_module)
|
|
951
|
+
else:
|
|
952
|
+
deg_array = np_module.array(deg_list, dtype=float)
|
|
953
|
+
elif cache is not None:
|
|
954
|
+
cache.deg_array = None
|
|
955
|
+
elif cache is not None and dirty:
|
|
246
956
|
cache.deg_list = None
|
|
957
|
+
cache.deg_array = None
|
|
958
|
+
|
|
959
|
+
G.graph["_dnfr_prep_dirty"] = False
|
|
960
|
+
|
|
961
|
+
result["degs"] = degs
|
|
962
|
+
result["deg_list"] = deg_list
|
|
247
963
|
|
|
248
|
-
|
|
964
|
+
theta_np: np.ndarray | None
|
|
965
|
+
epi_np: np.ndarray | None
|
|
966
|
+
vf_np: np.ndarray | None
|
|
967
|
+
cos_theta_np: np.ndarray | None
|
|
968
|
+
sin_theta_np: np.ndarray | None
|
|
969
|
+
edge_src: np.ndarray | None
|
|
970
|
+
edge_dst: np.ndarray | None
|
|
971
|
+
if use_numpy:
|
|
249
972
|
theta_np, epi_np, vf_np, cos_theta_np, sin_theta_np = _ensure_numpy_vectors(
|
|
250
|
-
cache,
|
|
973
|
+
cache, np_module
|
|
251
974
|
)
|
|
252
|
-
|
|
975
|
+
edge_src = None
|
|
976
|
+
edge_dst = None
|
|
977
|
+
if cache is not None:
|
|
978
|
+
edge_src = cache.edge_src
|
|
979
|
+
edge_dst = cache.edge_dst
|
|
980
|
+
if edge_src is None or edge_dst is None or dirty:
|
|
981
|
+
edge_src, edge_dst = _build_edge_index_arrays(G, nodes, idx, np_module)
|
|
982
|
+
cache.edge_src = edge_src
|
|
983
|
+
cache.edge_dst = edge_dst
|
|
984
|
+
else:
|
|
985
|
+
edge_src, edge_dst = _build_edge_index_arrays(G, nodes, idx, np_module)
|
|
986
|
+
|
|
987
|
+
if cache is not None:
|
|
988
|
+
for attr in ("neighbor_accum_np", "neighbor_edge_values_np"):
|
|
989
|
+
arr = getattr(cache, attr, None)
|
|
990
|
+
if arr is not None:
|
|
991
|
+
result[attr] = arr
|
|
992
|
+
if edge_src is not None and edge_dst is not None:
|
|
993
|
+
signature = (id(edge_src), id(edge_dst), len(nodes))
|
|
994
|
+
result["edge_signature"] = signature
|
|
995
|
+
if cache is not None:
|
|
996
|
+
cache.edge_signature = signature
|
|
253
997
|
else:
|
|
254
998
|
theta_np = None
|
|
255
999
|
epi_np = None
|
|
256
1000
|
vf_np = None
|
|
257
1001
|
cos_theta_np = None
|
|
258
1002
|
sin_theta_np = None
|
|
259
|
-
|
|
260
|
-
|
|
1003
|
+
edge_src = None
|
|
1004
|
+
edge_dst = None
|
|
1005
|
+
if cache is not None:
|
|
1006
|
+
cache.edge_src = None
|
|
1007
|
+
cache.edge_dst = None
|
|
1008
|
+
|
|
1009
|
+
result.setdefault("neighbor_edge_values_np", None)
|
|
1010
|
+
if cache is not None and "edge_signature" not in result:
|
|
1011
|
+
result["edge_signature"] = cache.edge_signature
|
|
1012
|
+
|
|
1013
|
+
result["theta_np"] = theta_np
|
|
1014
|
+
result["epi_np"] = epi_np
|
|
1015
|
+
result["vf_np"] = vf_np
|
|
1016
|
+
result["cos_theta_np"] = cos_theta_np
|
|
1017
|
+
result["sin_theta_np"] = sin_theta_np
|
|
1018
|
+
if theta_np is not None and getattr(theta_np, "shape", None) == (len(nodes),):
|
|
1019
|
+
result["theta"] = theta_np
|
|
1020
|
+
if epi_np is not None and getattr(epi_np, "shape", None) == (len(nodes),):
|
|
1021
|
+
result["epi"] = epi_np
|
|
1022
|
+
if vf_np is not None and getattr(vf_np, "shape", None) == (len(nodes),):
|
|
1023
|
+
result["vf"] = vf_np
|
|
1024
|
+
if cos_theta_np is not None and getattr(cos_theta_np, "shape", None) == (
|
|
1025
|
+
len(nodes),
|
|
1026
|
+
):
|
|
1027
|
+
result["cos_theta"] = cos_theta_np
|
|
1028
|
+
if sin_theta_np is not None and getattr(sin_theta_np, "shape", None) == (
|
|
1029
|
+
len(nodes),
|
|
1030
|
+
):
|
|
1031
|
+
result["sin_theta"] = sin_theta_np
|
|
1032
|
+
result["deg_array"] = deg_array
|
|
1033
|
+
result["edge_src"] = edge_src
|
|
1034
|
+
result["edge_dst"] = edge_dst
|
|
1035
|
+
result["edge_count"] = edge_count
|
|
1036
|
+
result["prefer_sparse"] = prefer_sparse
|
|
1037
|
+
result["dense_override"] = dense_override
|
|
1038
|
+
result["dnfr_path_decision"] = dnfr_path_decision
|
|
1039
|
+
result.setdefault("neighbor_accum_np", None)
|
|
1040
|
+
result.setdefault("neighbor_accum_signature", None)
|
|
261
1041
|
|
|
262
|
-
return
|
|
263
|
-
"weights": weights,
|
|
264
|
-
"nodes": nodes,
|
|
265
|
-
"idx": idx,
|
|
266
|
-
"theta": theta,
|
|
267
|
-
"epi": epi,
|
|
268
|
-
"vf": vf,
|
|
269
|
-
"cos_theta": cos_theta,
|
|
270
|
-
"sin_theta": sin_theta,
|
|
271
|
-
"theta_np": theta_np,
|
|
272
|
-
"epi_np": epi_np,
|
|
273
|
-
"vf_np": vf_np,
|
|
274
|
-
"cos_theta_np": cos_theta_np,
|
|
275
|
-
"sin_theta_np": sin_theta_np,
|
|
276
|
-
"w_phase": w_phase,
|
|
277
|
-
"w_epi": w_epi,
|
|
278
|
-
"w_vf": w_vf,
|
|
279
|
-
"w_topo": w_topo,
|
|
280
|
-
"degs": degs,
|
|
281
|
-
"deg_list": deg_list,
|
|
282
|
-
"deg_array": deg_array,
|
|
283
|
-
"A": A,
|
|
284
|
-
"cache_size": cache_size,
|
|
285
|
-
"cache": cache,
|
|
286
|
-
}
|
|
1042
|
+
return result
|
|
287
1043
|
|
|
288
1044
|
|
|
289
1045
|
def _apply_dnfr_gradients(
|
|
290
|
-
G,
|
|
291
|
-
data,
|
|
292
|
-
th_bar,
|
|
293
|
-
epi_bar,
|
|
294
|
-
vf_bar,
|
|
295
|
-
deg_bar=None,
|
|
296
|
-
degs=None,
|
|
297
|
-
|
|
298
|
-
|
|
1046
|
+
G: TNFRGraph,
|
|
1047
|
+
data: MutableMapping[str, Any],
|
|
1048
|
+
th_bar: Sequence[float] | np.ndarray,
|
|
1049
|
+
epi_bar: Sequence[float] | np.ndarray,
|
|
1050
|
+
vf_bar: Sequence[float] | np.ndarray,
|
|
1051
|
+
deg_bar: Sequence[float] | np.ndarray | None = None,
|
|
1052
|
+
degs: Mapping[Any, float] | Sequence[float] | np.ndarray | None = None,
|
|
1053
|
+
*,
|
|
1054
|
+
n_jobs: int | None = None,
|
|
1055
|
+
profile: MutableMapping[str, float] | None = None,
|
|
1056
|
+
) -> None:
|
|
1057
|
+
"""Combine precomputed gradients and write ΔNFR to each node.
|
|
1058
|
+
|
|
1059
|
+
Parameters
|
|
1060
|
+
----------
|
|
1061
|
+
profile : MutableMapping[str, float] or None, optional
|
|
1062
|
+
Mutable mapping receiving aggregated timings for the gradient assembly
|
|
1063
|
+
(``"dnfr_gradient_assembly"``) and in-place writes
|
|
1064
|
+
(``"dnfr_inplace_write"``).
|
|
1065
|
+
"""
|
|
1066
|
+
start_timer, stop_timer = _profile_start_stop(
|
|
1067
|
+
profile,
|
|
1068
|
+
keys=("dnfr_gradient_assembly", "dnfr_inplace_write"),
|
|
1069
|
+
)
|
|
1070
|
+
|
|
1071
|
+
np = get_numpy()
|
|
299
1072
|
nodes = data["nodes"]
|
|
300
1073
|
theta = data["theta"]
|
|
301
1074
|
epi = data["epi"]
|
|
@@ -307,25 +1080,146 @@ def _apply_dnfr_gradients(
|
|
|
307
1080
|
if degs is None:
|
|
308
1081
|
degs = data.get("degs")
|
|
309
1082
|
|
|
310
|
-
|
|
311
|
-
|
|
312
|
-
|
|
313
|
-
|
|
314
|
-
|
|
315
|
-
|
|
316
|
-
|
|
317
|
-
|
|
318
|
-
|
|
319
|
-
|
|
320
|
-
|
|
321
|
-
|
|
322
|
-
|
|
323
|
-
|
|
1083
|
+
cache: DnfrCache | None = data.get("cache")
|
|
1084
|
+
|
|
1085
|
+
theta_np = data.get("theta_np")
|
|
1086
|
+
epi_np = data.get("epi_np")
|
|
1087
|
+
vf_np = data.get("vf_np")
|
|
1088
|
+
deg_array = data.get("deg_array") if w_topo != 0.0 else None
|
|
1089
|
+
|
|
1090
|
+
use_vector = (
|
|
1091
|
+
np is not None
|
|
1092
|
+
and theta_np is not None
|
|
1093
|
+
and epi_np is not None
|
|
1094
|
+
and vf_np is not None
|
|
1095
|
+
and isinstance(th_bar, np.ndarray)
|
|
1096
|
+
and isinstance(epi_bar, np.ndarray)
|
|
1097
|
+
and isinstance(vf_bar, np.ndarray)
|
|
1098
|
+
)
|
|
1099
|
+
if use_vector and w_topo != 0.0:
|
|
1100
|
+
use_vector = (
|
|
1101
|
+
deg_bar is not None
|
|
1102
|
+
and isinstance(deg_bar, np.ndarray)
|
|
1103
|
+
and isinstance(deg_array, np.ndarray)
|
|
324
1104
|
)
|
|
325
|
-
set_dnfr(G, n, float(dnfr))
|
|
326
1105
|
|
|
1106
|
+
grad_timer = start_timer()
|
|
1107
|
+
|
|
1108
|
+
if use_vector:
|
|
1109
|
+
grad_phase = _ensure_cached_array(cache, "grad_phase_np", theta_np.shape, np)
|
|
1110
|
+
grad_epi = _ensure_cached_array(cache, "grad_epi_np", epi_np.shape, np)
|
|
1111
|
+
grad_vf = _ensure_cached_array(cache, "grad_vf_np", vf_np.shape, np)
|
|
1112
|
+
grad_total = _ensure_cached_array(cache, "grad_total_np", theta_np.shape, np)
|
|
1113
|
+
grad_topo = None
|
|
1114
|
+
if w_topo != 0.0:
|
|
1115
|
+
grad_topo = _ensure_cached_array(cache, "grad_topo_np", deg_array.shape, np)
|
|
1116
|
+
|
|
1117
|
+
angle_diff_array(theta_np, th_bar, np=np, out=grad_phase)
|
|
1118
|
+
np.multiply(grad_phase, -1.0 / math.pi, out=grad_phase)
|
|
1119
|
+
|
|
1120
|
+
np.copyto(grad_epi, epi_bar, casting="unsafe")
|
|
1121
|
+
grad_epi -= epi_np
|
|
1122
|
+
|
|
1123
|
+
np.copyto(grad_vf, vf_bar, casting="unsafe")
|
|
1124
|
+
grad_vf -= vf_np
|
|
1125
|
+
|
|
1126
|
+
if grad_topo is not None and deg_bar is not None:
|
|
1127
|
+
np.copyto(grad_topo, deg_bar, casting="unsafe")
|
|
1128
|
+
grad_topo -= deg_array
|
|
1129
|
+
|
|
1130
|
+
if w_phase != 0.0:
|
|
1131
|
+
np.multiply(grad_phase, w_phase, out=grad_total)
|
|
1132
|
+
else:
|
|
1133
|
+
grad_total.fill(0.0)
|
|
1134
|
+
if w_epi != 0.0:
|
|
1135
|
+
if w_epi != 1.0:
|
|
1136
|
+
np.multiply(grad_epi, w_epi, out=grad_epi)
|
|
1137
|
+
np.add(grad_total, grad_epi, out=grad_total)
|
|
1138
|
+
if w_vf != 0.0:
|
|
1139
|
+
if w_vf != 1.0:
|
|
1140
|
+
np.multiply(grad_vf, w_vf, out=grad_vf)
|
|
1141
|
+
np.add(grad_total, grad_vf, out=grad_total)
|
|
1142
|
+
if w_topo != 0.0 and grad_topo is not None:
|
|
1143
|
+
if w_topo != 1.0:
|
|
1144
|
+
np.multiply(grad_topo, w_topo, out=grad_topo)
|
|
1145
|
+
np.add(grad_total, grad_topo, out=grad_total)
|
|
1146
|
+
|
|
1147
|
+
dnfr_values = grad_total
|
|
1148
|
+
else:
|
|
1149
|
+
effective_jobs = _resolve_parallel_jobs(n_jobs, len(nodes))
|
|
1150
|
+
if effective_jobs:
|
|
1151
|
+
chunk_results = []
|
|
1152
|
+
with ProcessPoolExecutor(max_workers=effective_jobs) as executor:
|
|
1153
|
+
futures = []
|
|
1154
|
+
for start, end in _iter_chunk_offsets(len(nodes), effective_jobs):
|
|
1155
|
+
if start == end:
|
|
1156
|
+
continue
|
|
1157
|
+
futures.append(
|
|
1158
|
+
executor.submit(
|
|
1159
|
+
_dnfr_gradients_worker,
|
|
1160
|
+
start,
|
|
1161
|
+
end,
|
|
1162
|
+
nodes,
|
|
1163
|
+
theta,
|
|
1164
|
+
epi,
|
|
1165
|
+
vf,
|
|
1166
|
+
th_bar,
|
|
1167
|
+
epi_bar,
|
|
1168
|
+
vf_bar,
|
|
1169
|
+
deg_bar,
|
|
1170
|
+
degs,
|
|
1171
|
+
w_phase,
|
|
1172
|
+
w_epi,
|
|
1173
|
+
w_vf,
|
|
1174
|
+
w_topo,
|
|
1175
|
+
)
|
|
1176
|
+
)
|
|
1177
|
+
for future in futures:
|
|
1178
|
+
chunk_results.append(future.result())
|
|
1179
|
+
|
|
1180
|
+
dnfr_values = [0.0] * len(nodes)
|
|
1181
|
+
for start, chunk in sorted(chunk_results, key=lambda item: item[0]):
|
|
1182
|
+
end = start + len(chunk)
|
|
1183
|
+
dnfr_values[start:end] = chunk
|
|
1184
|
+
else:
|
|
1185
|
+
dnfr_values = []
|
|
1186
|
+
for i, n in enumerate(nodes):
|
|
1187
|
+
g_phase = -angle_diff(theta[i], th_bar[i]) / math.pi
|
|
1188
|
+
g_epi = epi_bar[i] - epi[i]
|
|
1189
|
+
g_vf = vf_bar[i] - vf[i]
|
|
1190
|
+
if w_topo != 0.0 and deg_bar is not None and degs is not None:
|
|
1191
|
+
if isinstance(degs, dict):
|
|
1192
|
+
deg_i = float(degs.get(n, 0))
|
|
1193
|
+
else:
|
|
1194
|
+
deg_i = float(degs[i])
|
|
1195
|
+
g_topo = deg_bar[i] - deg_i
|
|
1196
|
+
else:
|
|
1197
|
+
g_topo = 0.0
|
|
1198
|
+
dnfr_values.append(
|
|
1199
|
+
w_phase * g_phase + w_epi * g_epi + w_vf * g_vf + w_topo * g_topo
|
|
1200
|
+
)
|
|
1201
|
+
|
|
1202
|
+
if cache is not None:
|
|
1203
|
+
cache.grad_phase_np = None
|
|
1204
|
+
cache.grad_epi_np = None
|
|
1205
|
+
cache.grad_vf_np = None
|
|
1206
|
+
cache.grad_topo_np = None
|
|
1207
|
+
cache.grad_total_np = None
|
|
1208
|
+
|
|
1209
|
+
stop_timer("dnfr_gradient_assembly", grad_timer)
|
|
327
1210
|
|
|
328
|
-
|
|
1211
|
+
write_timer = start_timer()
|
|
1212
|
+
for i, n in enumerate(nodes):
|
|
1213
|
+
set_dnfr(G, n, float(dnfr_values[i]))
|
|
1214
|
+
stop_timer("dnfr_inplace_write", write_timer)
|
|
1215
|
+
|
|
1216
|
+
|
|
1217
|
+
def _init_bar_arrays(
|
|
1218
|
+
data: MutableMapping[str, Any],
|
|
1219
|
+
*,
|
|
1220
|
+
degs: Mapping[Any, float] | Sequence[float] | None = None,
|
|
1221
|
+
np: ModuleType | None = None,
|
|
1222
|
+
) -> tuple[Sequence[float], Sequence[float], Sequence[float], Sequence[float] | None]:
|
|
329
1223
|
"""Prepare containers for neighbour means.
|
|
330
1224
|
|
|
331
1225
|
If ``np`` is provided, NumPy arrays are created; otherwise lists are used.
|
|
@@ -333,97 +1227,234 @@ def _init_bar_arrays(data, *, degs=None, np=None):
|
|
|
333
1227
|
active.
|
|
334
1228
|
"""
|
|
335
1229
|
|
|
1230
|
+
nodes = data["nodes"]
|
|
336
1231
|
theta = data["theta"]
|
|
337
1232
|
epi = data["epi"]
|
|
338
1233
|
vf = data["vf"]
|
|
339
1234
|
w_topo = data["w_topo"]
|
|
1235
|
+
cache: DnfrCache | None = data.get("cache")
|
|
340
1236
|
if np is None:
|
|
341
1237
|
np = get_numpy()
|
|
342
1238
|
if np is not None:
|
|
343
|
-
|
|
344
|
-
|
|
345
|
-
|
|
346
|
-
|
|
347
|
-
|
|
348
|
-
|
|
349
|
-
|
|
350
|
-
|
|
1239
|
+
size = len(theta)
|
|
1240
|
+
if cache is not None:
|
|
1241
|
+
th_bar = cache.th_bar_np
|
|
1242
|
+
if th_bar is None or getattr(th_bar, "shape", None) != (size,):
|
|
1243
|
+
th_bar = np.array(theta, dtype=float)
|
|
1244
|
+
else:
|
|
1245
|
+
np.copyto(th_bar, theta, casting="unsafe")
|
|
1246
|
+
cache.th_bar_np = th_bar
|
|
1247
|
+
|
|
1248
|
+
epi_bar = cache.epi_bar_np
|
|
1249
|
+
if epi_bar is None or getattr(epi_bar, "shape", None) != (size,):
|
|
1250
|
+
epi_bar = np.array(epi, dtype=float)
|
|
1251
|
+
else:
|
|
1252
|
+
np.copyto(epi_bar, epi, casting="unsafe")
|
|
1253
|
+
cache.epi_bar_np = epi_bar
|
|
1254
|
+
|
|
1255
|
+
vf_bar = cache.vf_bar_np
|
|
1256
|
+
if vf_bar is None or getattr(vf_bar, "shape", None) != (size,):
|
|
1257
|
+
vf_bar = np.array(vf, dtype=float)
|
|
1258
|
+
else:
|
|
1259
|
+
np.copyto(vf_bar, vf, casting="unsafe")
|
|
1260
|
+
cache.vf_bar_np = vf_bar
|
|
1261
|
+
|
|
1262
|
+
if w_topo != 0.0 and degs is not None:
|
|
1263
|
+
if isinstance(degs, dict):
|
|
1264
|
+
deg_size = len(nodes)
|
|
1265
|
+
else:
|
|
1266
|
+
deg_size = len(degs)
|
|
1267
|
+
deg_bar = cache.deg_bar_np
|
|
1268
|
+
if deg_bar is None or getattr(deg_bar, "shape", None) != (deg_size,):
|
|
1269
|
+
if isinstance(degs, dict):
|
|
1270
|
+
deg_bar = np.array(
|
|
1271
|
+
[float(degs.get(node, 0.0)) for node in nodes],
|
|
1272
|
+
dtype=float,
|
|
1273
|
+
)
|
|
1274
|
+
else:
|
|
1275
|
+
deg_bar = np.array(degs, dtype=float)
|
|
1276
|
+
else:
|
|
1277
|
+
if isinstance(degs, dict):
|
|
1278
|
+
for i, node in enumerate(nodes):
|
|
1279
|
+
deg_bar[i] = float(degs.get(node, 0.0))
|
|
1280
|
+
else:
|
|
1281
|
+
np.copyto(deg_bar, degs, casting="unsafe")
|
|
1282
|
+
cache.deg_bar_np = deg_bar
|
|
1283
|
+
else:
|
|
1284
|
+
deg_bar = None
|
|
1285
|
+
if cache is not None:
|
|
1286
|
+
cache.deg_bar_np = None
|
|
1287
|
+
else:
|
|
1288
|
+
th_bar = np.array(theta, dtype=float)
|
|
1289
|
+
epi_bar = np.array(epi, dtype=float)
|
|
1290
|
+
vf_bar = np.array(vf, dtype=float)
|
|
1291
|
+
deg_bar = (
|
|
1292
|
+
np.array(degs, dtype=float)
|
|
1293
|
+
if w_topo != 0.0 and degs is not None
|
|
1294
|
+
else None
|
|
1295
|
+
)
|
|
351
1296
|
else:
|
|
352
|
-
|
|
353
|
-
|
|
354
|
-
|
|
355
|
-
|
|
1297
|
+
size = len(theta)
|
|
1298
|
+
if cache is not None:
|
|
1299
|
+
th_bar = cache.th_bar
|
|
1300
|
+
if th_bar is None or len(th_bar) != size:
|
|
1301
|
+
th_bar = [0.0] * size
|
|
1302
|
+
th_bar[:] = theta
|
|
1303
|
+
cache.th_bar = th_bar
|
|
1304
|
+
|
|
1305
|
+
epi_bar = cache.epi_bar
|
|
1306
|
+
if epi_bar is None or len(epi_bar) != size:
|
|
1307
|
+
epi_bar = [0.0] * size
|
|
1308
|
+
epi_bar[:] = epi
|
|
1309
|
+
cache.epi_bar = epi_bar
|
|
1310
|
+
|
|
1311
|
+
vf_bar = cache.vf_bar
|
|
1312
|
+
if vf_bar is None or len(vf_bar) != size:
|
|
1313
|
+
vf_bar = [0.0] * size
|
|
1314
|
+
vf_bar[:] = vf
|
|
1315
|
+
cache.vf_bar = vf_bar
|
|
1316
|
+
|
|
1317
|
+
if w_topo != 0.0 and degs is not None:
|
|
1318
|
+
if isinstance(degs, dict):
|
|
1319
|
+
deg_size = len(nodes)
|
|
1320
|
+
else:
|
|
1321
|
+
deg_size = len(degs)
|
|
1322
|
+
deg_bar = cache.deg_bar
|
|
1323
|
+
if deg_bar is None or len(deg_bar) != deg_size:
|
|
1324
|
+
deg_bar = [0.0] * deg_size
|
|
1325
|
+
if isinstance(degs, dict):
|
|
1326
|
+
for i, node in enumerate(nodes):
|
|
1327
|
+
deg_bar[i] = float(degs.get(node, 0.0))
|
|
1328
|
+
else:
|
|
1329
|
+
for i, value in enumerate(degs):
|
|
1330
|
+
deg_bar[i] = float(value)
|
|
1331
|
+
cache.deg_bar = deg_bar
|
|
1332
|
+
else:
|
|
1333
|
+
deg_bar = None
|
|
1334
|
+
cache.deg_bar = None
|
|
1335
|
+
else:
|
|
1336
|
+
th_bar = list(theta)
|
|
1337
|
+
epi_bar = list(epi)
|
|
1338
|
+
vf_bar = list(vf)
|
|
1339
|
+
deg_bar = list(degs) if w_topo != 0.0 and degs is not None else None
|
|
356
1340
|
return th_bar, epi_bar, vf_bar, deg_bar
|
|
357
1341
|
|
|
358
1342
|
|
|
359
1343
|
def _compute_neighbor_means(
|
|
360
|
-
G,
|
|
361
|
-
data,
|
|
1344
|
+
G: TNFRGraph,
|
|
1345
|
+
data: MutableMapping[str, Any],
|
|
362
1346
|
*,
|
|
363
|
-
x,
|
|
364
|
-
y,
|
|
365
|
-
epi_sum,
|
|
366
|
-
vf_sum,
|
|
367
|
-
count,
|
|
368
|
-
deg_sum=None,
|
|
369
|
-
degs=None,
|
|
370
|
-
np=None,
|
|
371
|
-
):
|
|
1347
|
+
x: Sequence[float],
|
|
1348
|
+
y: Sequence[float],
|
|
1349
|
+
epi_sum: Sequence[float],
|
|
1350
|
+
vf_sum: Sequence[float],
|
|
1351
|
+
count: Sequence[float] | np.ndarray,
|
|
1352
|
+
deg_sum: Sequence[float] | None = None,
|
|
1353
|
+
degs: Mapping[Any, float] | Sequence[float] | None = None,
|
|
1354
|
+
np: ModuleType | None = None,
|
|
1355
|
+
) -> tuple[Sequence[float], Sequence[float], Sequence[float], Sequence[float] | None]:
|
|
372
1356
|
"""Return neighbour mean arrays for ΔNFR."""
|
|
373
1357
|
w_topo = data["w_topo"]
|
|
374
1358
|
theta = data["theta"]
|
|
1359
|
+
cache: DnfrCache | None = data.get("cache")
|
|
375
1360
|
is_numpy = np is not None and isinstance(count, np.ndarray)
|
|
376
1361
|
th_bar, epi_bar, vf_bar, deg_bar = _init_bar_arrays(
|
|
377
1362
|
data, degs=degs, np=np if is_numpy else None
|
|
378
1363
|
)
|
|
379
1364
|
|
|
380
1365
|
if is_numpy:
|
|
1366
|
+
n = count.shape[0]
|
|
381
1367
|
mask = count > 0
|
|
382
|
-
if np.any(mask):
|
|
383
|
-
th_bar
|
|
384
|
-
|
|
385
|
-
|
|
386
|
-
|
|
387
|
-
|
|
388
|
-
|
|
389
|
-
|
|
1368
|
+
if not np.any(mask):
|
|
1369
|
+
return th_bar, epi_bar, vf_bar, deg_bar
|
|
1370
|
+
|
|
1371
|
+
inv = _ensure_cached_array(cache, "neighbor_inv_count_np", (n,), np)
|
|
1372
|
+
inv.fill(0.0)
|
|
1373
|
+
np.divide(1.0, count, out=inv, where=mask)
|
|
1374
|
+
|
|
1375
|
+
cos_avg = _ensure_cached_array(cache, "neighbor_cos_avg_np", (n,), np)
|
|
1376
|
+
cos_avg.fill(0.0)
|
|
1377
|
+
np.multiply(x, inv, out=cos_avg, where=mask)
|
|
1378
|
+
|
|
1379
|
+
sin_avg = _ensure_cached_array(cache, "neighbor_sin_avg_np", (n,), np)
|
|
1380
|
+
sin_avg.fill(0.0)
|
|
1381
|
+
np.multiply(y, inv, out=sin_avg, where=mask)
|
|
1382
|
+
|
|
1383
|
+
lengths = _ensure_cached_array(cache, "neighbor_mean_length_np", (n,), np)
|
|
1384
|
+
np.hypot(cos_avg, sin_avg, out=lengths)
|
|
1385
|
+
|
|
1386
|
+
temp = _ensure_cached_array(cache, "neighbor_mean_tmp_np", (n,), np)
|
|
1387
|
+
np.arctan2(sin_avg, cos_avg, out=temp)
|
|
1388
|
+
|
|
1389
|
+
theta_src = data.get("theta_np")
|
|
1390
|
+
if theta_src is None:
|
|
1391
|
+
theta_src = np.asarray(theta, dtype=float)
|
|
1392
|
+
zero_mask = lengths <= _MEAN_VECTOR_EPS
|
|
1393
|
+
np.copyto(temp, theta_src, where=zero_mask)
|
|
1394
|
+
np.copyto(th_bar, temp, where=mask, casting="unsafe")
|
|
1395
|
+
|
|
1396
|
+
np.divide(epi_sum, count, out=epi_bar, where=mask)
|
|
1397
|
+
np.divide(vf_sum, count, out=vf_bar, where=mask)
|
|
1398
|
+
if w_topo != 0.0 and deg_bar is not None and deg_sum is not None:
|
|
1399
|
+
np.divide(deg_sum, count, out=deg_bar, where=mask)
|
|
390
1400
|
return th_bar, epi_bar, vf_bar, deg_bar
|
|
391
1401
|
|
|
392
1402
|
n = len(theta)
|
|
393
|
-
cos_th = data["cos_theta"]
|
|
394
|
-
sin_th = data["sin_theta"]
|
|
395
|
-
idx = data["idx"]
|
|
396
|
-
nodes = data["nodes"]
|
|
397
|
-
deg_list = data.get("deg_list")
|
|
398
1403
|
for i in range(n):
|
|
399
1404
|
c = count[i]
|
|
400
|
-
if c:
|
|
401
|
-
|
|
402
|
-
|
|
403
|
-
|
|
404
|
-
|
|
405
|
-
|
|
406
|
-
|
|
407
|
-
|
|
408
|
-
|
|
409
|
-
|
|
1405
|
+
if not c:
|
|
1406
|
+
continue
|
|
1407
|
+
inv = 1.0 / float(c)
|
|
1408
|
+
cos_avg = x[i] * inv
|
|
1409
|
+
sin_avg = y[i] * inv
|
|
1410
|
+
if math.hypot(cos_avg, sin_avg) <= _MEAN_VECTOR_EPS:
|
|
1411
|
+
th_bar[i] = theta[i]
|
|
1412
|
+
else:
|
|
1413
|
+
th_bar[i] = math.atan2(sin_avg, cos_avg)
|
|
1414
|
+
epi_bar[i] = epi_sum[i] * inv
|
|
1415
|
+
vf_bar[i] = vf_sum[i] * inv
|
|
1416
|
+
if w_topo != 0.0 and deg_bar is not None and deg_sum is not None:
|
|
1417
|
+
deg_bar[i] = deg_sum[i] * inv
|
|
410
1418
|
return th_bar, epi_bar, vf_bar, deg_bar
|
|
411
1419
|
|
|
412
1420
|
|
|
413
1421
|
def _compute_dnfr_common(
|
|
414
|
-
G,
|
|
415
|
-
data,
|
|
1422
|
+
G: TNFRGraph,
|
|
1423
|
+
data: MutableMapping[str, Any],
|
|
416
1424
|
*,
|
|
417
|
-
x,
|
|
418
|
-
y,
|
|
419
|
-
epi_sum,
|
|
420
|
-
vf_sum,
|
|
421
|
-
count,
|
|
422
|
-
deg_sum=None,
|
|
423
|
-
degs=None,
|
|
424
|
-
|
|
425
|
-
|
|
426
|
-
|
|
1425
|
+
x: Sequence[float],
|
|
1426
|
+
y: Sequence[float],
|
|
1427
|
+
epi_sum: Sequence[float],
|
|
1428
|
+
vf_sum: Sequence[float],
|
|
1429
|
+
count: Sequence[float] | None,
|
|
1430
|
+
deg_sum: Sequence[float] | None = None,
|
|
1431
|
+
degs: Sequence[float] | None = None,
|
|
1432
|
+
n_jobs: int | None = None,
|
|
1433
|
+
profile: MutableMapping[str, float] | None = None,
|
|
1434
|
+
) -> None:
|
|
1435
|
+
"""Compute neighbour means and apply ΔNFR gradients.
|
|
1436
|
+
|
|
1437
|
+
Parameters
|
|
1438
|
+
----------
|
|
1439
|
+
profile : MutableMapping[str, float] or None, optional
|
|
1440
|
+
Mutable mapping that records wall-clock durations for the neighbour
|
|
1441
|
+
mean computation (``"dnfr_neighbor_means"``), the gradient assembly
|
|
1442
|
+
(``"dnfr_gradient_assembly"``) and the final in-place writes to the
|
|
1443
|
+
graph (``"dnfr_inplace_write"``).
|
|
1444
|
+
"""
|
|
1445
|
+
start_timer, stop_timer = _profile_start_stop(
|
|
1446
|
+
profile,
|
|
1447
|
+
keys=("dnfr_neighbor_means", "dnfr_gradient_assembly", "dnfr_inplace_write"),
|
|
1448
|
+
)
|
|
1449
|
+
|
|
1450
|
+
np_module = get_numpy()
|
|
1451
|
+
if np_module is not None and isinstance(
|
|
1452
|
+
count, getattr(np_module, "ndarray", tuple)
|
|
1453
|
+
):
|
|
1454
|
+
np_arg = np_module
|
|
1455
|
+
else:
|
|
1456
|
+
np_arg = None
|
|
1457
|
+
neighbor_timer = start_timer()
|
|
427
1458
|
th_bar, epi_bar, vf_bar, deg_bar = _compute_neighbor_means(
|
|
428
1459
|
G,
|
|
429
1460
|
data,
|
|
@@ -434,121 +1465,896 @@ def _compute_dnfr_common(
|
|
|
434
1465
|
count=count,
|
|
435
1466
|
deg_sum=deg_sum,
|
|
436
1467
|
degs=degs,
|
|
437
|
-
np=
|
|
1468
|
+
np=np_arg,
|
|
438
1469
|
)
|
|
439
|
-
|
|
1470
|
+
stop_timer("dnfr_neighbor_means", neighbor_timer)
|
|
1471
|
+
_apply_dnfr_gradients(
|
|
1472
|
+
G,
|
|
1473
|
+
data,
|
|
1474
|
+
th_bar,
|
|
1475
|
+
epi_bar,
|
|
1476
|
+
vf_bar,
|
|
1477
|
+
deg_bar,
|
|
1478
|
+
degs,
|
|
1479
|
+
n_jobs=n_jobs,
|
|
1480
|
+
profile=profile,
|
|
1481
|
+
)
|
|
1482
|
+
|
|
1483
|
+
|
|
1484
|
+
def _reset_numpy_buffer(
|
|
1485
|
+
buffer: np.ndarray | None,
|
|
1486
|
+
size: int,
|
|
1487
|
+
np: ModuleType,
|
|
1488
|
+
) -> np.ndarray:
|
|
1489
|
+
if (
|
|
1490
|
+
buffer is None
|
|
1491
|
+
or getattr(buffer, "shape", None) is None
|
|
1492
|
+
or buffer.shape[0] != size
|
|
1493
|
+
):
|
|
1494
|
+
return np.zeros(size, dtype=float)
|
|
1495
|
+
buffer.fill(0.0)
|
|
1496
|
+
return buffer
|
|
440
1497
|
|
|
441
1498
|
|
|
442
|
-
def _init_neighbor_sums(
|
|
1499
|
+
def _init_neighbor_sums(
|
|
1500
|
+
data: MutableMapping[str, Any],
|
|
1501
|
+
*,
|
|
1502
|
+
np: ModuleType | None = None,
|
|
1503
|
+
) -> NeighborStats:
|
|
443
1504
|
"""Initialise containers for neighbour sums."""
|
|
444
1505
|
nodes = data["nodes"]
|
|
445
1506
|
n = len(nodes)
|
|
446
1507
|
w_topo = data["w_topo"]
|
|
1508
|
+
cache: DnfrCache | None = data.get("cache")
|
|
1509
|
+
|
|
1510
|
+
def _reset_list(buffer: list[float] | None, value: float = 0.0) -> list[float]:
|
|
1511
|
+
if buffer is None or len(buffer) != n:
|
|
1512
|
+
return [value] * n
|
|
1513
|
+
for i in range(n):
|
|
1514
|
+
buffer[i] = value
|
|
1515
|
+
return buffer
|
|
1516
|
+
|
|
447
1517
|
if np is not None:
|
|
448
|
-
|
|
449
|
-
|
|
450
|
-
|
|
451
|
-
|
|
452
|
-
|
|
453
|
-
|
|
1518
|
+
if cache is not None:
|
|
1519
|
+
x = cache.neighbor_x_np
|
|
1520
|
+
y = cache.neighbor_y_np
|
|
1521
|
+
epi_sum = cache.neighbor_epi_sum_np
|
|
1522
|
+
vf_sum = cache.neighbor_vf_sum_np
|
|
1523
|
+
count = cache.neighbor_count_np
|
|
1524
|
+
x = _reset_numpy_buffer(x, n, np)
|
|
1525
|
+
y = _reset_numpy_buffer(y, n, np)
|
|
1526
|
+
epi_sum = _reset_numpy_buffer(epi_sum, n, np)
|
|
1527
|
+
vf_sum = _reset_numpy_buffer(vf_sum, n, np)
|
|
1528
|
+
count = _reset_numpy_buffer(count, n, np)
|
|
1529
|
+
cache.neighbor_x_np = x
|
|
1530
|
+
cache.neighbor_y_np = y
|
|
1531
|
+
cache.neighbor_epi_sum_np = epi_sum
|
|
1532
|
+
cache.neighbor_vf_sum_np = vf_sum
|
|
1533
|
+
cache.neighbor_count_np = count
|
|
1534
|
+
cache.neighbor_x = _reset_list(cache.neighbor_x)
|
|
1535
|
+
cache.neighbor_y = _reset_list(cache.neighbor_y)
|
|
1536
|
+
cache.neighbor_epi_sum = _reset_list(cache.neighbor_epi_sum)
|
|
1537
|
+
cache.neighbor_vf_sum = _reset_list(cache.neighbor_vf_sum)
|
|
1538
|
+
cache.neighbor_count = _reset_list(cache.neighbor_count)
|
|
1539
|
+
if w_topo != 0.0:
|
|
1540
|
+
deg_sum = _reset_numpy_buffer(cache.neighbor_deg_sum_np, n, np)
|
|
1541
|
+
cache.neighbor_deg_sum_np = deg_sum
|
|
1542
|
+
cache.neighbor_deg_sum = _reset_list(cache.neighbor_deg_sum)
|
|
1543
|
+
else:
|
|
1544
|
+
cache.neighbor_deg_sum_np = None
|
|
1545
|
+
cache.neighbor_deg_sum = None
|
|
1546
|
+
deg_sum = None
|
|
1547
|
+
else:
|
|
1548
|
+
x = np.zeros(n, dtype=float)
|
|
1549
|
+
y = np.zeros(n, dtype=float)
|
|
1550
|
+
epi_sum = np.zeros(n, dtype=float)
|
|
1551
|
+
vf_sum = np.zeros(n, dtype=float)
|
|
1552
|
+
count = np.zeros(n, dtype=float)
|
|
1553
|
+
deg_sum = np.zeros(n, dtype=float) if w_topo != 0.0 else None
|
|
454
1554
|
degs = None
|
|
455
1555
|
else:
|
|
456
|
-
|
|
457
|
-
|
|
458
|
-
|
|
459
|
-
|
|
460
|
-
|
|
1556
|
+
if cache is not None:
|
|
1557
|
+
x = _reset_list(cache.neighbor_x)
|
|
1558
|
+
y = _reset_list(cache.neighbor_y)
|
|
1559
|
+
epi_sum = _reset_list(cache.neighbor_epi_sum)
|
|
1560
|
+
vf_sum = _reset_list(cache.neighbor_vf_sum)
|
|
1561
|
+
count = _reset_list(cache.neighbor_count)
|
|
1562
|
+
cache.neighbor_x = x
|
|
1563
|
+
cache.neighbor_y = y
|
|
1564
|
+
cache.neighbor_epi_sum = epi_sum
|
|
1565
|
+
cache.neighbor_vf_sum = vf_sum
|
|
1566
|
+
cache.neighbor_count = count
|
|
1567
|
+
if w_topo != 0.0:
|
|
1568
|
+
deg_sum = _reset_list(cache.neighbor_deg_sum)
|
|
1569
|
+
cache.neighbor_deg_sum = deg_sum
|
|
1570
|
+
else:
|
|
1571
|
+
cache.neighbor_deg_sum = None
|
|
1572
|
+
deg_sum = None
|
|
1573
|
+
else:
|
|
1574
|
+
x = [0.0] * n
|
|
1575
|
+
y = [0.0] * n
|
|
1576
|
+
epi_sum = [0.0] * n
|
|
1577
|
+
vf_sum = [0.0] * n
|
|
1578
|
+
count = [0.0] * n
|
|
1579
|
+
deg_sum = [0.0] * n if w_topo != 0.0 else None
|
|
461
1580
|
deg_list = data.get("deg_list")
|
|
462
|
-
if w_topo != 0 and deg_list is not None:
|
|
463
|
-
|
|
464
|
-
degs = list(deg_list)
|
|
1581
|
+
if w_topo != 0.0 and deg_list is not None:
|
|
1582
|
+
degs = deg_list
|
|
465
1583
|
else:
|
|
466
|
-
deg_sum = None
|
|
467
1584
|
degs = None
|
|
468
1585
|
return x, y, epi_sum, vf_sum, count, deg_sum, degs
|
|
469
1586
|
|
|
470
1587
|
|
|
471
|
-
def
|
|
472
|
-
|
|
1588
|
+
def _prefer_sparse_accumulation(n: int, edge_count: int | None) -> bool:
|
|
1589
|
+
"""Return ``True`` when neighbour sums should use edge accumulation."""
|
|
1590
|
+
|
|
1591
|
+
if n <= 1 or not edge_count:
|
|
1592
|
+
return False
|
|
1593
|
+
possible_edges = n * (n - 1)
|
|
1594
|
+
if possible_edges <= 0:
|
|
1595
|
+
return False
|
|
1596
|
+
density = edge_count / possible_edges
|
|
1597
|
+
return density <= _SPARSE_DENSITY_THRESHOLD
|
|
1598
|
+
|
|
1599
|
+
|
|
1600
|
+
def _accumulate_neighbors_dense(
|
|
1601
|
+
G: TNFRGraph,
|
|
1602
|
+
data: MutableMapping[str, Any],
|
|
1603
|
+
*,
|
|
1604
|
+
x: np.ndarray,
|
|
1605
|
+
y: np.ndarray,
|
|
1606
|
+
epi_sum: np.ndarray,
|
|
1607
|
+
vf_sum: np.ndarray,
|
|
1608
|
+
count: np.ndarray,
|
|
1609
|
+
deg_sum: np.ndarray | None,
|
|
1610
|
+
np: ModuleType,
|
|
1611
|
+
) -> NeighborStats:
|
|
1612
|
+
"""Vectorised neighbour accumulation using a dense adjacency matrix."""
|
|
1613
|
+
|
|
473
1614
|
nodes = data["nodes"]
|
|
474
|
-
|
|
475
|
-
|
|
476
|
-
|
|
477
|
-
|
|
478
|
-
|
|
1615
|
+
if not nodes:
|
|
1616
|
+
return x, y, epi_sum, vf_sum, count, deg_sum, None
|
|
1617
|
+
|
|
1618
|
+
A = data.get("A")
|
|
1619
|
+
if A is None:
|
|
1620
|
+
return _accumulate_neighbors_numpy(
|
|
1621
|
+
G,
|
|
1622
|
+
data,
|
|
1623
|
+
x=x,
|
|
1624
|
+
y=y,
|
|
1625
|
+
epi_sum=epi_sum,
|
|
1626
|
+
vf_sum=vf_sum,
|
|
1627
|
+
count=count,
|
|
1628
|
+
deg_sum=deg_sum,
|
|
1629
|
+
np=np,
|
|
1630
|
+
)
|
|
1631
|
+
|
|
1632
|
+
cache: DnfrCache | None = data.get("cache")
|
|
1633
|
+
n = len(nodes)
|
|
1634
|
+
|
|
1635
|
+
state = _ensure_numpy_state_vectors(data, np)
|
|
1636
|
+
vectors = [state["cos"], state["sin"], state["epi"], state["vf"]]
|
|
1637
|
+
|
|
1638
|
+
components = _ensure_cached_array(cache, "dense_components_np", (n, 4), np)
|
|
1639
|
+
accum = _ensure_cached_array(cache, "dense_accum_np", (n, 4), np)
|
|
1640
|
+
|
|
1641
|
+
# ``components`` retains the last source copies so callers relying on
|
|
1642
|
+
# cached buffers (e.g. diagnostics) still observe meaningful values.
|
|
1643
|
+
np.copyto(components, np.column_stack(vectors), casting="unsafe")
|
|
1644
|
+
|
|
1645
|
+
np.matmul(A, components, out=accum)
|
|
1646
|
+
|
|
1647
|
+
np.copyto(x, accum[:, 0], casting="unsafe")
|
|
1648
|
+
np.copyto(y, accum[:, 1], casting="unsafe")
|
|
1649
|
+
np.copyto(epi_sum, accum[:, 2], casting="unsafe")
|
|
1650
|
+
np.copyto(vf_sum, accum[:, 3], casting="unsafe")
|
|
1651
|
+
|
|
1652
|
+
degree_counts = data.get("dense_degree_np")
|
|
1653
|
+
if degree_counts is None or getattr(degree_counts, "shape", (0,))[0] != n:
|
|
1654
|
+
degree_counts = None
|
|
1655
|
+
if degree_counts is None and cache is not None:
|
|
1656
|
+
cached_counts = cache.dense_degree_np
|
|
1657
|
+
if cached_counts is not None and getattr(cached_counts, "shape", (0,))[0] == n:
|
|
1658
|
+
degree_counts = cached_counts
|
|
1659
|
+
if degree_counts is None:
|
|
1660
|
+
degree_counts = A.sum(axis=1)
|
|
1661
|
+
if cache is not None:
|
|
1662
|
+
cache.dense_degree_np = degree_counts
|
|
1663
|
+
data["dense_degree_np"] = degree_counts
|
|
1664
|
+
np.copyto(count, degree_counts, casting="unsafe")
|
|
1665
|
+
|
|
1666
|
+
degs = None
|
|
1667
|
+
if deg_sum is not None:
|
|
1668
|
+
deg_array = data.get("deg_array")
|
|
1669
|
+
if deg_array is None:
|
|
1670
|
+
deg_array = _resolve_numpy_degree_array(
|
|
1671
|
+
data,
|
|
1672
|
+
count,
|
|
1673
|
+
cache=cache,
|
|
1674
|
+
np=np,
|
|
479
1675
|
)
|
|
1676
|
+
if deg_array is None:
|
|
1677
|
+
deg_sum.fill(0.0)
|
|
1678
|
+
else:
|
|
1679
|
+
np.matmul(A, deg_array, out=deg_sum)
|
|
1680
|
+
degs = deg_array
|
|
1681
|
+
|
|
1682
|
+
return x, y, epi_sum, vf_sum, count, deg_sum, degs
|
|
1683
|
+
|
|
1684
|
+
|
|
1685
|
+
def _accumulate_neighbors_broadcasted(
|
|
1686
|
+
*,
|
|
1687
|
+
edge_src: np.ndarray,
|
|
1688
|
+
edge_dst: np.ndarray,
|
|
1689
|
+
cos: np.ndarray,
|
|
1690
|
+
sin: np.ndarray,
|
|
1691
|
+
epi: np.ndarray,
|
|
1692
|
+
vf: np.ndarray,
|
|
1693
|
+
x: np.ndarray,
|
|
1694
|
+
y: np.ndarray,
|
|
1695
|
+
epi_sum: np.ndarray,
|
|
1696
|
+
vf_sum: np.ndarray,
|
|
1697
|
+
count: np.ndarray | None,
|
|
1698
|
+
deg_sum: np.ndarray | None,
|
|
1699
|
+
deg_array: np.ndarray | None,
|
|
1700
|
+
cache: DnfrCache | None,
|
|
1701
|
+
np: ModuleType,
|
|
1702
|
+
chunk_size: int | None = None,
|
|
1703
|
+
) -> dict[str, np.ndarray]:
|
|
1704
|
+
"""Accumulate neighbour contributions using direct indexed reductions.
|
|
1705
|
+
|
|
1706
|
+
Array reuse strategy for non-chunked blocks:
|
|
1707
|
+
--------------------------------------------
|
|
1708
|
+
This function optimizes memory usage by reusing cached destination arrays:
|
|
1709
|
+
|
|
1710
|
+
1. **Accumulator reuse**: The `accum` matrix (component_rows × n) is cached
|
|
1711
|
+
across invocations when signature remains stable. For non-chunked paths,
|
|
1712
|
+
it's zero-filled (accum.fill(0.0)) rather than reallocated.
|
|
1713
|
+
|
|
1714
|
+
2. **Workspace reuse**: The `workspace` buffer (component_rows × edge_count)
|
|
1715
|
+
stores intermediate edge values. In non-chunked mode with sufficient
|
|
1716
|
+
workspace size, edge values are extracted once into workspace rows
|
|
1717
|
+
via np.take(..., out=workspace[row, :]) to avoid repeated allocations.
|
|
1718
|
+
|
|
1719
|
+
3. **Destination array writes**: np.bincount results are written to accum
|
|
1720
|
+
rows via np.copyto(..., casting="unsafe"), reusing the same memory
|
|
1721
|
+
across all components (cos, sin, epi, vf, count, deg).
|
|
1722
|
+
|
|
1723
|
+
4. **Deg_array optimization**: When deg_array is provided and topology
|
|
1724
|
+
weight is active, degree values are extracted into workspace and
|
|
1725
|
+
accumulated via bincount, maintaining the reuse pattern.
|
|
1726
|
+
|
|
1727
|
+
The non-chunked path achieves minimal temporary allocations by:
|
|
1728
|
+
- Reusing cached accum and workspace buffers
|
|
1729
|
+
- Extracting all edge values into workspace in a single pass
|
|
1730
|
+
- Writing bincount results directly to destination rows
|
|
1731
|
+
|
|
1732
|
+
Note: np.bincount does not support an `out` parameter, so its return
|
|
1733
|
+
value must be copied to the destination. The workspace pattern minimizes
|
|
1734
|
+
the number of temporary arrays created during edge value extraction.
|
|
1735
|
+
|
|
1736
|
+
This approach maintains ΔNFR computational accuracy (Invariant #8) while
|
|
1737
|
+
reducing memory footprint for repeated accumulations with stable topology.
|
|
1738
|
+
"""
|
|
1739
|
+
|
|
1740
|
+
n = x.shape[0]
|
|
1741
|
+
edge_count = int(edge_src.size)
|
|
1742
|
+
|
|
1743
|
+
include_count = count is not None
|
|
1744
|
+
use_topology = deg_sum is not None and deg_array is not None
|
|
1745
|
+
|
|
1746
|
+
component_rows = 4 + (1 if include_count else 0) + (1 if use_topology else 0)
|
|
1747
|
+
|
|
1748
|
+
if edge_count:
|
|
1749
|
+
if chunk_size is None:
|
|
1750
|
+
resolved_chunk = edge_count
|
|
1751
|
+
else:
|
|
1752
|
+
try:
|
|
1753
|
+
resolved_chunk = int(chunk_size)
|
|
1754
|
+
except (TypeError, ValueError):
|
|
1755
|
+
resolved_chunk = edge_count
|
|
1756
|
+
else:
|
|
1757
|
+
if resolved_chunk <= 0:
|
|
1758
|
+
resolved_chunk = edge_count
|
|
1759
|
+
resolved_chunk = max(1, min(edge_count, resolved_chunk))
|
|
1760
|
+
else:
|
|
1761
|
+
resolved_chunk = 0
|
|
1762
|
+
|
|
1763
|
+
use_chunks = bool(edge_count and resolved_chunk < edge_count)
|
|
1764
|
+
|
|
1765
|
+
if cache is not None:
|
|
1766
|
+
base_signature = (id(edge_src), id(edge_dst), n, edge_count)
|
|
1767
|
+
cache.edge_signature = base_signature
|
|
1768
|
+
signature = (base_signature, component_rows)
|
|
1769
|
+
previous_signature = cache.neighbor_accum_signature
|
|
1770
|
+
|
|
1771
|
+
accum = cache.neighbor_accum_np
|
|
1772
|
+
if (
|
|
1773
|
+
accum is None
|
|
1774
|
+
or getattr(accum, "shape", None) != (component_rows, n)
|
|
1775
|
+
or previous_signature != signature
|
|
1776
|
+
):
|
|
1777
|
+
accum = np.zeros((component_rows, n), dtype=float)
|
|
1778
|
+
cache.neighbor_accum_np = accum
|
|
1779
|
+
else:
|
|
1780
|
+
accum.fill(0.0)
|
|
1781
|
+
|
|
1782
|
+
workspace = cache.neighbor_edge_values_np
|
|
1783
|
+
if use_chunks:
|
|
1784
|
+
workspace_length = resolved_chunk
|
|
1785
|
+
else:
|
|
1786
|
+
# For non-chunked path, allocate workspace to hold edge_count values
|
|
1787
|
+
# so we can extract edge values without temporary allocations
|
|
1788
|
+
workspace_length = edge_count if edge_count else component_rows
|
|
1789
|
+
if workspace_length:
|
|
1790
|
+
expected_shape = (component_rows, workspace_length)
|
|
1791
|
+
if workspace is None or getattr(workspace, "shape", None) != expected_shape:
|
|
1792
|
+
workspace = np.empty(expected_shape, dtype=float)
|
|
1793
|
+
else:
|
|
1794
|
+
workspace = None
|
|
1795
|
+
cache.neighbor_edge_values_np = workspace
|
|
1796
|
+
|
|
1797
|
+
cache.neighbor_accum_signature = signature
|
|
1798
|
+
else:
|
|
1799
|
+
accum = np.zeros((component_rows, n), dtype=float)
|
|
1800
|
+
# For non-chunked path without cache, allocate workspace for edge values
|
|
1801
|
+
workspace_length = (
|
|
1802
|
+
edge_count
|
|
1803
|
+
if (not use_chunks and edge_count)
|
|
1804
|
+
else (resolved_chunk if use_chunks else component_rows)
|
|
1805
|
+
)
|
|
1806
|
+
workspace = (
|
|
1807
|
+
np.empty((component_rows, workspace_length), dtype=float)
|
|
1808
|
+
if workspace_length
|
|
1809
|
+
else None
|
|
1810
|
+
)
|
|
1811
|
+
|
|
1812
|
+
if edge_count:
|
|
1813
|
+
row = 0
|
|
1814
|
+
cos_row = row
|
|
1815
|
+
row += 1
|
|
1816
|
+
sin_row = row
|
|
1817
|
+
row += 1
|
|
1818
|
+
epi_row = row
|
|
1819
|
+
row += 1
|
|
1820
|
+
vf_row = row
|
|
1821
|
+
row += 1
|
|
1822
|
+
count_row = row if include_count and count is not None else None
|
|
1823
|
+
if count_row is not None:
|
|
1824
|
+
row += 1
|
|
1825
|
+
deg_row = row if use_topology and deg_array is not None else None
|
|
1826
|
+
|
|
1827
|
+
edge_src_int = edge_src.astype(np.intp, copy=False)
|
|
1828
|
+
edge_dst_int = edge_dst.astype(np.intp, copy=False)
|
|
1829
|
+
|
|
1830
|
+
if use_chunks:
|
|
1831
|
+
chunk_step = resolved_chunk if resolved_chunk else edge_count
|
|
1832
|
+
chunk_indices = range(0, edge_count, chunk_step)
|
|
1833
|
+
|
|
1834
|
+
for start in chunk_indices:
|
|
1835
|
+
end = min(start + chunk_step, edge_count)
|
|
1836
|
+
if start >= end:
|
|
1837
|
+
continue
|
|
1838
|
+
src_slice = edge_src_int[start:end]
|
|
1839
|
+
dst_slice = edge_dst_int[start:end]
|
|
1840
|
+
slice_len = end - start
|
|
1841
|
+
if slice_len <= 0:
|
|
1842
|
+
continue
|
|
1843
|
+
|
|
1844
|
+
if workspace is not None:
|
|
1845
|
+
chunk_matrix = workspace[:, :slice_len]
|
|
1846
|
+
else:
|
|
1847
|
+
chunk_matrix = np.empty((component_rows, slice_len), dtype=float)
|
|
1848
|
+
|
|
1849
|
+
np.take(cos, dst_slice, out=chunk_matrix[cos_row, :slice_len])
|
|
1850
|
+
np.take(sin, dst_slice, out=chunk_matrix[sin_row, :slice_len])
|
|
1851
|
+
np.take(epi, dst_slice, out=chunk_matrix[epi_row, :slice_len])
|
|
1852
|
+
np.take(vf, dst_slice, out=chunk_matrix[vf_row, :slice_len])
|
|
1853
|
+
|
|
1854
|
+
if count_row is not None:
|
|
1855
|
+
chunk_matrix[count_row, :slice_len].fill(1.0)
|
|
1856
|
+
if deg_row is not None and deg_array is not None:
|
|
1857
|
+
np.take(deg_array, dst_slice, out=chunk_matrix[deg_row, :slice_len])
|
|
1858
|
+
|
|
1859
|
+
def _accumulate_into(
|
|
1860
|
+
target_row: int | None,
|
|
1861
|
+
values: np.ndarray | None = None,
|
|
1862
|
+
*,
|
|
1863
|
+
unit_weight: bool = False,
|
|
1864
|
+
) -> None:
|
|
1865
|
+
if target_row is None:
|
|
1866
|
+
return
|
|
1867
|
+
row_view = accum[target_row]
|
|
1868
|
+
if unit_weight:
|
|
1869
|
+
np.add.at(row_view, src_slice, 1.0)
|
|
1870
|
+
else:
|
|
1871
|
+
if values is None:
|
|
1872
|
+
return
|
|
1873
|
+
np.add.at(row_view, src_slice, values)
|
|
1874
|
+
|
|
1875
|
+
_accumulate_into(cos_row, chunk_matrix[cos_row, :slice_len])
|
|
1876
|
+
_accumulate_into(sin_row, chunk_matrix[sin_row, :slice_len])
|
|
1877
|
+
_accumulate_into(epi_row, chunk_matrix[epi_row, :slice_len])
|
|
1878
|
+
_accumulate_into(vf_row, chunk_matrix[vf_row, :slice_len])
|
|
1879
|
+
|
|
1880
|
+
if count_row is not None:
|
|
1881
|
+
_accumulate_into(count_row, unit_weight=True)
|
|
1882
|
+
|
|
1883
|
+
if deg_row is not None and deg_array is not None:
|
|
1884
|
+
_accumulate_into(deg_row, chunk_matrix[deg_row, :slice_len])
|
|
1885
|
+
else:
|
|
1886
|
+
# Non-chunked path: reuse workspace to minimize temporary allocations.
|
|
1887
|
+
# When workspace is available with sufficient size, extract edge values
|
|
1888
|
+
# into workspace rows before passing to bincount.
|
|
1889
|
+
if workspace is not None and workspace.shape[1] >= edge_count:
|
|
1890
|
+
# Verify workspace has enough rows for all components
|
|
1891
|
+
# workspace has shape (component_rows, edge_count)
|
|
1892
|
+
required_rows = max(
|
|
1893
|
+
cos_row + 1,
|
|
1894
|
+
sin_row + 1,
|
|
1895
|
+
epi_row + 1,
|
|
1896
|
+
vf_row + 1,
|
|
1897
|
+
(count_row + 1) if count_row is not None else 0,
|
|
1898
|
+
(deg_row + 1) if deg_row is not None else 0,
|
|
1899
|
+
)
|
|
1900
|
+
if workspace.shape[0] >= required_rows:
|
|
1901
|
+
# Reuse workspace rows for edge value extraction
|
|
1902
|
+
np.take(cos, edge_dst_int, out=workspace[cos_row, :edge_count])
|
|
1903
|
+
np.take(sin, edge_dst_int, out=workspace[sin_row, :edge_count])
|
|
1904
|
+
np.take(epi, edge_dst_int, out=workspace[epi_row, :edge_count])
|
|
1905
|
+
np.take(vf, edge_dst_int, out=workspace[vf_row, :edge_count])
|
|
1906
|
+
|
|
1907
|
+
def _apply_full_bincount(
|
|
1908
|
+
target_row: int | None,
|
|
1909
|
+
values: np.ndarray | None = None,
|
|
1910
|
+
*,
|
|
1911
|
+
unit_weight: bool = False,
|
|
1912
|
+
) -> None:
|
|
1913
|
+
if target_row is None:
|
|
1914
|
+
return
|
|
1915
|
+
if values is None and not unit_weight:
|
|
1916
|
+
return
|
|
1917
|
+
if unit_weight:
|
|
1918
|
+
component_accum = np.bincount(
|
|
1919
|
+
edge_src_int,
|
|
1920
|
+
minlength=n,
|
|
1921
|
+
)
|
|
1922
|
+
else:
|
|
1923
|
+
component_accum = np.bincount(
|
|
1924
|
+
edge_src_int,
|
|
1925
|
+
weights=values,
|
|
1926
|
+
minlength=n,
|
|
1927
|
+
)
|
|
1928
|
+
np.copyto(
|
|
1929
|
+
accum[target_row, :n],
|
|
1930
|
+
component_accum[:n],
|
|
1931
|
+
casting="unsafe",
|
|
1932
|
+
)
|
|
1933
|
+
|
|
1934
|
+
_apply_full_bincount(cos_row, workspace[cos_row, :edge_count])
|
|
1935
|
+
_apply_full_bincount(sin_row, workspace[sin_row, :edge_count])
|
|
1936
|
+
_apply_full_bincount(epi_row, workspace[epi_row, :edge_count])
|
|
1937
|
+
_apply_full_bincount(vf_row, workspace[vf_row, :edge_count])
|
|
1938
|
+
|
|
1939
|
+
if count_row is not None:
|
|
1940
|
+
_apply_full_bincount(count_row, unit_weight=True)
|
|
1941
|
+
|
|
1942
|
+
if deg_row is not None and deg_array is not None:
|
|
1943
|
+
np.take(
|
|
1944
|
+
deg_array, edge_dst_int, out=workspace[deg_row, :edge_count]
|
|
1945
|
+
)
|
|
1946
|
+
_apply_full_bincount(deg_row, workspace[deg_row, :edge_count])
|
|
1947
|
+
else:
|
|
1948
|
+
# Workspace doesn't have enough rows, fall back to temporary arrays
|
|
1949
|
+
def _apply_full_bincount(
|
|
1950
|
+
target_row: int | None,
|
|
1951
|
+
values: np.ndarray | None = None,
|
|
1952
|
+
*,
|
|
1953
|
+
unit_weight: bool = False,
|
|
1954
|
+
) -> None:
|
|
1955
|
+
if target_row is None:
|
|
1956
|
+
return
|
|
1957
|
+
if values is None and not unit_weight:
|
|
1958
|
+
return
|
|
1959
|
+
if unit_weight:
|
|
1960
|
+
component_accum = np.bincount(
|
|
1961
|
+
edge_src_int,
|
|
1962
|
+
minlength=n,
|
|
1963
|
+
)
|
|
1964
|
+
else:
|
|
1965
|
+
component_accum = np.bincount(
|
|
1966
|
+
edge_src_int,
|
|
1967
|
+
weights=values,
|
|
1968
|
+
minlength=n,
|
|
1969
|
+
)
|
|
1970
|
+
np.copyto(
|
|
1971
|
+
accum[target_row, :n],
|
|
1972
|
+
component_accum[:n],
|
|
1973
|
+
casting="unsafe",
|
|
1974
|
+
)
|
|
1975
|
+
|
|
1976
|
+
_apply_full_bincount(cos_row, np.take(cos, edge_dst_int))
|
|
1977
|
+
_apply_full_bincount(sin_row, np.take(sin, edge_dst_int))
|
|
1978
|
+
_apply_full_bincount(epi_row, np.take(epi, edge_dst_int))
|
|
1979
|
+
_apply_full_bincount(vf_row, np.take(vf, edge_dst_int))
|
|
1980
|
+
|
|
1981
|
+
if count_row is not None:
|
|
1982
|
+
_apply_full_bincount(count_row, unit_weight=True)
|
|
1983
|
+
|
|
1984
|
+
if deg_row is not None and deg_array is not None:
|
|
1985
|
+
_apply_full_bincount(deg_row, np.take(deg_array, edge_dst_int))
|
|
1986
|
+
else:
|
|
1987
|
+
# Fallback: no workspace or insufficient width, use temporary arrays
|
|
1988
|
+
def _apply_full_bincount(
|
|
1989
|
+
target_row: int | None,
|
|
1990
|
+
values: np.ndarray | None = None,
|
|
1991
|
+
*,
|
|
1992
|
+
unit_weight: bool = False,
|
|
1993
|
+
) -> None:
|
|
1994
|
+
if target_row is None:
|
|
1995
|
+
return
|
|
1996
|
+
if values is None and not unit_weight:
|
|
1997
|
+
return
|
|
1998
|
+
if unit_weight:
|
|
1999
|
+
component_accum = np.bincount(
|
|
2000
|
+
edge_src_int,
|
|
2001
|
+
minlength=n,
|
|
2002
|
+
)
|
|
2003
|
+
else:
|
|
2004
|
+
component_accum = np.bincount(
|
|
2005
|
+
edge_src_int,
|
|
2006
|
+
weights=values,
|
|
2007
|
+
minlength=n,
|
|
2008
|
+
)
|
|
2009
|
+
np.copyto(
|
|
2010
|
+
accum[target_row, :n],
|
|
2011
|
+
component_accum[:n],
|
|
2012
|
+
casting="unsafe",
|
|
2013
|
+
)
|
|
2014
|
+
|
|
2015
|
+
_apply_full_bincount(cos_row, np.take(cos, edge_dst_int))
|
|
2016
|
+
_apply_full_bincount(sin_row, np.take(sin, edge_dst_int))
|
|
2017
|
+
_apply_full_bincount(epi_row, np.take(epi, edge_dst_int))
|
|
2018
|
+
_apply_full_bincount(vf_row, np.take(vf, edge_dst_int))
|
|
2019
|
+
|
|
2020
|
+
if count_row is not None:
|
|
2021
|
+
_apply_full_bincount(count_row, unit_weight=True)
|
|
2022
|
+
|
|
2023
|
+
if deg_row is not None and deg_array is not None:
|
|
2024
|
+
_apply_full_bincount(deg_row, np.take(deg_array, edge_dst_int))
|
|
2025
|
+
else:
|
|
2026
|
+
accum.fill(0.0)
|
|
2027
|
+
if workspace is not None:
|
|
2028
|
+
workspace.fill(0.0)
|
|
2029
|
+
|
|
2030
|
+
row = 0
|
|
2031
|
+
np.copyto(x, accum[row], casting="unsafe")
|
|
2032
|
+
row += 1
|
|
2033
|
+
np.copyto(y, accum[row], casting="unsafe")
|
|
2034
|
+
row += 1
|
|
2035
|
+
np.copyto(epi_sum, accum[row], casting="unsafe")
|
|
2036
|
+
row += 1
|
|
2037
|
+
np.copyto(vf_sum, accum[row], casting="unsafe")
|
|
2038
|
+
row += 1
|
|
2039
|
+
|
|
2040
|
+
if include_count and count is not None:
|
|
2041
|
+
np.copyto(count, accum[row], casting="unsafe")
|
|
2042
|
+
row += 1
|
|
2043
|
+
|
|
2044
|
+
if use_topology and deg_sum is not None:
|
|
2045
|
+
np.copyto(deg_sum, accum[row], casting="unsafe")
|
|
2046
|
+
|
|
2047
|
+
return {
|
|
2048
|
+
"accumulator": accum,
|
|
2049
|
+
"edge_values": workspace,
|
|
2050
|
+
}
|
|
2051
|
+
|
|
2052
|
+
|
|
2053
|
+
def _build_neighbor_sums_common(
|
|
2054
|
+
G: TNFRGraph,
|
|
2055
|
+
data: MutableMapping[str, Any],
|
|
2056
|
+
*,
|
|
2057
|
+
use_numpy: bool,
|
|
2058
|
+
n_jobs: int | None = None,
|
|
2059
|
+
) -> NeighborStats:
|
|
2060
|
+
"""Build neighbour accumulators honouring cached NumPy buffers when possible."""
|
|
2061
|
+
|
|
2062
|
+
nodes = data["nodes"]
|
|
2063
|
+
cache: DnfrCache | None = data.get("cache")
|
|
2064
|
+
np_module = get_numpy()
|
|
2065
|
+
has_numpy_buffers = _has_cached_numpy_buffers(data, cache)
|
|
2066
|
+
|
|
2067
|
+
# Fallback: when get_numpy() returns None but we have cached NumPy buffers,
|
|
2068
|
+
# attempt to retrieve NumPy from sys.modules to avoid losing vectorization.
|
|
2069
|
+
# This preserves ΔNFR semantics (Invariant #3) and maintains performance.
|
|
2070
|
+
if use_numpy and np_module is None and has_numpy_buffers:
|
|
2071
|
+
candidate = sys.modules.get("numpy")
|
|
2072
|
+
# Validate the candidate module has required NumPy attributes
|
|
2073
|
+
if (
|
|
2074
|
+
candidate is not None
|
|
2075
|
+
and hasattr(candidate, "ndarray")
|
|
2076
|
+
and hasattr(candidate, "empty")
|
|
2077
|
+
):
|
|
2078
|
+
np_module = candidate
|
|
2079
|
+
|
|
2080
|
+
if np_module is not None:
|
|
480
2081
|
if not nodes:
|
|
481
|
-
return
|
|
2082
|
+
return _init_neighbor_sums(data, np=np_module)
|
|
2083
|
+
|
|
482
2084
|
x, y, epi_sum, vf_sum, count, deg_sum, degs = _init_neighbor_sums(
|
|
483
|
-
data, np=
|
|
2085
|
+
data, np=np_module
|
|
484
2086
|
)
|
|
2087
|
+
|
|
2088
|
+
# Reuse centralized sparse/dense decision from _prepare_dnfr_data.
|
|
2089
|
+
# The decision logic at lines 785-807 already computed prefer_sparse
|
|
2090
|
+
# and dense_override based on graph density and user flags.
|
|
2091
|
+
prefer_sparse = data.get("prefer_sparse")
|
|
2092
|
+
if prefer_sparse is None:
|
|
2093
|
+
# Fallback: recompute if not set (defensive, should be rare)
|
|
2094
|
+
prefer_sparse = _prefer_sparse_accumulation(
|
|
2095
|
+
len(nodes), data.get("edge_count")
|
|
2096
|
+
)
|
|
2097
|
+
data["prefer_sparse"] = prefer_sparse
|
|
2098
|
+
|
|
2099
|
+
use_dense = False
|
|
485
2100
|
A = data.get("A")
|
|
486
|
-
|
|
487
|
-
|
|
488
|
-
|
|
489
|
-
|
|
490
|
-
|
|
491
|
-
|
|
492
|
-
|
|
493
|
-
|
|
494
|
-
|
|
495
|
-
|
|
496
|
-
|
|
497
|
-
|
|
498
|
-
|
|
499
|
-
data
|
|
500
|
-
|
|
501
|
-
|
|
502
|
-
|
|
503
|
-
|
|
504
|
-
|
|
505
|
-
|
|
506
|
-
|
|
507
|
-
|
|
508
|
-
|
|
509
|
-
|
|
510
|
-
|
|
511
|
-
vf_sum[:] = A @ vf
|
|
512
|
-
count[:] = A.sum(axis=1)
|
|
513
|
-
if w_topo != 0.0:
|
|
514
|
-
deg_array = data.get("deg_array")
|
|
515
|
-
if deg_array is None:
|
|
516
|
-
deg_list = data.get("deg_list")
|
|
517
|
-
if deg_list is not None:
|
|
518
|
-
deg_array = np.array(deg_list, dtype=float)
|
|
519
|
-
data["deg_array"] = deg_array
|
|
520
|
-
if cache is not None:
|
|
521
|
-
cache.deg_array = deg_array
|
|
522
|
-
else:
|
|
523
|
-
deg_array = count
|
|
524
|
-
deg_sum[:] = A @ deg_array
|
|
525
|
-
degs = deg_array
|
|
526
|
-
return x, y, epi_sum, vf_sum, count, deg_sum, degs
|
|
527
|
-
else:
|
|
528
|
-
x, y, epi_sum, vf_sum, count, deg_sum, degs_list = _init_neighbor_sums(
|
|
529
|
-
data
|
|
2101
|
+
dense_override = data.get("dense_override", False)
|
|
2102
|
+
|
|
2103
|
+
# Apply centralized decision: dense path requires adjacency matrix
|
|
2104
|
+
# and either high graph density or explicit dense_override flag.
|
|
2105
|
+
if use_numpy and A is not None:
|
|
2106
|
+
shape = getattr(A, "shape", (0, 0))
|
|
2107
|
+
matrix_valid = shape[0] == len(nodes) and shape[1] == len(nodes)
|
|
2108
|
+
if matrix_valid and (dense_override or not prefer_sparse):
|
|
2109
|
+
use_dense = True
|
|
2110
|
+
|
|
2111
|
+
if use_dense:
|
|
2112
|
+
accumulator = _accumulate_neighbors_dense
|
|
2113
|
+
else:
|
|
2114
|
+
_ensure_numpy_state_vectors(data, np_module)
|
|
2115
|
+
accumulator = _accumulate_neighbors_numpy
|
|
2116
|
+
return accumulator(
|
|
2117
|
+
G,
|
|
2118
|
+
data,
|
|
2119
|
+
x=x,
|
|
2120
|
+
y=y,
|
|
2121
|
+
epi_sum=epi_sum,
|
|
2122
|
+
vf_sum=vf_sum,
|
|
2123
|
+
count=count,
|
|
2124
|
+
deg_sum=deg_sum,
|
|
2125
|
+
np=np_module,
|
|
530
2126
|
)
|
|
531
|
-
|
|
532
|
-
|
|
533
|
-
|
|
534
|
-
|
|
535
|
-
|
|
536
|
-
|
|
537
|
-
|
|
538
|
-
|
|
2127
|
+
|
|
2128
|
+
if not nodes:
|
|
2129
|
+
return _init_neighbor_sums(data)
|
|
2130
|
+
|
|
2131
|
+
x, y, epi_sum, vf_sum, count, deg_sum, degs_list = _init_neighbor_sums(data)
|
|
2132
|
+
idx = data["idx"]
|
|
2133
|
+
epi = data["epi"]
|
|
2134
|
+
vf = data["vf"]
|
|
2135
|
+
cos_th = data["cos_theta"]
|
|
2136
|
+
sin_th = data["sin_theta"]
|
|
2137
|
+
deg_list = data.get("deg_list")
|
|
2138
|
+
|
|
2139
|
+
effective_jobs = _resolve_parallel_jobs(n_jobs, len(nodes))
|
|
2140
|
+
if effective_jobs:
|
|
2141
|
+
neighbor_indices: list[list[int]] = []
|
|
2142
|
+
for node in nodes:
|
|
2143
|
+
indices: list[int] = []
|
|
539
2144
|
for v in G.neighbors(node):
|
|
540
|
-
|
|
541
|
-
|
|
542
|
-
|
|
543
|
-
|
|
544
|
-
|
|
545
|
-
|
|
546
|
-
|
|
547
|
-
|
|
2145
|
+
indices.append(idx[v])
|
|
2146
|
+
neighbor_indices.append(indices)
|
|
2147
|
+
|
|
2148
|
+
chunk_results = []
|
|
2149
|
+
with ProcessPoolExecutor(max_workers=effective_jobs) as executor:
|
|
2150
|
+
futures = []
|
|
2151
|
+
for start, end in _iter_chunk_offsets(len(nodes), effective_jobs):
|
|
2152
|
+
if start == end:
|
|
2153
|
+
continue
|
|
2154
|
+
futures.append(
|
|
2155
|
+
executor.submit(
|
|
2156
|
+
_neighbor_sums_worker,
|
|
2157
|
+
start,
|
|
2158
|
+
end,
|
|
2159
|
+
neighbor_indices,
|
|
2160
|
+
cos_th,
|
|
2161
|
+
sin_th,
|
|
2162
|
+
epi,
|
|
2163
|
+
vf,
|
|
2164
|
+
x[start:end],
|
|
2165
|
+
y[start:end],
|
|
2166
|
+
epi_sum[start:end],
|
|
2167
|
+
vf_sum[start:end],
|
|
2168
|
+
count[start:end],
|
|
2169
|
+
deg_sum[start:end] if deg_sum is not None else None,
|
|
2170
|
+
deg_list,
|
|
2171
|
+
degs_list,
|
|
2172
|
+
)
|
|
2173
|
+
)
|
|
2174
|
+
for future in futures:
|
|
2175
|
+
chunk_results.append(future.result())
|
|
2176
|
+
|
|
2177
|
+
for (
|
|
2178
|
+
start,
|
|
2179
|
+
chunk_x,
|
|
2180
|
+
chunk_y,
|
|
2181
|
+
chunk_epi,
|
|
2182
|
+
chunk_vf,
|
|
2183
|
+
chunk_count,
|
|
2184
|
+
chunk_deg,
|
|
2185
|
+
) in sorted(chunk_results, key=lambda item: item[0]):
|
|
2186
|
+
end = start + len(chunk_x)
|
|
2187
|
+
x[start:end] = chunk_x
|
|
2188
|
+
y[start:end] = chunk_y
|
|
2189
|
+
epi_sum[start:end] = chunk_epi
|
|
2190
|
+
vf_sum[start:end] = chunk_vf
|
|
2191
|
+
count[start:end] = chunk_count
|
|
2192
|
+
if deg_sum is not None and chunk_deg is not None:
|
|
2193
|
+
deg_sum[start:end] = chunk_deg
|
|
548
2194
|
return x, y, epi_sum, vf_sum, count, deg_sum, degs_list
|
|
549
2195
|
|
|
2196
|
+
for i, node in enumerate(nodes):
|
|
2197
|
+
deg_i = degs_list[i] if degs_list is not None else 0.0
|
|
2198
|
+
x_i = x[i]
|
|
2199
|
+
y_i = y[i]
|
|
2200
|
+
epi_i = epi_sum[i]
|
|
2201
|
+
vf_i = vf_sum[i]
|
|
2202
|
+
count_i = count[i]
|
|
2203
|
+
deg_acc = deg_sum[i] if deg_sum is not None else 0.0
|
|
2204
|
+
for v in G.neighbors(node):
|
|
2205
|
+
j = idx[v]
|
|
2206
|
+
cos_j = cos_th[j]
|
|
2207
|
+
sin_j = sin_th[j]
|
|
2208
|
+
epi_j = epi[j]
|
|
2209
|
+
vf_j = vf[j]
|
|
2210
|
+
x_i += cos_j
|
|
2211
|
+
y_i += sin_j
|
|
2212
|
+
epi_i += epi_j
|
|
2213
|
+
vf_i += vf_j
|
|
2214
|
+
count_i += 1
|
|
2215
|
+
if deg_sum is not None:
|
|
2216
|
+
deg_acc += deg_list[j] if deg_list is not None else deg_i
|
|
2217
|
+
x[i] = x_i
|
|
2218
|
+
y[i] = y_i
|
|
2219
|
+
epi_sum[i] = epi_i
|
|
2220
|
+
vf_sum[i] = vf_i
|
|
2221
|
+
count[i] = count_i
|
|
2222
|
+
if deg_sum is not None:
|
|
2223
|
+
deg_sum[i] = deg_acc
|
|
2224
|
+
return x, y, epi_sum, vf_sum, count, deg_sum, degs_list
|
|
2225
|
+
|
|
2226
|
+
|
|
2227
|
+
def _accumulate_neighbors_numpy(
|
|
2228
|
+
G: TNFRGraph,
|
|
2229
|
+
data: MutableMapping[str, Any],
|
|
2230
|
+
*,
|
|
2231
|
+
x: np.ndarray,
|
|
2232
|
+
y: np.ndarray,
|
|
2233
|
+
epi_sum: np.ndarray,
|
|
2234
|
+
vf_sum: np.ndarray,
|
|
2235
|
+
count: np.ndarray | None,
|
|
2236
|
+
deg_sum: np.ndarray | None,
|
|
2237
|
+
np: ModuleType,
|
|
2238
|
+
) -> NeighborStats:
|
|
2239
|
+
"""Vectorised neighbour accumulation reusing cached NumPy buffers."""
|
|
2240
|
+
|
|
2241
|
+
nodes = data["nodes"]
|
|
2242
|
+
if not nodes:
|
|
2243
|
+
return x, y, epi_sum, vf_sum, count, deg_sum, None
|
|
2244
|
+
|
|
2245
|
+
cache: DnfrCache | None = data.get("cache")
|
|
2246
|
+
|
|
2247
|
+
state = _ensure_numpy_state_vectors(data, np)
|
|
2248
|
+
cos_th = state["cos"]
|
|
2249
|
+
sin_th = state["sin"]
|
|
2250
|
+
epi = state["epi"]
|
|
2251
|
+
vf = state["vf"]
|
|
2252
|
+
|
|
2253
|
+
edge_src = data.get("edge_src")
|
|
2254
|
+
edge_dst = data.get("edge_dst")
|
|
2255
|
+
if edge_src is None or edge_dst is None:
|
|
2256
|
+
edge_src, edge_dst = _build_edge_index_arrays(G, nodes, data["idx"], np)
|
|
2257
|
+
data["edge_src"] = edge_src
|
|
2258
|
+
data["edge_dst"] = edge_dst
|
|
2259
|
+
if cache is not None:
|
|
2260
|
+
cache.edge_src = edge_src
|
|
2261
|
+
cache.edge_dst = edge_dst
|
|
2262
|
+
if edge_src is not None:
|
|
2263
|
+
data["edge_count"] = int(edge_src.size)
|
|
2264
|
+
|
|
2265
|
+
cached_deg_array = data.get("deg_array")
|
|
2266
|
+
|
|
2267
|
+
# Memory optimization: When we have a cached degree array and need a count
|
|
2268
|
+
# buffer, we can reuse the degree array buffer as the destination for counts.
|
|
2269
|
+
# This works because:
|
|
2270
|
+
# 1. For undirected graphs, node degree equals neighbor count
|
|
2271
|
+
# 2. The degree array is already allocated and the right size
|
|
2272
|
+
# 3. We avoid allocating an extra row in the accumulator matrix
|
|
2273
|
+
# When reuse_count_from_deg is True:
|
|
2274
|
+
# - We copy cached_deg_array into the count buffer before accumulation
|
|
2275
|
+
# - We pass count_for_accum=None to _accumulate_neighbors_broadcasted
|
|
2276
|
+
# - After accumulation, we restore count = cached_deg_array (line 2121)
|
|
2277
|
+
reuse_count_from_deg = bool(count is not None and cached_deg_array is not None)
|
|
2278
|
+
count_for_accum = count
|
|
2279
|
+
if count is not None:
|
|
2280
|
+
if reuse_count_from_deg:
|
|
2281
|
+
# Pre-fill count with degrees (will be returned as-is since accumulator
|
|
2282
|
+
# skips the count row when count_for_accum=None)
|
|
2283
|
+
np.copyto(count, cached_deg_array, casting="unsafe")
|
|
2284
|
+
count_for_accum = None
|
|
2285
|
+
else:
|
|
2286
|
+
count.fill(0.0)
|
|
2287
|
+
|
|
2288
|
+
deg_array = None
|
|
2289
|
+
if deg_sum is not None:
|
|
2290
|
+
deg_sum.fill(0.0)
|
|
2291
|
+
deg_array = _resolve_numpy_degree_array(
|
|
2292
|
+
data, count if count is not None else None, cache=cache, np=np
|
|
2293
|
+
)
|
|
2294
|
+
elif cached_deg_array is not None:
|
|
2295
|
+
deg_array = cached_deg_array
|
|
2296
|
+
|
|
2297
|
+
edge_count = int(edge_src.size) if edge_src is not None else 0
|
|
2298
|
+
chunk_hint = data.get("neighbor_chunk_hint")
|
|
2299
|
+
if chunk_hint is None:
|
|
2300
|
+
chunk_hint = G.graph.get("DNFR_CHUNK_SIZE")
|
|
2301
|
+
resolved_neighbor_chunk = (
|
|
2302
|
+
resolve_chunk_size(
|
|
2303
|
+
chunk_hint,
|
|
2304
|
+
edge_count,
|
|
2305
|
+
minimum=1,
|
|
2306
|
+
approx_bytes_per_item=_DNFR_APPROX_BYTES_PER_EDGE,
|
|
2307
|
+
clamp_to=None,
|
|
2308
|
+
)
|
|
2309
|
+
if edge_count
|
|
2310
|
+
else 0
|
|
2311
|
+
)
|
|
2312
|
+
data["neighbor_chunk_hint"] = chunk_hint
|
|
2313
|
+
data["neighbor_chunk_size"] = resolved_neighbor_chunk
|
|
2314
|
+
|
|
2315
|
+
accum = _accumulate_neighbors_broadcasted(
|
|
2316
|
+
edge_src=edge_src,
|
|
2317
|
+
edge_dst=edge_dst,
|
|
2318
|
+
cos=cos_th,
|
|
2319
|
+
sin=sin_th,
|
|
2320
|
+
epi=epi,
|
|
2321
|
+
vf=vf,
|
|
2322
|
+
x=x,
|
|
2323
|
+
y=y,
|
|
2324
|
+
epi_sum=epi_sum,
|
|
2325
|
+
vf_sum=vf_sum,
|
|
2326
|
+
count=count_for_accum,
|
|
2327
|
+
deg_sum=deg_sum,
|
|
2328
|
+
deg_array=deg_array,
|
|
2329
|
+
cache=cache,
|
|
2330
|
+
np=np,
|
|
2331
|
+
chunk_size=resolved_neighbor_chunk,
|
|
2332
|
+
)
|
|
2333
|
+
|
|
2334
|
+
data["neighbor_accum_np"] = accum.get("accumulator")
|
|
2335
|
+
edge_values = accum.get("edge_values")
|
|
2336
|
+
data["neighbor_edge_values_np"] = edge_values
|
|
2337
|
+
if edge_values is not None:
|
|
2338
|
+
width = getattr(edge_values, "shape", (0, 0))[1]
|
|
2339
|
+
data["neighbor_chunk_size"] = int(width)
|
|
2340
|
+
else:
|
|
2341
|
+
data["neighbor_chunk_size"] = resolved_neighbor_chunk
|
|
2342
|
+
if cache is not None:
|
|
2343
|
+
data["neighbor_accum_signature"] = cache.neighbor_accum_signature
|
|
2344
|
+
if reuse_count_from_deg and cached_deg_array is not None:
|
|
2345
|
+
count = cached_deg_array
|
|
2346
|
+
degs = deg_array if deg_sum is not None and deg_array is not None else None
|
|
2347
|
+
return x, y, epi_sum, vf_sum, count, deg_sum, degs
|
|
2348
|
+
|
|
550
2349
|
|
|
551
|
-
def _compute_dnfr(
|
|
2350
|
+
def _compute_dnfr(
|
|
2351
|
+
G: TNFRGraph,
|
|
2352
|
+
data: MutableMapping[str, Any],
|
|
2353
|
+
*,
|
|
2354
|
+
use_numpy: bool | None = None,
|
|
2355
|
+
n_jobs: int | None = None,
|
|
2356
|
+
profile: MutableMapping[str, float] | None = None,
|
|
2357
|
+
) -> None:
|
|
552
2358
|
"""Compute ΔNFR using neighbour sums.
|
|
553
2359
|
|
|
554
2360
|
Parameters
|
|
@@ -557,11 +2363,56 @@ def _compute_dnfr(G, data, *, use_numpy: bool = False) -> None:
|
|
|
557
2363
|
Graph on which the computation is performed.
|
|
558
2364
|
data : dict
|
|
559
2365
|
Precomputed ΔNFR data as returned by :func:`_prepare_dnfr_data`.
|
|
560
|
-
use_numpy : bool, optional
|
|
561
|
-
When ``True`` the
|
|
562
|
-
|
|
2366
|
+
use_numpy : bool | None, optional
|
|
2367
|
+
Backwards compatibility flag. When ``True`` the function eagerly
|
|
2368
|
+
prepares NumPy buffers (if available). When ``False`` the engine still
|
|
2369
|
+
prefers the vectorised path whenever :func:`get_numpy` returns a module
|
|
2370
|
+
and the graph does not set ``vectorized_dnfr`` to ``False``.
|
|
2371
|
+
profile : MutableMapping[str, float] or None, optional
|
|
2372
|
+
Mutable mapping that aggregates wall-clock durations for neighbour
|
|
2373
|
+
accumulation and records which execution branch was used. The
|
|
2374
|
+
``"dnfr_neighbor_accumulation"`` bucket gathers the time spent inside
|
|
2375
|
+
:func:`_build_neighbor_sums_common`, while ``"dnfr_path"`` stores the
|
|
2376
|
+
string ``"vectorized"`` or ``"fallback"`` describing the active
|
|
2377
|
+
implementation.
|
|
563
2378
|
"""
|
|
564
|
-
|
|
2379
|
+
start_timer, stop_timer = _profile_start_stop(
|
|
2380
|
+
profile,
|
|
2381
|
+
keys=("dnfr_neighbor_accumulation",),
|
|
2382
|
+
)
|
|
2383
|
+
|
|
2384
|
+
np_module = get_numpy()
|
|
2385
|
+
data["dnfr_numpy_available"] = bool(np_module)
|
|
2386
|
+
vector_disabled = G.graph.get("vectorized_dnfr") is False
|
|
2387
|
+
prefer_dense = np_module is not None and not vector_disabled
|
|
2388
|
+
if use_numpy is True and np_module is not None:
|
|
2389
|
+
prefer_dense = True
|
|
2390
|
+
if use_numpy is False or vector_disabled:
|
|
2391
|
+
prefer_dense = False
|
|
2392
|
+
data["dnfr_used_numpy"] = bool(prefer_dense and np_module is not None)
|
|
2393
|
+
if profile is not None:
|
|
2394
|
+
profile["dnfr_path"] = "vectorized" if data["dnfr_used_numpy"] else "fallback"
|
|
2395
|
+
|
|
2396
|
+
data["n_jobs"] = n_jobs
|
|
2397
|
+
try:
|
|
2398
|
+
neighbor_timer = start_timer()
|
|
2399
|
+
res = _build_neighbor_sums_common(
|
|
2400
|
+
G,
|
|
2401
|
+
data,
|
|
2402
|
+
use_numpy=prefer_dense,
|
|
2403
|
+
n_jobs=n_jobs,
|
|
2404
|
+
)
|
|
2405
|
+
stop_timer("dnfr_neighbor_accumulation", neighbor_timer)
|
|
2406
|
+
except TypeError as exc:
|
|
2407
|
+
if "n_jobs" not in str(exc):
|
|
2408
|
+
raise
|
|
2409
|
+
neighbor_timer = start_timer()
|
|
2410
|
+
res = _build_neighbor_sums_common(
|
|
2411
|
+
G,
|
|
2412
|
+
data,
|
|
2413
|
+
use_numpy=prefer_dense,
|
|
2414
|
+
)
|
|
2415
|
+
stop_timer("dnfr_neighbor_accumulation", neighbor_timer)
|
|
565
2416
|
if res is None:
|
|
566
2417
|
return
|
|
567
2418
|
x, y, epi_sum, vf_sum, count, deg_sum, degs = res
|
|
@@ -575,10 +2426,18 @@ def _compute_dnfr(G, data, *, use_numpy: bool = False) -> None:
|
|
|
575
2426
|
count=count,
|
|
576
2427
|
deg_sum=deg_sum,
|
|
577
2428
|
degs=degs,
|
|
2429
|
+
n_jobs=n_jobs,
|
|
2430
|
+
profile=profile,
|
|
578
2431
|
)
|
|
579
2432
|
|
|
580
2433
|
|
|
581
|
-
def default_compute_delta_nfr(
|
|
2434
|
+
def default_compute_delta_nfr(
|
|
2435
|
+
G: TNFRGraph,
|
|
2436
|
+
*,
|
|
2437
|
+
cache_size: int | None = 1,
|
|
2438
|
+
n_jobs: int | None = None,
|
|
2439
|
+
profile: MutableMapping[str, float] | None = None,
|
|
2440
|
+
) -> None:
|
|
582
2441
|
"""Compute ΔNFR by mixing phase, EPI, νf and a topological term.
|
|
583
2442
|
|
|
584
2443
|
Parameters
|
|
@@ -589,29 +2448,96 @@ def default_compute_delta_nfr(G, *, cache_size: int | None = 1) -> None:
|
|
|
589
2448
|
Maximum number of edge configurations cached in ``G.graph``. Values
|
|
590
2449
|
``None`` or <= 0 imply unlimited cache. Defaults to ``1`` to keep the
|
|
591
2450
|
previous behaviour.
|
|
2451
|
+
n_jobs : int | None, optional
|
|
2452
|
+
Parallel worker count for the pure-Python accumulation path. ``None``
|
|
2453
|
+
or values <= 1 preserve the serial behaviour. The vectorised NumPy
|
|
2454
|
+
branch ignores this parameter as it already operates in bulk.
|
|
2455
|
+
profile : MutableMapping[str, float] or None, optional
|
|
2456
|
+
Mutable mapping that aggregates the wall-clock timings captured during
|
|
2457
|
+
the ΔNFR computation. The mapping receives the buckets documented in
|
|
2458
|
+
:func:`_prepare_dnfr_data` and :func:`_compute_dnfr`, plus
|
|
2459
|
+
``"dnfr_neighbor_means"``, ``"dnfr_gradient_assembly"`` and
|
|
2460
|
+
``"dnfr_inplace_write"`` describing the internal stages of
|
|
2461
|
+
:func:`_compute_dnfr_common`. ``"dnfr_path"`` reflects whether the
|
|
2462
|
+
vectorised or fallback implementation executed the call.
|
|
592
2463
|
"""
|
|
593
|
-
|
|
2464
|
+
if profile is not None:
|
|
2465
|
+
for key in (
|
|
2466
|
+
"dnfr_cache_rebuild",
|
|
2467
|
+
"dnfr_neighbor_accumulation",
|
|
2468
|
+
"dnfr_neighbor_means",
|
|
2469
|
+
"dnfr_gradient_assembly",
|
|
2470
|
+
"dnfr_inplace_write",
|
|
2471
|
+
):
|
|
2472
|
+
profile.setdefault(key, 0.0)
|
|
2473
|
+
|
|
2474
|
+
data = _prepare_dnfr_data(G, cache_size=cache_size, profile=profile)
|
|
594
2475
|
_write_dnfr_metadata(
|
|
595
2476
|
G,
|
|
596
2477
|
weights=data["weights"],
|
|
597
2478
|
hook_name="default_compute_delta_nfr",
|
|
598
2479
|
)
|
|
599
|
-
|
|
600
|
-
|
|
601
|
-
|
|
2480
|
+
_compute_dnfr(G, data, n_jobs=n_jobs, profile=profile)
|
|
2481
|
+
if not data.get("dnfr_numpy_available"):
|
|
2482
|
+
cache = data.get("cache")
|
|
2483
|
+
cache_size = data.get("cache_size")
|
|
2484
|
+
caching_enabled = isinstance(cache, DnfrCache) and (
|
|
2485
|
+
cache_size is None or int(cache_size) > 0
|
|
2486
|
+
)
|
|
2487
|
+
if isinstance(cache, DnfrCache) and not caching_enabled:
|
|
2488
|
+
for attr in (
|
|
2489
|
+
"neighbor_x_np",
|
|
2490
|
+
"neighbor_y_np",
|
|
2491
|
+
"neighbor_epi_sum_np",
|
|
2492
|
+
"neighbor_vf_sum_np",
|
|
2493
|
+
"neighbor_count_np",
|
|
2494
|
+
"neighbor_deg_sum_np",
|
|
2495
|
+
"neighbor_inv_count_np",
|
|
2496
|
+
"neighbor_cos_avg_np",
|
|
2497
|
+
"neighbor_sin_avg_np",
|
|
2498
|
+
"neighbor_mean_tmp_np",
|
|
2499
|
+
"neighbor_mean_length_np",
|
|
2500
|
+
"neighbor_accum_np",
|
|
2501
|
+
"neighbor_edge_values_np",
|
|
2502
|
+
):
|
|
2503
|
+
setattr(cache, attr, None)
|
|
2504
|
+
cache.neighbor_accum_signature = None
|
|
602
2505
|
|
|
603
2506
|
|
|
604
2507
|
def set_delta_nfr_hook(
|
|
605
|
-
G
|
|
2508
|
+
G: TNFRGraph,
|
|
2509
|
+
func: DeltaNFRHook,
|
|
2510
|
+
*,
|
|
2511
|
+
name: str | None = None,
|
|
2512
|
+
note: str | None = None,
|
|
606
2513
|
) -> None:
|
|
607
2514
|
"""Set a stable hook to compute ΔNFR.
|
|
608
|
-
|
|
609
|
-
|
|
2515
|
+
|
|
2516
|
+
The callable should accept ``(G, *[, n_jobs])`` and is responsible for
|
|
2517
|
+
writing ``ALIAS_DNFR`` in each node. ``n_jobs`` is optional and ignored by
|
|
2518
|
+
hooks that do not support parallel execution. Basic metadata in
|
|
2519
|
+
``G.graph`` is updated accordingly.
|
|
610
2520
|
"""
|
|
611
|
-
|
|
612
|
-
|
|
613
|
-
|
|
614
|
-
|
|
2521
|
+
|
|
2522
|
+
def _wrapped(graph: TNFRGraph, *args: Any, **kwargs: Any) -> None:
|
|
2523
|
+
if "n_jobs" in kwargs:
|
|
2524
|
+
try:
|
|
2525
|
+
func(graph, *args, **kwargs)
|
|
2526
|
+
return
|
|
2527
|
+
except TypeError as exc:
|
|
2528
|
+
if "n_jobs" not in str(exc):
|
|
2529
|
+
raise
|
|
2530
|
+
kwargs = dict(kwargs)
|
|
2531
|
+
kwargs.pop("n_jobs", None)
|
|
2532
|
+
func(graph, *args, **kwargs)
|
|
2533
|
+
return
|
|
2534
|
+
func(graph, *args, **kwargs)
|
|
2535
|
+
|
|
2536
|
+
_wrapped.__name__ = getattr(func, "__name__", "custom_dnfr")
|
|
2537
|
+
_wrapped.__doc__ = getattr(func, "__doc__", _wrapped.__doc__)
|
|
2538
|
+
|
|
2539
|
+
G.graph["compute_delta_nfr"] = _wrapped
|
|
2540
|
+
G.graph["_dnfr_hook_name"] = str(name or getattr(func, "__name__", "custom_dnfr"))
|
|
615
2541
|
if "_dnfr_weights" not in G.graph:
|
|
616
2542
|
_configure_dnfr_weights(G)
|
|
617
2543
|
if note:
|
|
@@ -620,114 +2546,489 @@ def set_delta_nfr_hook(
|
|
|
620
2546
|
G.graph["_DNFR_META"] = meta
|
|
621
2547
|
|
|
622
2548
|
|
|
2549
|
+
def _dnfr_hook_chunk_worker(
|
|
2550
|
+
G: TNFRGraph,
|
|
2551
|
+
node_ids: Sequence[NodeId],
|
|
2552
|
+
grad_items: tuple[
|
|
2553
|
+
tuple[str, Callable[[TNFRGraph, NodeId, Mapping[str, Any]], float]],
|
|
2554
|
+
...,
|
|
2555
|
+
],
|
|
2556
|
+
weights: Mapping[str, float],
|
|
2557
|
+
) -> list[tuple[NodeId, float]]:
|
|
2558
|
+
"""Compute weighted gradients for ``node_ids``.
|
|
2559
|
+
|
|
2560
|
+
The helper is defined at module level so it can be pickled by
|
|
2561
|
+
:class:`concurrent.futures.ProcessPoolExecutor`.
|
|
2562
|
+
"""
|
|
2563
|
+
|
|
2564
|
+
results: list[tuple[NodeId, float]] = []
|
|
2565
|
+
for node in node_ids:
|
|
2566
|
+
nd = G.nodes[node]
|
|
2567
|
+
total = 0.0
|
|
2568
|
+
for name, func in grad_items:
|
|
2569
|
+
w = weights.get(name, 0.0)
|
|
2570
|
+
if w:
|
|
2571
|
+
total += w * float(func(G, node, nd))
|
|
2572
|
+
results.append((node, total))
|
|
2573
|
+
return results
|
|
2574
|
+
|
|
2575
|
+
|
|
623
2576
|
def _apply_dnfr_hook(
|
|
624
|
-
G,
|
|
625
|
-
grads:
|
|
2577
|
+
G: TNFRGraph,
|
|
2578
|
+
grads: Mapping[str, Callable[[TNFRGraph, NodeId, Mapping[str, Any]], float]],
|
|
626
2579
|
*,
|
|
627
|
-
weights:
|
|
2580
|
+
weights: Mapping[str, float],
|
|
628
2581
|
hook_name: str,
|
|
629
2582
|
note: str | None = None,
|
|
2583
|
+
n_jobs: int | None = None,
|
|
630
2584
|
) -> None:
|
|
631
|
-
"""
|
|
2585
|
+
"""Compute and store ΔNFR using ``grads``.
|
|
632
2586
|
|
|
633
|
-
|
|
634
|
-
|
|
635
|
-
|
|
2587
|
+
Parameters
|
|
2588
|
+
----------
|
|
2589
|
+
G : nx.Graph
|
|
2590
|
+
Graph whose nodes will receive the ΔNFR update.
|
|
2591
|
+
grads : dict
|
|
2592
|
+
Mapping from component names to callables with signature
|
|
2593
|
+
``(G, node, data) -> float`` returning the gradient contribution.
|
|
2594
|
+
weights : dict
|
|
2595
|
+
Weight per component; missing entries default to ``0``.
|
|
2596
|
+
hook_name : str
|
|
2597
|
+
Friendly identifier stored in ``G.graph`` metadata.
|
|
2598
|
+
note : str | None, optional
|
|
2599
|
+
Additional documentation recorded next to the hook metadata.
|
|
2600
|
+
n_jobs : int | None, optional
|
|
2601
|
+
Optional worker count for the pure-Python execution path. When NumPy
|
|
2602
|
+
is available the helper always prefers the vectorised implementation
|
|
2603
|
+
and ignores ``n_jobs`` because the computation already happens in
|
|
2604
|
+
bulk.
|
|
636
2605
|
"""
|
|
637
2606
|
|
|
638
|
-
|
|
639
|
-
|
|
2607
|
+
nodes_data: list[tuple[NodeId, Mapping[str, Any]]] = list(G.nodes(data=True))
|
|
2608
|
+
if not nodes_data:
|
|
2609
|
+
_write_dnfr_metadata(G, weights=weights, hook_name=hook_name, note=note)
|
|
2610
|
+
return
|
|
2611
|
+
|
|
2612
|
+
np_module = cast(ModuleType | None, get_numpy())
|
|
2613
|
+
if np_module is not None:
|
|
2614
|
+
totals = np_module.zeros(len(nodes_data), dtype=float)
|
|
640
2615
|
for name, func in grads.items():
|
|
641
|
-
w = weights.get(name, 0.0)
|
|
642
|
-
if w:
|
|
643
|
-
|
|
644
|
-
|
|
2616
|
+
w = float(weights.get(name, 0.0))
|
|
2617
|
+
if w == 0.0:
|
|
2618
|
+
continue
|
|
2619
|
+
values = np_module.fromiter(
|
|
2620
|
+
(float(func(G, n, nd)) for n, nd in nodes_data),
|
|
2621
|
+
dtype=float,
|
|
2622
|
+
count=len(nodes_data),
|
|
2623
|
+
)
|
|
2624
|
+
if w == 1.0:
|
|
2625
|
+
np_module.add(totals, values, out=totals)
|
|
2626
|
+
else:
|
|
2627
|
+
np_module.add(totals, values * w, out=totals)
|
|
2628
|
+
for idx, (n, _) in enumerate(nodes_data):
|
|
2629
|
+
set_dnfr(G, n, float(totals[idx]))
|
|
2630
|
+
_write_dnfr_metadata(G, weights=weights, hook_name=hook_name, note=note)
|
|
2631
|
+
return
|
|
2632
|
+
|
|
2633
|
+
effective_jobs = _resolve_parallel_jobs(n_jobs, len(nodes_data))
|
|
2634
|
+
results: list[tuple[NodeId, float]] | None = None
|
|
2635
|
+
if effective_jobs:
|
|
2636
|
+
grad_items = tuple(grads.items())
|
|
2637
|
+
# ProcessPoolExecutor requires picklable arguments. Instead of explicitly
|
|
2638
|
+
# testing with pickle.dumps (which poses security risks), we attempt
|
|
2639
|
+
# parallelization and gracefully fall back to serial on any failure.
|
|
2640
|
+
try:
|
|
2641
|
+
chunk_results: list[tuple[NodeId, float]] = []
|
|
2642
|
+
with ProcessPoolExecutor(max_workers=effective_jobs) as executor:
|
|
2643
|
+
futures = []
|
|
2644
|
+
node_ids: list[NodeId] = [n for n, _ in nodes_data]
|
|
2645
|
+
for start, end in _iter_chunk_offsets(len(node_ids), effective_jobs):
|
|
2646
|
+
if start == end:
|
|
2647
|
+
continue
|
|
2648
|
+
futures.append(
|
|
2649
|
+
executor.submit(
|
|
2650
|
+
_dnfr_hook_chunk_worker,
|
|
2651
|
+
G,
|
|
2652
|
+
node_ids[start:end],
|
|
2653
|
+
grad_items,
|
|
2654
|
+
weights,
|
|
2655
|
+
)
|
|
2656
|
+
)
|
|
2657
|
+
for future in futures:
|
|
2658
|
+
chunk_results.extend(future.result())
|
|
2659
|
+
results = chunk_results
|
|
2660
|
+
except Exception:
|
|
2661
|
+
# Parallel execution failed (pickle, executor, or worker error)
|
|
2662
|
+
# Fall back to serial processing
|
|
2663
|
+
results = None
|
|
2664
|
+
|
|
2665
|
+
if results is None:
|
|
2666
|
+
results = []
|
|
2667
|
+
for n, nd in nodes_data:
|
|
2668
|
+
total = 0.0
|
|
2669
|
+
for name, func in grads.items():
|
|
2670
|
+
w = weights.get(name, 0.0)
|
|
2671
|
+
if w:
|
|
2672
|
+
total += w * float(func(G, n, nd))
|
|
2673
|
+
results.append((n, total))
|
|
2674
|
+
|
|
2675
|
+
for node, value in results:
|
|
2676
|
+
set_dnfr(G, node, float(value))
|
|
645
2677
|
|
|
646
2678
|
_write_dnfr_metadata(G, weights=weights, hook_name=hook_name, note=note)
|
|
647
2679
|
|
|
648
2680
|
|
|
649
|
-
# ---
|
|
650
|
-
|
|
651
|
-
"""Example: ΔNFR from phase only (Kuramoto-like)."""
|
|
2681
|
+
# --- Example hooks (optional) ---
|
|
2682
|
+
|
|
652
2683
|
|
|
653
|
-
|
|
654
|
-
|
|
655
|
-
|
|
2684
|
+
class _PhaseGradient:
|
|
2685
|
+
"""Callable computing the phase contribution using cached trig values."""
|
|
2686
|
+
|
|
2687
|
+
__slots__ = ("cos", "sin")
|
|
2688
|
+
|
|
2689
|
+
def __init__(
|
|
2690
|
+
self,
|
|
2691
|
+
cos_map: Mapping[NodeId, float],
|
|
2692
|
+
sin_map: Mapping[NodeId, float],
|
|
2693
|
+
) -> None:
|
|
2694
|
+
self.cos: Mapping[NodeId, float] = cos_map
|
|
2695
|
+
self.sin: Mapping[NodeId, float] = sin_map
|
|
2696
|
+
|
|
2697
|
+
def __call__(
|
|
2698
|
+
self,
|
|
2699
|
+
G: TNFRGraph,
|
|
2700
|
+
n: NodeId,
|
|
2701
|
+
nd: Mapping[str, Any],
|
|
2702
|
+
) -> float:
|
|
2703
|
+
theta_val = get_theta_attr(nd, 0.0)
|
|
2704
|
+
th_i = float(theta_val if theta_val is not None else 0.0)
|
|
2705
|
+
neighbors = list(G.neighbors(n))
|
|
2706
|
+
if neighbors:
|
|
2707
|
+
th_bar = neighbor_phase_mean_list(
|
|
2708
|
+
neighbors,
|
|
2709
|
+
cos_th=self.cos,
|
|
2710
|
+
sin_th=self.sin,
|
|
2711
|
+
fallback=th_i,
|
|
2712
|
+
)
|
|
2713
|
+
else:
|
|
2714
|
+
th_bar = th_i
|
|
656
2715
|
return -angle_diff(th_i, th_bar) / math.pi
|
|
657
2716
|
|
|
2717
|
+
|
|
2718
|
+
class _NeighborAverageGradient:
|
|
2719
|
+
"""Callable computing neighbour averages for scalar attributes."""
|
|
2720
|
+
|
|
2721
|
+
__slots__ = ("alias", "values")
|
|
2722
|
+
|
|
2723
|
+
def __init__(
|
|
2724
|
+
self,
|
|
2725
|
+
alias: tuple[str, ...],
|
|
2726
|
+
values: MutableMapping[NodeId, float],
|
|
2727
|
+
) -> None:
|
|
2728
|
+
self.alias: tuple[str, ...] = alias
|
|
2729
|
+
self.values: MutableMapping[NodeId, float] = values
|
|
2730
|
+
|
|
2731
|
+
def __call__(
|
|
2732
|
+
self,
|
|
2733
|
+
G: TNFRGraph,
|
|
2734
|
+
n: NodeId,
|
|
2735
|
+
nd: Mapping[str, Any],
|
|
2736
|
+
) -> float:
|
|
2737
|
+
val = self.values.get(n)
|
|
2738
|
+
if val is None:
|
|
2739
|
+
val = float(get_attr(nd, self.alias, 0.0))
|
|
2740
|
+
self.values[n] = val
|
|
2741
|
+
neighbors = list(G.neighbors(n))
|
|
2742
|
+
if not neighbors:
|
|
2743
|
+
return 0.0
|
|
2744
|
+
total = 0.0
|
|
2745
|
+
for neigh in neighbors:
|
|
2746
|
+
neigh_val = self.values.get(neigh)
|
|
2747
|
+
if neigh_val is None:
|
|
2748
|
+
neigh_val = float(get_attr(G.nodes[neigh], self.alias, val))
|
|
2749
|
+
self.values[neigh] = neigh_val
|
|
2750
|
+
total += neigh_val
|
|
2751
|
+
return total / len(neighbors) - val
|
|
2752
|
+
|
|
2753
|
+
|
|
2754
|
+
def dnfr_phase_only(G: TNFRGraph, *, n_jobs: int | None = None) -> None:
|
|
2755
|
+
"""Compute ΔNFR from phase only (Kuramoto-like).
|
|
2756
|
+
|
|
2757
|
+
Parameters
|
|
2758
|
+
----------
|
|
2759
|
+
G : nx.Graph
|
|
2760
|
+
Graph whose nodes receive the ΔNFR assignment.
|
|
2761
|
+
n_jobs : int | None, optional
|
|
2762
|
+
Parallel worker hint used when NumPy is unavailable. Defaults to
|
|
2763
|
+
serial execution.
|
|
2764
|
+
"""
|
|
2765
|
+
|
|
2766
|
+
trig = compute_theta_trig(G.nodes(data=True))
|
|
2767
|
+
g_phase = _PhaseGradient(trig.cos, trig.sin)
|
|
658
2768
|
_apply_dnfr_hook(
|
|
659
2769
|
G,
|
|
660
2770
|
{"phase": g_phase},
|
|
661
2771
|
weights={"phase": 1.0},
|
|
662
2772
|
hook_name="dnfr_phase_only",
|
|
663
|
-
note="
|
|
2773
|
+
note="Example hook.",
|
|
2774
|
+
n_jobs=n_jobs,
|
|
664
2775
|
)
|
|
665
2776
|
|
|
666
2777
|
|
|
667
|
-
def dnfr_epi_vf_mixed(G) -> None:
|
|
668
|
-
"""
|
|
2778
|
+
def dnfr_epi_vf_mixed(G: TNFRGraph, *, n_jobs: int | None = None) -> None:
|
|
2779
|
+
"""Compute ΔNFR without phase, mixing EPI and νf.
|
|
669
2780
|
|
|
670
|
-
|
|
671
|
-
|
|
672
|
-
|
|
673
|
-
|
|
674
|
-
|
|
675
|
-
|
|
676
|
-
|
|
677
|
-
|
|
678
|
-
else:
|
|
679
|
-
epi_bar = float(epi_i)
|
|
680
|
-
return epi_bar - epi_i
|
|
681
|
-
|
|
682
|
-
def g_vf(G, n, nd):
|
|
683
|
-
vf_i = get_attr(nd, ALIAS_VF, 0.0)
|
|
684
|
-
neighbors = list(G.neighbors(n))
|
|
685
|
-
if neighbors:
|
|
686
|
-
total = 0.0
|
|
687
|
-
for v in neighbors:
|
|
688
|
-
total += float(get_attr(G.nodes[v], ALIAS_VF, vf_i))
|
|
689
|
-
vf_bar = total / len(neighbors)
|
|
690
|
-
else:
|
|
691
|
-
vf_bar = float(vf_i)
|
|
692
|
-
return vf_bar - vf_i
|
|
2781
|
+
Parameters
|
|
2782
|
+
----------
|
|
2783
|
+
G : nx.Graph
|
|
2784
|
+
Graph whose nodes receive the ΔNFR assignment.
|
|
2785
|
+
n_jobs : int | None, optional
|
|
2786
|
+
Parallel worker hint used when NumPy is unavailable. Defaults to
|
|
2787
|
+
serial execution.
|
|
2788
|
+
"""
|
|
693
2789
|
|
|
2790
|
+
epi_values = {
|
|
2791
|
+
n: float(get_attr(nd, ALIAS_EPI, 0.0)) for n, nd in G.nodes(data=True)
|
|
2792
|
+
}
|
|
2793
|
+
vf_values = {n: float(get_attr(nd, ALIAS_VF, 0.0)) for n, nd in G.nodes(data=True)}
|
|
2794
|
+
grads = {
|
|
2795
|
+
"epi": _NeighborAverageGradient(ALIAS_EPI, epi_values),
|
|
2796
|
+
"vf": _NeighborAverageGradient(ALIAS_VF, vf_values),
|
|
2797
|
+
}
|
|
694
2798
|
_apply_dnfr_hook(
|
|
695
2799
|
G,
|
|
696
|
-
|
|
2800
|
+
grads,
|
|
697
2801
|
weights={"phase": 0.0, "epi": 0.5, "vf": 0.5},
|
|
698
2802
|
hook_name="dnfr_epi_vf_mixed",
|
|
699
|
-
note="
|
|
2803
|
+
note="Example hook.",
|
|
2804
|
+
n_jobs=n_jobs,
|
|
700
2805
|
)
|
|
701
2806
|
|
|
702
2807
|
|
|
703
|
-
def dnfr_laplacian(G) -> None:
|
|
704
|
-
"""Explicit topological gradient using Laplacian over EPI and νf.
|
|
2808
|
+
def dnfr_laplacian(G: TNFRGraph, *, n_jobs: int | None = None) -> None:
|
|
2809
|
+
"""Explicit topological gradient using Laplacian over EPI and νf.
|
|
2810
|
+
|
|
2811
|
+
Parameters
|
|
2812
|
+
----------
|
|
2813
|
+
G : nx.Graph
|
|
2814
|
+
Graph whose nodes receive the ΔNFR assignment.
|
|
2815
|
+
n_jobs : int | None, optional
|
|
2816
|
+
Parallel worker hint used when NumPy is unavailable. Defaults to
|
|
2817
|
+
serial execution.
|
|
2818
|
+
"""
|
|
2819
|
+
|
|
705
2820
|
weights_cfg = get_param(G, "DNFR_WEIGHTS")
|
|
706
2821
|
wE = float(weights_cfg.get("epi", DEFAULTS["DNFR_WEIGHTS"]["epi"]))
|
|
707
2822
|
wV = float(weights_cfg.get("vf", DEFAULTS["DNFR_WEIGHTS"]["vf"]))
|
|
708
2823
|
|
|
709
|
-
|
|
710
|
-
|
|
711
|
-
|
|
712
|
-
|
|
713
|
-
|
|
714
|
-
|
|
715
|
-
)
|
|
716
|
-
|
|
717
|
-
|
|
718
|
-
def g_vf(G, n, nd):
|
|
719
|
-
vf = get_attr(nd, ALIAS_VF, 0.0)
|
|
720
|
-
neigh = list(G.neighbors(n))
|
|
721
|
-
deg = len(neigh) or 1
|
|
722
|
-
vf_bar = sum(get_attr(G.nodes[v], ALIAS_VF, vf) for v in neigh) / deg
|
|
723
|
-
return vf_bar - vf
|
|
724
|
-
|
|
2824
|
+
epi_values = {
|
|
2825
|
+
n: float(get_attr(nd, ALIAS_EPI, 0.0)) for n, nd in G.nodes(data=True)
|
|
2826
|
+
}
|
|
2827
|
+
vf_values = {n: float(get_attr(nd, ALIAS_VF, 0.0)) for n, nd in G.nodes(data=True)}
|
|
2828
|
+
grads = {
|
|
2829
|
+
"epi": _NeighborAverageGradient(ALIAS_EPI, epi_values),
|
|
2830
|
+
"vf": _NeighborAverageGradient(ALIAS_VF, vf_values),
|
|
2831
|
+
}
|
|
725
2832
|
_apply_dnfr_hook(
|
|
726
2833
|
G,
|
|
727
|
-
|
|
2834
|
+
grads,
|
|
728
2835
|
weights={"epi": wE, "vf": wV},
|
|
729
2836
|
hook_name="dnfr_laplacian",
|
|
730
|
-
note="
|
|
2837
|
+
note="Topological gradient",
|
|
2838
|
+
n_jobs=n_jobs,
|
|
731
2839
|
)
|
|
732
2840
|
|
|
733
2841
|
|
|
2842
|
+
def compute_delta_nfr_hamiltonian(
|
|
2843
|
+
G: TNFRGraph,
|
|
2844
|
+
*,
|
|
2845
|
+
hbar_str: float | None = None,
|
|
2846
|
+
cache_hamiltonian: bool = True,
|
|
2847
|
+
profile: MutableMapping[str, float] | None = None,
|
|
2848
|
+
) -> None:
|
|
2849
|
+
"""Compute ΔNFR using rigorous Hamiltonian commutator formulation.
|
|
2850
|
+
|
|
2851
|
+
This is the **canonical** TNFR method that constructs the internal
|
|
2852
|
+
Hamiltonian H_int = H_coh + H_freq + H_coupling explicitly and computes
|
|
2853
|
+
ΔNFR from the quantum commutator:
|
|
2854
|
+
|
|
2855
|
+
.. math::
|
|
2856
|
+
\Delta\text{NFR}_n = \\frac{i}{\hbar_{str}} \langle n | [\\hat{H}_{int}, \\rho_n] | n \\rangle
|
|
2857
|
+
|
|
2858
|
+
where \\rho_n = |n\\rangle\\langle n| is the density matrix for node n.
|
|
2859
|
+
|
|
2860
|
+
Theory
|
|
2861
|
+
------
|
|
2862
|
+
|
|
2863
|
+
The internal Hamiltonian governs structural evolution through:
|
|
2864
|
+
|
|
2865
|
+
.. math::
|
|
2866
|
+
\\frac{\partial \text{EPI}}{\partial t} = \\nu_f \cdot \Delta\text{NFR}(t)
|
|
2867
|
+
|
|
2868
|
+
with the reorganization operator defined as:
|
|
2869
|
+
|
|
2870
|
+
.. math::
|
|
2871
|
+
\Delta\text{NFR} = \\frac{d}{dt} + \\frac{i[\\hat{H}_{int}, \cdot]}{\hbar_{str}}
|
|
2872
|
+
|
|
2873
|
+
**Components**:
|
|
2874
|
+
|
|
2875
|
+
1. **H_coh**: Coherence potential from structural similarity
|
|
2876
|
+
2. **H_freq**: Diagonal frequency operator (νf per node)
|
|
2877
|
+
3. **H_coupling**: Network topology-induced interactions
|
|
2878
|
+
|
|
2879
|
+
Parameters
|
|
2880
|
+
----------
|
|
2881
|
+
G : TNFRGraph
|
|
2882
|
+
Graph with nodes containing 'nu_f', 'phase', 'epi', 'si' attributes
|
|
2883
|
+
hbar_str : float, optional
|
|
2884
|
+
Structural Planck constant (ℏ_str). If None, uses
|
|
2885
|
+
``G.graph.get('HBAR_STR', 1.0)``. Natural units (1.0) make the
|
|
2886
|
+
Hamiltonian directly represent structural energy scales.
|
|
2887
|
+
cache_hamiltonian : bool, default=True
|
|
2888
|
+
If True, caches the Hamiltonian in ``G.graph['_hamiltonian_cache']``
|
|
2889
|
+
for reuse in subsequent calls. Set to False for dynamic networks
|
|
2890
|
+
where topology changes frequently.
|
|
2891
|
+
profile : MutableMapping[str, float] or None, optional
|
|
2892
|
+
Mutable mapping that accumulates wall-clock timings:
|
|
2893
|
+
|
|
2894
|
+
- ``"hamiltonian_construction"``: Time to build H_int
|
|
2895
|
+
- ``"hamiltonian_computation"``: Time to compute all ΔNFR values
|
|
2896
|
+
- ``"hamiltonian_write"``: Time to write results to nodes
|
|
2897
|
+
|
|
2898
|
+
Notes
|
|
2899
|
+
-----
|
|
2900
|
+
|
|
2901
|
+
**Advantages over heuristic methods**:
|
|
2902
|
+
|
|
2903
|
+
- **Rigorous**: Directly implements TNFR mathematical formalization
|
|
2904
|
+
- **Hermitian**: Guarantees real eigenvalues and unitary evolution
|
|
2905
|
+
- **Verifiable**: Can compute energy spectrum and eigenstates
|
|
2906
|
+
- **Complete**: Accounts for all structural correlations via coherence matrix
|
|
2907
|
+
|
|
2908
|
+
**Performance considerations**:
|
|
2909
|
+
|
|
2910
|
+
- Complexity: O(N²) for matrix construction, O(N³) for eigendecomposition
|
|
2911
|
+
- Recommended for networks with N < 1000 nodes
|
|
2912
|
+
- For larger networks, use default_compute_delta_nfr (heuristic, O(E))
|
|
2913
|
+
|
|
2914
|
+
**Cache behavior**:
|
|
2915
|
+
|
|
2916
|
+
- Hamiltonian is cached if ``cache_hamiltonian=True``
|
|
2917
|
+
- Cache is invalidated when node attributes or topology change
|
|
2918
|
+
- Uses ``CacheManager`` for consistency with other TNFR computations
|
|
2919
|
+
|
|
2920
|
+
Examples
|
|
2921
|
+
--------
|
|
2922
|
+
|
|
2923
|
+
**Basic usage**:
|
|
2924
|
+
|
|
2925
|
+
>>> import networkx as nx
|
|
2926
|
+
>>> from tnfr.dynamics.dnfr import compute_delta_nfr_hamiltonian
|
|
2927
|
+
>>> G = nx.cycle_graph(10)
|
|
2928
|
+
>>> for node in G.nodes:
|
|
2929
|
+
... G.nodes[node].update({
|
|
2930
|
+
... 'nu_f': 1.0, 'phase': 0.0, 'epi': 1.0, 'si': 0.8
|
|
2931
|
+
... })
|
|
2932
|
+
>>> compute_delta_nfr_hamiltonian(G)
|
|
2933
|
+
>>> # ΔNFR values now stored in G.nodes[n]['delta_nfr']
|
|
2934
|
+
|
|
2935
|
+
**With profiling**:
|
|
2936
|
+
|
|
2937
|
+
>>> profile = {}
|
|
2938
|
+
>>> compute_delta_nfr_hamiltonian(G, profile=profile)
|
|
2939
|
+
>>> print(f"Construction: {profile['hamiltonian_construction']:.3f}s")
|
|
2940
|
+
>>> print(f"Computation: {profile['hamiltonian_computation']:.3f}s")
|
|
2941
|
+
|
|
2942
|
+
**Integration with dynamics**:
|
|
2943
|
+
|
|
2944
|
+
>>> from tnfr.dynamics import set_delta_nfr_hook
|
|
2945
|
+
>>> set_delta_nfr_hook(G, compute_delta_nfr_hamiltonian, name="hamiltonian")
|
|
2946
|
+
>>> # Now simulate() will use Hamiltonian-based ΔNFR
|
|
2947
|
+
|
|
2948
|
+
See Also
|
|
2949
|
+
--------
|
|
2950
|
+
tnfr.operators.hamiltonian.InternalHamiltonian : Core Hamiltonian class
|
|
2951
|
+
default_compute_delta_nfr : Heuristic O(E) method for large networks
|
|
2952
|
+
set_delta_nfr_hook : Register custom ΔNFR computation
|
|
2953
|
+
|
|
2954
|
+
References
|
|
2955
|
+
----------
|
|
2956
|
+
|
|
2957
|
+
- Mathematical formalization: ``Formalizacion-Matematica-TNFR-Unificada.pdf`` §2.4
|
|
2958
|
+
- ΔNFR development: ``Desarrollo-Exhaustivo_-Formalizacion-Matematica-Ri-3.pdf``
|
|
2959
|
+
"""
|
|
2960
|
+
from ..operators.hamiltonian import InternalHamiltonian
|
|
2961
|
+
|
|
2962
|
+
# Initialize profiling
|
|
2963
|
+
start_timer, stop_timer = _profile_start_stop(
|
|
2964
|
+
profile,
|
|
2965
|
+
keys=(
|
|
2966
|
+
"hamiltonian_construction",
|
|
2967
|
+
"hamiltonian_computation",
|
|
2968
|
+
"hamiltonian_write",
|
|
2969
|
+
),
|
|
2970
|
+
)
|
|
2971
|
+
|
|
2972
|
+
# Get structural Planck constant
|
|
2973
|
+
if hbar_str is None:
|
|
2974
|
+
hbar_str = G.graph.get("HBAR_STR", 1.0)
|
|
2975
|
+
|
|
2976
|
+
# Check cache for existing Hamiltonian
|
|
2977
|
+
cache_key = "_hamiltonian_cache"
|
|
2978
|
+
ham = None
|
|
2979
|
+
|
|
2980
|
+
if cache_hamiltonian:
|
|
2981
|
+
cached_ham = G.graph.get(cache_key)
|
|
2982
|
+
# Verify cache validity (node count and checksum)
|
|
2983
|
+
if cached_ham is not None:
|
|
2984
|
+
current_checksum = G.graph.get("_dnfr_nodes_checksum")
|
|
2985
|
+
cached_checksum = getattr(cached_ham, "_cache_checksum", None)
|
|
2986
|
+
if (
|
|
2987
|
+
isinstance(cached_ham, InternalHamiltonian)
|
|
2988
|
+
and cached_ham.N == G.number_of_nodes()
|
|
2989
|
+
and current_checksum == cached_checksum
|
|
2990
|
+
):
|
|
2991
|
+
ham = cached_ham
|
|
2992
|
+
|
|
2993
|
+
# Construct Hamiltonian if not cached or invalid
|
|
2994
|
+
if ham is None:
|
|
2995
|
+
timer = start_timer()
|
|
2996
|
+
|
|
2997
|
+
# Get cache manager for integration with existing infrastructure
|
|
2998
|
+
manager = _graph_cache_manager(G.graph)
|
|
2999
|
+
|
|
3000
|
+
# Build Hamiltonian
|
|
3001
|
+
ham = InternalHamiltonian(G, hbar_str=float(hbar_str), cache_manager=manager)
|
|
3002
|
+
|
|
3003
|
+
# Cache for reuse
|
|
3004
|
+
if cache_hamiltonian:
|
|
3005
|
+
ham._cache_checksum = G.graph.get("_dnfr_nodes_checksum")
|
|
3006
|
+
G.graph[cache_key] = ham
|
|
3007
|
+
|
|
3008
|
+
stop_timer("hamiltonian_construction", timer)
|
|
3009
|
+
|
|
3010
|
+
# Compute ΔNFR for all nodes
|
|
3011
|
+
timer = start_timer()
|
|
3012
|
+
|
|
3013
|
+
delta_nfr_values = {}
|
|
3014
|
+
for node in ham.nodes:
|
|
3015
|
+
delta_nfr = ham.compute_node_delta_nfr(node)
|
|
3016
|
+
delta_nfr_values[node] = delta_nfr
|
|
3017
|
+
|
|
3018
|
+
stop_timer("hamiltonian_computation", timer)
|
|
3019
|
+
|
|
3020
|
+
# Write results to graph nodes
|
|
3021
|
+
timer = start_timer()
|
|
3022
|
+
|
|
3023
|
+
for node, delta_val in delta_nfr_values.items():
|
|
3024
|
+
set_dnfr(G, node, delta_val)
|
|
3025
|
+
|
|
3026
|
+
stop_timer("hamiltonian_write", timer)
|
|
3027
|
+
|
|
3028
|
+
# Write metadata
|
|
3029
|
+
_write_dnfr_metadata(
|
|
3030
|
+
G,
|
|
3031
|
+
weights={"hamiltonian": 1.0},
|
|
3032
|
+
hook_name="compute_delta_nfr_hamiltonian",
|
|
3033
|
+
note="Canonical Hamiltonian commutator formulation",
|
|
3034
|
+
)
|