tnfr 4.5.1__py3-none-any.whl → 6.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tnfr/__init__.py +270 -90
- tnfr/__init__.pyi +40 -0
- tnfr/_compat.py +11 -0
- tnfr/_version.py +7 -0
- tnfr/_version.pyi +7 -0
- tnfr/alias.py +631 -0
- tnfr/alias.pyi +140 -0
- tnfr/cache.py +732 -0
- tnfr/cache.pyi +232 -0
- tnfr/callback_utils.py +381 -0
- tnfr/callback_utils.pyi +105 -0
- tnfr/cli/__init__.py +89 -0
- tnfr/cli/__init__.pyi +47 -0
- tnfr/cli/arguments.py +199 -0
- tnfr/cli/arguments.pyi +33 -0
- tnfr/cli/execution.py +322 -0
- tnfr/cli/execution.pyi +80 -0
- tnfr/cli/utils.py +34 -0
- tnfr/cli/utils.pyi +8 -0
- tnfr/config/__init__.py +12 -0
- tnfr/config/__init__.pyi +8 -0
- tnfr/config/constants.py +104 -0
- tnfr/config/constants.pyi +12 -0
- tnfr/config/init.py +36 -0
- tnfr/config/init.pyi +8 -0
- tnfr/config/operator_names.py +106 -0
- tnfr/config/operator_names.pyi +28 -0
- tnfr/config/presets.py +104 -0
- tnfr/config/presets.pyi +7 -0
- tnfr/constants/__init__.py +228 -0
- tnfr/constants/__init__.pyi +104 -0
- tnfr/constants/core.py +158 -0
- tnfr/constants/core.pyi +17 -0
- tnfr/constants/init.py +31 -0
- tnfr/constants/init.pyi +12 -0
- tnfr/constants/metric.py +102 -0
- tnfr/constants/metric.pyi +19 -0
- tnfr/constants_glyphs.py +16 -0
- tnfr/constants_glyphs.pyi +12 -0
- tnfr/dynamics/__init__.py +136 -0
- tnfr/dynamics/__init__.pyi +83 -0
- tnfr/dynamics/adaptation.py +201 -0
- tnfr/dynamics/aliases.py +22 -0
- tnfr/dynamics/coordination.py +343 -0
- tnfr/dynamics/dnfr.py +2315 -0
- tnfr/dynamics/dnfr.pyi +33 -0
- tnfr/dynamics/integrators.py +561 -0
- tnfr/dynamics/integrators.pyi +35 -0
- tnfr/dynamics/runtime.py +521 -0
- tnfr/dynamics/sampling.py +34 -0
- tnfr/dynamics/sampling.pyi +7 -0
- tnfr/dynamics/selectors.py +680 -0
- tnfr/execution.py +216 -0
- tnfr/execution.pyi +65 -0
- tnfr/flatten.py +283 -0
- tnfr/flatten.pyi +28 -0
- tnfr/gamma.py +320 -89
- tnfr/gamma.pyi +40 -0
- tnfr/glyph_history.py +337 -0
- tnfr/glyph_history.pyi +53 -0
- tnfr/grammar.py +23 -153
- tnfr/grammar.pyi +13 -0
- tnfr/helpers/__init__.py +151 -0
- tnfr/helpers/__init__.pyi +66 -0
- tnfr/helpers/numeric.py +88 -0
- tnfr/helpers/numeric.pyi +12 -0
- tnfr/immutable.py +214 -0
- tnfr/immutable.pyi +37 -0
- tnfr/initialization.py +199 -0
- tnfr/initialization.pyi +73 -0
- tnfr/io.py +311 -0
- tnfr/io.pyi +11 -0
- tnfr/locking.py +37 -0
- tnfr/locking.pyi +7 -0
- tnfr/metrics/__init__.py +41 -0
- tnfr/metrics/__init__.pyi +20 -0
- tnfr/metrics/coherence.py +1469 -0
- tnfr/metrics/common.py +149 -0
- tnfr/metrics/common.pyi +15 -0
- tnfr/metrics/core.py +259 -0
- tnfr/metrics/core.pyi +13 -0
- tnfr/metrics/diagnosis.py +840 -0
- tnfr/metrics/diagnosis.pyi +89 -0
- tnfr/metrics/export.py +151 -0
- tnfr/metrics/glyph_timing.py +369 -0
- tnfr/metrics/reporting.py +152 -0
- tnfr/metrics/reporting.pyi +12 -0
- tnfr/metrics/sense_index.py +294 -0
- tnfr/metrics/sense_index.pyi +9 -0
- tnfr/metrics/trig.py +216 -0
- tnfr/metrics/trig.pyi +12 -0
- tnfr/metrics/trig_cache.py +105 -0
- tnfr/metrics/trig_cache.pyi +10 -0
- tnfr/node.py +255 -177
- tnfr/node.pyi +161 -0
- tnfr/observers.py +154 -150
- tnfr/observers.pyi +46 -0
- tnfr/ontosim.py +135 -134
- tnfr/ontosim.pyi +33 -0
- tnfr/operators/__init__.py +452 -0
- tnfr/operators/__init__.pyi +31 -0
- tnfr/operators/definitions.py +181 -0
- tnfr/operators/definitions.pyi +92 -0
- tnfr/operators/jitter.py +266 -0
- tnfr/operators/jitter.pyi +11 -0
- tnfr/operators/registry.py +80 -0
- tnfr/operators/registry.pyi +15 -0
- tnfr/operators/remesh.py +569 -0
- tnfr/presets.py +10 -23
- tnfr/presets.pyi +7 -0
- tnfr/py.typed +0 -0
- tnfr/rng.py +440 -0
- tnfr/rng.pyi +14 -0
- tnfr/selector.py +217 -0
- tnfr/selector.pyi +19 -0
- tnfr/sense.py +307 -142
- tnfr/sense.pyi +30 -0
- tnfr/structural.py +69 -164
- tnfr/structural.pyi +46 -0
- tnfr/telemetry/__init__.py +13 -0
- tnfr/telemetry/verbosity.py +37 -0
- tnfr/tokens.py +61 -0
- tnfr/tokens.pyi +41 -0
- tnfr/trace.py +520 -95
- tnfr/trace.pyi +68 -0
- tnfr/types.py +382 -17
- tnfr/types.pyi +145 -0
- tnfr/utils/__init__.py +158 -0
- tnfr/utils/__init__.pyi +133 -0
- tnfr/utils/cache.py +755 -0
- tnfr/utils/cache.pyi +156 -0
- tnfr/utils/data.py +267 -0
- tnfr/utils/data.pyi +73 -0
- tnfr/utils/graph.py +87 -0
- tnfr/utils/graph.pyi +10 -0
- tnfr/utils/init.py +746 -0
- tnfr/utils/init.pyi +85 -0
- tnfr/utils/io.py +157 -0
- tnfr/utils/io.pyi +10 -0
- tnfr/utils/validators.py +130 -0
- tnfr/utils/validators.pyi +19 -0
- tnfr/validation/__init__.py +25 -0
- tnfr/validation/__init__.pyi +17 -0
- tnfr/validation/compatibility.py +59 -0
- tnfr/validation/compatibility.pyi +8 -0
- tnfr/validation/grammar.py +149 -0
- tnfr/validation/grammar.pyi +11 -0
- tnfr/validation/rules.py +194 -0
- tnfr/validation/rules.pyi +18 -0
- tnfr/validation/syntax.py +151 -0
- tnfr/validation/syntax.pyi +7 -0
- tnfr-6.0.0.dist-info/METADATA +135 -0
- tnfr-6.0.0.dist-info/RECORD +157 -0
- tnfr/cli.py +0 -322
- tnfr/config.py +0 -41
- tnfr/constants.py +0 -277
- tnfr/dynamics.py +0 -814
- tnfr/helpers.py +0 -264
- tnfr/main.py +0 -47
- tnfr/metrics.py +0 -597
- tnfr/operators.py +0 -525
- tnfr/program.py +0 -176
- tnfr/scenarios.py +0 -34
- tnfr/validators.py +0 -38
- tnfr-4.5.1.dist-info/METADATA +0 -221
- tnfr-4.5.1.dist-info/RECORD +0 -28
- {tnfr-4.5.1.dist-info → tnfr-6.0.0.dist-info}/WHEEL +0 -0
- {tnfr-4.5.1.dist-info → tnfr-6.0.0.dist-info}/entry_points.txt +0 -0
- {tnfr-4.5.1.dist-info → tnfr-6.0.0.dist-info}/licenses/LICENSE.md +0 -0
- {tnfr-4.5.1.dist-info → tnfr-6.0.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,1469 @@
|
|
|
1
|
+
"""Coherence metrics."""
|
|
2
|
+
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
import math
|
|
6
|
+
from collections.abc import Callable, Iterable, Mapping, Sequence
|
|
7
|
+
from concurrent.futures import ProcessPoolExecutor
|
|
8
|
+
from dataclasses import dataclass
|
|
9
|
+
from types import ModuleType
|
|
10
|
+
from typing import Any, MutableMapping, TypedDict, cast
|
|
11
|
+
|
|
12
|
+
from .._compat import TypeAlias
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
from ..constants import (
|
|
16
|
+
get_aliases,
|
|
17
|
+
get_param,
|
|
18
|
+
)
|
|
19
|
+
from ..callback_utils import CallbackEvent, callback_manager
|
|
20
|
+
from ..glyph_history import append_metric, ensure_history
|
|
21
|
+
from ..alias import collect_attr, collect_theta_attr, set_attr
|
|
22
|
+
from ..helpers.numeric import clamp01
|
|
23
|
+
from ..types import (
|
|
24
|
+
CoherenceMetric,
|
|
25
|
+
FloatArray,
|
|
26
|
+
FloatMatrix,
|
|
27
|
+
GlyphLoadDistribution,
|
|
28
|
+
HistoryState,
|
|
29
|
+
NodeId,
|
|
30
|
+
SigmaVector,
|
|
31
|
+
TNFRGraph,
|
|
32
|
+
)
|
|
33
|
+
from .common import compute_coherence, min_max_range
|
|
34
|
+
from .trig_cache import compute_theta_trig, get_trig_cache
|
|
35
|
+
from ..observers import (
|
|
36
|
+
DEFAULT_GLYPH_LOAD_SPAN,
|
|
37
|
+
DEFAULT_WBAR_SPAN,
|
|
38
|
+
glyph_load,
|
|
39
|
+
kuramoto_order,
|
|
40
|
+
phase_sync,
|
|
41
|
+
)
|
|
42
|
+
from ..sense import sigma_vector
|
|
43
|
+
from ..utils import (
|
|
44
|
+
ensure_node_index_map,
|
|
45
|
+
get_logger,
|
|
46
|
+
get_numpy,
|
|
47
|
+
normalize_weights,
|
|
48
|
+
)
|
|
49
|
+
|
|
50
|
+
logger = get_logger(__name__)
|
|
51
|
+
|
|
52
|
+
ALIAS_EPI = get_aliases("EPI")
|
|
53
|
+
ALIAS_VF = get_aliases("VF")
|
|
54
|
+
ALIAS_SI = get_aliases("SI")
|
|
55
|
+
ALIAS_DNFR = get_aliases("DNFR")
|
|
56
|
+
ALIAS_DEPI = get_aliases("DEPI")
|
|
57
|
+
ALIAS_DSI = get_aliases("DSI")
|
|
58
|
+
ALIAS_DVF = get_aliases("DVF")
|
|
59
|
+
ALIAS_D2VF = get_aliases("D2VF")
|
|
60
|
+
|
|
61
|
+
GLYPH_LOAD_STABILIZERS_KEY = "glyph_load_stabilizers"
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
@dataclass
|
|
65
|
+
class SimilarityInputs:
|
|
66
|
+
"""Similarity inputs and optional trigonometric caches."""
|
|
67
|
+
|
|
68
|
+
th_vals: Sequence[float]
|
|
69
|
+
epi_vals: Sequence[float]
|
|
70
|
+
vf_vals: Sequence[float]
|
|
71
|
+
si_vals: Sequence[float]
|
|
72
|
+
cos_vals: Sequence[float] | None = None
|
|
73
|
+
sin_vals: Sequence[float] | None = None
|
|
74
|
+
|
|
75
|
+
|
|
76
|
+
CoherenceMatrixDense = list[list[float]]
|
|
77
|
+
CoherenceMatrixSparse = list[tuple[int, int, float]]
|
|
78
|
+
CoherenceMatrixPayload = CoherenceMatrixDense | CoherenceMatrixSparse
|
|
79
|
+
PhaseSyncWeights: TypeAlias = (
|
|
80
|
+
Sequence[float] | CoherenceMatrixSparse | CoherenceMatrixDense
|
|
81
|
+
)
|
|
82
|
+
|
|
83
|
+
SimilarityComponents = tuple[float, float, float, float]
|
|
84
|
+
VectorizedComponents: TypeAlias = (
|
|
85
|
+
tuple[FloatMatrix, FloatMatrix, FloatMatrix, FloatMatrix]
|
|
86
|
+
)
|
|
87
|
+
ScalarOrArray: TypeAlias = float | FloatArray
|
|
88
|
+
StabilityChunkArgs = tuple[
|
|
89
|
+
Sequence[float],
|
|
90
|
+
Sequence[float],
|
|
91
|
+
Sequence[float],
|
|
92
|
+
Sequence[float | None],
|
|
93
|
+
Sequence[float],
|
|
94
|
+
Sequence[float | None],
|
|
95
|
+
Sequence[float | None],
|
|
96
|
+
float,
|
|
97
|
+
float,
|
|
98
|
+
float,
|
|
99
|
+
]
|
|
100
|
+
StabilityChunkResult = tuple[
|
|
101
|
+
int,
|
|
102
|
+
int,
|
|
103
|
+
float,
|
|
104
|
+
float,
|
|
105
|
+
list[float],
|
|
106
|
+
list[float],
|
|
107
|
+
list[float],
|
|
108
|
+
]
|
|
109
|
+
|
|
110
|
+
MetricValue: TypeAlias = CoherenceMetric
|
|
111
|
+
MetricProvider = Callable[[], MetricValue]
|
|
112
|
+
MetricRecord: TypeAlias = tuple[MetricValue | MetricProvider, str]
|
|
113
|
+
|
|
114
|
+
|
|
115
|
+
class ParallelWijPayload(TypedDict):
|
|
116
|
+
epi_vals: Sequence[float]
|
|
117
|
+
vf_vals: Sequence[float]
|
|
118
|
+
si_vals: Sequence[float]
|
|
119
|
+
cos_vals: Sequence[float]
|
|
120
|
+
sin_vals: Sequence[float]
|
|
121
|
+
weights: tuple[float, float, float, float]
|
|
122
|
+
epi_range: float
|
|
123
|
+
vf_range: float
|
|
124
|
+
|
|
125
|
+
|
|
126
|
+
def _compute_wij_phase_epi_vf_si_vectorized(
|
|
127
|
+
epi: FloatArray,
|
|
128
|
+
vf: FloatArray,
|
|
129
|
+
si: FloatArray,
|
|
130
|
+
cos_th: FloatArray,
|
|
131
|
+
sin_th: FloatArray,
|
|
132
|
+
epi_range: float,
|
|
133
|
+
vf_range: float,
|
|
134
|
+
np: ModuleType,
|
|
135
|
+
) -> VectorizedComponents:
|
|
136
|
+
"""Vectorized computation of similarity components.
|
|
137
|
+
|
|
138
|
+
All parameters are expected to be NumPy arrays already cast to ``float``
|
|
139
|
+
when appropriate. ``epi_range`` and ``vf_range`` are normalized inside the
|
|
140
|
+
function to avoid division by zero.
|
|
141
|
+
"""
|
|
142
|
+
|
|
143
|
+
epi_range = epi_range if epi_range > 0 else 1.0
|
|
144
|
+
vf_range = vf_range if vf_range > 0 else 1.0
|
|
145
|
+
s_phase = 0.5 * (
|
|
146
|
+
1.0
|
|
147
|
+
+ cos_th[:, None] * cos_th[None, :]
|
|
148
|
+
+ sin_th[:, None] * sin_th[None, :]
|
|
149
|
+
)
|
|
150
|
+
s_epi = 1.0 - np.abs(epi[:, None] - epi[None, :]) / epi_range
|
|
151
|
+
s_vf = 1.0 - np.abs(vf[:, None] - vf[None, :]) / vf_range
|
|
152
|
+
s_si = 1.0 - np.abs(si[:, None] - si[None, :])
|
|
153
|
+
return s_phase, s_epi, s_vf, s_si
|
|
154
|
+
|
|
155
|
+
|
|
156
|
+
def compute_wij_phase_epi_vf_si(
|
|
157
|
+
inputs: SimilarityInputs,
|
|
158
|
+
i: int | None = None,
|
|
159
|
+
j: int | None = None,
|
|
160
|
+
*,
|
|
161
|
+
trig: Any | None = None,
|
|
162
|
+
G: TNFRGraph | None = None,
|
|
163
|
+
nodes: Sequence[NodeId] | None = None,
|
|
164
|
+
epi_range: float = 1.0,
|
|
165
|
+
vf_range: float = 1.0,
|
|
166
|
+
np: ModuleType | None = None,
|
|
167
|
+
) -> SimilarityComponents | VectorizedComponents:
|
|
168
|
+
"""Return similarity components for nodes ``i`` and ``j``.
|
|
169
|
+
|
|
170
|
+
When ``np`` is provided and ``i`` and ``j`` are ``None`` the computation is
|
|
171
|
+
vectorized returning full matrices for all node pairs.
|
|
172
|
+
"""
|
|
173
|
+
|
|
174
|
+
trig = trig or (get_trig_cache(G, np=np) if G is not None else None)
|
|
175
|
+
cos_vals = inputs.cos_vals
|
|
176
|
+
sin_vals = inputs.sin_vals
|
|
177
|
+
if cos_vals is None or sin_vals is None:
|
|
178
|
+
th_vals = inputs.th_vals
|
|
179
|
+
pairs = zip(nodes or range(len(th_vals)), th_vals)
|
|
180
|
+
trig_local = compute_theta_trig(pairs, np=np)
|
|
181
|
+
index_iter = nodes if nodes is not None else range(len(th_vals))
|
|
182
|
+
if trig is not None and nodes is not None:
|
|
183
|
+
cos_vals = [trig.cos.get(n, trig_local.cos[n]) for n in nodes]
|
|
184
|
+
sin_vals = [trig.sin.get(n, trig_local.sin[n]) for n in nodes]
|
|
185
|
+
else:
|
|
186
|
+
cos_vals = [trig_local.cos[i] for i in index_iter]
|
|
187
|
+
sin_vals = [trig_local.sin[i] for i in index_iter]
|
|
188
|
+
inputs.cos_vals = cos_vals
|
|
189
|
+
inputs.sin_vals = sin_vals
|
|
190
|
+
|
|
191
|
+
th_vals = inputs.th_vals
|
|
192
|
+
epi_vals = inputs.epi_vals
|
|
193
|
+
vf_vals = inputs.vf_vals
|
|
194
|
+
si_vals = inputs.si_vals
|
|
195
|
+
|
|
196
|
+
if np is not None and i is None and j is None:
|
|
197
|
+
epi = cast(FloatArray, np.asarray(epi_vals, dtype=float))
|
|
198
|
+
vf = cast(FloatArray, np.asarray(vf_vals, dtype=float))
|
|
199
|
+
si = cast(FloatArray, np.asarray(si_vals, dtype=float))
|
|
200
|
+
cos_th = cast(FloatArray, np.asarray(cos_vals, dtype=float))
|
|
201
|
+
sin_th = cast(FloatArray, np.asarray(sin_vals, dtype=float))
|
|
202
|
+
return _compute_wij_phase_epi_vf_si_vectorized(
|
|
203
|
+
epi,
|
|
204
|
+
vf,
|
|
205
|
+
si,
|
|
206
|
+
cos_th,
|
|
207
|
+
sin_th,
|
|
208
|
+
epi_range,
|
|
209
|
+
vf_range,
|
|
210
|
+
np,
|
|
211
|
+
)
|
|
212
|
+
|
|
213
|
+
if i is None or j is None:
|
|
214
|
+
raise ValueError("i and j are required for non-vectorized computation")
|
|
215
|
+
epi_range = epi_range if epi_range > 0 else 1.0
|
|
216
|
+
vf_range = vf_range if vf_range > 0 else 1.0
|
|
217
|
+
cos_i = cos_vals[i]
|
|
218
|
+
sin_i = sin_vals[i]
|
|
219
|
+
cos_j = cos_vals[j]
|
|
220
|
+
sin_j = sin_vals[j]
|
|
221
|
+
s_phase = 0.5 * (1.0 + (cos_i * cos_j + sin_i * sin_j))
|
|
222
|
+
s_epi = 1.0 - abs(epi_vals[i] - epi_vals[j]) / epi_range
|
|
223
|
+
s_vf = 1.0 - abs(vf_vals[i] - vf_vals[j]) / vf_range
|
|
224
|
+
s_si = 1.0 - abs(si_vals[i] - si_vals[j])
|
|
225
|
+
return s_phase, s_epi, s_vf, s_si
|
|
226
|
+
|
|
227
|
+
|
|
228
|
+
def _combine_similarity(
|
|
229
|
+
s_phase: ScalarOrArray,
|
|
230
|
+
s_epi: ScalarOrArray,
|
|
231
|
+
s_vf: ScalarOrArray,
|
|
232
|
+
s_si: ScalarOrArray,
|
|
233
|
+
phase_w: float,
|
|
234
|
+
epi_w: float,
|
|
235
|
+
vf_w: float,
|
|
236
|
+
si_w: float,
|
|
237
|
+
np: ModuleType | None = None,
|
|
238
|
+
) -> ScalarOrArray:
|
|
239
|
+
wij = phase_w * s_phase + epi_w * s_epi + vf_w * s_vf + si_w * s_si
|
|
240
|
+
if np is not None:
|
|
241
|
+
return cast(FloatArray, np.clip(wij, 0.0, 1.0))
|
|
242
|
+
return clamp01(wij)
|
|
243
|
+
|
|
244
|
+
|
|
245
|
+
def _wij_components_weights(
|
|
246
|
+
G: TNFRGraph,
|
|
247
|
+
nodes: Sequence[NodeId] | None,
|
|
248
|
+
inputs: SimilarityInputs,
|
|
249
|
+
wnorm: Mapping[str, float],
|
|
250
|
+
i: int | None = None,
|
|
251
|
+
j: int | None = None,
|
|
252
|
+
epi_range: float = 1.0,
|
|
253
|
+
vf_range: float = 1.0,
|
|
254
|
+
np: ModuleType | None = None,
|
|
255
|
+
) -> tuple[
|
|
256
|
+
ScalarOrArray,
|
|
257
|
+
ScalarOrArray,
|
|
258
|
+
ScalarOrArray,
|
|
259
|
+
ScalarOrArray,
|
|
260
|
+
float,
|
|
261
|
+
float,
|
|
262
|
+
float,
|
|
263
|
+
float,
|
|
264
|
+
]:
|
|
265
|
+
"""Return similarity components together with their weights.
|
|
266
|
+
|
|
267
|
+
This consolidates repeated computations ensuring that both the
|
|
268
|
+
similarity components and the corresponding weights are derived once and
|
|
269
|
+
consistently across different implementations.
|
|
270
|
+
"""
|
|
271
|
+
|
|
272
|
+
s_phase, s_epi, s_vf, s_si = compute_wij_phase_epi_vf_si(
|
|
273
|
+
inputs,
|
|
274
|
+
i,
|
|
275
|
+
j,
|
|
276
|
+
G=G,
|
|
277
|
+
nodes=nodes,
|
|
278
|
+
epi_range=epi_range,
|
|
279
|
+
vf_range=vf_range,
|
|
280
|
+
np=np,
|
|
281
|
+
)
|
|
282
|
+
phase_w = wnorm["phase"]
|
|
283
|
+
epi_w = wnorm["epi"]
|
|
284
|
+
vf_w = wnorm["vf"]
|
|
285
|
+
si_w = wnorm["si"]
|
|
286
|
+
return s_phase, s_epi, s_vf, s_si, phase_w, epi_w, vf_w, si_w
|
|
287
|
+
|
|
288
|
+
|
|
289
|
+
def _wij_vectorized(
|
|
290
|
+
G: TNFRGraph,
|
|
291
|
+
nodes: Sequence[NodeId],
|
|
292
|
+
inputs: SimilarityInputs,
|
|
293
|
+
wnorm: Mapping[str, float],
|
|
294
|
+
epi_min: float,
|
|
295
|
+
epi_max: float,
|
|
296
|
+
vf_min: float,
|
|
297
|
+
vf_max: float,
|
|
298
|
+
self_diag: bool,
|
|
299
|
+
np: ModuleType,
|
|
300
|
+
) -> FloatMatrix:
|
|
301
|
+
epi_range = epi_max - epi_min if epi_max > epi_min else 1.0
|
|
302
|
+
vf_range = vf_max - vf_min if vf_max > vf_min else 1.0
|
|
303
|
+
(
|
|
304
|
+
s_phase,
|
|
305
|
+
s_epi,
|
|
306
|
+
s_vf,
|
|
307
|
+
s_si,
|
|
308
|
+
phase_w,
|
|
309
|
+
epi_w,
|
|
310
|
+
vf_w,
|
|
311
|
+
si_w,
|
|
312
|
+
) = _wij_components_weights(
|
|
313
|
+
G,
|
|
314
|
+
nodes,
|
|
315
|
+
inputs,
|
|
316
|
+
wnorm,
|
|
317
|
+
epi_range=epi_range,
|
|
318
|
+
vf_range=vf_range,
|
|
319
|
+
np=np,
|
|
320
|
+
)
|
|
321
|
+
wij_matrix = cast(
|
|
322
|
+
FloatMatrix,
|
|
323
|
+
_combine_similarity(
|
|
324
|
+
s_phase, s_epi, s_vf, s_si, phase_w, epi_w, vf_w, si_w, np=np
|
|
325
|
+
),
|
|
326
|
+
)
|
|
327
|
+
if self_diag:
|
|
328
|
+
np.fill_diagonal(wij_matrix, 1.0)
|
|
329
|
+
else:
|
|
330
|
+
np.fill_diagonal(wij_matrix, 0.0)
|
|
331
|
+
return wij_matrix
|
|
332
|
+
|
|
333
|
+
|
|
334
|
+
def _compute_wij_value_raw(
|
|
335
|
+
i: int,
|
|
336
|
+
j: int,
|
|
337
|
+
epi_vals: Sequence[float],
|
|
338
|
+
vf_vals: Sequence[float],
|
|
339
|
+
si_vals: Sequence[float],
|
|
340
|
+
cos_vals: Sequence[float],
|
|
341
|
+
sin_vals: Sequence[float],
|
|
342
|
+
weights: tuple[float, float, float, float],
|
|
343
|
+
epi_range: float,
|
|
344
|
+
vf_range: float,
|
|
345
|
+
) -> float:
|
|
346
|
+
epi_range = epi_range if epi_range > 0 else 1.0
|
|
347
|
+
vf_range = vf_range if vf_range > 0 else 1.0
|
|
348
|
+
phase_w, epi_w, vf_w, si_w = weights
|
|
349
|
+
cos_i = cos_vals[i]
|
|
350
|
+
sin_i = sin_vals[i]
|
|
351
|
+
cos_j = cos_vals[j]
|
|
352
|
+
sin_j = sin_vals[j]
|
|
353
|
+
s_phase = 0.5 * (1.0 + (cos_i * cos_j + sin_i * sin_j))
|
|
354
|
+
s_epi = 1.0 - abs(epi_vals[i] - epi_vals[j]) / epi_range
|
|
355
|
+
s_vf = 1.0 - abs(vf_vals[i] - vf_vals[j]) / vf_range
|
|
356
|
+
s_si = 1.0 - abs(si_vals[i] - si_vals[j])
|
|
357
|
+
wij = phase_w * s_phase + epi_w * s_epi + vf_w * s_vf + si_w * s_si
|
|
358
|
+
return clamp01(wij)
|
|
359
|
+
|
|
360
|
+
|
|
361
|
+
_PARALLEL_WIJ_DATA: ParallelWijPayload | None = None
|
|
362
|
+
|
|
363
|
+
|
|
364
|
+
def _init_parallel_wij(data: ParallelWijPayload) -> None:
|
|
365
|
+
"""Store immutable state for parallel ``wij`` computation."""
|
|
366
|
+
|
|
367
|
+
global _PARALLEL_WIJ_DATA
|
|
368
|
+
_PARALLEL_WIJ_DATA = data
|
|
369
|
+
|
|
370
|
+
|
|
371
|
+
def _parallel_wij_worker(
|
|
372
|
+
pairs: Sequence[tuple[int, int]]
|
|
373
|
+
) -> list[tuple[int, int, float]]:
|
|
374
|
+
"""Compute coherence weights for ``pairs`` using shared state."""
|
|
375
|
+
|
|
376
|
+
if _PARALLEL_WIJ_DATA is None:
|
|
377
|
+
raise RuntimeError("Parallel coherence data not initialized")
|
|
378
|
+
|
|
379
|
+
data = _PARALLEL_WIJ_DATA
|
|
380
|
+
epi_vals: Sequence[float] = data["epi_vals"]
|
|
381
|
+
vf_vals: Sequence[float] = data["vf_vals"]
|
|
382
|
+
si_vals: Sequence[float] = data["si_vals"]
|
|
383
|
+
cos_vals: Sequence[float] = data["cos_vals"]
|
|
384
|
+
sin_vals: Sequence[float] = data["sin_vals"]
|
|
385
|
+
weights: tuple[float, float, float, float] = data["weights"]
|
|
386
|
+
epi_range: float = data["epi_range"]
|
|
387
|
+
vf_range: float = data["vf_range"]
|
|
388
|
+
|
|
389
|
+
compute = _compute_wij_value_raw
|
|
390
|
+
return [
|
|
391
|
+
(
|
|
392
|
+
i,
|
|
393
|
+
j,
|
|
394
|
+
compute(
|
|
395
|
+
i,
|
|
396
|
+
j,
|
|
397
|
+
epi_vals,
|
|
398
|
+
vf_vals,
|
|
399
|
+
si_vals,
|
|
400
|
+
cos_vals,
|
|
401
|
+
sin_vals,
|
|
402
|
+
weights,
|
|
403
|
+
epi_range,
|
|
404
|
+
vf_range,
|
|
405
|
+
),
|
|
406
|
+
)
|
|
407
|
+
for i, j in pairs
|
|
408
|
+
]
|
|
409
|
+
|
|
410
|
+
|
|
411
|
+
def _wij_loops(
|
|
412
|
+
G: TNFRGraph,
|
|
413
|
+
nodes: Sequence[NodeId],
|
|
414
|
+
node_to_index: Mapping[NodeId, int],
|
|
415
|
+
inputs: SimilarityInputs,
|
|
416
|
+
wnorm: Mapping[str, float],
|
|
417
|
+
epi_min: float,
|
|
418
|
+
epi_max: float,
|
|
419
|
+
vf_min: float,
|
|
420
|
+
vf_max: float,
|
|
421
|
+
neighbors_only: bool,
|
|
422
|
+
self_diag: bool,
|
|
423
|
+
n_jobs: int | None = 1,
|
|
424
|
+
) -> CoherenceMatrixDense:
|
|
425
|
+
n = len(nodes)
|
|
426
|
+
cos_vals = inputs.cos_vals
|
|
427
|
+
sin_vals = inputs.sin_vals
|
|
428
|
+
if cos_vals is None or sin_vals is None:
|
|
429
|
+
th_vals = inputs.th_vals
|
|
430
|
+
trig_local = compute_theta_trig(zip(nodes, th_vals))
|
|
431
|
+
cos_vals = [trig_local.cos[n] for n in nodes]
|
|
432
|
+
sin_vals = [trig_local.sin[n] for n in nodes]
|
|
433
|
+
inputs.cos_vals = cos_vals
|
|
434
|
+
inputs.sin_vals = sin_vals
|
|
435
|
+
assert cos_vals is not None
|
|
436
|
+
assert sin_vals is not None
|
|
437
|
+
epi_vals = list(inputs.epi_vals)
|
|
438
|
+
vf_vals = list(inputs.vf_vals)
|
|
439
|
+
si_vals = list(inputs.si_vals)
|
|
440
|
+
cos_vals_list = list(cos_vals)
|
|
441
|
+
sin_vals_list = list(sin_vals)
|
|
442
|
+
inputs.epi_vals = epi_vals
|
|
443
|
+
inputs.vf_vals = vf_vals
|
|
444
|
+
inputs.si_vals = si_vals
|
|
445
|
+
inputs.cos_vals = cos_vals_list
|
|
446
|
+
inputs.sin_vals = sin_vals_list
|
|
447
|
+
wij = [
|
|
448
|
+
[1.0 if (self_diag and i == j) else 0.0 for j in range(n)]
|
|
449
|
+
for i in range(n)
|
|
450
|
+
]
|
|
451
|
+
epi_range = epi_max - epi_min if epi_max > epi_min else 1.0
|
|
452
|
+
vf_range = vf_max - vf_min if vf_max > vf_min else 1.0
|
|
453
|
+
weights = (
|
|
454
|
+
float(wnorm["phase"]),
|
|
455
|
+
float(wnorm["epi"]),
|
|
456
|
+
float(wnorm["vf"]),
|
|
457
|
+
float(wnorm["si"]),
|
|
458
|
+
)
|
|
459
|
+
pair_list: list[tuple[int, int]] = []
|
|
460
|
+
if neighbors_only:
|
|
461
|
+
seen: set[tuple[int, int]] = set()
|
|
462
|
+
for u, v in G.edges():
|
|
463
|
+
i = node_to_index[u]
|
|
464
|
+
j = node_to_index[v]
|
|
465
|
+
if i == j:
|
|
466
|
+
continue
|
|
467
|
+
pair = (i, j) if i < j else (j, i)
|
|
468
|
+
if pair in seen:
|
|
469
|
+
continue
|
|
470
|
+
seen.add(pair)
|
|
471
|
+
pair_list.append(pair)
|
|
472
|
+
else:
|
|
473
|
+
for i in range(n):
|
|
474
|
+
for j in range(i + 1, n):
|
|
475
|
+
pair_list.append((i, j))
|
|
476
|
+
|
|
477
|
+
total_pairs = len(pair_list)
|
|
478
|
+
max_workers = 1
|
|
479
|
+
if n_jobs is not None:
|
|
480
|
+
try:
|
|
481
|
+
max_workers = int(n_jobs)
|
|
482
|
+
except (TypeError, ValueError):
|
|
483
|
+
max_workers = 1
|
|
484
|
+
if max_workers <= 1 or total_pairs == 0:
|
|
485
|
+
for i, j in pair_list:
|
|
486
|
+
wij_ij = _compute_wij_value_raw(
|
|
487
|
+
i,
|
|
488
|
+
j,
|
|
489
|
+
epi_vals,
|
|
490
|
+
vf_vals,
|
|
491
|
+
si_vals,
|
|
492
|
+
cos_vals,
|
|
493
|
+
sin_vals,
|
|
494
|
+
weights,
|
|
495
|
+
epi_range,
|
|
496
|
+
vf_range,
|
|
497
|
+
)
|
|
498
|
+
wij[i][j] = wij[j][i] = wij_ij
|
|
499
|
+
return wij
|
|
500
|
+
|
|
501
|
+
chunk_size = max(1, math.ceil(total_pairs / max_workers))
|
|
502
|
+
payload: ParallelWijPayload = {
|
|
503
|
+
"epi_vals": tuple(epi_vals),
|
|
504
|
+
"vf_vals": tuple(vf_vals),
|
|
505
|
+
"si_vals": tuple(si_vals),
|
|
506
|
+
"cos_vals": tuple(cos_vals),
|
|
507
|
+
"sin_vals": tuple(sin_vals),
|
|
508
|
+
"weights": weights,
|
|
509
|
+
"epi_range": float(epi_range),
|
|
510
|
+
"vf_range": float(vf_range),
|
|
511
|
+
}
|
|
512
|
+
|
|
513
|
+
def _init() -> None:
|
|
514
|
+
_init_parallel_wij(payload)
|
|
515
|
+
|
|
516
|
+
with ProcessPoolExecutor(max_workers=max_workers, initializer=_init) as executor:
|
|
517
|
+
futures = []
|
|
518
|
+
for start in range(0, total_pairs, chunk_size):
|
|
519
|
+
chunk = pair_list[start:start + chunk_size]
|
|
520
|
+
futures.append(executor.submit(_parallel_wij_worker, chunk))
|
|
521
|
+
for future in futures:
|
|
522
|
+
for i, j, value in future.result():
|
|
523
|
+
wij[i][j] = wij[j][i] = value
|
|
524
|
+
return wij
|
|
525
|
+
|
|
526
|
+
|
|
527
|
+
def _compute_stats(
|
|
528
|
+
values: Iterable[float] | Any,
|
|
529
|
+
row_sum: Iterable[float] | Any,
|
|
530
|
+
n: int,
|
|
531
|
+
self_diag: bool,
|
|
532
|
+
np: ModuleType | None = None,
|
|
533
|
+
) -> tuple[float, float, float, list[float], int]:
|
|
534
|
+
"""Return aggregate statistics for ``values`` and normalized row sums.
|
|
535
|
+
|
|
536
|
+
``values`` and ``row_sum`` can be any iterables. They are normalized to
|
|
537
|
+
either NumPy arrays or Python lists depending on the availability of
|
|
538
|
+
NumPy. The computation then delegates to the appropriate numerical
|
|
539
|
+
functions with minimal branching.
|
|
540
|
+
"""
|
|
541
|
+
|
|
542
|
+
if np is not None:
|
|
543
|
+
if not isinstance(values, np.ndarray):
|
|
544
|
+
values_arr = np.asarray(list(values), dtype=float)
|
|
545
|
+
else:
|
|
546
|
+
values_arr = cast(Any, values.astype(float))
|
|
547
|
+
if not isinstance(row_sum, np.ndarray):
|
|
548
|
+
row_arr = np.asarray(list(row_sum), dtype=float)
|
|
549
|
+
else:
|
|
550
|
+
row_arr = cast(Any, row_sum.astype(float))
|
|
551
|
+
count_val = int(values_arr.size)
|
|
552
|
+
min_val = float(values_arr.min()) if values_arr.size else 0.0
|
|
553
|
+
max_val = float(values_arr.max()) if values_arr.size else 0.0
|
|
554
|
+
mean_val = float(values_arr.mean()) if values_arr.size else 0.0
|
|
555
|
+
else:
|
|
556
|
+
values_list = list(values)
|
|
557
|
+
row_arr = list(row_sum)
|
|
558
|
+
count_val = len(values_list)
|
|
559
|
+
min_val = min(values_list) if values_list else 0.0
|
|
560
|
+
max_val = max(values_list) if values_list else 0.0
|
|
561
|
+
mean_val = sum(values_list) / len(values_list) if values_list else 0.0
|
|
562
|
+
|
|
563
|
+
row_count = n if self_diag else n - 1
|
|
564
|
+
denom = max(1, row_count)
|
|
565
|
+
if np is not None:
|
|
566
|
+
Wi = (row_arr / denom).astype(float).tolist() # type: ignore[operator]
|
|
567
|
+
else:
|
|
568
|
+
Wi = [float(row_arr[i]) / denom for i in range(n)]
|
|
569
|
+
return min_val, max_val, mean_val, Wi, count_val
|
|
570
|
+
|
|
571
|
+
|
|
572
|
+
def _coherence_numpy(
|
|
573
|
+
wij: Any,
|
|
574
|
+
mode: str,
|
|
575
|
+
thr: float,
|
|
576
|
+
np: ModuleType,
|
|
577
|
+
) -> tuple[int, Any, Any, CoherenceMatrixPayload]:
|
|
578
|
+
"""Aggregate coherence weights using vectorized operations.
|
|
579
|
+
|
|
580
|
+
Produces the structural weight matrix ``W`` along with the list of off
|
|
581
|
+
diagonal values and row sums ready for statistical analysis.
|
|
582
|
+
"""
|
|
583
|
+
|
|
584
|
+
n = wij.shape[0]
|
|
585
|
+
mask = ~np.eye(n, dtype=bool)
|
|
586
|
+
values = wij[mask]
|
|
587
|
+
row_sum = wij.sum(axis=1)
|
|
588
|
+
if mode == "dense":
|
|
589
|
+
W = wij.tolist()
|
|
590
|
+
else:
|
|
591
|
+
idx = np.where((wij >= thr) & mask)
|
|
592
|
+
W = [
|
|
593
|
+
(int(i), int(j), float(wij[i, j]))
|
|
594
|
+
for i, j in zip(idx[0], idx[1])
|
|
595
|
+
]
|
|
596
|
+
return n, values, row_sum, W
|
|
597
|
+
|
|
598
|
+
|
|
599
|
+
def _coherence_python_worker(
|
|
600
|
+
args: tuple[Sequence[Sequence[float]], int, str, float]
|
|
601
|
+
) -> tuple[int, list[float], list[float], CoherenceMatrixSparse]:
|
|
602
|
+
rows, start, mode, thr = args
|
|
603
|
+
values: list[float] = []
|
|
604
|
+
row_sum: list[float] = []
|
|
605
|
+
sparse: list[tuple[int, int, float]] = []
|
|
606
|
+
dense_mode = mode == "dense"
|
|
607
|
+
|
|
608
|
+
for offset, row in enumerate(rows):
|
|
609
|
+
i = start + offset
|
|
610
|
+
total = 0.0
|
|
611
|
+
for j, w in enumerate(row):
|
|
612
|
+
total += w
|
|
613
|
+
if i != j:
|
|
614
|
+
values.append(w)
|
|
615
|
+
if not dense_mode and w >= thr:
|
|
616
|
+
sparse.append((i, j, w))
|
|
617
|
+
row_sum.append(total)
|
|
618
|
+
|
|
619
|
+
return start, values, row_sum, sparse
|
|
620
|
+
|
|
621
|
+
|
|
622
|
+
def _coherence_python(
|
|
623
|
+
wij: Sequence[Sequence[float]],
|
|
624
|
+
mode: str,
|
|
625
|
+
thr: float,
|
|
626
|
+
n_jobs: int | None = 1,
|
|
627
|
+
) -> tuple[int, list[float], list[float], CoherenceMatrixPayload]:
|
|
628
|
+
"""Aggregate coherence weights using pure Python loops."""
|
|
629
|
+
|
|
630
|
+
n = len(wij)
|
|
631
|
+
values: list[float] = []
|
|
632
|
+
row_sum = [0.0] * n
|
|
633
|
+
|
|
634
|
+
if n_jobs is not None:
|
|
635
|
+
try:
|
|
636
|
+
max_workers = int(n_jobs)
|
|
637
|
+
except (TypeError, ValueError):
|
|
638
|
+
max_workers = 1
|
|
639
|
+
else:
|
|
640
|
+
max_workers = 1
|
|
641
|
+
|
|
642
|
+
if max_workers <= 1:
|
|
643
|
+
if mode == "dense":
|
|
644
|
+
W: CoherenceMatrixDense = [list(row) for row in wij]
|
|
645
|
+
for i in range(n):
|
|
646
|
+
for j in range(n):
|
|
647
|
+
w = W[i][j]
|
|
648
|
+
if i != j:
|
|
649
|
+
values.append(w)
|
|
650
|
+
row_sum[i] += w
|
|
651
|
+
else:
|
|
652
|
+
W_sparse: CoherenceMatrixSparse = []
|
|
653
|
+
for i in range(n):
|
|
654
|
+
row_i = wij[i]
|
|
655
|
+
for j in range(n):
|
|
656
|
+
w = row_i[j]
|
|
657
|
+
if i != j:
|
|
658
|
+
values.append(w)
|
|
659
|
+
if w >= thr:
|
|
660
|
+
W_sparse.append((i, j, w))
|
|
661
|
+
row_sum[i] += w
|
|
662
|
+
return n, values, row_sum, W if mode == "dense" else W_sparse
|
|
663
|
+
|
|
664
|
+
chunk_size = max(1, math.ceil(n / max_workers))
|
|
665
|
+
tasks = []
|
|
666
|
+
with ProcessPoolExecutor(max_workers=max_workers) as executor:
|
|
667
|
+
for start in range(0, n, chunk_size):
|
|
668
|
+
rows = wij[start:start + chunk_size]
|
|
669
|
+
tasks.append(
|
|
670
|
+
executor.submit(
|
|
671
|
+
_coherence_python_worker,
|
|
672
|
+
(tuple(tuple(row) for row in rows), start, mode, thr),
|
|
673
|
+
)
|
|
674
|
+
)
|
|
675
|
+
results = [task.result() for task in tasks]
|
|
676
|
+
|
|
677
|
+
results.sort(key=lambda item: item[0])
|
|
678
|
+
sparse_entries: list[tuple[int, int, float]] | None = [] if mode != "dense" else None
|
|
679
|
+
for start, chunk_values, chunk_row_sum, chunk_sparse in results:
|
|
680
|
+
values.extend(chunk_values)
|
|
681
|
+
for offset, total in enumerate(chunk_row_sum):
|
|
682
|
+
row_sum[start + offset] = total
|
|
683
|
+
if sparse_entries is not None:
|
|
684
|
+
sparse_entries.extend(chunk_sparse)
|
|
685
|
+
|
|
686
|
+
if mode == "dense":
|
|
687
|
+
W_dense: CoherenceMatrixDense = [list(row) for row in wij]
|
|
688
|
+
return n, values, row_sum, W_dense
|
|
689
|
+
sparse_result: CoherenceMatrixSparse = (
|
|
690
|
+
sparse_entries if sparse_entries is not None else []
|
|
691
|
+
)
|
|
692
|
+
return n, values, row_sum, sparse_result
|
|
693
|
+
|
|
694
|
+
|
|
695
|
+
def _finalize_wij(
|
|
696
|
+
G: TNFRGraph,
|
|
697
|
+
nodes: Sequence[NodeId],
|
|
698
|
+
wij: FloatMatrix | Sequence[Sequence[float]],
|
|
699
|
+
mode: str,
|
|
700
|
+
thr: float,
|
|
701
|
+
scope: str,
|
|
702
|
+
self_diag: bool,
|
|
703
|
+
np: ModuleType | None = None,
|
|
704
|
+
*,
|
|
705
|
+
n_jobs: int = 1,
|
|
706
|
+
) -> tuple[list[NodeId], CoherenceMatrixPayload]:
|
|
707
|
+
"""Finalize the coherence matrix ``wij`` and store results in history.
|
|
708
|
+
|
|
709
|
+
When ``np`` is provided and ``wij`` is a NumPy array, the computation is
|
|
710
|
+
performed using vectorized operations. Otherwise a pure Python loop-based
|
|
711
|
+
approach is used.
|
|
712
|
+
"""
|
|
713
|
+
|
|
714
|
+
use_np = np is not None and isinstance(wij, np.ndarray)
|
|
715
|
+
if use_np:
|
|
716
|
+
assert np is not None
|
|
717
|
+
n, values, row_sum, W = _coherence_numpy(wij, mode, thr, np)
|
|
718
|
+
else:
|
|
719
|
+
n, values, row_sum, W = _coherence_python(wij, mode, thr, n_jobs=n_jobs)
|
|
720
|
+
|
|
721
|
+
min_val, max_val, mean_val, Wi, count_val = _compute_stats(
|
|
722
|
+
values, row_sum, n, self_diag, np if use_np else None
|
|
723
|
+
)
|
|
724
|
+
stats = {
|
|
725
|
+
"min": min_val,
|
|
726
|
+
"max": max_val,
|
|
727
|
+
"mean": mean_val,
|
|
728
|
+
"n_edges": count_val,
|
|
729
|
+
"mode": mode,
|
|
730
|
+
"scope": scope,
|
|
731
|
+
}
|
|
732
|
+
|
|
733
|
+
hist = ensure_history(G)
|
|
734
|
+
cfg = get_param(G, "COHERENCE")
|
|
735
|
+
append_metric(hist, cfg.get("history_key", "W_sparse"), W)
|
|
736
|
+
append_metric(hist, cfg.get("Wi_history_key", "W_i"), Wi)
|
|
737
|
+
append_metric(hist, cfg.get("stats_history_key", "W_stats"), stats)
|
|
738
|
+
return list(nodes), W
|
|
739
|
+
|
|
740
|
+
|
|
741
|
+
def coherence_matrix(
|
|
742
|
+
G: TNFRGraph,
|
|
743
|
+
use_numpy: bool | None = None,
|
|
744
|
+
*,
|
|
745
|
+
n_jobs: int | None = None,
|
|
746
|
+
) -> tuple[list[NodeId] | None, CoherenceMatrixPayload | None]:
|
|
747
|
+
"""Compute the coherence weight matrix for ``G``.
|
|
748
|
+
|
|
749
|
+
Parameters
|
|
750
|
+
----------
|
|
751
|
+
G:
|
|
752
|
+
Graph whose nodes encode the structural attributes.
|
|
753
|
+
use_numpy:
|
|
754
|
+
When ``True`` the vectorised NumPy implementation is forced. When
|
|
755
|
+
``False`` the pure Python fallback is used. ``None`` selects NumPy
|
|
756
|
+
automatically when available.
|
|
757
|
+
n_jobs:
|
|
758
|
+
Maximum worker processes to use for the Python fallback. ``None`` or
|
|
759
|
+
values less than or equal to one preserve the serial behaviour.
|
|
760
|
+
"""
|
|
761
|
+
|
|
762
|
+
cfg = get_param(G, "COHERENCE")
|
|
763
|
+
if not cfg.get("enabled", True):
|
|
764
|
+
return None, None
|
|
765
|
+
|
|
766
|
+
node_to_index: Mapping[NodeId, int] = ensure_node_index_map(G)
|
|
767
|
+
nodes: list[NodeId] = list(node_to_index.keys())
|
|
768
|
+
n = len(nodes)
|
|
769
|
+
if n == 0:
|
|
770
|
+
return nodes, []
|
|
771
|
+
|
|
772
|
+
# NumPy handling for optional vectorized operations
|
|
773
|
+
np = get_numpy()
|
|
774
|
+
use_np = (
|
|
775
|
+
np is not None if use_numpy is None else (use_numpy and np is not None)
|
|
776
|
+
)
|
|
777
|
+
|
|
778
|
+
cfg_jobs = cfg.get("n_jobs")
|
|
779
|
+
parallel_jobs = n_jobs if n_jobs is not None else cfg_jobs
|
|
780
|
+
|
|
781
|
+
# Precompute indices to avoid repeated list.index calls within loops
|
|
782
|
+
|
|
783
|
+
th_vals = collect_theta_attr(G, nodes, 0.0, np=np if use_np else None)
|
|
784
|
+
epi_vals = collect_attr(G, nodes, ALIAS_EPI, 0.0, np=np if use_np else None)
|
|
785
|
+
vf_vals = collect_attr(G, nodes, ALIAS_VF, 0.0, np=np if use_np else None)
|
|
786
|
+
si_vals = collect_attr(G, nodes, ALIAS_SI, 0.0, np=np if use_np else None)
|
|
787
|
+
if use_np:
|
|
788
|
+
assert np is not None
|
|
789
|
+
si_vals = np.clip(si_vals, 0.0, 1.0)
|
|
790
|
+
else:
|
|
791
|
+
si_vals = [clamp01(v) for v in si_vals]
|
|
792
|
+
epi_min, epi_max = min_max_range(epi_vals)
|
|
793
|
+
vf_min, vf_max = min_max_range(vf_vals)
|
|
794
|
+
|
|
795
|
+
wdict = dict(cfg.get("weights", {}))
|
|
796
|
+
for k in ("phase", "epi", "vf", "si"):
|
|
797
|
+
wdict.setdefault(k, 0.0)
|
|
798
|
+
wnorm = normalize_weights(wdict, ("phase", "epi", "vf", "si"), default=0.0)
|
|
799
|
+
|
|
800
|
+
scope = str(cfg.get("scope", "neighbors")).lower()
|
|
801
|
+
neighbors_only = scope != "all"
|
|
802
|
+
self_diag = bool(cfg.get("self_on_diag", True))
|
|
803
|
+
mode = str(cfg.get("store_mode", "sparse")).lower()
|
|
804
|
+
thr = float(cfg.get("threshold", 0.0))
|
|
805
|
+
if mode not in ("sparse", "dense"):
|
|
806
|
+
mode = "sparse"
|
|
807
|
+
trig = get_trig_cache(G, np=np)
|
|
808
|
+
cos_map, sin_map = trig.cos, trig.sin
|
|
809
|
+
trig_local = compute_theta_trig(zip(nodes, th_vals), np=np)
|
|
810
|
+
cos_vals = [cos_map.get(n, trig_local.cos[n]) for n in nodes]
|
|
811
|
+
sin_vals = [sin_map.get(n, trig_local.sin[n]) for n in nodes]
|
|
812
|
+
inputs = SimilarityInputs(
|
|
813
|
+
th_vals=th_vals,
|
|
814
|
+
epi_vals=epi_vals,
|
|
815
|
+
vf_vals=vf_vals,
|
|
816
|
+
si_vals=si_vals,
|
|
817
|
+
cos_vals=cos_vals,
|
|
818
|
+
sin_vals=sin_vals,
|
|
819
|
+
)
|
|
820
|
+
if use_np:
|
|
821
|
+
assert np is not None
|
|
822
|
+
wij_matrix = _wij_vectorized(
|
|
823
|
+
G,
|
|
824
|
+
nodes,
|
|
825
|
+
inputs,
|
|
826
|
+
wnorm,
|
|
827
|
+
epi_min,
|
|
828
|
+
epi_max,
|
|
829
|
+
vf_min,
|
|
830
|
+
vf_max,
|
|
831
|
+
self_diag,
|
|
832
|
+
np,
|
|
833
|
+
)
|
|
834
|
+
if neighbors_only:
|
|
835
|
+
adj = np.eye(n, dtype=bool)
|
|
836
|
+
for u, v in G.edges():
|
|
837
|
+
i = node_to_index[u]
|
|
838
|
+
j = node_to_index[v]
|
|
839
|
+
adj[i, j] = True
|
|
840
|
+
adj[j, i] = True
|
|
841
|
+
wij_matrix = cast(FloatMatrix, np.where(adj, wij_matrix, 0.0))
|
|
842
|
+
wij: FloatMatrix | CoherenceMatrixDense = wij_matrix
|
|
843
|
+
else:
|
|
844
|
+
wij = _wij_loops(
|
|
845
|
+
G,
|
|
846
|
+
nodes,
|
|
847
|
+
node_to_index,
|
|
848
|
+
inputs,
|
|
849
|
+
wnorm,
|
|
850
|
+
epi_min,
|
|
851
|
+
epi_max,
|
|
852
|
+
vf_min,
|
|
853
|
+
vf_max,
|
|
854
|
+
neighbors_only,
|
|
855
|
+
self_diag,
|
|
856
|
+
n_jobs=parallel_jobs,
|
|
857
|
+
)
|
|
858
|
+
|
|
859
|
+
return _finalize_wij(
|
|
860
|
+
G,
|
|
861
|
+
nodes,
|
|
862
|
+
wij,
|
|
863
|
+
mode,
|
|
864
|
+
thr,
|
|
865
|
+
scope,
|
|
866
|
+
self_diag,
|
|
867
|
+
np,
|
|
868
|
+
n_jobs=parallel_jobs if not use_np else 1,
|
|
869
|
+
)
|
|
870
|
+
|
|
871
|
+
|
|
872
|
+
def local_phase_sync_weighted(
|
|
873
|
+
G: TNFRGraph,
|
|
874
|
+
n: NodeId,
|
|
875
|
+
nodes_order: Sequence[NodeId] | None = None,
|
|
876
|
+
W_row: PhaseSyncWeights | None = None,
|
|
877
|
+
node_to_index: Mapping[NodeId, int] | None = None,
|
|
878
|
+
) -> float:
|
|
879
|
+
"""Compute local phase synchrony using explicit weights.
|
|
880
|
+
|
|
881
|
+
``nodes_order`` is the node ordering used to build the coherence matrix
|
|
882
|
+
and ``W_row`` contains either the dense row corresponding to ``n`` or the
|
|
883
|
+
sparse list of ``(i, j, w)`` tuples for the whole matrix.
|
|
884
|
+
"""
|
|
885
|
+
if W_row is None or nodes_order is None:
|
|
886
|
+
raise ValueError(
|
|
887
|
+
"nodes_order and W_row are required for weighted phase synchrony"
|
|
888
|
+
)
|
|
889
|
+
|
|
890
|
+
if node_to_index is None:
|
|
891
|
+
node_to_index = ensure_node_index_map(G)
|
|
892
|
+
i = node_to_index.get(n)
|
|
893
|
+
if i is None:
|
|
894
|
+
i = nodes_order.index(n)
|
|
895
|
+
|
|
896
|
+
num = 0 + 0j
|
|
897
|
+
den = 0.0
|
|
898
|
+
|
|
899
|
+
trig = get_trig_cache(G)
|
|
900
|
+
cos_map, sin_map = trig.cos, trig.sin
|
|
901
|
+
|
|
902
|
+
if isinstance(W_row, Sequence) and W_row:
|
|
903
|
+
first = W_row[0]
|
|
904
|
+
if isinstance(first, (int, float)):
|
|
905
|
+
row_vals = cast(Sequence[float], W_row)
|
|
906
|
+
for w, nj in zip(row_vals, nodes_order):
|
|
907
|
+
if nj == n:
|
|
908
|
+
continue
|
|
909
|
+
den += w
|
|
910
|
+
cos_j = cos_map.get(nj)
|
|
911
|
+
sin_j = sin_map.get(nj)
|
|
912
|
+
if cos_j is None or sin_j is None:
|
|
913
|
+
trig_j = compute_theta_trig(((nj, G.nodes[nj]),))
|
|
914
|
+
cos_j = trig_j.cos[nj]
|
|
915
|
+
sin_j = trig_j.sin[nj]
|
|
916
|
+
num += w * complex(cos_j, sin_j)
|
|
917
|
+
return abs(num / den) if den else 0.0
|
|
918
|
+
|
|
919
|
+
if (
|
|
920
|
+
isinstance(first, Sequence)
|
|
921
|
+
and len(first) == 3
|
|
922
|
+
and isinstance(first[0], int)
|
|
923
|
+
and isinstance(first[1], int)
|
|
924
|
+
and isinstance(first[2], (int, float))
|
|
925
|
+
):
|
|
926
|
+
sparse_entries = cast(CoherenceMatrixSparse, W_row)
|
|
927
|
+
for ii, jj, w in sparse_entries:
|
|
928
|
+
if ii != i:
|
|
929
|
+
continue
|
|
930
|
+
nj = nodes_order[jj]
|
|
931
|
+
if nj == n:
|
|
932
|
+
continue
|
|
933
|
+
den += w
|
|
934
|
+
cos_j = cos_map.get(nj)
|
|
935
|
+
sin_j = sin_map.get(nj)
|
|
936
|
+
if cos_j is None or sin_j is None:
|
|
937
|
+
trig_j = compute_theta_trig(((nj, G.nodes[nj]),))
|
|
938
|
+
cos_j = trig_j.cos[nj]
|
|
939
|
+
sin_j = trig_j.sin[nj]
|
|
940
|
+
num += w * complex(cos_j, sin_j)
|
|
941
|
+
return abs(num / den) if den else 0.0
|
|
942
|
+
|
|
943
|
+
dense_matrix = cast(CoherenceMatrixDense, W_row)
|
|
944
|
+
if i is None:
|
|
945
|
+
raise ValueError("node index resolution failed for dense weights")
|
|
946
|
+
row_vals = cast(Sequence[float], dense_matrix[i])
|
|
947
|
+
for w, nj in zip(row_vals, nodes_order):
|
|
948
|
+
if nj == n:
|
|
949
|
+
continue
|
|
950
|
+
den += w
|
|
951
|
+
cos_j = cos_map.get(nj)
|
|
952
|
+
sin_j = sin_map.get(nj)
|
|
953
|
+
if cos_j is None or sin_j is None:
|
|
954
|
+
trig_j = compute_theta_trig(((nj, G.nodes[nj]),))
|
|
955
|
+
cos_j = trig_j.cos[nj]
|
|
956
|
+
sin_j = trig_j.sin[nj]
|
|
957
|
+
num += w * complex(cos_j, sin_j)
|
|
958
|
+
return abs(num / den) if den else 0.0
|
|
959
|
+
|
|
960
|
+
sparse_entries = cast(CoherenceMatrixSparse, W_row)
|
|
961
|
+
for ii, jj, w in sparse_entries:
|
|
962
|
+
if ii != i:
|
|
963
|
+
continue
|
|
964
|
+
nj = nodes_order[jj]
|
|
965
|
+
if nj == n:
|
|
966
|
+
continue
|
|
967
|
+
den += w
|
|
968
|
+
cos_j = cos_map.get(nj)
|
|
969
|
+
sin_j = sin_map.get(nj)
|
|
970
|
+
if cos_j is None or sin_j is None:
|
|
971
|
+
trig_j = compute_theta_trig(((nj, G.nodes[nj]),))
|
|
972
|
+
cos_j = trig_j.cos[nj]
|
|
973
|
+
sin_j = trig_j.sin[nj]
|
|
974
|
+
num += w * complex(cos_j, sin_j)
|
|
975
|
+
|
|
976
|
+
return abs(num / den) if den else 0.0
|
|
977
|
+
|
|
978
|
+
|
|
979
|
+
def local_phase_sync(G: TNFRGraph, n: NodeId) -> float:
|
|
980
|
+
"""Compute unweighted local phase synchronization for node ``n``."""
|
|
981
|
+
nodes, W = coherence_matrix(G)
|
|
982
|
+
if nodes is None:
|
|
983
|
+
return 0.0
|
|
984
|
+
return local_phase_sync_weighted(G, n, nodes_order=nodes, W_row=W)
|
|
985
|
+
|
|
986
|
+
|
|
987
|
+
def _coherence_step(G: TNFRGraph, ctx: dict[str, Any] | None = None) -> None:
|
|
988
|
+
del ctx
|
|
989
|
+
|
|
990
|
+
if not get_param(G, "COHERENCE").get("enabled", True):
|
|
991
|
+
return
|
|
992
|
+
coherence_matrix(G)
|
|
993
|
+
|
|
994
|
+
|
|
995
|
+
def register_coherence_callbacks(G: TNFRGraph) -> None:
|
|
996
|
+
callback_manager.register_callback(
|
|
997
|
+
G,
|
|
998
|
+
event=CallbackEvent.AFTER_STEP.value,
|
|
999
|
+
func=_coherence_step,
|
|
1000
|
+
name="coherence_step",
|
|
1001
|
+
)
|
|
1002
|
+
|
|
1003
|
+
|
|
1004
|
+
# ---------------------------------------------------------------------------
|
|
1005
|
+
# Coherence and observer-related metric updates
|
|
1006
|
+
# ---------------------------------------------------------------------------
|
|
1007
|
+
|
|
1008
|
+
|
|
1009
|
+
def _record_metrics(
|
|
1010
|
+
hist: HistoryState,
|
|
1011
|
+
*pairs: MetricRecord,
|
|
1012
|
+
evaluate: bool = False,
|
|
1013
|
+
) -> None:
|
|
1014
|
+
"""Generic recorder for metric values."""
|
|
1015
|
+
|
|
1016
|
+
metrics = cast(MutableMapping[str, list[Any]], hist)
|
|
1017
|
+
for payload, key in pairs:
|
|
1018
|
+
if evaluate:
|
|
1019
|
+
provider = cast(MetricProvider, payload)
|
|
1020
|
+
append_metric(metrics, key, provider())
|
|
1021
|
+
else:
|
|
1022
|
+
append_metric(metrics, key, payload)
|
|
1023
|
+
|
|
1024
|
+
|
|
1025
|
+
def _update_coherence(G: TNFRGraph, hist: HistoryState) -> None:
|
|
1026
|
+
"""Update network coherence and related means."""
|
|
1027
|
+
|
|
1028
|
+
coherence_payload = cast(
|
|
1029
|
+
tuple[CoherenceMetric, float, float],
|
|
1030
|
+
compute_coherence(G, return_means=True),
|
|
1031
|
+
)
|
|
1032
|
+
C, dnfr_mean, depi_mean = coherence_payload
|
|
1033
|
+
_record_metrics(
|
|
1034
|
+
hist,
|
|
1035
|
+
(C, "C_steps"),
|
|
1036
|
+
(dnfr_mean, "dnfr_mean"),
|
|
1037
|
+
(depi_mean, "depi_mean"),
|
|
1038
|
+
)
|
|
1039
|
+
|
|
1040
|
+
cs = hist["C_steps"]
|
|
1041
|
+
if cs:
|
|
1042
|
+
window = min(len(cs), DEFAULT_WBAR_SPAN)
|
|
1043
|
+
w = max(1, window)
|
|
1044
|
+
wbar = sum(cs[-w:]) / w
|
|
1045
|
+
_record_metrics(hist, (wbar, "W_bar"))
|
|
1046
|
+
|
|
1047
|
+
|
|
1048
|
+
def _update_phase_sync(G: TNFRGraph, hist: HistoryState) -> None:
|
|
1049
|
+
"""Capture phase synchrony and Kuramoto order."""
|
|
1050
|
+
|
|
1051
|
+
ps = phase_sync(G)
|
|
1052
|
+
ko = kuramoto_order(G)
|
|
1053
|
+
_record_metrics(
|
|
1054
|
+
hist,
|
|
1055
|
+
(ps, "phase_sync"),
|
|
1056
|
+
(ko, "kuramoto_R"),
|
|
1057
|
+
)
|
|
1058
|
+
|
|
1059
|
+
|
|
1060
|
+
def _update_sigma(G: TNFRGraph, hist: HistoryState) -> None:
|
|
1061
|
+
"""Record glyph load and associated Σ⃗ vector."""
|
|
1062
|
+
|
|
1063
|
+
metrics = cast(MutableMapping[str, list[Any]], hist)
|
|
1064
|
+
if "glyph_load_estab" in metrics:
|
|
1065
|
+
raise ValueError(
|
|
1066
|
+
"History payloads using 'glyph_load_estab' are no longer supported. "
|
|
1067
|
+
"Rename the series to 'glyph_load_stabilizers' before loading the graph."
|
|
1068
|
+
)
|
|
1069
|
+
stabilizer_series = metrics.get(GLYPH_LOAD_STABILIZERS_KEY)
|
|
1070
|
+
|
|
1071
|
+
if stabilizer_series is None:
|
|
1072
|
+
stabilizer_series = cast(
|
|
1073
|
+
list[Any], metrics.setdefault(GLYPH_LOAD_STABILIZERS_KEY, [])
|
|
1074
|
+
)
|
|
1075
|
+
else:
|
|
1076
|
+
stabilizer_series = cast(list[Any], stabilizer_series)
|
|
1077
|
+
|
|
1078
|
+
gl: GlyphLoadDistribution = glyph_load(G, window=DEFAULT_GLYPH_LOAD_SPAN)
|
|
1079
|
+
stabilizers = float(gl.get("_stabilizers", 0.0))
|
|
1080
|
+
disruptors = float(gl.get("_disruptors", 0.0))
|
|
1081
|
+
_record_metrics(
|
|
1082
|
+
hist,
|
|
1083
|
+
(stabilizers, GLYPH_LOAD_STABILIZERS_KEY),
|
|
1084
|
+
(disruptors, "glyph_load_disr"),
|
|
1085
|
+
)
|
|
1086
|
+
|
|
1087
|
+
dist: GlyphLoadDistribution = {
|
|
1088
|
+
k: v for k, v in gl.items() if not k.startswith("_")
|
|
1089
|
+
}
|
|
1090
|
+
sig: SigmaVector = sigma_vector(dist)
|
|
1091
|
+
_record_metrics(
|
|
1092
|
+
hist,
|
|
1093
|
+
(sig.get("x", 0.0), "sense_sigma_x"),
|
|
1094
|
+
(sig.get("y", 0.0), "sense_sigma_y"),
|
|
1095
|
+
(sig.get("mag", 0.0), "sense_sigma_mag"),
|
|
1096
|
+
(sig.get("angle", 0.0), "sense_sigma_angle"),
|
|
1097
|
+
)
|
|
1098
|
+
|
|
1099
|
+
|
|
1100
|
+
def _stability_chunk_worker(args: StabilityChunkArgs) -> StabilityChunkResult:
|
|
1101
|
+
"""Compute stability aggregates for a chunk of nodes."""
|
|
1102
|
+
|
|
1103
|
+
(
|
|
1104
|
+
dnfr_vals,
|
|
1105
|
+
depi_vals,
|
|
1106
|
+
si_curr_vals,
|
|
1107
|
+
si_prev_vals,
|
|
1108
|
+
vf_curr_vals,
|
|
1109
|
+
vf_prev_vals,
|
|
1110
|
+
dvf_prev_vals,
|
|
1111
|
+
dt,
|
|
1112
|
+
eps_dnfr,
|
|
1113
|
+
eps_depi,
|
|
1114
|
+
) = args
|
|
1115
|
+
|
|
1116
|
+
inv_dt = (1.0 / dt) if dt else 0.0
|
|
1117
|
+
stable = 0
|
|
1118
|
+
delta_sum = 0.0
|
|
1119
|
+
B_sum = 0.0
|
|
1120
|
+
delta_vals: list[float] = []
|
|
1121
|
+
dvf_dt_vals: list[float] = []
|
|
1122
|
+
B_vals: list[float] = []
|
|
1123
|
+
|
|
1124
|
+
for idx in range(len(si_curr_vals)):
|
|
1125
|
+
curr_si = float(si_curr_vals[idx])
|
|
1126
|
+
prev_si_raw = si_prev_vals[idx]
|
|
1127
|
+
prev_si = float(prev_si_raw) if prev_si_raw is not None else curr_si
|
|
1128
|
+
delta = curr_si - prev_si
|
|
1129
|
+
delta_vals.append(delta)
|
|
1130
|
+
delta_sum += delta
|
|
1131
|
+
|
|
1132
|
+
curr_vf = float(vf_curr_vals[idx])
|
|
1133
|
+
prev_vf_raw = vf_prev_vals[idx]
|
|
1134
|
+
prev_vf = float(prev_vf_raw) if prev_vf_raw is not None else curr_vf
|
|
1135
|
+
dvf_dt = (curr_vf - prev_vf) * inv_dt if dt else 0.0
|
|
1136
|
+
prev_dvf_raw = dvf_prev_vals[idx]
|
|
1137
|
+
prev_dvf = float(prev_dvf_raw) if prev_dvf_raw is not None else dvf_dt
|
|
1138
|
+
B = (dvf_dt - prev_dvf) * inv_dt if dt else 0.0
|
|
1139
|
+
dvf_dt_vals.append(dvf_dt)
|
|
1140
|
+
B_vals.append(B)
|
|
1141
|
+
B_sum += B
|
|
1142
|
+
|
|
1143
|
+
if abs(float(dnfr_vals[idx])) <= eps_dnfr and abs(float(depi_vals[idx])) <= eps_depi:
|
|
1144
|
+
stable += 1
|
|
1145
|
+
|
|
1146
|
+
chunk_len = len(si_curr_vals)
|
|
1147
|
+
return (
|
|
1148
|
+
stable,
|
|
1149
|
+
chunk_len,
|
|
1150
|
+
delta_sum,
|
|
1151
|
+
B_sum,
|
|
1152
|
+
delta_vals,
|
|
1153
|
+
dvf_dt_vals,
|
|
1154
|
+
B_vals,
|
|
1155
|
+
)
|
|
1156
|
+
|
|
1157
|
+
|
|
1158
|
+
def _track_stability(
|
|
1159
|
+
G: TNFRGraph,
|
|
1160
|
+
hist: MutableMapping[str, Any],
|
|
1161
|
+
dt: float,
|
|
1162
|
+
eps_dnfr: float,
|
|
1163
|
+
eps_depi: float,
|
|
1164
|
+
*,
|
|
1165
|
+
n_jobs: int | None = None,
|
|
1166
|
+
) -> None:
|
|
1167
|
+
"""Track per-node stability and derivative metrics."""
|
|
1168
|
+
|
|
1169
|
+
nodes: tuple[NodeId, ...] = tuple(G.nodes)
|
|
1170
|
+
total_nodes = len(nodes)
|
|
1171
|
+
if not total_nodes:
|
|
1172
|
+
hist.setdefault("stable_frac", []).append(0.0)
|
|
1173
|
+
hist.setdefault("delta_Si", []).append(0.0)
|
|
1174
|
+
hist.setdefault("B", []).append(0.0)
|
|
1175
|
+
return
|
|
1176
|
+
|
|
1177
|
+
np_mod = get_numpy()
|
|
1178
|
+
|
|
1179
|
+
dnfr_vals = collect_attr(G, nodes, ALIAS_DNFR, 0.0, np=np_mod)
|
|
1180
|
+
depi_vals = collect_attr(G, nodes, ALIAS_DEPI, 0.0, np=np_mod)
|
|
1181
|
+
si_curr_vals = collect_attr(G, nodes, ALIAS_SI, 0.0, np=np_mod)
|
|
1182
|
+
vf_curr_vals = collect_attr(G, nodes, ALIAS_VF, 0.0, np=np_mod)
|
|
1183
|
+
|
|
1184
|
+
prev_si_data = [G.nodes[n].get("_prev_Si") for n in nodes]
|
|
1185
|
+
prev_vf_data = [G.nodes[n].get("_prev_vf") for n in nodes]
|
|
1186
|
+
prev_dvf_data = [G.nodes[n].get("_prev_dvf") for n in nodes]
|
|
1187
|
+
|
|
1188
|
+
inv_dt = (1.0 / dt) if dt else 0.0
|
|
1189
|
+
|
|
1190
|
+
if np_mod is not None:
|
|
1191
|
+
np = np_mod
|
|
1192
|
+
dnfr_arr = dnfr_vals
|
|
1193
|
+
depi_arr = depi_vals
|
|
1194
|
+
si_curr_arr = si_curr_vals
|
|
1195
|
+
vf_curr_arr = vf_curr_vals
|
|
1196
|
+
|
|
1197
|
+
si_prev_arr = np.asarray(
|
|
1198
|
+
[
|
|
1199
|
+
float(prev_si_data[idx])
|
|
1200
|
+
if prev_si_data[idx] is not None
|
|
1201
|
+
else float(si_curr_arr[idx])
|
|
1202
|
+
for idx in range(total_nodes)
|
|
1203
|
+
],
|
|
1204
|
+
dtype=float,
|
|
1205
|
+
)
|
|
1206
|
+
vf_prev_arr = np.asarray(
|
|
1207
|
+
[
|
|
1208
|
+
float(prev_vf_data[idx])
|
|
1209
|
+
if prev_vf_data[idx] is not None
|
|
1210
|
+
else float(vf_curr_arr[idx])
|
|
1211
|
+
for idx in range(total_nodes)
|
|
1212
|
+
],
|
|
1213
|
+
dtype=float,
|
|
1214
|
+
)
|
|
1215
|
+
|
|
1216
|
+
if dt:
|
|
1217
|
+
dvf_dt_arr = (vf_curr_arr - vf_prev_arr) * inv_dt
|
|
1218
|
+
else:
|
|
1219
|
+
dvf_dt_arr = np.zeros_like(vf_curr_arr, dtype=float)
|
|
1220
|
+
|
|
1221
|
+
dvf_prev_arr = np.asarray(
|
|
1222
|
+
[
|
|
1223
|
+
float(prev_dvf_data[idx])
|
|
1224
|
+
if prev_dvf_data[idx] is not None
|
|
1225
|
+
else float(dvf_dt_arr[idx])
|
|
1226
|
+
for idx in range(total_nodes)
|
|
1227
|
+
],
|
|
1228
|
+
dtype=float,
|
|
1229
|
+
)
|
|
1230
|
+
|
|
1231
|
+
if dt:
|
|
1232
|
+
B_arr = (dvf_dt_arr - dvf_prev_arr) * inv_dt
|
|
1233
|
+
else:
|
|
1234
|
+
B_arr = np.zeros_like(dvf_dt_arr, dtype=float)
|
|
1235
|
+
|
|
1236
|
+
stable_mask = (np.abs(dnfr_arr) <= eps_dnfr) & (np.abs(depi_arr) <= eps_depi)
|
|
1237
|
+
stable_frac = float(stable_mask.mean()) if total_nodes else 0.0
|
|
1238
|
+
|
|
1239
|
+
delta_si_arr = si_curr_arr - si_prev_arr
|
|
1240
|
+
delta_si_mean = float(delta_si_arr.mean()) if total_nodes else 0.0
|
|
1241
|
+
B_mean = float(B_arr.mean()) if total_nodes else 0.0
|
|
1242
|
+
|
|
1243
|
+
hist.setdefault("stable_frac", []).append(stable_frac)
|
|
1244
|
+
hist.setdefault("delta_Si", []).append(delta_si_mean)
|
|
1245
|
+
hist.setdefault("B", []).append(B_mean)
|
|
1246
|
+
|
|
1247
|
+
for idx, node in enumerate(nodes):
|
|
1248
|
+
nd = G.nodes[node]
|
|
1249
|
+
curr_si = float(si_curr_arr[idx])
|
|
1250
|
+
delta_val = float(delta_si_arr[idx])
|
|
1251
|
+
nd["_prev_Si"] = curr_si
|
|
1252
|
+
set_attr(nd, ALIAS_DSI, delta_val)
|
|
1253
|
+
|
|
1254
|
+
curr_vf = float(vf_curr_arr[idx])
|
|
1255
|
+
nd["_prev_vf"] = curr_vf
|
|
1256
|
+
|
|
1257
|
+
dvf_dt_val = float(dvf_dt_arr[idx])
|
|
1258
|
+
nd["_prev_dvf"] = dvf_dt_val
|
|
1259
|
+
set_attr(nd, ALIAS_DVF, dvf_dt_val)
|
|
1260
|
+
set_attr(nd, ALIAS_D2VF, float(B_arr[idx]))
|
|
1261
|
+
|
|
1262
|
+
return
|
|
1263
|
+
|
|
1264
|
+
# NumPy not available: optionally parallel fallback or sequential computation.
|
|
1265
|
+
dnfr_list = list(dnfr_vals)
|
|
1266
|
+
depi_list = list(depi_vals)
|
|
1267
|
+
si_curr_list = list(si_curr_vals)
|
|
1268
|
+
vf_curr_list = list(vf_curr_vals)
|
|
1269
|
+
|
|
1270
|
+
if n_jobs and n_jobs > 1:
|
|
1271
|
+
chunk_size = max(1, math.ceil(total_nodes / n_jobs))
|
|
1272
|
+
chunk_results: list[tuple[int, tuple[int, int, float, float, list[float], list[float], list[float]]]] = []
|
|
1273
|
+
with ProcessPoolExecutor(max_workers=n_jobs) as executor:
|
|
1274
|
+
futures: list[tuple[int, Any]] = []
|
|
1275
|
+
for start in range(0, total_nodes, chunk_size):
|
|
1276
|
+
end = min(start + chunk_size, total_nodes)
|
|
1277
|
+
chunk_args = (
|
|
1278
|
+
dnfr_list[start:end],
|
|
1279
|
+
depi_list[start:end],
|
|
1280
|
+
si_curr_list[start:end],
|
|
1281
|
+
prev_si_data[start:end],
|
|
1282
|
+
vf_curr_list[start:end],
|
|
1283
|
+
prev_vf_data[start:end],
|
|
1284
|
+
prev_dvf_data[start:end],
|
|
1285
|
+
dt,
|
|
1286
|
+
eps_dnfr,
|
|
1287
|
+
eps_depi,
|
|
1288
|
+
)
|
|
1289
|
+
futures.append((start, executor.submit(_stability_chunk_worker, chunk_args)))
|
|
1290
|
+
|
|
1291
|
+
for start, fut in futures:
|
|
1292
|
+
chunk_results.append((start, fut.result()))
|
|
1293
|
+
|
|
1294
|
+
chunk_results.sort(key=lambda item: item[0])
|
|
1295
|
+
|
|
1296
|
+
stable_total = 0
|
|
1297
|
+
delta_sum = 0.0
|
|
1298
|
+
B_sum = 0.0
|
|
1299
|
+
delta_vals_all: list[float] = []
|
|
1300
|
+
dvf_dt_all: list[float] = []
|
|
1301
|
+
B_vals_all: list[float] = []
|
|
1302
|
+
|
|
1303
|
+
for _, result in chunk_results:
|
|
1304
|
+
(
|
|
1305
|
+
stable_count,
|
|
1306
|
+
chunk_len,
|
|
1307
|
+
chunk_delta_sum,
|
|
1308
|
+
chunk_B_sum,
|
|
1309
|
+
delta_vals,
|
|
1310
|
+
dvf_vals,
|
|
1311
|
+
B_vals,
|
|
1312
|
+
) = result
|
|
1313
|
+
stable_total += stable_count
|
|
1314
|
+
delta_sum += chunk_delta_sum
|
|
1315
|
+
B_sum += chunk_B_sum
|
|
1316
|
+
delta_vals_all.extend(delta_vals)
|
|
1317
|
+
dvf_dt_all.extend(dvf_vals)
|
|
1318
|
+
B_vals_all.extend(B_vals)
|
|
1319
|
+
|
|
1320
|
+
total = len(delta_vals_all)
|
|
1321
|
+
stable_frac = stable_total / total if total else 0.0
|
|
1322
|
+
delta_si_mean = delta_sum / total if total else 0.0
|
|
1323
|
+
B_mean = B_sum / total if total else 0.0
|
|
1324
|
+
|
|
1325
|
+
else:
|
|
1326
|
+
stable_total = 0
|
|
1327
|
+
delta_sum = 0.0
|
|
1328
|
+
B_sum = 0.0
|
|
1329
|
+
delta_vals_all = []
|
|
1330
|
+
dvf_dt_all = []
|
|
1331
|
+
B_vals_all = []
|
|
1332
|
+
|
|
1333
|
+
for idx in range(total_nodes):
|
|
1334
|
+
curr_si = float(si_curr_list[idx])
|
|
1335
|
+
prev_si_raw = prev_si_data[idx]
|
|
1336
|
+
prev_si = float(prev_si_raw) if prev_si_raw is not None else curr_si
|
|
1337
|
+
delta = curr_si - prev_si
|
|
1338
|
+
delta_vals_all.append(delta)
|
|
1339
|
+
delta_sum += delta
|
|
1340
|
+
|
|
1341
|
+
curr_vf = float(vf_curr_list[idx])
|
|
1342
|
+
prev_vf_raw = prev_vf_data[idx]
|
|
1343
|
+
prev_vf = float(prev_vf_raw) if prev_vf_raw is not None else curr_vf
|
|
1344
|
+
dvf_dt_val = (curr_vf - prev_vf) * inv_dt if dt else 0.0
|
|
1345
|
+
prev_dvf_raw = prev_dvf_data[idx]
|
|
1346
|
+
prev_dvf = float(prev_dvf_raw) if prev_dvf_raw is not None else dvf_dt_val
|
|
1347
|
+
B_val = (dvf_dt_val - prev_dvf) * inv_dt if dt else 0.0
|
|
1348
|
+
dvf_dt_all.append(dvf_dt_val)
|
|
1349
|
+
B_vals_all.append(B_val)
|
|
1350
|
+
B_sum += B_val
|
|
1351
|
+
|
|
1352
|
+
if abs(float(dnfr_list[idx])) <= eps_dnfr and abs(float(depi_list[idx])) <= eps_depi:
|
|
1353
|
+
stable_total += 1
|
|
1354
|
+
|
|
1355
|
+
total = len(delta_vals_all)
|
|
1356
|
+
stable_frac = stable_total / total if total else 0.0
|
|
1357
|
+
delta_si_mean = delta_sum / total if total else 0.0
|
|
1358
|
+
B_mean = B_sum / total if total else 0.0
|
|
1359
|
+
|
|
1360
|
+
hist.setdefault("stable_frac", []).append(stable_frac)
|
|
1361
|
+
hist.setdefault("delta_Si", []).append(delta_si_mean)
|
|
1362
|
+
hist.setdefault("B", []).append(B_mean)
|
|
1363
|
+
|
|
1364
|
+
for idx, node in enumerate(nodes):
|
|
1365
|
+
nd = G.nodes[node]
|
|
1366
|
+
curr_si = float(si_curr_list[idx])
|
|
1367
|
+
delta_val = float(delta_vals_all[idx])
|
|
1368
|
+
nd["_prev_Si"] = curr_si
|
|
1369
|
+
set_attr(nd, ALIAS_DSI, delta_val)
|
|
1370
|
+
|
|
1371
|
+
curr_vf = float(vf_curr_list[idx])
|
|
1372
|
+
nd["_prev_vf"] = curr_vf
|
|
1373
|
+
|
|
1374
|
+
dvf_dt_val = float(dvf_dt_all[idx])
|
|
1375
|
+
nd["_prev_dvf"] = dvf_dt_val
|
|
1376
|
+
set_attr(nd, ALIAS_DVF, dvf_dt_val)
|
|
1377
|
+
set_attr(nd, ALIAS_D2VF, float(B_vals_all[idx]))
|
|
1378
|
+
|
|
1379
|
+
|
|
1380
|
+
def _si_chunk_stats(
|
|
1381
|
+
values: Sequence[float], si_hi: float, si_lo: float
|
|
1382
|
+
) -> tuple[float, int, int, int]:
|
|
1383
|
+
"""Compute partial Si aggregates for ``values``.
|
|
1384
|
+
|
|
1385
|
+
The helper keeps the logic shared between the sequential and parallel
|
|
1386
|
+
fallbacks when NumPy is unavailable.
|
|
1387
|
+
"""
|
|
1388
|
+
|
|
1389
|
+
total = 0.0
|
|
1390
|
+
count = 0
|
|
1391
|
+
hi_count = 0
|
|
1392
|
+
lo_count = 0
|
|
1393
|
+
for s in values:
|
|
1394
|
+
if math.isnan(s):
|
|
1395
|
+
continue
|
|
1396
|
+
total += s
|
|
1397
|
+
count += 1
|
|
1398
|
+
if s >= si_hi:
|
|
1399
|
+
hi_count += 1
|
|
1400
|
+
if s <= si_lo:
|
|
1401
|
+
lo_count += 1
|
|
1402
|
+
return total, count, hi_count, lo_count
|
|
1403
|
+
|
|
1404
|
+
|
|
1405
|
+
def _aggregate_si(
|
|
1406
|
+
G: TNFRGraph,
|
|
1407
|
+
hist: MutableMapping[str, list[float]],
|
|
1408
|
+
*,
|
|
1409
|
+
n_jobs: int | None = None,
|
|
1410
|
+
) -> None:
|
|
1411
|
+
"""Aggregate Si statistics across nodes."""
|
|
1412
|
+
|
|
1413
|
+
try:
|
|
1414
|
+
thr_sel = get_param(G, "SELECTOR_THRESHOLDS")
|
|
1415
|
+
thr_def = get_param(G, "GLYPH_THRESHOLDS")
|
|
1416
|
+
si_hi = float(thr_sel.get("si_hi", thr_def.get("hi", 0.66)))
|
|
1417
|
+
si_lo = float(thr_sel.get("si_lo", thr_def.get("lo", 0.33)))
|
|
1418
|
+
|
|
1419
|
+
np_mod = get_numpy()
|
|
1420
|
+
if np_mod is not None:
|
|
1421
|
+
sis = collect_attr(G, G.nodes, ALIAS_SI, float("nan"), np=np_mod)
|
|
1422
|
+
valid = sis[~np_mod.isnan(sis)]
|
|
1423
|
+
n = int(valid.size)
|
|
1424
|
+
if n:
|
|
1425
|
+
hist["Si_mean"].append(float(valid.mean()))
|
|
1426
|
+
hi_frac = np_mod.count_nonzero(valid >= si_hi) / n
|
|
1427
|
+
lo_frac = np_mod.count_nonzero(valid <= si_lo) / n
|
|
1428
|
+
hist["Si_hi_frac"].append(float(hi_frac))
|
|
1429
|
+
hist["Si_lo_frac"].append(float(lo_frac))
|
|
1430
|
+
else:
|
|
1431
|
+
hist["Si_mean"].append(0.0)
|
|
1432
|
+
hist["Si_hi_frac"].append(0.0)
|
|
1433
|
+
hist["Si_lo_frac"].append(0.0)
|
|
1434
|
+
return
|
|
1435
|
+
|
|
1436
|
+
sis = collect_attr(G, G.nodes, ALIAS_SI, float("nan"))
|
|
1437
|
+
if not sis:
|
|
1438
|
+
hist["Si_mean"].append(0.0)
|
|
1439
|
+
hist["Si_hi_frac"].append(0.0)
|
|
1440
|
+
hist["Si_lo_frac"].append(0.0)
|
|
1441
|
+
return
|
|
1442
|
+
|
|
1443
|
+
if n_jobs is not None and n_jobs > 1:
|
|
1444
|
+
chunk_size = max(1, math.ceil(len(sis) / n_jobs))
|
|
1445
|
+
futures = []
|
|
1446
|
+
with ProcessPoolExecutor(max_workers=n_jobs) as executor:
|
|
1447
|
+
for idx in range(0, len(sis), chunk_size):
|
|
1448
|
+
chunk = sis[idx:idx + chunk_size]
|
|
1449
|
+
futures.append(
|
|
1450
|
+
executor.submit(_si_chunk_stats, chunk, si_hi, si_lo)
|
|
1451
|
+
)
|
|
1452
|
+
totals = [future.result() for future in futures]
|
|
1453
|
+
total = sum(part[0] for part in totals)
|
|
1454
|
+
count = sum(part[1] for part in totals)
|
|
1455
|
+
hi_count = sum(part[2] for part in totals)
|
|
1456
|
+
lo_count = sum(part[3] for part in totals)
|
|
1457
|
+
else:
|
|
1458
|
+
total, count, hi_count, lo_count = _si_chunk_stats(sis, si_hi, si_lo)
|
|
1459
|
+
|
|
1460
|
+
if count:
|
|
1461
|
+
hist["Si_mean"].append(total / count)
|
|
1462
|
+
hist["Si_hi_frac"].append(hi_count / count)
|
|
1463
|
+
hist["Si_lo_frac"].append(lo_count / count)
|
|
1464
|
+
else:
|
|
1465
|
+
hist["Si_mean"].append(0.0)
|
|
1466
|
+
hist["Si_hi_frac"].append(0.0)
|
|
1467
|
+
hist["Si_lo_frac"].append(0.0)
|
|
1468
|
+
except (KeyError, AttributeError, TypeError) as exc:
|
|
1469
|
+
logger.debug("Si aggregation failed: %s", exc)
|