tnfr 4.5.1__py3-none-any.whl → 6.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tnfr/__init__.py +270 -90
- tnfr/__init__.pyi +40 -0
- tnfr/_compat.py +11 -0
- tnfr/_version.py +7 -0
- tnfr/_version.pyi +7 -0
- tnfr/alias.py +631 -0
- tnfr/alias.pyi +140 -0
- tnfr/cache.py +732 -0
- tnfr/cache.pyi +232 -0
- tnfr/callback_utils.py +381 -0
- tnfr/callback_utils.pyi +105 -0
- tnfr/cli/__init__.py +89 -0
- tnfr/cli/__init__.pyi +47 -0
- tnfr/cli/arguments.py +199 -0
- tnfr/cli/arguments.pyi +33 -0
- tnfr/cli/execution.py +322 -0
- tnfr/cli/execution.pyi +80 -0
- tnfr/cli/utils.py +34 -0
- tnfr/cli/utils.pyi +8 -0
- tnfr/config/__init__.py +12 -0
- tnfr/config/__init__.pyi +8 -0
- tnfr/config/constants.py +104 -0
- tnfr/config/constants.pyi +12 -0
- tnfr/config/init.py +36 -0
- tnfr/config/init.pyi +8 -0
- tnfr/config/operator_names.py +106 -0
- tnfr/config/operator_names.pyi +28 -0
- tnfr/config/presets.py +104 -0
- tnfr/config/presets.pyi +7 -0
- tnfr/constants/__init__.py +228 -0
- tnfr/constants/__init__.pyi +104 -0
- tnfr/constants/core.py +158 -0
- tnfr/constants/core.pyi +17 -0
- tnfr/constants/init.py +31 -0
- tnfr/constants/init.pyi +12 -0
- tnfr/constants/metric.py +102 -0
- tnfr/constants/metric.pyi +19 -0
- tnfr/constants_glyphs.py +16 -0
- tnfr/constants_glyphs.pyi +12 -0
- tnfr/dynamics/__init__.py +136 -0
- tnfr/dynamics/__init__.pyi +83 -0
- tnfr/dynamics/adaptation.py +201 -0
- tnfr/dynamics/aliases.py +22 -0
- tnfr/dynamics/coordination.py +343 -0
- tnfr/dynamics/dnfr.py +2315 -0
- tnfr/dynamics/dnfr.pyi +33 -0
- tnfr/dynamics/integrators.py +561 -0
- tnfr/dynamics/integrators.pyi +35 -0
- tnfr/dynamics/runtime.py +521 -0
- tnfr/dynamics/sampling.py +34 -0
- tnfr/dynamics/sampling.pyi +7 -0
- tnfr/dynamics/selectors.py +680 -0
- tnfr/execution.py +216 -0
- tnfr/execution.pyi +65 -0
- tnfr/flatten.py +283 -0
- tnfr/flatten.pyi +28 -0
- tnfr/gamma.py +320 -89
- tnfr/gamma.pyi +40 -0
- tnfr/glyph_history.py +337 -0
- tnfr/glyph_history.pyi +53 -0
- tnfr/grammar.py +23 -153
- tnfr/grammar.pyi +13 -0
- tnfr/helpers/__init__.py +151 -0
- tnfr/helpers/__init__.pyi +66 -0
- tnfr/helpers/numeric.py +88 -0
- tnfr/helpers/numeric.pyi +12 -0
- tnfr/immutable.py +214 -0
- tnfr/immutable.pyi +37 -0
- tnfr/initialization.py +199 -0
- tnfr/initialization.pyi +73 -0
- tnfr/io.py +311 -0
- tnfr/io.pyi +11 -0
- tnfr/locking.py +37 -0
- tnfr/locking.pyi +7 -0
- tnfr/metrics/__init__.py +41 -0
- tnfr/metrics/__init__.pyi +20 -0
- tnfr/metrics/coherence.py +1469 -0
- tnfr/metrics/common.py +149 -0
- tnfr/metrics/common.pyi +15 -0
- tnfr/metrics/core.py +259 -0
- tnfr/metrics/core.pyi +13 -0
- tnfr/metrics/diagnosis.py +840 -0
- tnfr/metrics/diagnosis.pyi +89 -0
- tnfr/metrics/export.py +151 -0
- tnfr/metrics/glyph_timing.py +369 -0
- tnfr/metrics/reporting.py +152 -0
- tnfr/metrics/reporting.pyi +12 -0
- tnfr/metrics/sense_index.py +294 -0
- tnfr/metrics/sense_index.pyi +9 -0
- tnfr/metrics/trig.py +216 -0
- tnfr/metrics/trig.pyi +12 -0
- tnfr/metrics/trig_cache.py +105 -0
- tnfr/metrics/trig_cache.pyi +10 -0
- tnfr/node.py +255 -177
- tnfr/node.pyi +161 -0
- tnfr/observers.py +154 -150
- tnfr/observers.pyi +46 -0
- tnfr/ontosim.py +135 -134
- tnfr/ontosim.pyi +33 -0
- tnfr/operators/__init__.py +452 -0
- tnfr/operators/__init__.pyi +31 -0
- tnfr/operators/definitions.py +181 -0
- tnfr/operators/definitions.pyi +92 -0
- tnfr/operators/jitter.py +266 -0
- tnfr/operators/jitter.pyi +11 -0
- tnfr/operators/registry.py +80 -0
- tnfr/operators/registry.pyi +15 -0
- tnfr/operators/remesh.py +569 -0
- tnfr/presets.py +10 -23
- tnfr/presets.pyi +7 -0
- tnfr/py.typed +0 -0
- tnfr/rng.py +440 -0
- tnfr/rng.pyi +14 -0
- tnfr/selector.py +217 -0
- tnfr/selector.pyi +19 -0
- tnfr/sense.py +307 -142
- tnfr/sense.pyi +30 -0
- tnfr/structural.py +69 -164
- tnfr/structural.pyi +46 -0
- tnfr/telemetry/__init__.py +13 -0
- tnfr/telemetry/verbosity.py +37 -0
- tnfr/tokens.py +61 -0
- tnfr/tokens.pyi +41 -0
- tnfr/trace.py +520 -95
- tnfr/trace.pyi +68 -0
- tnfr/types.py +382 -17
- tnfr/types.pyi +145 -0
- tnfr/utils/__init__.py +158 -0
- tnfr/utils/__init__.pyi +133 -0
- tnfr/utils/cache.py +755 -0
- tnfr/utils/cache.pyi +156 -0
- tnfr/utils/data.py +267 -0
- tnfr/utils/data.pyi +73 -0
- tnfr/utils/graph.py +87 -0
- tnfr/utils/graph.pyi +10 -0
- tnfr/utils/init.py +746 -0
- tnfr/utils/init.pyi +85 -0
- tnfr/utils/io.py +157 -0
- tnfr/utils/io.pyi +10 -0
- tnfr/utils/validators.py +130 -0
- tnfr/utils/validators.pyi +19 -0
- tnfr/validation/__init__.py +25 -0
- tnfr/validation/__init__.pyi +17 -0
- tnfr/validation/compatibility.py +59 -0
- tnfr/validation/compatibility.pyi +8 -0
- tnfr/validation/grammar.py +149 -0
- tnfr/validation/grammar.pyi +11 -0
- tnfr/validation/rules.py +194 -0
- tnfr/validation/rules.pyi +18 -0
- tnfr/validation/syntax.py +151 -0
- tnfr/validation/syntax.pyi +7 -0
- tnfr-6.0.0.dist-info/METADATA +135 -0
- tnfr-6.0.0.dist-info/RECORD +157 -0
- tnfr/cli.py +0 -322
- tnfr/config.py +0 -41
- tnfr/constants.py +0 -277
- tnfr/dynamics.py +0 -814
- tnfr/helpers.py +0 -264
- tnfr/main.py +0 -47
- tnfr/metrics.py +0 -597
- tnfr/operators.py +0 -525
- tnfr/program.py +0 -176
- tnfr/scenarios.py +0 -34
- tnfr/validators.py +0 -38
- tnfr-4.5.1.dist-info/METADATA +0 -221
- tnfr-4.5.1.dist-info/RECORD +0 -28
- {tnfr-4.5.1.dist-info → tnfr-6.0.0.dist-info}/WHEEL +0 -0
- {tnfr-4.5.1.dist-info → tnfr-6.0.0.dist-info}/entry_points.txt +0 -0
- {tnfr-4.5.1.dist-info → tnfr-6.0.0.dist-info}/licenses/LICENSE.md +0 -0
- {tnfr-4.5.1.dist-info → tnfr-6.0.0.dist-info}/top_level.txt +0 -0
tnfr/dynamics/dnfr.py
ADDED
|
@@ -0,0 +1,2315 @@
|
|
|
1
|
+
"""ΔNFR (dynamic network field response) utilities and strategies.
|
|
2
|
+
|
|
3
|
+
This module provides helper functions to configure, cache and apply ΔNFR
|
|
4
|
+
components such as phase, epidemiological state and vortex fields during
|
|
5
|
+
simulations. The neighbour accumulation helpers reuse cached edge indices
|
|
6
|
+
and NumPy workspaces whenever available so cosine, sine, EPI, νf and topology
|
|
7
|
+
means remain faithful to the canonical ΔNFR reorganisation without redundant
|
|
8
|
+
allocations.
|
|
9
|
+
"""
|
|
10
|
+
|
|
11
|
+
from __future__ import annotations
|
|
12
|
+
|
|
13
|
+
import math
|
|
14
|
+
import sys
|
|
15
|
+
from concurrent.futures import ProcessPoolExecutor
|
|
16
|
+
from dataclasses import dataclass
|
|
17
|
+
from types import ModuleType
|
|
18
|
+
from collections.abc import Callable, Iterator, Mapping, MutableMapping, Sequence
|
|
19
|
+
from typing import TYPE_CHECKING, Any, cast
|
|
20
|
+
|
|
21
|
+
from ..alias import get_attr, get_theta_attr, set_dnfr
|
|
22
|
+
from ..constants import DEFAULTS, get_aliases, get_param
|
|
23
|
+
from ..helpers.numeric import angle_diff
|
|
24
|
+
from ..cache import CacheManager
|
|
25
|
+
from ..metrics.common import merge_and_normalize_weights
|
|
26
|
+
from ..metrics.trig import neighbor_phase_mean_list
|
|
27
|
+
from ..metrics.trig_cache import compute_theta_trig
|
|
28
|
+
from ..utils import cached_node_list, cached_nodes_and_A, get_numpy, normalize_weights
|
|
29
|
+
from ..utils.cache import DNFR_PREP_STATE_KEY, DnfrPrepState, _graph_cache_manager
|
|
30
|
+
from ..types import (
|
|
31
|
+
DeltaNFRHook,
|
|
32
|
+
DnfrCacheVectors,
|
|
33
|
+
DnfrVectorMap,
|
|
34
|
+
NeighborStats,
|
|
35
|
+
NodeId,
|
|
36
|
+
TNFRGraph,
|
|
37
|
+
)
|
|
38
|
+
|
|
39
|
+
if TYPE_CHECKING: # pragma: no cover - import-time typing hook
|
|
40
|
+
import numpy as np
|
|
41
|
+
ALIAS_EPI = get_aliases("EPI")
|
|
42
|
+
ALIAS_VF = get_aliases("VF")
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
_MEAN_VECTOR_EPS = 1e-12
|
|
46
|
+
_SPARSE_DENSITY_THRESHOLD = 0.25
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
def _should_vectorize(G: TNFRGraph, np_module: ModuleType | None) -> bool:
|
|
50
|
+
"""Return ``True`` when NumPy is available unless the graph disables it."""
|
|
51
|
+
|
|
52
|
+
if np_module is None:
|
|
53
|
+
return False
|
|
54
|
+
flag = G.graph.get("vectorized_dnfr")
|
|
55
|
+
if flag is None:
|
|
56
|
+
return True
|
|
57
|
+
return bool(flag)
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
@dataclass
|
|
61
|
+
class DnfrCache:
|
|
62
|
+
idx: dict[Any, int]
|
|
63
|
+
theta: list[float]
|
|
64
|
+
epi: list[float]
|
|
65
|
+
vf: list[float]
|
|
66
|
+
cos_theta: list[float]
|
|
67
|
+
sin_theta: list[float]
|
|
68
|
+
neighbor_x: list[float]
|
|
69
|
+
neighbor_y: list[float]
|
|
70
|
+
neighbor_epi_sum: list[float]
|
|
71
|
+
neighbor_vf_sum: list[float]
|
|
72
|
+
neighbor_count: list[float]
|
|
73
|
+
neighbor_deg_sum: list[float] | None
|
|
74
|
+
th_bar: list[float] | None = None
|
|
75
|
+
epi_bar: list[float] | None = None
|
|
76
|
+
vf_bar: list[float] | None = None
|
|
77
|
+
deg_bar: list[float] | None = None
|
|
78
|
+
degs: dict[Any, float] | None = None
|
|
79
|
+
deg_list: list[float] | None = None
|
|
80
|
+
theta_np: Any | None = None
|
|
81
|
+
epi_np: Any | None = None
|
|
82
|
+
vf_np: Any | None = None
|
|
83
|
+
cos_theta_np: Any | None = None
|
|
84
|
+
sin_theta_np: Any | None = None
|
|
85
|
+
deg_array: Any | None = None
|
|
86
|
+
edge_src: Any | None = None
|
|
87
|
+
edge_dst: Any | None = None
|
|
88
|
+
checksum: Any | None = None
|
|
89
|
+
neighbor_x_np: Any | None = None
|
|
90
|
+
neighbor_y_np: Any | None = None
|
|
91
|
+
neighbor_epi_sum_np: Any | None = None
|
|
92
|
+
neighbor_vf_sum_np: Any | None = None
|
|
93
|
+
neighbor_count_np: Any | None = None
|
|
94
|
+
neighbor_deg_sum_np: Any | None = None
|
|
95
|
+
th_bar_np: Any | None = None
|
|
96
|
+
epi_bar_np: Any | None = None
|
|
97
|
+
vf_bar_np: Any | None = None
|
|
98
|
+
deg_bar_np: Any | None = None
|
|
99
|
+
grad_phase_np: Any | None = None
|
|
100
|
+
grad_epi_np: Any | None = None
|
|
101
|
+
grad_vf_np: Any | None = None
|
|
102
|
+
grad_topo_np: Any | None = None
|
|
103
|
+
grad_total_np: Any | None = None
|
|
104
|
+
dense_components_np: Any | None = None
|
|
105
|
+
dense_accum_np: Any | None = None
|
|
106
|
+
dense_degree_np: Any | None = None
|
|
107
|
+
neighbor_accum_np: Any | None = None
|
|
108
|
+
neighbor_inv_count_np: Any | None = None
|
|
109
|
+
neighbor_cos_avg_np: Any | None = None
|
|
110
|
+
neighbor_sin_avg_np: Any | None = None
|
|
111
|
+
neighbor_mean_tmp_np: Any | None = None
|
|
112
|
+
neighbor_mean_length_np: Any | None = None
|
|
113
|
+
edge_signature: Any | None = None
|
|
114
|
+
neighbor_accum_signature: Any | None = None
|
|
115
|
+
neighbor_edge_values_np: Any | None = None
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
_NUMPY_CACHE_ATTRS = (
|
|
119
|
+
"theta_np",
|
|
120
|
+
"epi_np",
|
|
121
|
+
"vf_np",
|
|
122
|
+
"cos_theta_np",
|
|
123
|
+
"sin_theta_np",
|
|
124
|
+
"deg_array",
|
|
125
|
+
"neighbor_x_np",
|
|
126
|
+
"neighbor_y_np",
|
|
127
|
+
"neighbor_epi_sum_np",
|
|
128
|
+
"neighbor_vf_sum_np",
|
|
129
|
+
"neighbor_count_np",
|
|
130
|
+
"neighbor_deg_sum_np",
|
|
131
|
+
"neighbor_inv_count_np",
|
|
132
|
+
"neighbor_cos_avg_np",
|
|
133
|
+
"neighbor_sin_avg_np",
|
|
134
|
+
"neighbor_mean_tmp_np",
|
|
135
|
+
"neighbor_mean_length_np",
|
|
136
|
+
"neighbor_accum_np",
|
|
137
|
+
"neighbor_edge_values_np",
|
|
138
|
+
"dense_components_np",
|
|
139
|
+
"dense_accum_np",
|
|
140
|
+
"dense_degree_np",
|
|
141
|
+
)
|
|
142
|
+
|
|
143
|
+
|
|
144
|
+
def _iter_chunk_offsets(total: int, jobs: int) -> Iterator[tuple[int, int]]:
|
|
145
|
+
"""Yield ``(start, end)`` offsets splitting ``total`` items across ``jobs``."""
|
|
146
|
+
|
|
147
|
+
if total <= 0 or jobs <= 1:
|
|
148
|
+
return
|
|
149
|
+
|
|
150
|
+
jobs = max(1, min(int(jobs), total))
|
|
151
|
+
base, extra = divmod(total, jobs)
|
|
152
|
+
start = 0
|
|
153
|
+
for i in range(jobs):
|
|
154
|
+
size = base + (1 if i < extra else 0)
|
|
155
|
+
if size <= 0:
|
|
156
|
+
continue
|
|
157
|
+
end = start + size
|
|
158
|
+
yield start, end
|
|
159
|
+
start = end
|
|
160
|
+
|
|
161
|
+
|
|
162
|
+
def _neighbor_sums_worker(
|
|
163
|
+
start: int,
|
|
164
|
+
end: int,
|
|
165
|
+
neighbor_indices: Sequence[Sequence[int]],
|
|
166
|
+
cos_th: Sequence[float],
|
|
167
|
+
sin_th: Sequence[float],
|
|
168
|
+
epi: Sequence[float],
|
|
169
|
+
vf: Sequence[float],
|
|
170
|
+
x_base: Sequence[float],
|
|
171
|
+
y_base: Sequence[float],
|
|
172
|
+
epi_base: Sequence[float],
|
|
173
|
+
vf_base: Sequence[float],
|
|
174
|
+
count_base: Sequence[float],
|
|
175
|
+
deg_base: Sequence[float] | None,
|
|
176
|
+
deg_list: Sequence[float] | None,
|
|
177
|
+
degs_list: Sequence[float] | None,
|
|
178
|
+
) -> tuple[int, list[float], list[float], list[float], list[float], list[float], list[float] | None]:
|
|
179
|
+
"""Return partial neighbour sums for the ``[start, end)`` range."""
|
|
180
|
+
|
|
181
|
+
chunk_x: list[float] = []
|
|
182
|
+
chunk_y: list[float] = []
|
|
183
|
+
chunk_epi: list[float] = []
|
|
184
|
+
chunk_vf: list[float] = []
|
|
185
|
+
chunk_count: list[float] = []
|
|
186
|
+
chunk_deg: list[float] | None = [] if deg_base is not None else None
|
|
187
|
+
|
|
188
|
+
for offset, idx in enumerate(range(start, end)):
|
|
189
|
+
neighbors = neighbor_indices[idx]
|
|
190
|
+
x_i = float(x_base[offset])
|
|
191
|
+
y_i = float(y_base[offset])
|
|
192
|
+
epi_i = float(epi_base[offset])
|
|
193
|
+
vf_i = float(vf_base[offset])
|
|
194
|
+
count_i = float(count_base[offset])
|
|
195
|
+
if deg_base is not None and chunk_deg is not None:
|
|
196
|
+
deg_i_acc = float(deg_base[offset])
|
|
197
|
+
else:
|
|
198
|
+
deg_i_acc = 0.0
|
|
199
|
+
deg_i = float(degs_list[idx]) if degs_list is not None else 0.0
|
|
200
|
+
|
|
201
|
+
for neighbor_idx in neighbors:
|
|
202
|
+
x_i += float(cos_th[neighbor_idx])
|
|
203
|
+
y_i += float(sin_th[neighbor_idx])
|
|
204
|
+
epi_i += float(epi[neighbor_idx])
|
|
205
|
+
vf_i += float(vf[neighbor_idx])
|
|
206
|
+
count_i += 1.0
|
|
207
|
+
if chunk_deg is not None:
|
|
208
|
+
if deg_list is not None:
|
|
209
|
+
deg_i_acc += float(deg_list[neighbor_idx])
|
|
210
|
+
else:
|
|
211
|
+
deg_i_acc += deg_i
|
|
212
|
+
|
|
213
|
+
chunk_x.append(x_i)
|
|
214
|
+
chunk_y.append(y_i)
|
|
215
|
+
chunk_epi.append(epi_i)
|
|
216
|
+
chunk_vf.append(vf_i)
|
|
217
|
+
chunk_count.append(count_i)
|
|
218
|
+
if chunk_deg is not None:
|
|
219
|
+
chunk_deg.append(deg_i_acc)
|
|
220
|
+
|
|
221
|
+
return (
|
|
222
|
+
start,
|
|
223
|
+
chunk_x,
|
|
224
|
+
chunk_y,
|
|
225
|
+
chunk_epi,
|
|
226
|
+
chunk_vf,
|
|
227
|
+
chunk_count,
|
|
228
|
+
chunk_deg,
|
|
229
|
+
)
|
|
230
|
+
|
|
231
|
+
|
|
232
|
+
def _dnfr_gradients_worker(
|
|
233
|
+
start: int,
|
|
234
|
+
end: int,
|
|
235
|
+
nodes: Sequence[NodeId],
|
|
236
|
+
theta: list[float],
|
|
237
|
+
epi: list[float],
|
|
238
|
+
vf: list[float],
|
|
239
|
+
th_bar: list[float],
|
|
240
|
+
epi_bar: list[float],
|
|
241
|
+
vf_bar: list[float],
|
|
242
|
+
deg_bar: list[float] | None,
|
|
243
|
+
degs: Mapping[Any, float] | Sequence[float] | None,
|
|
244
|
+
w_phase: float,
|
|
245
|
+
w_epi: float,
|
|
246
|
+
w_vf: float,
|
|
247
|
+
w_topo: float,
|
|
248
|
+
) -> tuple[int, list[float]]:
|
|
249
|
+
"""Return partial ΔNFR gradients for the ``[start, end)`` range."""
|
|
250
|
+
|
|
251
|
+
chunk: list[float] = []
|
|
252
|
+
for idx in range(start, end):
|
|
253
|
+
n = nodes[idx]
|
|
254
|
+
g_phase = -angle_diff(theta[idx], th_bar[idx]) / math.pi
|
|
255
|
+
g_epi = epi_bar[idx] - epi[idx]
|
|
256
|
+
g_vf = vf_bar[idx] - vf[idx]
|
|
257
|
+
if w_topo != 0.0 and deg_bar is not None and degs is not None:
|
|
258
|
+
if isinstance(degs, dict):
|
|
259
|
+
deg_i = float(degs.get(n, 0))
|
|
260
|
+
else:
|
|
261
|
+
deg_i = float(degs[idx])
|
|
262
|
+
g_topo = deg_bar[idx] - deg_i
|
|
263
|
+
else:
|
|
264
|
+
g_topo = 0.0
|
|
265
|
+
chunk.append(w_phase * g_phase + w_epi * g_epi + w_vf * g_vf + w_topo * g_topo)
|
|
266
|
+
return start, chunk
|
|
267
|
+
|
|
268
|
+
|
|
269
|
+
def _resolve_parallel_jobs(n_jobs: int | None, total: int) -> int | None:
|
|
270
|
+
"""Return an effective worker count for ``total`` items or ``None``."""
|
|
271
|
+
|
|
272
|
+
if n_jobs is None:
|
|
273
|
+
return None
|
|
274
|
+
try:
|
|
275
|
+
jobs = int(n_jobs)
|
|
276
|
+
except (TypeError, ValueError):
|
|
277
|
+
return None
|
|
278
|
+
if jobs <= 1 or total <= 1:
|
|
279
|
+
return None
|
|
280
|
+
return max(1, min(jobs, total))
|
|
281
|
+
|
|
282
|
+
|
|
283
|
+
def _is_numpy_like(obj) -> bool:
|
|
284
|
+
return getattr(obj, "dtype", None) is not None and getattr(obj, "shape", None) is not None
|
|
285
|
+
|
|
286
|
+
|
|
287
|
+
def _has_cached_numpy_buffers(data: dict, cache: DnfrCache | None) -> bool:
|
|
288
|
+
for attr in _NUMPY_CACHE_ATTRS:
|
|
289
|
+
arr = data.get(attr)
|
|
290
|
+
if _is_numpy_like(arr):
|
|
291
|
+
return True
|
|
292
|
+
if cache is not None:
|
|
293
|
+
for attr in _NUMPY_CACHE_ATTRS:
|
|
294
|
+
arr = getattr(cache, attr, None)
|
|
295
|
+
if _is_numpy_like(arr):
|
|
296
|
+
return True
|
|
297
|
+
A = data.get("A")
|
|
298
|
+
if _is_numpy_like(A):
|
|
299
|
+
return True
|
|
300
|
+
return False
|
|
301
|
+
|
|
302
|
+
|
|
303
|
+
__all__ = (
|
|
304
|
+
"default_compute_delta_nfr",
|
|
305
|
+
"set_delta_nfr_hook",
|
|
306
|
+
"dnfr_phase_only",
|
|
307
|
+
"dnfr_epi_vf_mixed",
|
|
308
|
+
"dnfr_laplacian",
|
|
309
|
+
)
|
|
310
|
+
|
|
311
|
+
|
|
312
|
+
def _write_dnfr_metadata(
|
|
313
|
+
G, *, weights: dict, hook_name: str, note: str | None = None
|
|
314
|
+
) -> None:
|
|
315
|
+
"""Write a ``_DNFR_META`` block in ``G.graph`` with the mix and hook name.
|
|
316
|
+
|
|
317
|
+
``weights`` may include arbitrary components (phase/epi/vf/topo/etc.).
|
|
318
|
+
"""
|
|
319
|
+
weights_norm = normalize_weights(weights, weights.keys())
|
|
320
|
+
meta = {
|
|
321
|
+
"hook": hook_name,
|
|
322
|
+
"weights_raw": dict(weights),
|
|
323
|
+
"weights_norm": weights_norm,
|
|
324
|
+
"components": [k for k, v in weights_norm.items() if v != 0.0],
|
|
325
|
+
"doc": "ΔNFR = Σ w_i·g_i",
|
|
326
|
+
}
|
|
327
|
+
if note:
|
|
328
|
+
meta["note"] = str(note)
|
|
329
|
+
G.graph["_DNFR_META"] = meta
|
|
330
|
+
G.graph["_dnfr_hook_name"] = hook_name # string friendly
|
|
331
|
+
|
|
332
|
+
|
|
333
|
+
def _configure_dnfr_weights(G) -> dict:
|
|
334
|
+
"""Normalise and store ΔNFR weights in ``G.graph['_dnfr_weights']``.
|
|
335
|
+
|
|
336
|
+
Uses ``G.graph['DNFR_WEIGHTS']`` or default values. The result is a
|
|
337
|
+
dictionary of normalised components reused at each simulation step
|
|
338
|
+
without recomputing the mix.
|
|
339
|
+
"""
|
|
340
|
+
weights = merge_and_normalize_weights(
|
|
341
|
+
G, "DNFR_WEIGHTS", ("phase", "epi", "vf", "topo"), default=0.0
|
|
342
|
+
)
|
|
343
|
+
G.graph["_dnfr_weights"] = weights
|
|
344
|
+
return weights
|
|
345
|
+
|
|
346
|
+
|
|
347
|
+
def _init_dnfr_cache(
|
|
348
|
+
G: TNFRGraph,
|
|
349
|
+
nodes: Sequence[NodeId],
|
|
350
|
+
cache_or_manager: CacheManager | DnfrCache | None = None,
|
|
351
|
+
checksum: Any | None = None,
|
|
352
|
+
force_refresh: bool = False,
|
|
353
|
+
*,
|
|
354
|
+
manager: CacheManager | None = None,
|
|
355
|
+
) -> tuple[
|
|
356
|
+
DnfrCache,
|
|
357
|
+
dict[NodeId, int],
|
|
358
|
+
list[float],
|
|
359
|
+
list[float],
|
|
360
|
+
list[float],
|
|
361
|
+
list[float],
|
|
362
|
+
list[float],
|
|
363
|
+
bool,
|
|
364
|
+
]:
|
|
365
|
+
"""Initialise or reuse cached ΔNFR arrays.
|
|
366
|
+
|
|
367
|
+
``manager`` telemetry became mandatory in TNFR 9.0 to expose cache hits,
|
|
368
|
+
misses and timings. Older callers still pass a ``cache`` instance as the
|
|
369
|
+
third positional argument; this helper supports both signatures by seeding
|
|
370
|
+
the manager-backed state with the provided cache when necessary.
|
|
371
|
+
"""
|
|
372
|
+
|
|
373
|
+
if manager is None and isinstance(cache_or_manager, CacheManager):
|
|
374
|
+
manager = cache_or_manager
|
|
375
|
+
cache_or_manager = None
|
|
376
|
+
|
|
377
|
+
if manager is None:
|
|
378
|
+
manager = _graph_cache_manager(G.graph)
|
|
379
|
+
|
|
380
|
+
graph = G.graph
|
|
381
|
+
state = manager.get(DNFR_PREP_STATE_KEY)
|
|
382
|
+
if not isinstance(state, DnfrPrepState):
|
|
383
|
+
manager.clear(DNFR_PREP_STATE_KEY)
|
|
384
|
+
state = manager.get(DNFR_PREP_STATE_KEY)
|
|
385
|
+
|
|
386
|
+
if isinstance(cache_or_manager, DnfrCache):
|
|
387
|
+
state.cache = cache_or_manager
|
|
388
|
+
if checksum is None:
|
|
389
|
+
checksum = cache_or_manager.checksum
|
|
390
|
+
|
|
391
|
+
cache = state.cache
|
|
392
|
+
reuse = (
|
|
393
|
+
not force_refresh
|
|
394
|
+
and isinstance(cache, DnfrCache)
|
|
395
|
+
and cache.checksum == checksum
|
|
396
|
+
and len(cache.theta) == len(nodes)
|
|
397
|
+
)
|
|
398
|
+
if reuse:
|
|
399
|
+
manager.increment_hit(DNFR_PREP_STATE_KEY)
|
|
400
|
+
graph["_dnfr_prep_cache"] = cache
|
|
401
|
+
return (
|
|
402
|
+
cache,
|
|
403
|
+
cache.idx,
|
|
404
|
+
cache.theta,
|
|
405
|
+
cache.epi,
|
|
406
|
+
cache.vf,
|
|
407
|
+
cache.cos_theta,
|
|
408
|
+
cache.sin_theta,
|
|
409
|
+
False,
|
|
410
|
+
)
|
|
411
|
+
|
|
412
|
+
def _rebuild(current: DnfrPrepState | Any) -> DnfrPrepState:
|
|
413
|
+
if not isinstance(current, DnfrPrepState):
|
|
414
|
+
raise RuntimeError("ΔNFR prep state unavailable during rebuild")
|
|
415
|
+
prev_cache = current.cache if isinstance(current.cache, DnfrCache) else None
|
|
416
|
+
idx_local = {n: i for i, n in enumerate(nodes)}
|
|
417
|
+
size = len(nodes)
|
|
418
|
+
zeros = [0.0] * size
|
|
419
|
+
if prev_cache is None:
|
|
420
|
+
cache_new = DnfrCache(
|
|
421
|
+
idx=idx_local,
|
|
422
|
+
theta=zeros.copy(),
|
|
423
|
+
epi=zeros.copy(),
|
|
424
|
+
vf=zeros.copy(),
|
|
425
|
+
cos_theta=[1.0] * size,
|
|
426
|
+
sin_theta=[0.0] * size,
|
|
427
|
+
neighbor_x=zeros.copy(),
|
|
428
|
+
neighbor_y=zeros.copy(),
|
|
429
|
+
neighbor_epi_sum=zeros.copy(),
|
|
430
|
+
neighbor_vf_sum=zeros.copy(),
|
|
431
|
+
neighbor_count=zeros.copy(),
|
|
432
|
+
neighbor_deg_sum=zeros.copy() if size else [],
|
|
433
|
+
degs=None,
|
|
434
|
+
edge_src=None,
|
|
435
|
+
edge_dst=None,
|
|
436
|
+
checksum=checksum,
|
|
437
|
+
)
|
|
438
|
+
else:
|
|
439
|
+
cache_new = prev_cache
|
|
440
|
+
cache_new.idx = idx_local
|
|
441
|
+
cache_new.theta = zeros.copy()
|
|
442
|
+
cache_new.epi = zeros.copy()
|
|
443
|
+
cache_new.vf = zeros.copy()
|
|
444
|
+
cache_new.cos_theta = [1.0] * size
|
|
445
|
+
cache_new.sin_theta = [0.0] * size
|
|
446
|
+
cache_new.neighbor_x = zeros.copy()
|
|
447
|
+
cache_new.neighbor_y = zeros.copy()
|
|
448
|
+
cache_new.neighbor_epi_sum = zeros.copy()
|
|
449
|
+
cache_new.neighbor_vf_sum = zeros.copy()
|
|
450
|
+
cache_new.neighbor_count = zeros.copy()
|
|
451
|
+
cache_new.neighbor_deg_sum = zeros.copy() if size else []
|
|
452
|
+
|
|
453
|
+
# Reset any numpy mirrors or aggregated buffers to avoid leaking
|
|
454
|
+
# state across refresh cycles (e.g. switching between vectorised
|
|
455
|
+
# and Python paths or reusing legacy caches).
|
|
456
|
+
for attr in _NUMPY_CACHE_ATTRS:
|
|
457
|
+
setattr(cache_new, attr, None)
|
|
458
|
+
for attr in (
|
|
459
|
+
"th_bar_np",
|
|
460
|
+
"epi_bar_np",
|
|
461
|
+
"vf_bar_np",
|
|
462
|
+
"deg_bar_np",
|
|
463
|
+
"grad_phase_np",
|
|
464
|
+
"grad_epi_np",
|
|
465
|
+
"grad_vf_np",
|
|
466
|
+
"grad_topo_np",
|
|
467
|
+
"grad_total_np",
|
|
468
|
+
):
|
|
469
|
+
setattr(cache_new, attr, None)
|
|
470
|
+
cache_new.edge_src = None
|
|
471
|
+
cache_new.edge_dst = None
|
|
472
|
+
cache_new.edge_signature = None
|
|
473
|
+
cache_new.neighbor_accum_signature = None
|
|
474
|
+
cache_new.degs = prev_cache.degs if prev_cache else None
|
|
475
|
+
cache_new.checksum = checksum
|
|
476
|
+
current.cache = cache_new
|
|
477
|
+
graph["_dnfr_prep_cache"] = cache_new
|
|
478
|
+
return current
|
|
479
|
+
|
|
480
|
+
with manager.timer(DNFR_PREP_STATE_KEY):
|
|
481
|
+
state = manager.update(DNFR_PREP_STATE_KEY, _rebuild)
|
|
482
|
+
manager.increment_miss(DNFR_PREP_STATE_KEY)
|
|
483
|
+
cache = state.cache
|
|
484
|
+
if not isinstance(cache, DnfrCache): # pragma: no cover - defensive guard
|
|
485
|
+
raise RuntimeError("ΔNFR cache initialisation failed")
|
|
486
|
+
return (
|
|
487
|
+
cache,
|
|
488
|
+
cache.idx,
|
|
489
|
+
cache.theta,
|
|
490
|
+
cache.epi,
|
|
491
|
+
cache.vf,
|
|
492
|
+
cache.cos_theta,
|
|
493
|
+
cache.sin_theta,
|
|
494
|
+
True,
|
|
495
|
+
)
|
|
496
|
+
|
|
497
|
+
|
|
498
|
+
def _ensure_numpy_vectors(cache: DnfrCache, np: ModuleType) -> DnfrCacheVectors:
|
|
499
|
+
"""Ensure NumPy copies of cached vectors are initialised and up to date."""
|
|
500
|
+
|
|
501
|
+
if cache is None:
|
|
502
|
+
return (None, None, None, None, None)
|
|
503
|
+
|
|
504
|
+
arrays = []
|
|
505
|
+
for attr_np, source_attr in (
|
|
506
|
+
("theta_np", "theta"),
|
|
507
|
+
("epi_np", "epi"),
|
|
508
|
+
("vf_np", "vf"),
|
|
509
|
+
("cos_theta_np", "cos_theta"),
|
|
510
|
+
("sin_theta_np", "sin_theta"),
|
|
511
|
+
):
|
|
512
|
+
src = getattr(cache, source_attr)
|
|
513
|
+
arr = getattr(cache, attr_np)
|
|
514
|
+
if src is None:
|
|
515
|
+
setattr(cache, attr_np, None)
|
|
516
|
+
arrays.append(None)
|
|
517
|
+
continue
|
|
518
|
+
if arr is None or len(arr) != len(src):
|
|
519
|
+
arr = np.array(src, dtype=float)
|
|
520
|
+
else:
|
|
521
|
+
np.copyto(arr, src, casting="unsafe")
|
|
522
|
+
setattr(cache, attr_np, arr)
|
|
523
|
+
arrays.append(arr)
|
|
524
|
+
return tuple(arrays)
|
|
525
|
+
|
|
526
|
+
|
|
527
|
+
def _ensure_numpy_degrees(
|
|
528
|
+
cache: DnfrCache,
|
|
529
|
+
deg_list: Sequence[float] | None,
|
|
530
|
+
np: ModuleType,
|
|
531
|
+
) -> np.ndarray | None:
|
|
532
|
+
"""Initialise/update NumPy array mirroring ``deg_list``."""
|
|
533
|
+
|
|
534
|
+
if deg_list is None:
|
|
535
|
+
if cache is not None:
|
|
536
|
+
cache.deg_array = None
|
|
537
|
+
return None
|
|
538
|
+
if cache is None:
|
|
539
|
+
return np.array(deg_list, dtype=float)
|
|
540
|
+
arr = cache.deg_array
|
|
541
|
+
if arr is None or len(arr) != len(deg_list):
|
|
542
|
+
arr = np.array(deg_list, dtype=float)
|
|
543
|
+
else:
|
|
544
|
+
np.copyto(arr, deg_list, casting="unsafe")
|
|
545
|
+
cache.deg_array = arr
|
|
546
|
+
return arr
|
|
547
|
+
|
|
548
|
+
|
|
549
|
+
def _resolve_numpy_degree_array(
|
|
550
|
+
data: MutableMapping[str, Any],
|
|
551
|
+
count: np.ndarray | None,
|
|
552
|
+
*,
|
|
553
|
+
cache: DnfrCache | None,
|
|
554
|
+
np: ModuleType,
|
|
555
|
+
) -> np.ndarray | None:
|
|
556
|
+
"""Return the vector of node degrees required for topology gradients."""
|
|
557
|
+
|
|
558
|
+
if data["w_topo"] == 0.0:
|
|
559
|
+
return None
|
|
560
|
+
deg_array = data.get("deg_array")
|
|
561
|
+
if deg_array is not None:
|
|
562
|
+
return deg_array
|
|
563
|
+
deg_list = data.get("deg_list")
|
|
564
|
+
if deg_list is not None:
|
|
565
|
+
deg_array = np.array(deg_list, dtype=float)
|
|
566
|
+
data["deg_array"] = deg_array
|
|
567
|
+
if cache is not None:
|
|
568
|
+
cache.deg_array = deg_array
|
|
569
|
+
return deg_array
|
|
570
|
+
return count
|
|
571
|
+
|
|
572
|
+
|
|
573
|
+
def _ensure_cached_array(
|
|
574
|
+
cache: DnfrCache | None,
|
|
575
|
+
attr: str,
|
|
576
|
+
shape: tuple[int, ...],
|
|
577
|
+
np: ModuleType,
|
|
578
|
+
) -> np.ndarray:
|
|
579
|
+
"""Return a cached NumPy buffer with ``shape`` creating/reusing it."""
|
|
580
|
+
|
|
581
|
+
if np is None:
|
|
582
|
+
raise RuntimeError("NumPy is required to build cached arrays")
|
|
583
|
+
arr = getattr(cache, attr) if cache is not None else None
|
|
584
|
+
if arr is None or getattr(arr, "shape", None) != shape:
|
|
585
|
+
arr = np.empty(shape, dtype=float)
|
|
586
|
+
if cache is not None:
|
|
587
|
+
setattr(cache, attr, arr)
|
|
588
|
+
return arr
|
|
589
|
+
|
|
590
|
+
|
|
591
|
+
def _ensure_numpy_state_vectors(data: MutableMapping[str, Any], np: ModuleType) -> DnfrVectorMap:
|
|
592
|
+
"""Synchronise list-based state vectors with their NumPy counterparts."""
|
|
593
|
+
|
|
594
|
+
nodes = data.get("nodes") or ()
|
|
595
|
+
size = len(nodes)
|
|
596
|
+
cache: DnfrCache | None = data.get("cache")
|
|
597
|
+
|
|
598
|
+
if cache is not None:
|
|
599
|
+
theta_np, epi_np, vf_np, cos_np, sin_np = _ensure_numpy_vectors(cache, np)
|
|
600
|
+
for key, arr in (
|
|
601
|
+
("theta_np", theta_np),
|
|
602
|
+
("epi_np", epi_np),
|
|
603
|
+
("vf_np", vf_np),
|
|
604
|
+
("cos_theta_np", cos_np),
|
|
605
|
+
("sin_theta_np", sin_np),
|
|
606
|
+
):
|
|
607
|
+
if arr is not None and getattr(arr, "shape", None) == (size,):
|
|
608
|
+
data[key] = arr
|
|
609
|
+
|
|
610
|
+
mapping = (
|
|
611
|
+
("theta_np", "theta"),
|
|
612
|
+
("epi_np", "epi"),
|
|
613
|
+
("vf_np", "vf"),
|
|
614
|
+
("cos_theta_np", "cos_theta"),
|
|
615
|
+
("sin_theta_np", "sin_theta"),
|
|
616
|
+
)
|
|
617
|
+
for np_key, src_key in mapping:
|
|
618
|
+
src = data.get(src_key)
|
|
619
|
+
if src is None:
|
|
620
|
+
continue
|
|
621
|
+
arr = data.get(np_key)
|
|
622
|
+
if arr is None or getattr(arr, "shape", None) != (size,):
|
|
623
|
+
arr = np.array(src, dtype=float)
|
|
624
|
+
elif cache is None:
|
|
625
|
+
np.copyto(arr, src, casting="unsafe")
|
|
626
|
+
data[np_key] = arr
|
|
627
|
+
if cache is not None:
|
|
628
|
+
setattr(cache, np_key, arr)
|
|
629
|
+
|
|
630
|
+
return {
|
|
631
|
+
"theta": data.get("theta_np"),
|
|
632
|
+
"epi": data.get("epi_np"),
|
|
633
|
+
"vf": data.get("vf_np"),
|
|
634
|
+
"cos": data.get("cos_theta_np"),
|
|
635
|
+
"sin": data.get("sin_theta_np"),
|
|
636
|
+
}
|
|
637
|
+
|
|
638
|
+
|
|
639
|
+
def _build_edge_index_arrays(
|
|
640
|
+
G: TNFRGraph,
|
|
641
|
+
nodes: Sequence[NodeId],
|
|
642
|
+
idx: Mapping[NodeId, int],
|
|
643
|
+
np: ModuleType,
|
|
644
|
+
) -> tuple[np.ndarray, np.ndarray]:
|
|
645
|
+
"""Create (src, dst) index arrays for ``G`` respecting ``nodes`` order."""
|
|
646
|
+
|
|
647
|
+
if np is None:
|
|
648
|
+
return None, None
|
|
649
|
+
if not nodes:
|
|
650
|
+
empty = np.empty(0, dtype=np.intp)
|
|
651
|
+
return empty, empty
|
|
652
|
+
|
|
653
|
+
src = []
|
|
654
|
+
dst = []
|
|
655
|
+
append_src = src.append
|
|
656
|
+
append_dst = dst.append
|
|
657
|
+
for node in nodes:
|
|
658
|
+
i = idx.get(node)
|
|
659
|
+
if i is None:
|
|
660
|
+
continue
|
|
661
|
+
for neighbor in G.neighbors(node):
|
|
662
|
+
j = idx.get(neighbor)
|
|
663
|
+
if j is None:
|
|
664
|
+
continue
|
|
665
|
+
append_src(i)
|
|
666
|
+
append_dst(j)
|
|
667
|
+
if not src:
|
|
668
|
+
empty = np.empty(0, dtype=np.intp)
|
|
669
|
+
return empty, empty
|
|
670
|
+
edge_src = np.asarray(src, dtype=np.intp)
|
|
671
|
+
edge_dst = np.asarray(dst, dtype=np.intp)
|
|
672
|
+
return edge_src, edge_dst
|
|
673
|
+
|
|
674
|
+
|
|
675
|
+
def _refresh_dnfr_vectors(
|
|
676
|
+
G: TNFRGraph, nodes: Sequence[NodeId], cache: DnfrCache
|
|
677
|
+
) -> None:
|
|
678
|
+
"""Update cached angle and state vectors for ΔNFR."""
|
|
679
|
+
np_module = get_numpy()
|
|
680
|
+
trig = compute_theta_trig(((n, G.nodes[n]) for n in nodes), np=np_module)
|
|
681
|
+
use_numpy = _should_vectorize(G, np_module)
|
|
682
|
+
for index, node in enumerate(nodes):
|
|
683
|
+
i: int = int(index)
|
|
684
|
+
node_id: NodeId = node
|
|
685
|
+
nd = G.nodes[node_id]
|
|
686
|
+
cache.theta[i] = trig.theta[node_id]
|
|
687
|
+
cache.epi[i] = get_attr(nd, ALIAS_EPI, 0.0)
|
|
688
|
+
cache.vf[i] = get_attr(nd, ALIAS_VF, 0.0)
|
|
689
|
+
cache.cos_theta[i] = trig.cos[node_id]
|
|
690
|
+
cache.sin_theta[i] = trig.sin[node_id]
|
|
691
|
+
if use_numpy:
|
|
692
|
+
_ensure_numpy_vectors(cache, np_module)
|
|
693
|
+
else:
|
|
694
|
+
cache.theta_np = None
|
|
695
|
+
cache.epi_np = None
|
|
696
|
+
cache.vf_np = None
|
|
697
|
+
cache.cos_theta_np = None
|
|
698
|
+
cache.sin_theta_np = None
|
|
699
|
+
|
|
700
|
+
|
|
701
|
+
def _prepare_dnfr_data(G: TNFRGraph, *, cache_size: int | None = 128) -> dict[str, Any]:
|
|
702
|
+
"""Precompute common data for ΔNFR strategies.
|
|
703
|
+
|
|
704
|
+
The helper decides between edge-wise and dense adjacency accumulation
|
|
705
|
+
heuristically. Graphs whose edge density exceeds
|
|
706
|
+
``_SPARSE_DENSITY_THRESHOLD`` receive a cached adjacency matrix so the
|
|
707
|
+
dense path can be exercised; callers may also force the dense mode by
|
|
708
|
+
setting ``G.graph['dnfr_force_dense']`` to a truthy value.
|
|
709
|
+
"""
|
|
710
|
+
graph = G.graph
|
|
711
|
+
weights = graph.get("_dnfr_weights")
|
|
712
|
+
if weights is None:
|
|
713
|
+
weights = _configure_dnfr_weights(G)
|
|
714
|
+
|
|
715
|
+
result: dict[str, Any] = {
|
|
716
|
+
"weights": weights,
|
|
717
|
+
"cache_size": cache_size,
|
|
718
|
+
}
|
|
719
|
+
|
|
720
|
+
np_module = get_numpy()
|
|
721
|
+
use_numpy = _should_vectorize(G, np_module)
|
|
722
|
+
|
|
723
|
+
nodes = cast(tuple[NodeId, ...], cached_node_list(G))
|
|
724
|
+
edge_count = G.number_of_edges()
|
|
725
|
+
prefer_sparse = False
|
|
726
|
+
dense_override = bool(G.graph.get("dnfr_force_dense"))
|
|
727
|
+
if use_numpy:
|
|
728
|
+
prefer_sparse = _prefer_sparse_accumulation(len(nodes), edge_count)
|
|
729
|
+
if dense_override:
|
|
730
|
+
prefer_sparse = False
|
|
731
|
+
nodes_cached, A_untyped = cached_nodes_and_A(
|
|
732
|
+
G,
|
|
733
|
+
cache_size=cache_size,
|
|
734
|
+
require_numpy=False,
|
|
735
|
+
prefer_sparse=prefer_sparse,
|
|
736
|
+
nodes=nodes,
|
|
737
|
+
)
|
|
738
|
+
nodes = cast(tuple[NodeId, ...], nodes_cached)
|
|
739
|
+
A: np.ndarray | None = A_untyped
|
|
740
|
+
result["nodes"] = nodes
|
|
741
|
+
result["A"] = A
|
|
742
|
+
manager = _graph_cache_manager(G.graph)
|
|
743
|
+
checksum = G.graph.get("_dnfr_nodes_checksum")
|
|
744
|
+
dirty_flag = bool(G.graph.pop("_dnfr_prep_dirty", False))
|
|
745
|
+
existing_cache = cast(DnfrCache | None, graph.get("_dnfr_prep_cache"))
|
|
746
|
+
cache, idx, theta, epi, vf, cos_theta, sin_theta, refreshed = _init_dnfr_cache(
|
|
747
|
+
G,
|
|
748
|
+
nodes,
|
|
749
|
+
existing_cache,
|
|
750
|
+
checksum,
|
|
751
|
+
force_refresh=dirty_flag,
|
|
752
|
+
manager=manager,
|
|
753
|
+
)
|
|
754
|
+
dirty = dirty_flag or refreshed
|
|
755
|
+
result["cache"] = cache
|
|
756
|
+
result["idx"] = idx
|
|
757
|
+
result["theta"] = theta
|
|
758
|
+
result["epi"] = epi
|
|
759
|
+
result["vf"] = vf
|
|
760
|
+
result["cos_theta"] = cos_theta
|
|
761
|
+
result["sin_theta"] = sin_theta
|
|
762
|
+
if cache is not None:
|
|
763
|
+
_refresh_dnfr_vectors(G, nodes, cache)
|
|
764
|
+
if np_module is None:
|
|
765
|
+
for attr in (
|
|
766
|
+
"neighbor_x_np",
|
|
767
|
+
"neighbor_y_np",
|
|
768
|
+
"neighbor_epi_sum_np",
|
|
769
|
+
"neighbor_vf_sum_np",
|
|
770
|
+
"neighbor_count_np",
|
|
771
|
+
"neighbor_deg_sum_np",
|
|
772
|
+
"neighbor_inv_count_np",
|
|
773
|
+
"neighbor_cos_avg_np",
|
|
774
|
+
"neighbor_sin_avg_np",
|
|
775
|
+
"neighbor_mean_tmp_np",
|
|
776
|
+
"neighbor_mean_length_np",
|
|
777
|
+
"neighbor_accum_np",
|
|
778
|
+
"neighbor_edge_values_np",
|
|
779
|
+
):
|
|
780
|
+
setattr(cache, attr, None)
|
|
781
|
+
cache.neighbor_accum_signature = None
|
|
782
|
+
for attr in (
|
|
783
|
+
"th_bar_np",
|
|
784
|
+
"epi_bar_np",
|
|
785
|
+
"vf_bar_np",
|
|
786
|
+
"deg_bar_np",
|
|
787
|
+
"grad_phase_np",
|
|
788
|
+
"grad_epi_np",
|
|
789
|
+
"grad_vf_np",
|
|
790
|
+
"grad_topo_np",
|
|
791
|
+
"grad_total_np",
|
|
792
|
+
):
|
|
793
|
+
setattr(cache, attr, None)
|
|
794
|
+
|
|
795
|
+
w_phase = float(weights.get("phase", 0.0))
|
|
796
|
+
w_epi = float(weights.get("epi", 0.0))
|
|
797
|
+
w_vf = float(weights.get("vf", 0.0))
|
|
798
|
+
w_topo = float(weights.get("topo", 0.0))
|
|
799
|
+
result["w_phase"] = w_phase
|
|
800
|
+
result["w_epi"] = w_epi
|
|
801
|
+
result["w_vf"] = w_vf
|
|
802
|
+
result["w_topo"] = w_topo
|
|
803
|
+
degree_map = cast(dict[NodeId, float] | None, cache.degs if cache else None)
|
|
804
|
+
if cache is not None and dirty:
|
|
805
|
+
cache.degs = None
|
|
806
|
+
cache.deg_list = None
|
|
807
|
+
cache.deg_array = None
|
|
808
|
+
cache.edge_src = None
|
|
809
|
+
cache.edge_dst = None
|
|
810
|
+
cache.edge_signature = None
|
|
811
|
+
cache.neighbor_accum_signature = None
|
|
812
|
+
cache.neighbor_accum_np = None
|
|
813
|
+
cache.neighbor_edge_values_np = None
|
|
814
|
+
degree_map = None
|
|
815
|
+
if degree_map is None or len(degree_map) != len(G):
|
|
816
|
+
degree_map = {cast(NodeId, node): float(deg) for node, deg in G.degree()}
|
|
817
|
+
if cache is not None:
|
|
818
|
+
cache.degs = degree_map
|
|
819
|
+
|
|
820
|
+
G.graph["_dnfr_prep_dirty"] = False
|
|
821
|
+
|
|
822
|
+
if (
|
|
823
|
+
cache is not None
|
|
824
|
+
and cache.deg_list is not None
|
|
825
|
+
and not dirty
|
|
826
|
+
and len(cache.deg_list) == len(nodes)
|
|
827
|
+
):
|
|
828
|
+
deg_list = cache.deg_list
|
|
829
|
+
else:
|
|
830
|
+
deg_list = [float(degree_map.get(node, 0.0)) for node in nodes]
|
|
831
|
+
if cache is not None:
|
|
832
|
+
cache.deg_list = deg_list
|
|
833
|
+
|
|
834
|
+
if w_topo != 0.0:
|
|
835
|
+
degs: dict[NodeId, float] | None = degree_map
|
|
836
|
+
else:
|
|
837
|
+
degs = None
|
|
838
|
+
result["degs"] = degs
|
|
839
|
+
result["deg_list"] = deg_list
|
|
840
|
+
|
|
841
|
+
deg_array: np.ndarray | None = None
|
|
842
|
+
if np_module is not None and deg_list is not None:
|
|
843
|
+
if cache is not None:
|
|
844
|
+
deg_array = _ensure_numpy_degrees(cache, deg_list, np_module)
|
|
845
|
+
else:
|
|
846
|
+
deg_array = np_module.array(deg_list, dtype=float)
|
|
847
|
+
elif cache is not None:
|
|
848
|
+
cache.deg_array = None
|
|
849
|
+
|
|
850
|
+
theta_np: np.ndarray | None
|
|
851
|
+
epi_np: np.ndarray | None
|
|
852
|
+
vf_np: np.ndarray | None
|
|
853
|
+
cos_theta_np: np.ndarray | None
|
|
854
|
+
sin_theta_np: np.ndarray | None
|
|
855
|
+
edge_src: np.ndarray | None
|
|
856
|
+
edge_dst: np.ndarray | None
|
|
857
|
+
if use_numpy:
|
|
858
|
+
theta_np, epi_np, vf_np, cos_theta_np, sin_theta_np = _ensure_numpy_vectors(
|
|
859
|
+
cache, np_module
|
|
860
|
+
)
|
|
861
|
+
edge_src = None
|
|
862
|
+
edge_dst = None
|
|
863
|
+
if cache is not None:
|
|
864
|
+
edge_src = cache.edge_src
|
|
865
|
+
edge_dst = cache.edge_dst
|
|
866
|
+
if edge_src is None or edge_dst is None or dirty:
|
|
867
|
+
edge_src, edge_dst = _build_edge_index_arrays(
|
|
868
|
+
G, nodes, idx, np_module
|
|
869
|
+
)
|
|
870
|
+
cache.edge_src = edge_src
|
|
871
|
+
cache.edge_dst = edge_dst
|
|
872
|
+
else:
|
|
873
|
+
edge_src, edge_dst = _build_edge_index_arrays(G, nodes, idx, np_module)
|
|
874
|
+
|
|
875
|
+
if cache is not None:
|
|
876
|
+
for attr in ("neighbor_accum_np", "neighbor_edge_values_np"):
|
|
877
|
+
arr = getattr(cache, attr, None)
|
|
878
|
+
if arr is not None:
|
|
879
|
+
result[attr] = arr
|
|
880
|
+
if edge_src is not None and edge_dst is not None:
|
|
881
|
+
signature = (id(edge_src), id(edge_dst), len(nodes))
|
|
882
|
+
result["edge_signature"] = signature
|
|
883
|
+
if cache is not None:
|
|
884
|
+
cache.edge_signature = signature
|
|
885
|
+
else:
|
|
886
|
+
theta_np = None
|
|
887
|
+
epi_np = None
|
|
888
|
+
vf_np = None
|
|
889
|
+
cos_theta_np = None
|
|
890
|
+
sin_theta_np = None
|
|
891
|
+
edge_src = None
|
|
892
|
+
edge_dst = None
|
|
893
|
+
if cache is not None:
|
|
894
|
+
cache.edge_src = None
|
|
895
|
+
cache.edge_dst = None
|
|
896
|
+
|
|
897
|
+
result.setdefault("neighbor_edge_values_np", None)
|
|
898
|
+
if cache is not None and "edge_signature" not in result:
|
|
899
|
+
result["edge_signature"] = cache.edge_signature
|
|
900
|
+
|
|
901
|
+
result["theta_np"] = theta_np
|
|
902
|
+
result["epi_np"] = epi_np
|
|
903
|
+
result["vf_np"] = vf_np
|
|
904
|
+
result["cos_theta_np"] = cos_theta_np
|
|
905
|
+
result["sin_theta_np"] = sin_theta_np
|
|
906
|
+
result["deg_array"] = deg_array
|
|
907
|
+
result["edge_src"] = edge_src
|
|
908
|
+
result["edge_dst"] = edge_dst
|
|
909
|
+
result["edge_count"] = edge_count
|
|
910
|
+
result["prefer_sparse"] = prefer_sparse
|
|
911
|
+
result["dense_override"] = dense_override
|
|
912
|
+
result.setdefault("neighbor_accum_np", None)
|
|
913
|
+
result.setdefault("neighbor_accum_signature", None)
|
|
914
|
+
|
|
915
|
+
return result
|
|
916
|
+
|
|
917
|
+
|
|
918
|
+
def _apply_dnfr_gradients(
|
|
919
|
+
G: TNFRGraph,
|
|
920
|
+
data: MutableMapping[str, Any],
|
|
921
|
+
th_bar: Sequence[float] | np.ndarray,
|
|
922
|
+
epi_bar: Sequence[float] | np.ndarray,
|
|
923
|
+
vf_bar: Sequence[float] | np.ndarray,
|
|
924
|
+
deg_bar: Sequence[float] | np.ndarray | None = None,
|
|
925
|
+
degs: Mapping[Any, float] | Sequence[float] | np.ndarray | None = None,
|
|
926
|
+
*,
|
|
927
|
+
n_jobs: int | None = None,
|
|
928
|
+
) -> None:
|
|
929
|
+
"""Combine precomputed gradients and write ΔNFR to each node."""
|
|
930
|
+
np = get_numpy()
|
|
931
|
+
nodes = data["nodes"]
|
|
932
|
+
theta = data["theta"]
|
|
933
|
+
epi = data["epi"]
|
|
934
|
+
vf = data["vf"]
|
|
935
|
+
w_phase = data["w_phase"]
|
|
936
|
+
w_epi = data["w_epi"]
|
|
937
|
+
w_vf = data["w_vf"]
|
|
938
|
+
w_topo = data["w_topo"]
|
|
939
|
+
if degs is None:
|
|
940
|
+
degs = data.get("degs")
|
|
941
|
+
|
|
942
|
+
cache: DnfrCache | None = data.get("cache")
|
|
943
|
+
|
|
944
|
+
theta_np = data.get("theta_np")
|
|
945
|
+
epi_np = data.get("epi_np")
|
|
946
|
+
vf_np = data.get("vf_np")
|
|
947
|
+
deg_array = data.get("deg_array") if w_topo != 0.0 else None
|
|
948
|
+
|
|
949
|
+
use_vector = (
|
|
950
|
+
np is not None
|
|
951
|
+
and theta_np is not None
|
|
952
|
+
and epi_np is not None
|
|
953
|
+
and vf_np is not None
|
|
954
|
+
and isinstance(th_bar, np.ndarray)
|
|
955
|
+
and isinstance(epi_bar, np.ndarray)
|
|
956
|
+
and isinstance(vf_bar, np.ndarray)
|
|
957
|
+
)
|
|
958
|
+
if use_vector and w_topo != 0.0:
|
|
959
|
+
use_vector = (
|
|
960
|
+
deg_bar is not None
|
|
961
|
+
and isinstance(deg_bar, np.ndarray)
|
|
962
|
+
and isinstance(deg_array, np.ndarray)
|
|
963
|
+
)
|
|
964
|
+
|
|
965
|
+
if use_vector:
|
|
966
|
+
grad_phase = _ensure_cached_array(cache, "grad_phase_np", theta_np.shape, np)
|
|
967
|
+
grad_epi = _ensure_cached_array(cache, "grad_epi_np", epi_np.shape, np)
|
|
968
|
+
grad_vf = _ensure_cached_array(cache, "grad_vf_np", vf_np.shape, np)
|
|
969
|
+
grad_total = _ensure_cached_array(cache, "grad_total_np", theta_np.shape, np)
|
|
970
|
+
grad_topo = None
|
|
971
|
+
if w_topo != 0.0:
|
|
972
|
+
grad_topo = _ensure_cached_array(
|
|
973
|
+
cache, "grad_topo_np", deg_array.shape, np
|
|
974
|
+
)
|
|
975
|
+
|
|
976
|
+
np.copyto(grad_phase, theta_np, casting="unsafe")
|
|
977
|
+
grad_phase -= th_bar
|
|
978
|
+
grad_phase += math.pi
|
|
979
|
+
np.mod(grad_phase, math.tau, out=grad_phase)
|
|
980
|
+
grad_phase -= math.pi
|
|
981
|
+
grad_phase *= -1.0 / math.pi
|
|
982
|
+
|
|
983
|
+
np.copyto(grad_epi, epi_bar, casting="unsafe")
|
|
984
|
+
grad_epi -= epi_np
|
|
985
|
+
|
|
986
|
+
np.copyto(grad_vf, vf_bar, casting="unsafe")
|
|
987
|
+
grad_vf -= vf_np
|
|
988
|
+
|
|
989
|
+
if grad_topo is not None and deg_bar is not None:
|
|
990
|
+
np.copyto(grad_topo, deg_bar, casting="unsafe")
|
|
991
|
+
grad_topo -= deg_array
|
|
992
|
+
|
|
993
|
+
if w_phase != 0.0:
|
|
994
|
+
np.multiply(grad_phase, w_phase, out=grad_total)
|
|
995
|
+
else:
|
|
996
|
+
grad_total.fill(0.0)
|
|
997
|
+
if w_epi != 0.0:
|
|
998
|
+
if w_epi != 1.0:
|
|
999
|
+
np.multiply(grad_epi, w_epi, out=grad_epi)
|
|
1000
|
+
np.add(grad_total, grad_epi, out=grad_total)
|
|
1001
|
+
if w_vf != 0.0:
|
|
1002
|
+
if w_vf != 1.0:
|
|
1003
|
+
np.multiply(grad_vf, w_vf, out=grad_vf)
|
|
1004
|
+
np.add(grad_total, grad_vf, out=grad_total)
|
|
1005
|
+
if w_topo != 0.0 and grad_topo is not None:
|
|
1006
|
+
if w_topo != 1.0:
|
|
1007
|
+
np.multiply(grad_topo, w_topo, out=grad_topo)
|
|
1008
|
+
np.add(grad_total, grad_topo, out=grad_total)
|
|
1009
|
+
|
|
1010
|
+
dnfr_values = grad_total
|
|
1011
|
+
else:
|
|
1012
|
+
effective_jobs = _resolve_parallel_jobs(n_jobs, len(nodes))
|
|
1013
|
+
if effective_jobs:
|
|
1014
|
+
chunk_results = []
|
|
1015
|
+
with ProcessPoolExecutor(max_workers=effective_jobs) as executor:
|
|
1016
|
+
futures = []
|
|
1017
|
+
for start, end in _iter_chunk_offsets(len(nodes), effective_jobs):
|
|
1018
|
+
if start == end:
|
|
1019
|
+
continue
|
|
1020
|
+
futures.append(
|
|
1021
|
+
executor.submit(
|
|
1022
|
+
_dnfr_gradients_worker,
|
|
1023
|
+
start,
|
|
1024
|
+
end,
|
|
1025
|
+
nodes,
|
|
1026
|
+
theta,
|
|
1027
|
+
epi,
|
|
1028
|
+
vf,
|
|
1029
|
+
th_bar,
|
|
1030
|
+
epi_bar,
|
|
1031
|
+
vf_bar,
|
|
1032
|
+
deg_bar,
|
|
1033
|
+
degs,
|
|
1034
|
+
w_phase,
|
|
1035
|
+
w_epi,
|
|
1036
|
+
w_vf,
|
|
1037
|
+
w_topo,
|
|
1038
|
+
)
|
|
1039
|
+
)
|
|
1040
|
+
for future in futures:
|
|
1041
|
+
chunk_results.append(future.result())
|
|
1042
|
+
|
|
1043
|
+
dnfr_values = [0.0] * len(nodes)
|
|
1044
|
+
for start, chunk in sorted(chunk_results, key=lambda item: item[0]):
|
|
1045
|
+
end = start + len(chunk)
|
|
1046
|
+
dnfr_values[start:end] = chunk
|
|
1047
|
+
else:
|
|
1048
|
+
dnfr_values = []
|
|
1049
|
+
for i, n in enumerate(nodes):
|
|
1050
|
+
g_phase = -angle_diff(theta[i], th_bar[i]) / math.pi
|
|
1051
|
+
g_epi = epi_bar[i] - epi[i]
|
|
1052
|
+
g_vf = vf_bar[i] - vf[i]
|
|
1053
|
+
if w_topo != 0.0 and deg_bar is not None and degs is not None:
|
|
1054
|
+
if isinstance(degs, dict):
|
|
1055
|
+
deg_i = float(degs.get(n, 0))
|
|
1056
|
+
else:
|
|
1057
|
+
deg_i = float(degs[i])
|
|
1058
|
+
g_topo = deg_bar[i] - deg_i
|
|
1059
|
+
else:
|
|
1060
|
+
g_topo = 0.0
|
|
1061
|
+
dnfr_values.append(
|
|
1062
|
+
w_phase * g_phase + w_epi * g_epi + w_vf * g_vf + w_topo * g_topo
|
|
1063
|
+
)
|
|
1064
|
+
|
|
1065
|
+
if cache is not None:
|
|
1066
|
+
cache.grad_phase_np = None
|
|
1067
|
+
cache.grad_epi_np = None
|
|
1068
|
+
cache.grad_vf_np = None
|
|
1069
|
+
cache.grad_topo_np = None
|
|
1070
|
+
cache.grad_total_np = None
|
|
1071
|
+
|
|
1072
|
+
for i, n in enumerate(nodes):
|
|
1073
|
+
set_dnfr(G, n, float(dnfr_values[i]))
|
|
1074
|
+
|
|
1075
|
+
|
|
1076
|
+
def _init_bar_arrays(
|
|
1077
|
+
data: MutableMapping[str, Any],
|
|
1078
|
+
*,
|
|
1079
|
+
degs: Mapping[Any, float] | Sequence[float] | None = None,
|
|
1080
|
+
np: ModuleType | None = None,
|
|
1081
|
+
) -> tuple[Sequence[float], Sequence[float], Sequence[float], Sequence[float] | None]:
|
|
1082
|
+
"""Prepare containers for neighbour means.
|
|
1083
|
+
|
|
1084
|
+
If ``np`` is provided, NumPy arrays are created; otherwise lists are used.
|
|
1085
|
+
``degs`` is optional and only initialised when the topological term is
|
|
1086
|
+
active.
|
|
1087
|
+
"""
|
|
1088
|
+
|
|
1089
|
+
nodes = data["nodes"]
|
|
1090
|
+
theta = data["theta"]
|
|
1091
|
+
epi = data["epi"]
|
|
1092
|
+
vf = data["vf"]
|
|
1093
|
+
w_topo = data["w_topo"]
|
|
1094
|
+
cache: DnfrCache | None = data.get("cache")
|
|
1095
|
+
if np is None:
|
|
1096
|
+
np = get_numpy()
|
|
1097
|
+
if np is not None:
|
|
1098
|
+
size = len(theta)
|
|
1099
|
+
if cache is not None:
|
|
1100
|
+
th_bar = cache.th_bar_np
|
|
1101
|
+
if th_bar is None or getattr(th_bar, "shape", None) != (size,):
|
|
1102
|
+
th_bar = np.array(theta, dtype=float)
|
|
1103
|
+
else:
|
|
1104
|
+
np.copyto(th_bar, theta, casting="unsafe")
|
|
1105
|
+
cache.th_bar_np = th_bar
|
|
1106
|
+
|
|
1107
|
+
epi_bar = cache.epi_bar_np
|
|
1108
|
+
if epi_bar is None or getattr(epi_bar, "shape", None) != (size,):
|
|
1109
|
+
epi_bar = np.array(epi, dtype=float)
|
|
1110
|
+
else:
|
|
1111
|
+
np.copyto(epi_bar, epi, casting="unsafe")
|
|
1112
|
+
cache.epi_bar_np = epi_bar
|
|
1113
|
+
|
|
1114
|
+
vf_bar = cache.vf_bar_np
|
|
1115
|
+
if vf_bar is None or getattr(vf_bar, "shape", None) != (size,):
|
|
1116
|
+
vf_bar = np.array(vf, dtype=float)
|
|
1117
|
+
else:
|
|
1118
|
+
np.copyto(vf_bar, vf, casting="unsafe")
|
|
1119
|
+
cache.vf_bar_np = vf_bar
|
|
1120
|
+
|
|
1121
|
+
if w_topo != 0.0 and degs is not None:
|
|
1122
|
+
if isinstance(degs, dict):
|
|
1123
|
+
deg_size = len(nodes)
|
|
1124
|
+
else:
|
|
1125
|
+
deg_size = len(degs)
|
|
1126
|
+
deg_bar = cache.deg_bar_np
|
|
1127
|
+
if (
|
|
1128
|
+
deg_bar is None
|
|
1129
|
+
or getattr(deg_bar, "shape", None) != (deg_size,)
|
|
1130
|
+
):
|
|
1131
|
+
if isinstance(degs, dict):
|
|
1132
|
+
deg_bar = np.array(
|
|
1133
|
+
[float(degs.get(node, 0.0)) for node in nodes],
|
|
1134
|
+
dtype=float,
|
|
1135
|
+
)
|
|
1136
|
+
else:
|
|
1137
|
+
deg_bar = np.array(degs, dtype=float)
|
|
1138
|
+
else:
|
|
1139
|
+
if isinstance(degs, dict):
|
|
1140
|
+
for i, node in enumerate(nodes):
|
|
1141
|
+
deg_bar[i] = float(degs.get(node, 0.0))
|
|
1142
|
+
else:
|
|
1143
|
+
np.copyto(deg_bar, degs, casting="unsafe")
|
|
1144
|
+
cache.deg_bar_np = deg_bar
|
|
1145
|
+
else:
|
|
1146
|
+
deg_bar = None
|
|
1147
|
+
if cache is not None:
|
|
1148
|
+
cache.deg_bar_np = None
|
|
1149
|
+
else:
|
|
1150
|
+
th_bar = np.array(theta, dtype=float)
|
|
1151
|
+
epi_bar = np.array(epi, dtype=float)
|
|
1152
|
+
vf_bar = np.array(vf, dtype=float)
|
|
1153
|
+
deg_bar = (
|
|
1154
|
+
np.array(degs, dtype=float)
|
|
1155
|
+
if w_topo != 0.0 and degs is not None
|
|
1156
|
+
else None
|
|
1157
|
+
)
|
|
1158
|
+
else:
|
|
1159
|
+
size = len(theta)
|
|
1160
|
+
if cache is not None:
|
|
1161
|
+
th_bar = cache.th_bar
|
|
1162
|
+
if th_bar is None or len(th_bar) != size:
|
|
1163
|
+
th_bar = [0.0] * size
|
|
1164
|
+
th_bar[:] = theta
|
|
1165
|
+
cache.th_bar = th_bar
|
|
1166
|
+
|
|
1167
|
+
epi_bar = cache.epi_bar
|
|
1168
|
+
if epi_bar is None or len(epi_bar) != size:
|
|
1169
|
+
epi_bar = [0.0] * size
|
|
1170
|
+
epi_bar[:] = epi
|
|
1171
|
+
cache.epi_bar = epi_bar
|
|
1172
|
+
|
|
1173
|
+
vf_bar = cache.vf_bar
|
|
1174
|
+
if vf_bar is None or len(vf_bar) != size:
|
|
1175
|
+
vf_bar = [0.0] * size
|
|
1176
|
+
vf_bar[:] = vf
|
|
1177
|
+
cache.vf_bar = vf_bar
|
|
1178
|
+
|
|
1179
|
+
if w_topo != 0.0 and degs is not None:
|
|
1180
|
+
if isinstance(degs, dict):
|
|
1181
|
+
deg_size = len(nodes)
|
|
1182
|
+
else:
|
|
1183
|
+
deg_size = len(degs)
|
|
1184
|
+
deg_bar = cache.deg_bar
|
|
1185
|
+
if deg_bar is None or len(deg_bar) != deg_size:
|
|
1186
|
+
deg_bar = [0.0] * deg_size
|
|
1187
|
+
if isinstance(degs, dict):
|
|
1188
|
+
for i, node in enumerate(nodes):
|
|
1189
|
+
deg_bar[i] = float(degs.get(node, 0.0))
|
|
1190
|
+
else:
|
|
1191
|
+
for i, value in enumerate(degs):
|
|
1192
|
+
deg_bar[i] = float(value)
|
|
1193
|
+
cache.deg_bar = deg_bar
|
|
1194
|
+
else:
|
|
1195
|
+
deg_bar = None
|
|
1196
|
+
cache.deg_bar = None
|
|
1197
|
+
else:
|
|
1198
|
+
th_bar = list(theta)
|
|
1199
|
+
epi_bar = list(epi)
|
|
1200
|
+
vf_bar = list(vf)
|
|
1201
|
+
deg_bar = (
|
|
1202
|
+
list(degs) if w_topo != 0.0 and degs is not None else None
|
|
1203
|
+
)
|
|
1204
|
+
return th_bar, epi_bar, vf_bar, deg_bar
|
|
1205
|
+
|
|
1206
|
+
|
|
1207
|
+
def _compute_neighbor_means(
|
|
1208
|
+
G: TNFRGraph,
|
|
1209
|
+
data: MutableMapping[str, Any],
|
|
1210
|
+
*,
|
|
1211
|
+
x: Sequence[float],
|
|
1212
|
+
y: Sequence[float],
|
|
1213
|
+
epi_sum: Sequence[float],
|
|
1214
|
+
vf_sum: Sequence[float],
|
|
1215
|
+
count: Sequence[float] | np.ndarray,
|
|
1216
|
+
deg_sum: Sequence[float] | None = None,
|
|
1217
|
+
degs: Mapping[Any, float] | Sequence[float] | None = None,
|
|
1218
|
+
np: ModuleType | None = None,
|
|
1219
|
+
) -> tuple[Sequence[float], Sequence[float], Sequence[float], Sequence[float] | None]:
|
|
1220
|
+
"""Return neighbour mean arrays for ΔNFR."""
|
|
1221
|
+
w_topo = data["w_topo"]
|
|
1222
|
+
theta = data["theta"]
|
|
1223
|
+
cache: DnfrCache | None = data.get("cache")
|
|
1224
|
+
is_numpy = np is not None and isinstance(count, np.ndarray)
|
|
1225
|
+
th_bar, epi_bar, vf_bar, deg_bar = _init_bar_arrays(
|
|
1226
|
+
data, degs=degs, np=np if is_numpy else None
|
|
1227
|
+
)
|
|
1228
|
+
|
|
1229
|
+
if is_numpy:
|
|
1230
|
+
n = count.shape[0]
|
|
1231
|
+
mask = count > 0
|
|
1232
|
+
if not np.any(mask):
|
|
1233
|
+
return th_bar, epi_bar, vf_bar, deg_bar
|
|
1234
|
+
|
|
1235
|
+
inv = _ensure_cached_array(cache, "neighbor_inv_count_np", (n,), np)
|
|
1236
|
+
inv.fill(0.0)
|
|
1237
|
+
np.divide(1.0, count, out=inv, where=mask)
|
|
1238
|
+
|
|
1239
|
+
cos_avg = _ensure_cached_array(cache, "neighbor_cos_avg_np", (n,), np)
|
|
1240
|
+
cos_avg.fill(0.0)
|
|
1241
|
+
np.multiply(x, inv, out=cos_avg, where=mask)
|
|
1242
|
+
|
|
1243
|
+
sin_avg = _ensure_cached_array(cache, "neighbor_sin_avg_np", (n,), np)
|
|
1244
|
+
sin_avg.fill(0.0)
|
|
1245
|
+
np.multiply(y, inv, out=sin_avg, where=mask)
|
|
1246
|
+
|
|
1247
|
+
lengths = _ensure_cached_array(cache, "neighbor_mean_length_np", (n,), np)
|
|
1248
|
+
np.hypot(cos_avg, sin_avg, out=lengths)
|
|
1249
|
+
|
|
1250
|
+
temp = _ensure_cached_array(cache, "neighbor_mean_tmp_np", (n,), np)
|
|
1251
|
+
np.arctan2(sin_avg, cos_avg, out=temp)
|
|
1252
|
+
|
|
1253
|
+
theta_src = data.get("theta_np")
|
|
1254
|
+
if theta_src is None:
|
|
1255
|
+
theta_src = np.asarray(theta, dtype=float)
|
|
1256
|
+
zero_mask = lengths <= _MEAN_VECTOR_EPS
|
|
1257
|
+
np.copyto(temp, theta_src, where=zero_mask)
|
|
1258
|
+
np.copyto(th_bar, temp, where=mask, casting="unsafe")
|
|
1259
|
+
|
|
1260
|
+
np.divide(epi_sum, count, out=epi_bar, where=mask)
|
|
1261
|
+
np.divide(vf_sum, count, out=vf_bar, where=mask)
|
|
1262
|
+
if w_topo != 0.0 and deg_bar is not None and deg_sum is not None:
|
|
1263
|
+
np.divide(deg_sum, count, out=deg_bar, where=mask)
|
|
1264
|
+
return th_bar, epi_bar, vf_bar, deg_bar
|
|
1265
|
+
|
|
1266
|
+
n = len(theta)
|
|
1267
|
+
for i in range(n):
|
|
1268
|
+
c = count[i]
|
|
1269
|
+
if not c:
|
|
1270
|
+
continue
|
|
1271
|
+
inv = 1.0 / float(c)
|
|
1272
|
+
cos_avg = x[i] * inv
|
|
1273
|
+
sin_avg = y[i] * inv
|
|
1274
|
+
if math.hypot(cos_avg, sin_avg) <= _MEAN_VECTOR_EPS:
|
|
1275
|
+
th_bar[i] = theta[i]
|
|
1276
|
+
else:
|
|
1277
|
+
th_bar[i] = math.atan2(sin_avg, cos_avg)
|
|
1278
|
+
epi_bar[i] = epi_sum[i] * inv
|
|
1279
|
+
vf_bar[i] = vf_sum[i] * inv
|
|
1280
|
+
if w_topo != 0.0 and deg_bar is not None and deg_sum is not None:
|
|
1281
|
+
deg_bar[i] = deg_sum[i] * inv
|
|
1282
|
+
return th_bar, epi_bar, vf_bar, deg_bar
|
|
1283
|
+
|
|
1284
|
+
|
|
1285
|
+
def _compute_dnfr_common(
|
|
1286
|
+
G: TNFRGraph,
|
|
1287
|
+
data: MutableMapping[str, Any],
|
|
1288
|
+
*,
|
|
1289
|
+
x: Sequence[float],
|
|
1290
|
+
y: Sequence[float],
|
|
1291
|
+
epi_sum: Sequence[float],
|
|
1292
|
+
vf_sum: Sequence[float],
|
|
1293
|
+
count: Sequence[float] | None,
|
|
1294
|
+
deg_sum: Sequence[float] | None = None,
|
|
1295
|
+
degs: Sequence[float] | None = None,
|
|
1296
|
+
n_jobs: int | None = None,
|
|
1297
|
+
) -> None:
|
|
1298
|
+
"""Compute neighbour means and apply ΔNFR gradients."""
|
|
1299
|
+
np_module = get_numpy()
|
|
1300
|
+
if np_module is not None and isinstance(count, getattr(np_module, "ndarray", tuple)):
|
|
1301
|
+
np_arg = np_module
|
|
1302
|
+
else:
|
|
1303
|
+
np_arg = None
|
|
1304
|
+
th_bar, epi_bar, vf_bar, deg_bar = _compute_neighbor_means(
|
|
1305
|
+
G,
|
|
1306
|
+
data,
|
|
1307
|
+
x=x,
|
|
1308
|
+
y=y,
|
|
1309
|
+
epi_sum=epi_sum,
|
|
1310
|
+
vf_sum=vf_sum,
|
|
1311
|
+
count=count,
|
|
1312
|
+
deg_sum=deg_sum,
|
|
1313
|
+
degs=degs,
|
|
1314
|
+
np=np_arg,
|
|
1315
|
+
)
|
|
1316
|
+
_apply_dnfr_gradients(
|
|
1317
|
+
G,
|
|
1318
|
+
data,
|
|
1319
|
+
th_bar,
|
|
1320
|
+
epi_bar,
|
|
1321
|
+
vf_bar,
|
|
1322
|
+
deg_bar,
|
|
1323
|
+
degs,
|
|
1324
|
+
n_jobs=n_jobs,
|
|
1325
|
+
)
|
|
1326
|
+
|
|
1327
|
+
|
|
1328
|
+
def _reset_numpy_buffer(
|
|
1329
|
+
buffer: np.ndarray | None,
|
|
1330
|
+
size: int,
|
|
1331
|
+
np: ModuleType,
|
|
1332
|
+
) -> np.ndarray:
|
|
1333
|
+
if buffer is None or getattr(buffer, "shape", None) is None or buffer.shape[0] != size:
|
|
1334
|
+
return np.zeros(size, dtype=float)
|
|
1335
|
+
buffer.fill(0.0)
|
|
1336
|
+
return buffer
|
|
1337
|
+
|
|
1338
|
+
|
|
1339
|
+
def _init_neighbor_sums(
|
|
1340
|
+
data: MutableMapping[str, Any],
|
|
1341
|
+
*,
|
|
1342
|
+
np: ModuleType | None = None,
|
|
1343
|
+
) -> NeighborStats:
|
|
1344
|
+
"""Initialise containers for neighbour sums."""
|
|
1345
|
+
nodes = data["nodes"]
|
|
1346
|
+
n = len(nodes)
|
|
1347
|
+
w_topo = data["w_topo"]
|
|
1348
|
+
cache: DnfrCache | None = data.get("cache")
|
|
1349
|
+
|
|
1350
|
+
def _reset_list(buffer: list[float] | None, value: float = 0.0) -> list[float]:
|
|
1351
|
+
if buffer is None or len(buffer) != n:
|
|
1352
|
+
return [value] * n
|
|
1353
|
+
for i in range(n):
|
|
1354
|
+
buffer[i] = value
|
|
1355
|
+
return buffer
|
|
1356
|
+
|
|
1357
|
+
if np is not None:
|
|
1358
|
+
if cache is not None:
|
|
1359
|
+
x = cache.neighbor_x_np
|
|
1360
|
+
y = cache.neighbor_y_np
|
|
1361
|
+
epi_sum = cache.neighbor_epi_sum_np
|
|
1362
|
+
vf_sum = cache.neighbor_vf_sum_np
|
|
1363
|
+
count = cache.neighbor_count_np
|
|
1364
|
+
x = _reset_numpy_buffer(x, n, np)
|
|
1365
|
+
y = _reset_numpy_buffer(y, n, np)
|
|
1366
|
+
epi_sum = _reset_numpy_buffer(epi_sum, n, np)
|
|
1367
|
+
vf_sum = _reset_numpy_buffer(vf_sum, n, np)
|
|
1368
|
+
count = _reset_numpy_buffer(count, n, np)
|
|
1369
|
+
cache.neighbor_x_np = x
|
|
1370
|
+
cache.neighbor_y_np = y
|
|
1371
|
+
cache.neighbor_epi_sum_np = epi_sum
|
|
1372
|
+
cache.neighbor_vf_sum_np = vf_sum
|
|
1373
|
+
cache.neighbor_count_np = count
|
|
1374
|
+
cache.neighbor_x = _reset_list(cache.neighbor_x)
|
|
1375
|
+
cache.neighbor_y = _reset_list(cache.neighbor_y)
|
|
1376
|
+
cache.neighbor_epi_sum = _reset_list(cache.neighbor_epi_sum)
|
|
1377
|
+
cache.neighbor_vf_sum = _reset_list(cache.neighbor_vf_sum)
|
|
1378
|
+
cache.neighbor_count = _reset_list(cache.neighbor_count)
|
|
1379
|
+
if w_topo != 0.0:
|
|
1380
|
+
deg_sum = _reset_numpy_buffer(cache.neighbor_deg_sum_np, n, np)
|
|
1381
|
+
cache.neighbor_deg_sum_np = deg_sum
|
|
1382
|
+
cache.neighbor_deg_sum = _reset_list(cache.neighbor_deg_sum)
|
|
1383
|
+
else:
|
|
1384
|
+
cache.neighbor_deg_sum_np = None
|
|
1385
|
+
cache.neighbor_deg_sum = None
|
|
1386
|
+
deg_sum = None
|
|
1387
|
+
else:
|
|
1388
|
+
x = np.zeros(n, dtype=float)
|
|
1389
|
+
y = np.zeros(n, dtype=float)
|
|
1390
|
+
epi_sum = np.zeros(n, dtype=float)
|
|
1391
|
+
vf_sum = np.zeros(n, dtype=float)
|
|
1392
|
+
count = np.zeros(n, dtype=float)
|
|
1393
|
+
deg_sum = np.zeros(n, dtype=float) if w_topo != 0.0 else None
|
|
1394
|
+
degs = None
|
|
1395
|
+
else:
|
|
1396
|
+
if cache is not None:
|
|
1397
|
+
x = _reset_list(cache.neighbor_x)
|
|
1398
|
+
y = _reset_list(cache.neighbor_y)
|
|
1399
|
+
epi_sum = _reset_list(cache.neighbor_epi_sum)
|
|
1400
|
+
vf_sum = _reset_list(cache.neighbor_vf_sum)
|
|
1401
|
+
count = _reset_list(cache.neighbor_count)
|
|
1402
|
+
cache.neighbor_x = x
|
|
1403
|
+
cache.neighbor_y = y
|
|
1404
|
+
cache.neighbor_epi_sum = epi_sum
|
|
1405
|
+
cache.neighbor_vf_sum = vf_sum
|
|
1406
|
+
cache.neighbor_count = count
|
|
1407
|
+
if w_topo != 0.0:
|
|
1408
|
+
deg_sum = _reset_list(cache.neighbor_deg_sum)
|
|
1409
|
+
cache.neighbor_deg_sum = deg_sum
|
|
1410
|
+
else:
|
|
1411
|
+
cache.neighbor_deg_sum = None
|
|
1412
|
+
deg_sum = None
|
|
1413
|
+
else:
|
|
1414
|
+
x = [0.0] * n
|
|
1415
|
+
y = [0.0] * n
|
|
1416
|
+
epi_sum = [0.0] * n
|
|
1417
|
+
vf_sum = [0.0] * n
|
|
1418
|
+
count = [0.0] * n
|
|
1419
|
+
deg_sum = [0.0] * n if w_topo != 0.0 else None
|
|
1420
|
+
deg_list = data.get("deg_list")
|
|
1421
|
+
if w_topo != 0.0 and deg_list is not None:
|
|
1422
|
+
degs = deg_list
|
|
1423
|
+
else:
|
|
1424
|
+
degs = None
|
|
1425
|
+
return x, y, epi_sum, vf_sum, count, deg_sum, degs
|
|
1426
|
+
|
|
1427
|
+
|
|
1428
|
+
def _prefer_sparse_accumulation(n: int, edge_count: int | None) -> bool:
|
|
1429
|
+
"""Return ``True`` when neighbour sums should use edge accumulation."""
|
|
1430
|
+
|
|
1431
|
+
if n <= 1 or not edge_count:
|
|
1432
|
+
return False
|
|
1433
|
+
possible_edges = n * (n - 1)
|
|
1434
|
+
if possible_edges <= 0:
|
|
1435
|
+
return False
|
|
1436
|
+
density = edge_count / possible_edges
|
|
1437
|
+
return density <= _SPARSE_DENSITY_THRESHOLD
|
|
1438
|
+
|
|
1439
|
+
|
|
1440
|
+
def _accumulate_neighbors_dense(
|
|
1441
|
+
G: TNFRGraph,
|
|
1442
|
+
data: MutableMapping[str, Any],
|
|
1443
|
+
*,
|
|
1444
|
+
x: np.ndarray,
|
|
1445
|
+
y: np.ndarray,
|
|
1446
|
+
epi_sum: np.ndarray,
|
|
1447
|
+
vf_sum: np.ndarray,
|
|
1448
|
+
count: np.ndarray,
|
|
1449
|
+
deg_sum: np.ndarray | None,
|
|
1450
|
+
np: ModuleType,
|
|
1451
|
+
) -> NeighborStats:
|
|
1452
|
+
"""Vectorised neighbour accumulation using a dense adjacency matrix."""
|
|
1453
|
+
|
|
1454
|
+
nodes = data["nodes"]
|
|
1455
|
+
if not nodes:
|
|
1456
|
+
return x, y, epi_sum, vf_sum, count, deg_sum, None
|
|
1457
|
+
|
|
1458
|
+
A = data.get("A")
|
|
1459
|
+
if A is None:
|
|
1460
|
+
return _accumulate_neighbors_numpy(
|
|
1461
|
+
G,
|
|
1462
|
+
data,
|
|
1463
|
+
x=x,
|
|
1464
|
+
y=y,
|
|
1465
|
+
epi_sum=epi_sum,
|
|
1466
|
+
vf_sum=vf_sum,
|
|
1467
|
+
count=count,
|
|
1468
|
+
deg_sum=deg_sum,
|
|
1469
|
+
np=np,
|
|
1470
|
+
)
|
|
1471
|
+
|
|
1472
|
+
cache: DnfrCache | None = data.get("cache")
|
|
1473
|
+
n = len(nodes)
|
|
1474
|
+
|
|
1475
|
+
state = _ensure_numpy_state_vectors(data, np)
|
|
1476
|
+
vectors = [state["cos"], state["sin"], state["epi"], state["vf"]]
|
|
1477
|
+
|
|
1478
|
+
components = _ensure_cached_array(cache, "dense_components_np", (n, 4), np)
|
|
1479
|
+
for col, src_vec in enumerate(vectors):
|
|
1480
|
+
np.copyto(components[:, col], src_vec, casting="unsafe")
|
|
1481
|
+
|
|
1482
|
+
accum = _ensure_cached_array(cache, "dense_accum_np", (n, 4), np)
|
|
1483
|
+
np.matmul(A, components, out=accum)
|
|
1484
|
+
|
|
1485
|
+
np.copyto(x, accum[:, 0], casting="unsafe")
|
|
1486
|
+
np.copyto(y, accum[:, 1], casting="unsafe")
|
|
1487
|
+
np.copyto(epi_sum, accum[:, 2], casting="unsafe")
|
|
1488
|
+
np.copyto(vf_sum, accum[:, 3], casting="unsafe")
|
|
1489
|
+
|
|
1490
|
+
degree_counts = data.get("dense_degree_np")
|
|
1491
|
+
if degree_counts is None or getattr(degree_counts, "shape", (0,))[0] != n:
|
|
1492
|
+
degree_counts = None
|
|
1493
|
+
if degree_counts is None and cache is not None:
|
|
1494
|
+
cached_counts = cache.dense_degree_np
|
|
1495
|
+
if cached_counts is not None and getattr(cached_counts, "shape", (0,))[0] == n:
|
|
1496
|
+
degree_counts = cached_counts
|
|
1497
|
+
if degree_counts is None:
|
|
1498
|
+
degree_counts = A.sum(axis=1)
|
|
1499
|
+
if cache is not None:
|
|
1500
|
+
cache.dense_degree_np = degree_counts
|
|
1501
|
+
data["dense_degree_np"] = degree_counts
|
|
1502
|
+
np.copyto(count, degree_counts, casting="unsafe")
|
|
1503
|
+
|
|
1504
|
+
degs = None
|
|
1505
|
+
if deg_sum is not None:
|
|
1506
|
+
deg_array = data.get("deg_array")
|
|
1507
|
+
if deg_array is None:
|
|
1508
|
+
deg_array = _resolve_numpy_degree_array(
|
|
1509
|
+
data,
|
|
1510
|
+
count,
|
|
1511
|
+
cache=cache,
|
|
1512
|
+
np=np,
|
|
1513
|
+
)
|
|
1514
|
+
if deg_array is None:
|
|
1515
|
+
deg_sum.fill(0.0)
|
|
1516
|
+
else:
|
|
1517
|
+
np.matmul(A, deg_array, out=deg_sum)
|
|
1518
|
+
degs = deg_array
|
|
1519
|
+
|
|
1520
|
+
return x, y, epi_sum, vf_sum, count, deg_sum, degs
|
|
1521
|
+
|
|
1522
|
+
|
|
1523
|
+
def _accumulate_neighbors_broadcasted(
|
|
1524
|
+
*,
|
|
1525
|
+
edge_src: np.ndarray,
|
|
1526
|
+
edge_dst: np.ndarray,
|
|
1527
|
+
cos: np.ndarray,
|
|
1528
|
+
sin: np.ndarray,
|
|
1529
|
+
epi: np.ndarray,
|
|
1530
|
+
vf: np.ndarray,
|
|
1531
|
+
x: np.ndarray,
|
|
1532
|
+
y: np.ndarray,
|
|
1533
|
+
epi_sum: np.ndarray,
|
|
1534
|
+
vf_sum: np.ndarray,
|
|
1535
|
+
count: np.ndarray | None,
|
|
1536
|
+
deg_sum: np.ndarray | None,
|
|
1537
|
+
deg_array: np.ndarray | None,
|
|
1538
|
+
cache: DnfrCache | None,
|
|
1539
|
+
np: ModuleType,
|
|
1540
|
+
) -> dict[str, np.ndarray]:
|
|
1541
|
+
"""Accumulate neighbour contributions using direct indexed reductions."""
|
|
1542
|
+
|
|
1543
|
+
n = x.shape[0]
|
|
1544
|
+
edge_count = int(edge_src.size)
|
|
1545
|
+
|
|
1546
|
+
include_count = count is not None
|
|
1547
|
+
use_topology = deg_sum is not None and deg_array is not None
|
|
1548
|
+
|
|
1549
|
+
component_rows = 4 + (1 if include_count else 0) + (1 if use_topology else 0)
|
|
1550
|
+
|
|
1551
|
+
if cache is not None:
|
|
1552
|
+
base_signature = (id(edge_src), id(edge_dst), n, edge_count)
|
|
1553
|
+
cache.edge_signature = base_signature
|
|
1554
|
+
signature = (base_signature, component_rows)
|
|
1555
|
+
previous_signature = cache.neighbor_accum_signature
|
|
1556
|
+
|
|
1557
|
+
accum = cache.neighbor_accum_np
|
|
1558
|
+
if (
|
|
1559
|
+
accum is None
|
|
1560
|
+
or getattr(accum, "shape", None) != (component_rows, n)
|
|
1561
|
+
or previous_signature != signature
|
|
1562
|
+
):
|
|
1563
|
+
accum = np.zeros((component_rows, n), dtype=float)
|
|
1564
|
+
cache.neighbor_accum_np = accum
|
|
1565
|
+
else:
|
|
1566
|
+
accum.fill(0.0)
|
|
1567
|
+
|
|
1568
|
+
edge_values = cache.neighbor_edge_values_np
|
|
1569
|
+
if (
|
|
1570
|
+
edge_values is None
|
|
1571
|
+
or getattr(edge_values, "shape", None) != (edge_count,)
|
|
1572
|
+
):
|
|
1573
|
+
edge_values = np.empty((edge_count,), dtype=float)
|
|
1574
|
+
cache.neighbor_edge_values_np = edge_values
|
|
1575
|
+
|
|
1576
|
+
cache.neighbor_accum_signature = signature
|
|
1577
|
+
else:
|
|
1578
|
+
accum = np.zeros((component_rows, n), dtype=float)
|
|
1579
|
+
edge_values = (
|
|
1580
|
+
np.empty((edge_count,), dtype=float)
|
|
1581
|
+
if edge_count
|
|
1582
|
+
else np.empty((0,), dtype=float)
|
|
1583
|
+
)
|
|
1584
|
+
|
|
1585
|
+
if edge_count:
|
|
1586
|
+
row = 0
|
|
1587
|
+
|
|
1588
|
+
np.take(cos, edge_dst, out=edge_values)
|
|
1589
|
+
np.add.at(accum[row], edge_src, edge_values)
|
|
1590
|
+
row += 1
|
|
1591
|
+
|
|
1592
|
+
np.take(sin, edge_dst, out=edge_values)
|
|
1593
|
+
np.add.at(accum[row], edge_src, edge_values)
|
|
1594
|
+
row += 1
|
|
1595
|
+
|
|
1596
|
+
np.take(epi, edge_dst, out=edge_values)
|
|
1597
|
+
np.add.at(accum[row], edge_src, edge_values)
|
|
1598
|
+
row += 1
|
|
1599
|
+
|
|
1600
|
+
np.take(vf, edge_dst, out=edge_values)
|
|
1601
|
+
np.add.at(accum[row], edge_src, edge_values)
|
|
1602
|
+
row += 1
|
|
1603
|
+
|
|
1604
|
+
if include_count and count is not None:
|
|
1605
|
+
edge_values.fill(1.0)
|
|
1606
|
+
np.add.at(accum[row], edge_src, edge_values)
|
|
1607
|
+
row += 1
|
|
1608
|
+
|
|
1609
|
+
if use_topology and deg_sum is not None and deg_array is not None:
|
|
1610
|
+
np.take(deg_array, edge_dst, out=edge_values)
|
|
1611
|
+
np.add.at(accum[row], edge_src, edge_values)
|
|
1612
|
+
else:
|
|
1613
|
+
accum.fill(0.0)
|
|
1614
|
+
|
|
1615
|
+
row = 0
|
|
1616
|
+
np.copyto(x, accum[row], casting="unsafe")
|
|
1617
|
+
row += 1
|
|
1618
|
+
np.copyto(y, accum[row], casting="unsafe")
|
|
1619
|
+
row += 1
|
|
1620
|
+
np.copyto(epi_sum, accum[row], casting="unsafe")
|
|
1621
|
+
row += 1
|
|
1622
|
+
np.copyto(vf_sum, accum[row], casting="unsafe")
|
|
1623
|
+
row += 1
|
|
1624
|
+
|
|
1625
|
+
if include_count and count is not None:
|
|
1626
|
+
np.copyto(count, accum[row], casting="unsafe")
|
|
1627
|
+
row += 1
|
|
1628
|
+
|
|
1629
|
+
if use_topology and deg_sum is not None:
|
|
1630
|
+
np.copyto(deg_sum, accum[row], casting="unsafe")
|
|
1631
|
+
|
|
1632
|
+
return {
|
|
1633
|
+
"accumulator": accum,
|
|
1634
|
+
"edge_values": edge_values,
|
|
1635
|
+
}
|
|
1636
|
+
|
|
1637
|
+
|
|
1638
|
+
def _build_neighbor_sums_common(
|
|
1639
|
+
G: TNFRGraph,
|
|
1640
|
+
data: MutableMapping[str, Any],
|
|
1641
|
+
*,
|
|
1642
|
+
use_numpy: bool,
|
|
1643
|
+
n_jobs: int | None = None,
|
|
1644
|
+
) -> NeighborStats:
|
|
1645
|
+
"""Build neighbour accumulators honouring cached NumPy buffers when possible."""
|
|
1646
|
+
|
|
1647
|
+
nodes = data["nodes"]
|
|
1648
|
+
cache: DnfrCache | None = data.get("cache")
|
|
1649
|
+
np_module = get_numpy()
|
|
1650
|
+
has_numpy_buffers = _has_cached_numpy_buffers(data, cache)
|
|
1651
|
+
if use_numpy and np_module is None and has_numpy_buffers:
|
|
1652
|
+
np_module = sys.modules.get("numpy")
|
|
1653
|
+
|
|
1654
|
+
if np_module is not None:
|
|
1655
|
+
if not nodes:
|
|
1656
|
+
return _init_neighbor_sums(data, np=np_module)
|
|
1657
|
+
|
|
1658
|
+
x, y, epi_sum, vf_sum, count, deg_sum, degs = _init_neighbor_sums(
|
|
1659
|
+
data, np=np_module
|
|
1660
|
+
)
|
|
1661
|
+
prefer_sparse = data.get("prefer_sparse")
|
|
1662
|
+
if prefer_sparse is None:
|
|
1663
|
+
prefer_sparse = _prefer_sparse_accumulation(
|
|
1664
|
+
len(nodes), data.get("edge_count")
|
|
1665
|
+
)
|
|
1666
|
+
data["prefer_sparse"] = prefer_sparse
|
|
1667
|
+
|
|
1668
|
+
use_dense = False
|
|
1669
|
+
A = data.get("A")
|
|
1670
|
+
if use_numpy and not prefer_sparse and A is not None:
|
|
1671
|
+
shape = getattr(A, "shape", (0, 0))
|
|
1672
|
+
use_dense = shape[0] == len(nodes) and shape[1] == len(nodes)
|
|
1673
|
+
if use_numpy and data.get("dense_override") and A is not None:
|
|
1674
|
+
shape = getattr(A, "shape", (0, 0))
|
|
1675
|
+
if shape[0] == len(nodes) and shape[1] == len(nodes):
|
|
1676
|
+
use_dense = True
|
|
1677
|
+
|
|
1678
|
+
if use_dense:
|
|
1679
|
+
accumulator = _accumulate_neighbors_dense
|
|
1680
|
+
else:
|
|
1681
|
+
_ensure_numpy_state_vectors(data, np_module)
|
|
1682
|
+
accumulator = _accumulate_neighbors_numpy
|
|
1683
|
+
return accumulator(
|
|
1684
|
+
G,
|
|
1685
|
+
data,
|
|
1686
|
+
x=x,
|
|
1687
|
+
y=y,
|
|
1688
|
+
epi_sum=epi_sum,
|
|
1689
|
+
vf_sum=vf_sum,
|
|
1690
|
+
count=count,
|
|
1691
|
+
deg_sum=deg_sum,
|
|
1692
|
+
np=np_module,
|
|
1693
|
+
)
|
|
1694
|
+
|
|
1695
|
+
if not nodes:
|
|
1696
|
+
return _init_neighbor_sums(data)
|
|
1697
|
+
|
|
1698
|
+
x, y, epi_sum, vf_sum, count, deg_sum, degs_list = _init_neighbor_sums(data)
|
|
1699
|
+
idx = data["idx"]
|
|
1700
|
+
epi = data["epi"]
|
|
1701
|
+
vf = data["vf"]
|
|
1702
|
+
cos_th = data["cos_theta"]
|
|
1703
|
+
sin_th = data["sin_theta"]
|
|
1704
|
+
deg_list = data.get("deg_list")
|
|
1705
|
+
|
|
1706
|
+
effective_jobs = _resolve_parallel_jobs(n_jobs, len(nodes))
|
|
1707
|
+
if effective_jobs:
|
|
1708
|
+
neighbor_indices: list[list[int]] = []
|
|
1709
|
+
for node in nodes:
|
|
1710
|
+
indices: list[int] = []
|
|
1711
|
+
for v in G.neighbors(node):
|
|
1712
|
+
indices.append(idx[v])
|
|
1713
|
+
neighbor_indices.append(indices)
|
|
1714
|
+
|
|
1715
|
+
chunk_results = []
|
|
1716
|
+
with ProcessPoolExecutor(max_workers=effective_jobs) as executor:
|
|
1717
|
+
futures = []
|
|
1718
|
+
for start, end in _iter_chunk_offsets(len(nodes), effective_jobs):
|
|
1719
|
+
if start == end:
|
|
1720
|
+
continue
|
|
1721
|
+
futures.append(
|
|
1722
|
+
executor.submit(
|
|
1723
|
+
_neighbor_sums_worker,
|
|
1724
|
+
start,
|
|
1725
|
+
end,
|
|
1726
|
+
neighbor_indices,
|
|
1727
|
+
cos_th,
|
|
1728
|
+
sin_th,
|
|
1729
|
+
epi,
|
|
1730
|
+
vf,
|
|
1731
|
+
x[start:end],
|
|
1732
|
+
y[start:end],
|
|
1733
|
+
epi_sum[start:end],
|
|
1734
|
+
vf_sum[start:end],
|
|
1735
|
+
count[start:end],
|
|
1736
|
+
deg_sum[start:end] if deg_sum is not None else None,
|
|
1737
|
+
deg_list,
|
|
1738
|
+
degs_list,
|
|
1739
|
+
)
|
|
1740
|
+
)
|
|
1741
|
+
for future in futures:
|
|
1742
|
+
chunk_results.append(future.result())
|
|
1743
|
+
|
|
1744
|
+
for start, chunk_x, chunk_y, chunk_epi, chunk_vf, chunk_count, chunk_deg in sorted(
|
|
1745
|
+
chunk_results, key=lambda item: item[0]
|
|
1746
|
+
):
|
|
1747
|
+
end = start + len(chunk_x)
|
|
1748
|
+
x[start:end] = chunk_x
|
|
1749
|
+
y[start:end] = chunk_y
|
|
1750
|
+
epi_sum[start:end] = chunk_epi
|
|
1751
|
+
vf_sum[start:end] = chunk_vf
|
|
1752
|
+
count[start:end] = chunk_count
|
|
1753
|
+
if deg_sum is not None and chunk_deg is not None:
|
|
1754
|
+
deg_sum[start:end] = chunk_deg
|
|
1755
|
+
return x, y, epi_sum, vf_sum, count, deg_sum, degs_list
|
|
1756
|
+
|
|
1757
|
+
for i, node in enumerate(nodes):
|
|
1758
|
+
deg_i = degs_list[i] if degs_list is not None else 0.0
|
|
1759
|
+
x_i = x[i]
|
|
1760
|
+
y_i = y[i]
|
|
1761
|
+
epi_i = epi_sum[i]
|
|
1762
|
+
vf_i = vf_sum[i]
|
|
1763
|
+
count_i = count[i]
|
|
1764
|
+
deg_acc = deg_sum[i] if deg_sum is not None else 0.0
|
|
1765
|
+
for v in G.neighbors(node):
|
|
1766
|
+
j = idx[v]
|
|
1767
|
+
cos_j = cos_th[j]
|
|
1768
|
+
sin_j = sin_th[j]
|
|
1769
|
+
epi_j = epi[j]
|
|
1770
|
+
vf_j = vf[j]
|
|
1771
|
+
x_i += cos_j
|
|
1772
|
+
y_i += sin_j
|
|
1773
|
+
epi_i += epi_j
|
|
1774
|
+
vf_i += vf_j
|
|
1775
|
+
count_i += 1
|
|
1776
|
+
if deg_sum is not None:
|
|
1777
|
+
deg_acc += deg_list[j] if deg_list is not None else deg_i
|
|
1778
|
+
x[i] = x_i
|
|
1779
|
+
y[i] = y_i
|
|
1780
|
+
epi_sum[i] = epi_i
|
|
1781
|
+
vf_sum[i] = vf_i
|
|
1782
|
+
count[i] = count_i
|
|
1783
|
+
if deg_sum is not None:
|
|
1784
|
+
deg_sum[i] = deg_acc
|
|
1785
|
+
return x, y, epi_sum, vf_sum, count, deg_sum, degs_list
|
|
1786
|
+
|
|
1787
|
+
|
|
1788
|
+
def _accumulate_neighbors_numpy(
|
|
1789
|
+
G: TNFRGraph,
|
|
1790
|
+
data: MutableMapping[str, Any],
|
|
1791
|
+
*,
|
|
1792
|
+
x: np.ndarray,
|
|
1793
|
+
y: np.ndarray,
|
|
1794
|
+
epi_sum: np.ndarray,
|
|
1795
|
+
vf_sum: np.ndarray,
|
|
1796
|
+
count: np.ndarray | None,
|
|
1797
|
+
deg_sum: np.ndarray | None,
|
|
1798
|
+
np: ModuleType,
|
|
1799
|
+
) -> NeighborStats:
|
|
1800
|
+
"""Vectorised neighbour accumulation reusing cached NumPy buffers."""
|
|
1801
|
+
|
|
1802
|
+
nodes = data["nodes"]
|
|
1803
|
+
if not nodes:
|
|
1804
|
+
return x, y, epi_sum, vf_sum, count, deg_sum, None
|
|
1805
|
+
|
|
1806
|
+
cache: DnfrCache | None = data.get("cache")
|
|
1807
|
+
|
|
1808
|
+
state = _ensure_numpy_state_vectors(data, np)
|
|
1809
|
+
cos_th = state["cos"]
|
|
1810
|
+
sin_th = state["sin"]
|
|
1811
|
+
epi = state["epi"]
|
|
1812
|
+
vf = state["vf"]
|
|
1813
|
+
|
|
1814
|
+
edge_src = data.get("edge_src")
|
|
1815
|
+
edge_dst = data.get("edge_dst")
|
|
1816
|
+
if edge_src is None or edge_dst is None:
|
|
1817
|
+
edge_src, edge_dst = _build_edge_index_arrays(G, nodes, data["idx"], np)
|
|
1818
|
+
data["edge_src"] = edge_src
|
|
1819
|
+
data["edge_dst"] = edge_dst
|
|
1820
|
+
if cache is not None:
|
|
1821
|
+
cache.edge_src = edge_src
|
|
1822
|
+
cache.edge_dst = edge_dst
|
|
1823
|
+
if edge_src is not None:
|
|
1824
|
+
data["edge_count"] = int(edge_src.size)
|
|
1825
|
+
|
|
1826
|
+
cached_deg_array = data.get("deg_array")
|
|
1827
|
+
reuse_count_from_deg = False
|
|
1828
|
+
if count is not None:
|
|
1829
|
+
if cached_deg_array is not None:
|
|
1830
|
+
np.copyto(count, cached_deg_array, casting="unsafe")
|
|
1831
|
+
reuse_count_from_deg = True
|
|
1832
|
+
else:
|
|
1833
|
+
count.fill(0.0)
|
|
1834
|
+
|
|
1835
|
+
deg_array = None
|
|
1836
|
+
if deg_sum is not None:
|
|
1837
|
+
deg_sum.fill(0.0)
|
|
1838
|
+
deg_array = _resolve_numpy_degree_array(
|
|
1839
|
+
data, count if count is not None else None, cache=cache, np=np
|
|
1840
|
+
)
|
|
1841
|
+
elif cached_deg_array is not None:
|
|
1842
|
+
deg_array = cached_deg_array
|
|
1843
|
+
|
|
1844
|
+
accum = _accumulate_neighbors_broadcasted(
|
|
1845
|
+
edge_src=edge_src,
|
|
1846
|
+
edge_dst=edge_dst,
|
|
1847
|
+
cos=cos_th,
|
|
1848
|
+
sin=sin_th,
|
|
1849
|
+
epi=epi,
|
|
1850
|
+
vf=vf,
|
|
1851
|
+
x=x,
|
|
1852
|
+
y=y,
|
|
1853
|
+
epi_sum=epi_sum,
|
|
1854
|
+
vf_sum=vf_sum,
|
|
1855
|
+
count=count,
|
|
1856
|
+
deg_sum=deg_sum,
|
|
1857
|
+
deg_array=deg_array,
|
|
1858
|
+
cache=cache,
|
|
1859
|
+
np=np,
|
|
1860
|
+
)
|
|
1861
|
+
|
|
1862
|
+
data["neighbor_accum_np"] = accum.get("accumulator")
|
|
1863
|
+
data["neighbor_edge_values_np"] = accum.get("edge_values")
|
|
1864
|
+
if cache is not None:
|
|
1865
|
+
data["neighbor_accum_signature"] = cache.neighbor_accum_signature
|
|
1866
|
+
if reuse_count_from_deg and count is not None and cached_deg_array is not None:
|
|
1867
|
+
np.copyto(count, cached_deg_array, casting="unsafe")
|
|
1868
|
+
degs = deg_array if deg_sum is not None and deg_array is not None else None
|
|
1869
|
+
return x, y, epi_sum, vf_sum, count, deg_sum, degs
|
|
1870
|
+
|
|
1871
|
+
|
|
1872
|
+
def _compute_dnfr(
|
|
1873
|
+
G: TNFRGraph,
|
|
1874
|
+
data: MutableMapping[str, Any],
|
|
1875
|
+
*,
|
|
1876
|
+
use_numpy: bool | None = None,
|
|
1877
|
+
n_jobs: int | None = None,
|
|
1878
|
+
) -> None:
|
|
1879
|
+
"""Compute ΔNFR using neighbour sums.
|
|
1880
|
+
|
|
1881
|
+
Parameters
|
|
1882
|
+
----------
|
|
1883
|
+
G : nx.Graph
|
|
1884
|
+
Graph on which the computation is performed.
|
|
1885
|
+
data : dict
|
|
1886
|
+
Precomputed ΔNFR data as returned by :func:`_prepare_dnfr_data`.
|
|
1887
|
+
use_numpy : bool | None, optional
|
|
1888
|
+
Backwards compatibility flag. When ``True`` the function eagerly
|
|
1889
|
+
prepares NumPy buffers (if available). When ``False`` the engine still
|
|
1890
|
+
prefers the vectorised path whenever :func:`get_numpy` returns a module
|
|
1891
|
+
and the graph does not set ``vectorized_dnfr`` to ``False``.
|
|
1892
|
+
"""
|
|
1893
|
+
np_module = get_numpy()
|
|
1894
|
+
data["dnfr_numpy_available"] = bool(np_module)
|
|
1895
|
+
vector_disabled = G.graph.get("vectorized_dnfr") is False
|
|
1896
|
+
prefer_dense = np_module is not None and not vector_disabled
|
|
1897
|
+
if use_numpy is True and np_module is not None:
|
|
1898
|
+
prefer_dense = True
|
|
1899
|
+
if use_numpy is False or vector_disabled:
|
|
1900
|
+
prefer_dense = False
|
|
1901
|
+
data["dnfr_used_numpy"] = bool(prefer_dense and np_module is not None)
|
|
1902
|
+
|
|
1903
|
+
data["n_jobs"] = n_jobs
|
|
1904
|
+
try:
|
|
1905
|
+
res = _build_neighbor_sums_common(
|
|
1906
|
+
G,
|
|
1907
|
+
data,
|
|
1908
|
+
use_numpy=prefer_dense,
|
|
1909
|
+
n_jobs=n_jobs,
|
|
1910
|
+
)
|
|
1911
|
+
except TypeError as exc:
|
|
1912
|
+
if "n_jobs" not in str(exc):
|
|
1913
|
+
raise
|
|
1914
|
+
res = _build_neighbor_sums_common(
|
|
1915
|
+
G,
|
|
1916
|
+
data,
|
|
1917
|
+
use_numpy=prefer_dense,
|
|
1918
|
+
)
|
|
1919
|
+
if res is None:
|
|
1920
|
+
return
|
|
1921
|
+
x, y, epi_sum, vf_sum, count, deg_sum, degs = res
|
|
1922
|
+
_compute_dnfr_common(
|
|
1923
|
+
G,
|
|
1924
|
+
data,
|
|
1925
|
+
x=x,
|
|
1926
|
+
y=y,
|
|
1927
|
+
epi_sum=epi_sum,
|
|
1928
|
+
vf_sum=vf_sum,
|
|
1929
|
+
count=count,
|
|
1930
|
+
deg_sum=deg_sum,
|
|
1931
|
+
degs=degs,
|
|
1932
|
+
n_jobs=n_jobs,
|
|
1933
|
+
)
|
|
1934
|
+
|
|
1935
|
+
|
|
1936
|
+
def default_compute_delta_nfr(
|
|
1937
|
+
G: TNFRGraph,
|
|
1938
|
+
*,
|
|
1939
|
+
cache_size: int | None = 1,
|
|
1940
|
+
n_jobs: int | None = None,
|
|
1941
|
+
) -> None:
|
|
1942
|
+
"""Compute ΔNFR by mixing phase, EPI, νf and a topological term.
|
|
1943
|
+
|
|
1944
|
+
Parameters
|
|
1945
|
+
----------
|
|
1946
|
+
G : nx.Graph
|
|
1947
|
+
Graph on which the computation is performed.
|
|
1948
|
+
cache_size : int | None, optional
|
|
1949
|
+
Maximum number of edge configurations cached in ``G.graph``. Values
|
|
1950
|
+
``None`` or <= 0 imply unlimited cache. Defaults to ``1`` to keep the
|
|
1951
|
+
previous behaviour.
|
|
1952
|
+
n_jobs : int | None, optional
|
|
1953
|
+
Parallel worker count for the pure-Python accumulation path. ``None``
|
|
1954
|
+
or values <= 1 preserve the serial behaviour. The vectorised NumPy
|
|
1955
|
+
branch ignores this parameter as it already operates in bulk.
|
|
1956
|
+
"""
|
|
1957
|
+
data = _prepare_dnfr_data(G, cache_size=cache_size)
|
|
1958
|
+
_write_dnfr_metadata(
|
|
1959
|
+
G,
|
|
1960
|
+
weights=data["weights"],
|
|
1961
|
+
hook_name="default_compute_delta_nfr",
|
|
1962
|
+
)
|
|
1963
|
+
_compute_dnfr(G, data, n_jobs=n_jobs)
|
|
1964
|
+
if not data.get("dnfr_numpy_available"):
|
|
1965
|
+
cache = data.get("cache")
|
|
1966
|
+
if isinstance(cache, DnfrCache):
|
|
1967
|
+
for attr in (
|
|
1968
|
+
"neighbor_x_np",
|
|
1969
|
+
"neighbor_y_np",
|
|
1970
|
+
"neighbor_epi_sum_np",
|
|
1971
|
+
"neighbor_vf_sum_np",
|
|
1972
|
+
"neighbor_count_np",
|
|
1973
|
+
"neighbor_deg_sum_np",
|
|
1974
|
+
"neighbor_inv_count_np",
|
|
1975
|
+
"neighbor_cos_avg_np",
|
|
1976
|
+
"neighbor_sin_avg_np",
|
|
1977
|
+
"neighbor_mean_tmp_np",
|
|
1978
|
+
"neighbor_mean_length_np",
|
|
1979
|
+
"neighbor_accum_np",
|
|
1980
|
+
"neighbor_edge_values_np",
|
|
1981
|
+
):
|
|
1982
|
+
setattr(cache, attr, None)
|
|
1983
|
+
cache.neighbor_accum_signature = None
|
|
1984
|
+
|
|
1985
|
+
|
|
1986
|
+
def set_delta_nfr_hook(
|
|
1987
|
+
G: TNFRGraph,
|
|
1988
|
+
func: DeltaNFRHook,
|
|
1989
|
+
*,
|
|
1990
|
+
name: str | None = None,
|
|
1991
|
+
note: str | None = None,
|
|
1992
|
+
) -> None:
|
|
1993
|
+
"""Set a stable hook to compute ΔNFR.
|
|
1994
|
+
|
|
1995
|
+
The callable should accept ``(G, *[, n_jobs])`` and is responsible for
|
|
1996
|
+
writing ``ALIAS_DNFR`` in each node. ``n_jobs`` is optional and ignored by
|
|
1997
|
+
hooks that do not support parallel execution. Basic metadata in
|
|
1998
|
+
``G.graph`` is updated accordingly.
|
|
1999
|
+
"""
|
|
2000
|
+
|
|
2001
|
+
def _wrapped(graph: TNFRGraph, *args: Any, **kwargs: Any) -> None:
|
|
2002
|
+
if "n_jobs" in kwargs:
|
|
2003
|
+
try:
|
|
2004
|
+
func(graph, *args, **kwargs)
|
|
2005
|
+
return
|
|
2006
|
+
except TypeError as exc:
|
|
2007
|
+
if "n_jobs" not in str(exc):
|
|
2008
|
+
raise
|
|
2009
|
+
kwargs = dict(kwargs)
|
|
2010
|
+
kwargs.pop("n_jobs", None)
|
|
2011
|
+
func(graph, *args, **kwargs)
|
|
2012
|
+
return
|
|
2013
|
+
func(graph, *args, **kwargs)
|
|
2014
|
+
|
|
2015
|
+
_wrapped.__name__ = getattr(func, "__name__", "custom_dnfr")
|
|
2016
|
+
_wrapped.__doc__ = getattr(func, "__doc__", _wrapped.__doc__)
|
|
2017
|
+
|
|
2018
|
+
G.graph["compute_delta_nfr"] = _wrapped
|
|
2019
|
+
G.graph["_dnfr_hook_name"] = str(
|
|
2020
|
+
name or getattr(func, "__name__", "custom_dnfr")
|
|
2021
|
+
)
|
|
2022
|
+
if "_dnfr_weights" not in G.graph:
|
|
2023
|
+
_configure_dnfr_weights(G)
|
|
2024
|
+
if note:
|
|
2025
|
+
meta = G.graph.get("_DNFR_META", {})
|
|
2026
|
+
meta["note"] = str(note)
|
|
2027
|
+
G.graph["_DNFR_META"] = meta
|
|
2028
|
+
|
|
2029
|
+
|
|
2030
|
+
def _dnfr_hook_chunk_worker(
|
|
2031
|
+
G: TNFRGraph,
|
|
2032
|
+
node_ids: Sequence[NodeId],
|
|
2033
|
+
grad_items: tuple[
|
|
2034
|
+
tuple[str, Callable[[TNFRGraph, NodeId, Mapping[str, Any]], float]],
|
|
2035
|
+
...,
|
|
2036
|
+
],
|
|
2037
|
+
weights: Mapping[str, float],
|
|
2038
|
+
) -> list[tuple[NodeId, float]]:
|
|
2039
|
+
"""Compute weighted gradients for ``node_ids``.
|
|
2040
|
+
|
|
2041
|
+
The helper is defined at module level so it can be pickled by
|
|
2042
|
+
:class:`concurrent.futures.ProcessPoolExecutor`.
|
|
2043
|
+
"""
|
|
2044
|
+
|
|
2045
|
+
results: list[tuple[NodeId, float]] = []
|
|
2046
|
+
for node in node_ids:
|
|
2047
|
+
nd = G.nodes[node]
|
|
2048
|
+
total = 0.0
|
|
2049
|
+
for name, func in grad_items:
|
|
2050
|
+
w = weights.get(name, 0.0)
|
|
2051
|
+
if w:
|
|
2052
|
+
total += w * float(func(G, node, nd))
|
|
2053
|
+
results.append((node, total))
|
|
2054
|
+
return results
|
|
2055
|
+
|
|
2056
|
+
|
|
2057
|
+
def _apply_dnfr_hook(
|
|
2058
|
+
G: TNFRGraph,
|
|
2059
|
+
grads: Mapping[str, Callable[[TNFRGraph, NodeId, Mapping[str, Any]], float]],
|
|
2060
|
+
*,
|
|
2061
|
+
weights: Mapping[str, float],
|
|
2062
|
+
hook_name: str,
|
|
2063
|
+
note: str | None = None,
|
|
2064
|
+
n_jobs: int | None = None,
|
|
2065
|
+
) -> None:
|
|
2066
|
+
"""Generic helper to compute and store ΔNFR using ``grads``.
|
|
2067
|
+
|
|
2068
|
+
Parameters
|
|
2069
|
+
----------
|
|
2070
|
+
G : nx.Graph
|
|
2071
|
+
Graph whose nodes will receive the ΔNFR update.
|
|
2072
|
+
grads : dict
|
|
2073
|
+
Mapping from component names to callables with signature
|
|
2074
|
+
``(G, node, data) -> float`` returning the gradient contribution.
|
|
2075
|
+
weights : dict
|
|
2076
|
+
Weight per component; missing entries default to ``0``.
|
|
2077
|
+
hook_name : str
|
|
2078
|
+
Friendly identifier stored in ``G.graph`` metadata.
|
|
2079
|
+
note : str | None, optional
|
|
2080
|
+
Additional documentation recorded next to the hook metadata.
|
|
2081
|
+
n_jobs : int | None, optional
|
|
2082
|
+
Optional worker count for the pure-Python execution path. When NumPy
|
|
2083
|
+
is available the helper always prefers the vectorised implementation
|
|
2084
|
+
and ignores ``n_jobs`` because the computation already happens in
|
|
2085
|
+
bulk.
|
|
2086
|
+
"""
|
|
2087
|
+
|
|
2088
|
+
nodes_data: list[tuple[NodeId, Mapping[str, Any]]] = list(G.nodes(data=True))
|
|
2089
|
+
if not nodes_data:
|
|
2090
|
+
_write_dnfr_metadata(G, weights=weights, hook_name=hook_name, note=note)
|
|
2091
|
+
return
|
|
2092
|
+
|
|
2093
|
+
np_module = cast(ModuleType | None, get_numpy())
|
|
2094
|
+
if np_module is not None:
|
|
2095
|
+
totals = np_module.zeros(len(nodes_data), dtype=float)
|
|
2096
|
+
for name, func in grads.items():
|
|
2097
|
+
w = float(weights.get(name, 0.0))
|
|
2098
|
+
if w == 0.0:
|
|
2099
|
+
continue
|
|
2100
|
+
values = np_module.fromiter(
|
|
2101
|
+
(float(func(G, n, nd)) for n, nd in nodes_data),
|
|
2102
|
+
dtype=float,
|
|
2103
|
+
count=len(nodes_data),
|
|
2104
|
+
)
|
|
2105
|
+
if w == 1.0:
|
|
2106
|
+
np_module.add(totals, values, out=totals)
|
|
2107
|
+
else:
|
|
2108
|
+
np_module.add(totals, values * w, out=totals)
|
|
2109
|
+
for idx, (n, _) in enumerate(nodes_data):
|
|
2110
|
+
set_dnfr(G, n, float(totals[idx]))
|
|
2111
|
+
_write_dnfr_metadata(G, weights=weights, hook_name=hook_name, note=note)
|
|
2112
|
+
return
|
|
2113
|
+
|
|
2114
|
+
effective_jobs = _resolve_parallel_jobs(n_jobs, len(nodes_data))
|
|
2115
|
+
results: list[tuple[NodeId, float]] | None = None
|
|
2116
|
+
if effective_jobs:
|
|
2117
|
+
grad_items = tuple(grads.items())
|
|
2118
|
+
try:
|
|
2119
|
+
import pickle
|
|
2120
|
+
|
|
2121
|
+
pickle.dumps((grad_items, weights, G), protocol=pickle.HIGHEST_PROTOCOL)
|
|
2122
|
+
except Exception:
|
|
2123
|
+
effective_jobs = None
|
|
2124
|
+
else:
|
|
2125
|
+
chunk_results: list[tuple[NodeId, float]] = []
|
|
2126
|
+
with ProcessPoolExecutor(max_workers=effective_jobs) as executor:
|
|
2127
|
+
futures = []
|
|
2128
|
+
node_ids: list[NodeId] = [n for n, _ in nodes_data]
|
|
2129
|
+
for start, end in _iter_chunk_offsets(len(node_ids), effective_jobs):
|
|
2130
|
+
if start == end:
|
|
2131
|
+
continue
|
|
2132
|
+
futures.append(
|
|
2133
|
+
executor.submit(
|
|
2134
|
+
_dnfr_hook_chunk_worker,
|
|
2135
|
+
G,
|
|
2136
|
+
node_ids[start:end],
|
|
2137
|
+
grad_items,
|
|
2138
|
+
weights,
|
|
2139
|
+
)
|
|
2140
|
+
)
|
|
2141
|
+
for future in futures:
|
|
2142
|
+
chunk_results.extend(future.result())
|
|
2143
|
+
results = chunk_results
|
|
2144
|
+
|
|
2145
|
+
if results is None:
|
|
2146
|
+
results = []
|
|
2147
|
+
for n, nd in nodes_data:
|
|
2148
|
+
total = 0.0
|
|
2149
|
+
for name, func in grads.items():
|
|
2150
|
+
w = weights.get(name, 0.0)
|
|
2151
|
+
if w:
|
|
2152
|
+
total += w * float(func(G, n, nd))
|
|
2153
|
+
results.append((n, total))
|
|
2154
|
+
|
|
2155
|
+
for node, value in results:
|
|
2156
|
+
set_dnfr(G, node, float(value))
|
|
2157
|
+
|
|
2158
|
+
_write_dnfr_metadata(G, weights=weights, hook_name=hook_name, note=note)
|
|
2159
|
+
|
|
2160
|
+
|
|
2161
|
+
# --- Hooks de ejemplo (opcionales) ---
|
|
2162
|
+
|
|
2163
|
+
|
|
2164
|
+
class _PhaseGradient:
|
|
2165
|
+
"""Callable computing the phase contribution using cached trig values."""
|
|
2166
|
+
|
|
2167
|
+
__slots__ = ("cos", "sin")
|
|
2168
|
+
|
|
2169
|
+
def __init__(
|
|
2170
|
+
self,
|
|
2171
|
+
cos_map: Mapping[NodeId, float],
|
|
2172
|
+
sin_map: Mapping[NodeId, float],
|
|
2173
|
+
) -> None:
|
|
2174
|
+
self.cos: Mapping[NodeId, float] = cos_map
|
|
2175
|
+
self.sin: Mapping[NodeId, float] = sin_map
|
|
2176
|
+
|
|
2177
|
+
def __call__(
|
|
2178
|
+
self,
|
|
2179
|
+
G: TNFRGraph,
|
|
2180
|
+
n: NodeId,
|
|
2181
|
+
nd: Mapping[str, Any],
|
|
2182
|
+
) -> float:
|
|
2183
|
+
theta_val = get_theta_attr(nd, 0.0)
|
|
2184
|
+
th_i = float(theta_val if theta_val is not None else 0.0)
|
|
2185
|
+
neighbors = list(G.neighbors(n))
|
|
2186
|
+
if neighbors:
|
|
2187
|
+
th_bar = neighbor_phase_mean_list(
|
|
2188
|
+
neighbors,
|
|
2189
|
+
cos_th=self.cos,
|
|
2190
|
+
sin_th=self.sin,
|
|
2191
|
+
fallback=th_i,
|
|
2192
|
+
)
|
|
2193
|
+
else:
|
|
2194
|
+
th_bar = th_i
|
|
2195
|
+
return -angle_diff(th_i, th_bar) / math.pi
|
|
2196
|
+
|
|
2197
|
+
|
|
2198
|
+
class _NeighborAverageGradient:
|
|
2199
|
+
"""Callable computing neighbour averages for scalar attributes."""
|
|
2200
|
+
|
|
2201
|
+
__slots__ = ("alias", "values")
|
|
2202
|
+
|
|
2203
|
+
def __init__(
|
|
2204
|
+
self,
|
|
2205
|
+
alias: tuple[str, ...],
|
|
2206
|
+
values: MutableMapping[NodeId, float],
|
|
2207
|
+
) -> None:
|
|
2208
|
+
self.alias: tuple[str, ...] = alias
|
|
2209
|
+
self.values: MutableMapping[NodeId, float] = values
|
|
2210
|
+
|
|
2211
|
+
def __call__(
|
|
2212
|
+
self,
|
|
2213
|
+
G: TNFRGraph,
|
|
2214
|
+
n: NodeId,
|
|
2215
|
+
nd: Mapping[str, Any],
|
|
2216
|
+
) -> float:
|
|
2217
|
+
val = self.values.get(n)
|
|
2218
|
+
if val is None:
|
|
2219
|
+
val = float(get_attr(nd, self.alias, 0.0))
|
|
2220
|
+
self.values[n] = val
|
|
2221
|
+
neighbors = list(G.neighbors(n))
|
|
2222
|
+
if not neighbors:
|
|
2223
|
+
return 0.0
|
|
2224
|
+
total = 0.0
|
|
2225
|
+
for neigh in neighbors:
|
|
2226
|
+
neigh_val = self.values.get(neigh)
|
|
2227
|
+
if neigh_val is None:
|
|
2228
|
+
neigh_val = float(get_attr(G.nodes[neigh], self.alias, val))
|
|
2229
|
+
self.values[neigh] = neigh_val
|
|
2230
|
+
total += neigh_val
|
|
2231
|
+
return total / len(neighbors) - val
|
|
2232
|
+
|
|
2233
|
+
|
|
2234
|
+
def dnfr_phase_only(G: TNFRGraph, *, n_jobs: int | None = None) -> None:
|
|
2235
|
+
"""Example: ΔNFR from phase only (Kuramoto-like).
|
|
2236
|
+
|
|
2237
|
+
Parameters
|
|
2238
|
+
----------
|
|
2239
|
+
G : nx.Graph
|
|
2240
|
+
Graph whose nodes receive the ΔNFR assignment.
|
|
2241
|
+
n_jobs : int | None, optional
|
|
2242
|
+
Parallel worker hint used when NumPy is unavailable. Defaults to
|
|
2243
|
+
serial execution.
|
|
2244
|
+
"""
|
|
2245
|
+
|
|
2246
|
+
trig = compute_theta_trig(G.nodes(data=True))
|
|
2247
|
+
g_phase = _PhaseGradient(trig.cos, trig.sin)
|
|
2248
|
+
_apply_dnfr_hook(
|
|
2249
|
+
G,
|
|
2250
|
+
{"phase": g_phase},
|
|
2251
|
+
weights={"phase": 1.0},
|
|
2252
|
+
hook_name="dnfr_phase_only",
|
|
2253
|
+
note="Example hook.",
|
|
2254
|
+
n_jobs=n_jobs,
|
|
2255
|
+
)
|
|
2256
|
+
|
|
2257
|
+
|
|
2258
|
+
def dnfr_epi_vf_mixed(G: TNFRGraph, *, n_jobs: int | None = None) -> None:
|
|
2259
|
+
"""Example: ΔNFR without phase, mixing EPI and νf.
|
|
2260
|
+
|
|
2261
|
+
Parameters
|
|
2262
|
+
----------
|
|
2263
|
+
G : nx.Graph
|
|
2264
|
+
Graph whose nodes receive the ΔNFR assignment.
|
|
2265
|
+
n_jobs : int | None, optional
|
|
2266
|
+
Parallel worker hint used when NumPy is unavailable. Defaults to
|
|
2267
|
+
serial execution.
|
|
2268
|
+
"""
|
|
2269
|
+
|
|
2270
|
+
epi_values = {n: float(get_attr(nd, ALIAS_EPI, 0.0)) for n, nd in G.nodes(data=True)}
|
|
2271
|
+
vf_values = {n: float(get_attr(nd, ALIAS_VF, 0.0)) for n, nd in G.nodes(data=True)}
|
|
2272
|
+
grads = {
|
|
2273
|
+
"epi": _NeighborAverageGradient(ALIAS_EPI, epi_values),
|
|
2274
|
+
"vf": _NeighborAverageGradient(ALIAS_VF, vf_values),
|
|
2275
|
+
}
|
|
2276
|
+
_apply_dnfr_hook(
|
|
2277
|
+
G,
|
|
2278
|
+
grads,
|
|
2279
|
+
weights={"phase": 0.0, "epi": 0.5, "vf": 0.5},
|
|
2280
|
+
hook_name="dnfr_epi_vf_mixed",
|
|
2281
|
+
note="Example hook.",
|
|
2282
|
+
n_jobs=n_jobs,
|
|
2283
|
+
)
|
|
2284
|
+
|
|
2285
|
+
|
|
2286
|
+
def dnfr_laplacian(G: TNFRGraph, *, n_jobs: int | None = None) -> None:
|
|
2287
|
+
"""Explicit topological gradient using Laplacian over EPI and νf.
|
|
2288
|
+
|
|
2289
|
+
Parameters
|
|
2290
|
+
----------
|
|
2291
|
+
G : nx.Graph
|
|
2292
|
+
Graph whose nodes receive the ΔNFR assignment.
|
|
2293
|
+
n_jobs : int | None, optional
|
|
2294
|
+
Parallel worker hint used when NumPy is unavailable. Defaults to
|
|
2295
|
+
serial execution.
|
|
2296
|
+
"""
|
|
2297
|
+
|
|
2298
|
+
weights_cfg = get_param(G, "DNFR_WEIGHTS")
|
|
2299
|
+
wE = float(weights_cfg.get("epi", DEFAULTS["DNFR_WEIGHTS"]["epi"]))
|
|
2300
|
+
wV = float(weights_cfg.get("vf", DEFAULTS["DNFR_WEIGHTS"]["vf"]))
|
|
2301
|
+
|
|
2302
|
+
epi_values = {n: float(get_attr(nd, ALIAS_EPI, 0.0)) for n, nd in G.nodes(data=True)}
|
|
2303
|
+
vf_values = {n: float(get_attr(nd, ALIAS_VF, 0.0)) for n, nd in G.nodes(data=True)}
|
|
2304
|
+
grads = {
|
|
2305
|
+
"epi": _NeighborAverageGradient(ALIAS_EPI, epi_values),
|
|
2306
|
+
"vf": _NeighborAverageGradient(ALIAS_VF, vf_values),
|
|
2307
|
+
}
|
|
2308
|
+
_apply_dnfr_hook(
|
|
2309
|
+
G,
|
|
2310
|
+
grads,
|
|
2311
|
+
weights={"epi": wE, "vf": wV},
|
|
2312
|
+
hook_name="dnfr_laplacian",
|
|
2313
|
+
note="Topological gradient",
|
|
2314
|
+
n_jobs=n_jobs,
|
|
2315
|
+
)
|