tinygrad 0.7.0__py3-none-any.whl → 0.9.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tinygrad/__init__.py +6 -0
- tinygrad/codegen/kernel.py +572 -83
- tinygrad/codegen/linearizer.py +415 -395
- tinygrad/codegen/uops.py +415 -0
- tinygrad/device.py +183 -0
- tinygrad/dtype.py +113 -0
- tinygrad/engine/__init__.py +0 -0
- tinygrad/engine/graph.py +100 -0
- tinygrad/engine/jit.py +195 -0
- tinygrad/engine/realize.py +191 -0
- tinygrad/engine/schedule.py +362 -0
- tinygrad/engine/search.py +196 -0
- tinygrad/{mlops.py → function.py} +76 -55
- tinygrad/helpers.py +196 -89
- tinygrad/lazy.py +210 -371
- tinygrad/multi.py +169 -0
- tinygrad/nn/__init__.py +202 -22
- tinygrad/nn/datasets.py +7 -0
- tinygrad/nn/optim.py +112 -32
- tinygrad/nn/state.py +136 -39
- tinygrad/ops.py +119 -202
- tinygrad/renderer/__init__.py +61 -0
- tinygrad/renderer/assembly.py +276 -0
- tinygrad/renderer/cstyle.py +353 -166
- tinygrad/renderer/llvmir.py +150 -138
- tinygrad/runtime/autogen/amd_gpu.py +1900 -0
- tinygrad/runtime/autogen/comgr.py +865 -0
- tinygrad/runtime/autogen/cuda.py +5923 -0
- tinygrad/runtime/autogen/hip.py +5909 -0
- tinygrad/runtime/autogen/hsa.py +5761 -0
- tinygrad/runtime/autogen/kfd.py +812 -0
- tinygrad/runtime/autogen/nv_gpu.py +33328 -0
- tinygrad/runtime/autogen/opencl.py +1795 -0
- tinygrad/runtime/driver/hip_comgr.py +47 -0
- tinygrad/runtime/driver/hsa.py +143 -0
- tinygrad/runtime/graph/clang.py +38 -0
- tinygrad/runtime/graph/cuda.py +81 -0
- tinygrad/runtime/graph/hcq.py +143 -0
- tinygrad/runtime/graph/hsa.py +171 -0
- tinygrad/runtime/graph/metal.py +75 -0
- tinygrad/runtime/ops_amd.py +564 -0
- tinygrad/runtime/ops_clang.py +24 -77
- tinygrad/runtime/ops_cuda.py +175 -89
- tinygrad/runtime/ops_disk.py +56 -33
- tinygrad/runtime/ops_gpu.py +92 -95
- tinygrad/runtime/ops_hsa.py +278 -0
- tinygrad/runtime/ops_llvm.py +39 -60
- tinygrad/runtime/ops_metal.py +92 -74
- tinygrad/runtime/ops_npy.py +9 -0
- tinygrad/runtime/ops_nv.py +630 -0
- tinygrad/runtime/ops_python.py +204 -0
- tinygrad/shape/shapetracker.py +86 -254
- tinygrad/shape/symbolic.py +166 -141
- tinygrad/shape/view.py +296 -0
- tinygrad/tensor.py +2619 -448
- {tinygrad-0.7.0.dist-info → tinygrad-0.9.0.dist-info}/LICENSE +1 -1
- tinygrad-0.9.0.dist-info/METADATA +227 -0
- tinygrad-0.9.0.dist-info/RECORD +60 -0
- {tinygrad-0.7.0.dist-info → tinygrad-0.9.0.dist-info}/WHEEL +1 -1
- tinygrad/codegen/assembly.py +0 -190
- tinygrad/codegen/optimizer.py +0 -379
- tinygrad/codegen/search.py +0 -72
- tinygrad/graph.py +0 -83
- tinygrad/jit.py +0 -57
- tinygrad/nn/image.py +0 -100
- tinygrad/renderer/assembly_arm64.py +0 -169
- tinygrad/renderer/assembly_ptx.py +0 -98
- tinygrad/renderer/wgsl.py +0 -53
- tinygrad/runtime/lib.py +0 -113
- tinygrad/runtime/ops_cpu.py +0 -51
- tinygrad/runtime/ops_hip.py +0 -82
- tinygrad/runtime/ops_shm.py +0 -29
- tinygrad/runtime/ops_torch.py +0 -30
- tinygrad/runtime/ops_webgpu.py +0 -45
- tinygrad-0.7.0.dist-info/METADATA +0 -212
- tinygrad-0.7.0.dist-info/RECORD +0 -40
- {tinygrad-0.7.0.dist-info → tinygrad-0.9.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,630 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
import os, ctypes, pathlib, re, fcntl, functools, mmap, struct, tempfile, hashlib, subprocess, time, array
|
|
3
|
+
from typing import Tuple, List, Any, cast
|
|
4
|
+
from tinygrad.device import Compiled, Compiler, CompileError, LRUAllocator, BufferOptions
|
|
5
|
+
from tinygrad.helpers import getenv, from_mv, init_c_struct_t, to_mv, round_up, to_char_p_p, DEBUG, prod
|
|
6
|
+
from tinygrad.renderer.cstyle import NVRenderer
|
|
7
|
+
from tinygrad.runtime.ops_cuda import check as cuda_check, _get_bytes, CUDACompiler
|
|
8
|
+
import tinygrad.runtime.autogen.cuda as cuda
|
|
9
|
+
import tinygrad.runtime.autogen.nv_gpu as nv_gpu
|
|
10
|
+
if getenv("IOCTL"): import extra.nv_gpu_driver.nv_ioctl # noqa: F401
|
|
11
|
+
|
|
12
|
+
libc = ctypes.CDLL(ctypes.util.find_library("c"))
|
|
13
|
+
libc.mmap.argtypes = [ctypes.c_void_p, ctypes.c_size_t, ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_long]
|
|
14
|
+
libc.mmap.restype = ctypes.c_void_p
|
|
15
|
+
libc.munmap.argtypes = [ctypes.c_void_p, ctypes.c_size_t]
|
|
16
|
+
libc.munmap.restype = ctypes.c_int
|
|
17
|
+
|
|
18
|
+
if MOCKGPU:=getenv("MOCKGPU"):
|
|
19
|
+
import extra.mockgpu.mockgpu # noqa: F401
|
|
20
|
+
libc.mmap = extra.mockgpu.mockgpu._mmap # type: ignore
|
|
21
|
+
libc.munmap = extra.mockgpu.mockgpu._munmap # type: ignore
|
|
22
|
+
|
|
23
|
+
def nv_iowr(fd, nr, args):
|
|
24
|
+
ret = fcntl.ioctl(fd, (3 << 30) | (ctypes.sizeof(args) & 0x1FFF) << 16 | (ord('F') & 0xFF) << 8 | (nr & 0xFF), args)
|
|
25
|
+
if ret != 0: raise RuntimeError(f"ioctl returned {ret}")
|
|
26
|
+
|
|
27
|
+
def rm_alloc(fd, clss, root, parant, params):
|
|
28
|
+
made = nv_gpu.NVOS21_PARAMETERS(hRoot=root, hObjectParent=parant, hClass=clss,
|
|
29
|
+
pAllocParms=ctypes.cast(ctypes.byref(params), ctypes.POINTER(None)) if params is not None else None) # type: ignore
|
|
30
|
+
nv_iowr(fd, nv_gpu.NV_ESC_RM_ALLOC, made)
|
|
31
|
+
if made.status != 0: raise RuntimeError(f"rm_alloc returned {made.status}")
|
|
32
|
+
return made
|
|
33
|
+
|
|
34
|
+
def rm_control(fd, cmd, client, obj, params):
|
|
35
|
+
made = nv_gpu.NVOS54_PARAMETERS(hClient=client, hObject=obj, cmd=cmd, paramsSize=ctypes.sizeof(params),
|
|
36
|
+
params=ctypes.cast(ctypes.byref(params), ctypes.POINTER(None)) if params is not None else None) # type: ignore
|
|
37
|
+
nv_iowr(fd, nv_gpu.NV_ESC_RM_CONTROL, made)
|
|
38
|
+
if made.status != 0: raise RuntimeError(f"rm_control returned {made.status}")
|
|
39
|
+
return made
|
|
40
|
+
|
|
41
|
+
def uvm_ioctl(cmd, sttyp, fd, **kwargs):
|
|
42
|
+
ret = fcntl.ioctl(fd, cmd, made:=sttyp(**kwargs))
|
|
43
|
+
if ret != 0: raise RuntimeError(f"uvm_ioctl returned {ret}")
|
|
44
|
+
if made.rmStatus != 0: raise RuntimeError(f"uvm_ioctl struct returned {made.rmStatus}")
|
|
45
|
+
return made
|
|
46
|
+
|
|
47
|
+
def make_uvm_type():
|
|
48
|
+
fxns = {name.replace("UVM_", "").lower():
|
|
49
|
+
functools.partial(uvm_ioctl, dt, getattr(nv_gpu, name+"_PARAMS"))
|
|
50
|
+
for name,dt in nv_gpu.__dict__.items() if name.startswith("UVM_") and nv_gpu.__dict__.get(name+"_PARAMS")}
|
|
51
|
+
return type("NVUVM", (object, ), fxns)
|
|
52
|
+
uvm = make_uvm_type()
|
|
53
|
+
|
|
54
|
+
def make_qmd_struct_type():
|
|
55
|
+
fields = []
|
|
56
|
+
bits = [(name,dt) for name,dt in nv_gpu.__dict__.items() if name.startswith("NVC6C0_QMDV03_00") and isinstance(dt, tuple)]
|
|
57
|
+
bits += [(name+f"_{i}",dt(i)) for name,dt in nv_gpu.__dict__.items() for i in range(8) if name.startswith("NVC6C0_QMDV03_00") and callable(dt)]
|
|
58
|
+
bits = sorted(bits, key=lambda x: x[1][1])
|
|
59
|
+
for i,(name, data) in enumerate(bits):
|
|
60
|
+
if i > 0 and (gap:=(data[1] - bits[i-1][1][0] - 1)) != 0: fields.append((f"_reserved{i}", ctypes.c_uint32, gap))
|
|
61
|
+
fields.append((name.replace("NVC6C0_QMDV03_00_", "").lower(), ctypes.c_uint32, data[0]-data[1]+1))
|
|
62
|
+
return init_c_struct_t(tuple(fields))
|
|
63
|
+
qmd_struct_t = make_qmd_struct_type()
|
|
64
|
+
assert ctypes.sizeof(qmd_struct_t) == 0x40 * 4
|
|
65
|
+
|
|
66
|
+
def nvmethod(subc, mthd, size, typ=2): return (typ << 28) | (size << 16) | (subc << 13) | (mthd >> 2)
|
|
67
|
+
def nvdata64(data): return (data >> 32, data & 0xFFFFFFFF)
|
|
68
|
+
def nvdata64_le(data): return (data & 0xFFFFFFFF, data >> 32)
|
|
69
|
+
|
|
70
|
+
class NVCompiler(Compiler):
|
|
71
|
+
def __init__(self, arch:str):
|
|
72
|
+
self.arch = arch
|
|
73
|
+
#NVCompiler.compiler_opts = replace(NVCompiler.compiler_opts, has_tensor_cores=int(arch[3:]) >= 80)
|
|
74
|
+
cuda_check(cuda.nvrtcVersion((nvrtcMajor := ctypes.c_int()), (nvrtcMinor := ctypes.c_int())))
|
|
75
|
+
self.compile_options = [f'--gpu-architecture={arch}', "-I/usr/local/cuda/include", "-I/usr/include", "-I/opt/cuda/include/"]
|
|
76
|
+
if (nvrtcMajor.value, nvrtcMinor.value) >= (12, 4): self.compile_options.append("--minimal")
|
|
77
|
+
super().__init__(f"compile_nv_{self.arch}")
|
|
78
|
+
def compile(self, src:str) -> bytes:
|
|
79
|
+
cuda_check(cuda.nvrtcCreateProgram(ctypes.byref(prog := cuda.nvrtcProgram()), src.encode(), "<null>".encode(), 0, None, None))
|
|
80
|
+
status = cuda.nvrtcCompileProgram(prog, len(self.compile_options), to_char_p_p([o.encode() for o in self.compile_options]))
|
|
81
|
+
|
|
82
|
+
if status != 0:
|
|
83
|
+
raise CompileError(f"compile failed: {_get_bytes(prog, cuda.nvrtcGetProgramLog, cuda.nvrtcGetProgramLogSize, cuda_check).decode()}")
|
|
84
|
+
return _get_bytes(prog, cuda.nvrtcGetCUBIN, cuda.nvrtcGetCUBINSize, cuda_check)
|
|
85
|
+
|
|
86
|
+
class HWQueue:
|
|
87
|
+
def __init__(self): self.q, self.binded_device, self.next_cmd_index = [], None, 0
|
|
88
|
+
def __del__(self):
|
|
89
|
+
if self.binded_device is not None:
|
|
90
|
+
self.binded_device.synchronize() # Synchronize to ensure the buffer is no longer in use.
|
|
91
|
+
self.binded_device._gpu_free(self.hw_page)
|
|
92
|
+
|
|
93
|
+
def ptr(self) -> int: return self.next_cmd_index
|
|
94
|
+
|
|
95
|
+
def wait(self, signal, value=0):
|
|
96
|
+
self.q += [nvmethod(0, nv_gpu.NVC56F_SEM_ADDR_LO, 5), *nvdata64_le(ctypes.addressof(from_mv(signal))), *nvdata64_le(value),
|
|
97
|
+
(3 << 0) | (1 << 24)] # ACQUIRE | PAYLOAD_SIZE_64BIT
|
|
98
|
+
self.next_cmd_index += 1
|
|
99
|
+
return self
|
|
100
|
+
|
|
101
|
+
def signal(self, signal, value=0, timestamp=False):
|
|
102
|
+
self.q += [nvmethod(0, nv_gpu.NVC56F_SEM_ADDR_LO, 5), *nvdata64_le(ctypes.addressof(from_mv(signal))), *nvdata64_le(value),
|
|
103
|
+
(1 << 0) | (1 << 20) | (1 << 24) | ((1 << 25) if timestamp else 0)] # RELEASE | RELEASE_WFI | PAYLOAD_SIZE_64BIT | RELEASE_TIMESTAMP
|
|
104
|
+
self.q += [nvmethod(0, nv_gpu.NVC56F_NON_STALL_INTERRUPT, 1), 0x0]
|
|
105
|
+
self.next_cmd_index += 1
|
|
106
|
+
return self
|
|
107
|
+
|
|
108
|
+
def bind(self, device: NVDevice):
|
|
109
|
+
self.binded_device = device
|
|
110
|
+
self.hw_page = device._gpu_alloc(len(self.q) * 4, map_to_cpu=True)
|
|
111
|
+
hw_view = to_mv(self.hw_page.base, self.hw_page.length).cast("I")
|
|
112
|
+
for i, value in enumerate(self.q): hw_view[i] = value
|
|
113
|
+
|
|
114
|
+
# From now on, the queue is on the device for faster submission.
|
|
115
|
+
self.q = hw_view # type: ignore
|
|
116
|
+
|
|
117
|
+
def _submit(self, dev, gpu_ring, put_value, gpfifo_entries, gpfifo_token, gpu_ring_controls):
|
|
118
|
+
if dev == self.binded_device: cmdq_addr = self.hw_page.base
|
|
119
|
+
else:
|
|
120
|
+
dev.cmdq[dev.cmdq_wptr//4:dev.cmdq_wptr//4+len(self.q)] = array.array('I', self.q)
|
|
121
|
+
cmdq_addr = dev.cmdq_page.base+dev.cmdq_wptr
|
|
122
|
+
dev.cmdq_wptr += len(self.q) * 4
|
|
123
|
+
|
|
124
|
+
gpu_ring[put_value % gpfifo_entries] = (cmdq_addr//4 << 2) | (len(self.q) << 42) | (1 << 41)
|
|
125
|
+
gpu_ring_controls.GPPut = (put_value + 1) % gpfifo_entries
|
|
126
|
+
dev.gpu_mmio[0x90 // 4] = gpfifo_token
|
|
127
|
+
return put_value + 1
|
|
128
|
+
|
|
129
|
+
class HWComputeQueue(HWQueue):
|
|
130
|
+
def __init__(self):
|
|
131
|
+
super().__init__()
|
|
132
|
+
self.ptr_to_qmd = {}
|
|
133
|
+
|
|
134
|
+
def copy_from_cpu(self, gpuaddr, data):
|
|
135
|
+
self.q += [nvmethod(1, nv_gpu.NVC6C0_OFFSET_OUT_UPPER, 2), *nvdata64(gpuaddr)]
|
|
136
|
+
self.q += [nvmethod(1, nv_gpu.NVC6C0_LINE_LENGTH_IN, 2), len(data)*4, 0x1]
|
|
137
|
+
self.q += [nvmethod(1, nv_gpu.NVC6C0_LAUNCH_DMA, 1), 0x41]
|
|
138
|
+
self.q += [nvmethod(1, nv_gpu.NVC6C0_LOAD_INLINE_DATA, len(data), typ=6)] + [x for x in data]
|
|
139
|
+
self.next_cmd_index += 1
|
|
140
|
+
return self
|
|
141
|
+
|
|
142
|
+
def exec(self, prg, kernargs, global_size=(1,1,1), local_size=(1,1,1), signal=None, signal_value=0, chain_exec_ptr=None):
|
|
143
|
+
prg.qmd.cta_raster_width, prg.qmd.cta_raster_height, prg.qmd.cta_raster_depth = global_size
|
|
144
|
+
prg.qmd.cta_thread_dimension0, prg.qmd.cta_thread_dimension1, prg.qmd.cta_thread_dimension2 = local_size
|
|
145
|
+
prg.qmd.constant_buffer_addr_lower_0 = kernargs & 0xffffffff
|
|
146
|
+
prg.qmd.constant_buffer_addr_upper_0 = kernargs >> 32
|
|
147
|
+
if signal is not None:
|
|
148
|
+
prg.qmd.release0_address_lower = ctypes.addressof(from_mv(signal)) & 0xffffffff
|
|
149
|
+
prg.qmd.release0_address_upper = ctypes.addressof(from_mv(signal)) >> 32
|
|
150
|
+
prg.qmd.release0_payload_lower = signal_value & 0xffffffff
|
|
151
|
+
prg.qmd.release0_payload_upper = signal_value >> 32
|
|
152
|
+
prg.qmd.release0_enable = 1
|
|
153
|
+
else: prg.qmd.release0_enable = 0
|
|
154
|
+
|
|
155
|
+
ctypes.memmove(qmd_addr:=(kernargs + round_up(prg.constbuf_0_size, 1 << 8)), ctypes.addressof(prg.qmd), 0x40 * 4)
|
|
156
|
+
self.ptr_to_qmd[self.ptr()] = qmd_struct_t.from_address(qmd_addr) # Save qmd for later update
|
|
157
|
+
|
|
158
|
+
if chain_exec_ptr is None:
|
|
159
|
+
self.q += [nvmethod(1, nv_gpu.NVC6C0_INVALIDATE_SHADER_CACHES_NO_WFI, 1), (1 << 12) | (1 << 4) | (1 << 0)]
|
|
160
|
+
self.q += [nvmethod(1, nv_gpu.NVC6C0_SEND_PCAS_A, 0x1), qmd_addr >> 8]
|
|
161
|
+
self.q += [nvmethod(1, nv_gpu.NVC6C0_SEND_SIGNALING_PCAS2_B, 0x1), 9]
|
|
162
|
+
else:
|
|
163
|
+
self.ptr_to_qmd[chain_exec_ptr].dependent_qmd0_pointer = qmd_addr >> 8
|
|
164
|
+
self.ptr_to_qmd[chain_exec_ptr].dependent_qmd0_action = 1
|
|
165
|
+
self.ptr_to_qmd[chain_exec_ptr].dependent_qmd0_prefetch = 1
|
|
166
|
+
self.ptr_to_qmd[chain_exec_ptr].dependent_qmd0_enable = 1
|
|
167
|
+
self.next_cmd_index += 1
|
|
168
|
+
return self
|
|
169
|
+
|
|
170
|
+
def update_exec(self, cmd_ptr, global_size, local_size):
|
|
171
|
+
# Patch the exec cmd with new launch dims
|
|
172
|
+
qmd = self.ptr_to_qmd[cmd_ptr]
|
|
173
|
+
qmd.cta_raster_width, qmd.cta_raster_height, qmd.cta_raster_depth = global_size
|
|
174
|
+
qmd.cta_thread_dimension0, qmd.cta_thread_dimension1, qmd.cta_thread_dimension2 = local_size
|
|
175
|
+
|
|
176
|
+
def submit(self, dev:NVDevice):
|
|
177
|
+
if len(self.q) == 0: return
|
|
178
|
+
dev.compute_put_value = self._submit(dev, dev.compute_gpu_ring, dev.compute_put_value, dev.compute_gpfifo_entries,
|
|
179
|
+
dev.compute_gpfifo_token, dev.compute_gpu_ring_controls)
|
|
180
|
+
|
|
181
|
+
class HWCopyQueue(HWQueue):
|
|
182
|
+
def copy(self, dest, src, copy_size):
|
|
183
|
+
self.q += [nvmethod(4, nv_gpu.NVC6B5_OFFSET_IN_UPPER, 4), *nvdata64(src), *nvdata64(dest)]
|
|
184
|
+
self.q += [nvmethod(4, nv_gpu.NVC6B5_LINE_LENGTH_IN, 1), copy_size]
|
|
185
|
+
self.q += [nvmethod(4, nv_gpu.NVC6B5_LAUNCH_DMA, 1), 0x182] # TRANSFER_TYPE_NON_PIPELINED | DST_MEMORY_LAYOUT_PITCH | SRC_MEMORY_LAYOUT_PITCH
|
|
186
|
+
self.next_cmd_index += 1
|
|
187
|
+
return self
|
|
188
|
+
|
|
189
|
+
def submit(self, dev:NVDevice):
|
|
190
|
+
if len(self.q) == 0: return
|
|
191
|
+
dev.dma_put_value = self._submit(dev, dev.dma_gpu_ring, dev.dma_put_value, dev.dma_gpfifo_entries,
|
|
192
|
+
dev.dma_gpfifo_token, dev.dma_gpu_ring_controls)
|
|
193
|
+
|
|
194
|
+
SHT_PROGBITS, SHT_NOBITS, SHF_ALLOC, SHF_EXECINSTR = 0x1, 0x8, 0x2, 0x4
|
|
195
|
+
class NVProgram:
|
|
196
|
+
def __init__(self, device:NVDevice, name:str, lib:bytes):
|
|
197
|
+
self.device, self.name, self.lib = device, name, lib
|
|
198
|
+
if DEBUG >= 6:
|
|
199
|
+
try:
|
|
200
|
+
fn = (pathlib.Path(tempfile.gettempdir()) / f"tinycuda_{hashlib.md5(lib).hexdigest()}").as_posix()
|
|
201
|
+
with open(fn + ".cubin", "wb") as f: f.write(lib)
|
|
202
|
+
print(subprocess.check_output(["nvdisasm", fn+".cubin"]).decode('utf-8'))
|
|
203
|
+
except Exception as e: print("failed to disasm cubin", str(e))
|
|
204
|
+
|
|
205
|
+
self.global_init, self.shmem_usage = None, 0
|
|
206
|
+
constant_buffers_data = {}
|
|
207
|
+
|
|
208
|
+
if MOCKGPU:
|
|
209
|
+
self.program, self.registers_usage = memoryview(bytearray(lib) + b'\x00' * (4 - len(lib)%4)).cast("I"), 0x10
|
|
210
|
+
constant_buffers_data[0] = memoryview(bytearray(0x190))
|
|
211
|
+
else:
|
|
212
|
+
_phoff, _shoff, _flags, _ehsize, _phentsize, _phnum, _shentsize, _shnum, _shstrndx = struct.unpack_from("<QQIHHHHHH", self.lib, 0x20)
|
|
213
|
+
sections = [struct.unpack_from("<IIQQQQIIQ", self.lib, _shoff + i * _shentsize) for i in range(_shnum)]
|
|
214
|
+
shstrtab = memoryview(bytearray(self.lib[sections[_shstrndx][4]:sections[_shstrndx][4]+sections[_shstrndx][5]]))
|
|
215
|
+
for sh_name, sh_type, sh_flags, _, sh_offset, sh_size, _, sh_info, _ in sections:
|
|
216
|
+
section_name = shstrtab[sh_name:].tobytes().split(b'\0', 1)[0].decode('utf-8')
|
|
217
|
+
if sh_type == SHT_NOBITS and sh_flags & SHF_ALLOC: self.shmem_usage = sh_size
|
|
218
|
+
elif sh_type == SHT_PROGBITS and sh_flags & SHF_ALLOC and sh_flags & SHF_EXECINSTR:
|
|
219
|
+
self.program = memoryview(bytearray(self.lib[sh_offset:sh_offset+sh_size])).cast("I")
|
|
220
|
+
self.registers_usage = sh_info >> 24
|
|
221
|
+
if match := re.match(r'\.nv\.constant(\d+)', section_name):
|
|
222
|
+
constant_buffers_data[int(match.group(1))] = memoryview(bytearray(self.lib[sh_offset:sh_offset+sh_size])).cast("I")
|
|
223
|
+
if section_name == ".nv.global.init": self.global_init = memoryview(bytearray(self.lib[sh_offset:sh_offset+sh_size])).cast("I")
|
|
224
|
+
elif section_name == ".nv.info":
|
|
225
|
+
section_data = memoryview(bytearray(self.lib[sh_offset:sh_offset+sh_size])).cast("I")
|
|
226
|
+
for i in range(sh_size // 12):
|
|
227
|
+
if section_data[i * 3 + 0] & 0xffff == 0x1204 and section_data[i * 3 + 2] + 0x240 > self.device.slm_per_thread:
|
|
228
|
+
raise RuntimeError("too high local memory")
|
|
229
|
+
|
|
230
|
+
# Registers allocation granularity per warp is 256, warp allocaiton granularity is 4. Register file size is 65536.
|
|
231
|
+
self.max_threads = ((65536 // round_up(self.registers_usage * 32, 256)) // 4) * 4 * 32
|
|
232
|
+
|
|
233
|
+
# Load program and constant buffers (if any)
|
|
234
|
+
self.lib_sz = round_up(round_up(self.program.nbytes, 128) + round_up(0 if self.global_init is None else self.global_init.nbytes, 128) +
|
|
235
|
+
sum([round_up(x.nbytes, 128) for i,x in constant_buffers_data.items()]), 0x1000)
|
|
236
|
+
self.lib_gpu = self.device.allocator.alloc(self.lib_sz)
|
|
237
|
+
for st in range(0, len(self.program), 4095):
|
|
238
|
+
HWComputeQueue().copy_from_cpu(self.lib_gpu.base+st*4, self.program[st:st+4095]).submit(self.device)
|
|
239
|
+
|
|
240
|
+
self.constbuffer_0 = [0] * 88
|
|
241
|
+
self.constbuffer_0[6:12] = [*nvdata64_le(self.device.shared_mem_window), *nvdata64_le(self.device.local_mem_window), *nvdata64_le(0xfffdc0)]
|
|
242
|
+
|
|
243
|
+
smem_config = min(shmem_conf * 1024 for shmem_conf in [32, 64, 100] if shmem_conf * 1024 >= self.shmem_usage) // 4096 + 1
|
|
244
|
+
self.qmd = qmd_struct_t(qmd_group_id=0x3f, sm_global_caching_enable=1, invalidate_texture_header_cache=1, invalidate_texture_sampler_cache=1,
|
|
245
|
+
invalidate_texture_data_cache=1, invalidate_shader_data_cache=1, api_visible_call_limit=1, sampler_index=1,
|
|
246
|
+
cwd_membar_type=nv_gpu.NVC6C0_QMDV03_00_CWD_MEMBAR_TYPE_L1_SYSMEMBAR, qmd_major_version=3,
|
|
247
|
+
shared_memory_size=max(0x400, round_up(self.shmem_usage, 0x100)), min_sm_config_shared_mem_size=smem_config,
|
|
248
|
+
max_sm_config_shared_mem_size=0x1a, register_count_v=self.registers_usage, target_sm_config_shared_mem_size=smem_config,
|
|
249
|
+
barrier_count=1, shader_local_memory_high_size=self.device.slm_per_thread, program_prefetch_size=0x10, sass_version=0x89,
|
|
250
|
+
program_address_lower=self.lib_gpu.base&0xffffffff, program_address_upper=self.lib_gpu.base>>32,
|
|
251
|
+
program_prefetch_addr_lower_shifted=self.lib_gpu.base>>8, program_prefetch_addr_upper_shifted=self.lib_gpu.base>>40,
|
|
252
|
+
constant_buffer_size_shifted4_0=0x190, constant_buffer_valid_0=1, constant_buffer_invalidate_0=1)
|
|
253
|
+
|
|
254
|
+
# NV's kernargs is constbuffer (size 0x160), then arguments to the kernel follows. Kernargs also appends QMD at the end of the kernel.
|
|
255
|
+
self.constbuf_0_size = constant_buffers_data[0].nbytes if 0 in constant_buffers_data else 0
|
|
256
|
+
self.kernargs_segment_size = round_up(self.constbuf_0_size, 1 << 8) + (8 << 8)
|
|
257
|
+
self.kernargs_offset = 0x160
|
|
258
|
+
|
|
259
|
+
# constant buffer 0 is filled for each program, no need to copy it from elf (it's just zeroes)
|
|
260
|
+
if 0 in constant_buffers_data: constant_buffers_data.pop(0)
|
|
261
|
+
|
|
262
|
+
off = round_up(self.program.nbytes, 128)
|
|
263
|
+
if self.global_init is not None:
|
|
264
|
+
# Constbuffer 4 contains a pointer to nv.global.init, load section and set up the pointer.
|
|
265
|
+
assert 4 in constant_buffers_data and constant_buffers_data[4].nbytes == 8
|
|
266
|
+
HWComputeQueue().copy_from_cpu(load_addr:=(self.lib_gpu.base + off), self.global_init).submit(self.device)
|
|
267
|
+
constant_buffers_data[4][0:2] = memoryview(struct.pack('Q', load_addr)).cast('I')
|
|
268
|
+
off += round_up(self.global_init.nbytes, 128)
|
|
269
|
+
|
|
270
|
+
for i,data in constant_buffers_data.items():
|
|
271
|
+
self.qmd.__setattr__(f'constant_buffer_addr_upper_{i}', (self.lib_gpu.base + off) >> 32)
|
|
272
|
+
self.qmd.__setattr__(f'constant_buffer_addr_lower_{i}', (self.lib_gpu.base + off) & 0xffffffff)
|
|
273
|
+
self.qmd.__setattr__(f'constant_buffer_size_shifted4_{i}', data.nbytes)
|
|
274
|
+
self.qmd.__setattr__(f'constant_buffer_valid_{i}', 1)
|
|
275
|
+
|
|
276
|
+
HWComputeQueue().copy_from_cpu(self.lib_gpu.base + off, data).submit(self.device)
|
|
277
|
+
off += round_up(data.nbytes, 128)
|
|
278
|
+
|
|
279
|
+
HWComputeQueue().signal(self.device.timeline_signal, self.device.timeline_value).submit(self.device)
|
|
280
|
+
self.device.timeline_value += 1
|
|
281
|
+
self.device.synchronize()
|
|
282
|
+
|
|
283
|
+
def __del__(self):
|
|
284
|
+
if hasattr(self, 'lib_gpu'): self.device.allocator.free(self.lib_gpu, self.lib_sz)
|
|
285
|
+
|
|
286
|
+
def __call__(self, *args, global_size:Tuple[int,int,int]=(1,1,1), local_size:Tuple[int,int,int]=(1,1,1), vals:Tuple[int, ...]=(), wait=False):
|
|
287
|
+
if prod(local_size) > 1024 or self.max_threads < prod(local_size): raise RuntimeError("Too many resources requsted for launch")
|
|
288
|
+
if any(cur > mx for cur,mx in zip(global_size, [2147483647, 65535, 65535])) or any(cur > mx for cur,mx in zip(local_size, [1024, 1024, 64])):
|
|
289
|
+
raise RuntimeError("Invalid global/local dims")
|
|
290
|
+
|
|
291
|
+
if self.device.kernargs_ptr >= (self.device.kernargs_page.base + self.device.kernargs_page.length - self.kernargs_segment_size):
|
|
292
|
+
self.device.kernargs_ptr = self.device.kernargs_page.base
|
|
293
|
+
|
|
294
|
+
# HACK: Save counts of args and vars to "unused" constbuffer for later extraction in mockgpu to pass into gpuocelot.
|
|
295
|
+
if MOCKGPU: self.constbuffer_0[0:2] = [len(args), len(vals)]
|
|
296
|
+
kernargs = [arg_half for arg in args for arg_half in nvdata64_le(arg.base)] + [val for val in vals]
|
|
297
|
+
|
|
298
|
+
queue = HWComputeQueue()
|
|
299
|
+
queue.wait(self.device.timeline_signal, self.device.timeline_value - 1)
|
|
300
|
+
if wait: queue.signal(self.device.time_event_st, timestamp=True)
|
|
301
|
+
queue.copy_from_cpu(self.device.kernargs_ptr, self.constbuffer_0 + kernargs)
|
|
302
|
+
queue.exec(self, self.device.kernargs_ptr, global_size, local_size)
|
|
303
|
+
if wait: queue.signal(self.device.time_event_en, timestamp=True)
|
|
304
|
+
queue.signal(self.device.timeline_signal, self.device.timeline_value).submit(self.device)
|
|
305
|
+
self.device.timeline_value += 1
|
|
306
|
+
self.device.kernargs_ptr += self.kernargs_segment_size
|
|
307
|
+
|
|
308
|
+
if wait:
|
|
309
|
+
self.device._wait_signal(self.device.timeline_signal, self.device.timeline_value - 1)
|
|
310
|
+
return (self.device.time_event_en[1] - self.device.time_event_st[1]) / 1e9
|
|
311
|
+
|
|
312
|
+
class NVAllocator(LRUAllocator):
|
|
313
|
+
def __init__(self, device:NVDevice):
|
|
314
|
+
self.device = device
|
|
315
|
+
self.b = [self.device._gpu_host_alloc(2 << 20) for _ in range(16)]
|
|
316
|
+
self.b_timeline = [0] * len(self.b)
|
|
317
|
+
self.b_next = 0
|
|
318
|
+
super().__init__()
|
|
319
|
+
|
|
320
|
+
def _alloc(self, size:int, options:BufferOptions):
|
|
321
|
+
if options.host: return self.device._gpu_host_alloc(size)
|
|
322
|
+
else: return self.device._gpu_alloc(size, map_to_cpu=options.cpu_access)
|
|
323
|
+
|
|
324
|
+
def _free(self, gpumem, options:BufferOptions):
|
|
325
|
+
NVDevice.synchronize_system()
|
|
326
|
+
if options.host: self.device._gpu_host_free(gpumem)
|
|
327
|
+
else: self.device._gpu_free(gpumem)
|
|
328
|
+
|
|
329
|
+
def copyin(self, dest, src: memoryview):
|
|
330
|
+
for i in range(0, src.nbytes, self.b[0].length):
|
|
331
|
+
self.b_next = (self.b_next + 1) % len(self.b)
|
|
332
|
+
NVDevice._wait_signal(self.device.timeline_signal, self.b_timeline[self.b_next])
|
|
333
|
+
ctypes.memmove(self.b[self.b_next].va_addr, from_mv(src[i:]), lsize:=min(self.b[self.b_next].length, src.nbytes-i))
|
|
334
|
+
HWCopyQueue().wait(self.device.timeline_signal, self.device.timeline_value - 1) \
|
|
335
|
+
.copy(dest.va_addr+i, self.b[self.b_next].va_addr, lsize) \
|
|
336
|
+
.signal(self.device.timeline_signal, self.device.timeline_value).submit(self.device)
|
|
337
|
+
self.b_timeline[self.b_next] = self.device.timeline_value
|
|
338
|
+
self.device.timeline_value += 1
|
|
339
|
+
|
|
340
|
+
def copyout(self, dest:memoryview, src):
|
|
341
|
+
NVDevice.synchronize_system()
|
|
342
|
+
for i in range(0, dest.nbytes, self.b[0].length):
|
|
343
|
+
HWCopyQueue().wait(self.device.timeline_signal, self.device.timeline_value - 1) \
|
|
344
|
+
.copy(self.b[0].va_addr, src.va_addr+i, lsize:=min(self.b[0].length, dest.nbytes-i)) \
|
|
345
|
+
.signal(self.device.timeline_signal, self.device.timeline_value).submit(self.device)
|
|
346
|
+
NVDevice._wait_signal(self.device.timeline_signal, self.device.timeline_value)
|
|
347
|
+
self.device.timeline_value += 1
|
|
348
|
+
|
|
349
|
+
ctypes.memmove(from_mv(dest[i:]), self.b[0].va_addr, lsize)
|
|
350
|
+
|
|
351
|
+
def transfer(self, dest, src, sz:int, src_dev=None, dest_dev=None):
|
|
352
|
+
src_dev._gpu_map(dest)
|
|
353
|
+
HWCopyQueue().wait(src_dev.timeline_signal, src_dev.timeline_value - 1) \
|
|
354
|
+
.wait(dest_dev.timeline_signal, dest_dev.timeline_value - 1) \
|
|
355
|
+
.copy(dest.va_addr, src.va_addr, sz) \
|
|
356
|
+
.signal(src_dev.timeline_signal, src_dev.timeline_value).submit(src_dev)
|
|
357
|
+
HWComputeQueue().wait(src_dev.timeline_signal, src_dev.timeline_value).submit(dest_dev)
|
|
358
|
+
src_dev.timeline_value += 1
|
|
359
|
+
|
|
360
|
+
MAP_FIXED, MAP_NORESERVE = 0x10, 0x400
|
|
361
|
+
class NVDevice(Compiled):
|
|
362
|
+
root = None
|
|
363
|
+
fd_ctl: int = -1
|
|
364
|
+
fd_uvm: int = -1
|
|
365
|
+
gpus_info = None
|
|
366
|
+
signals_page:Any = None
|
|
367
|
+
signals_pool: List[Any] = []
|
|
368
|
+
uvm_vaddr: int = 0x1000000000
|
|
369
|
+
host_object_enumerator: int = 0x1000
|
|
370
|
+
devices: List[NVDevice] = []
|
|
371
|
+
|
|
372
|
+
def _new_gpu_fd(self):
|
|
373
|
+
fd_dev = os.open(f"/dev/nvidia{self.device_id}", os.O_RDWR | os.O_CLOEXEC)
|
|
374
|
+
nv_iowr(fd_dev, nv_gpu.NV_ESC_REGISTER_FD, nv_gpu.nv_ioctl_register_fd_t(ctl_fd=self.fd_ctl))
|
|
375
|
+
return fd_dev
|
|
376
|
+
|
|
377
|
+
def _gpu_map_to_cpu(self, memory_handle, size, target=None, flags=0, system=False):
|
|
378
|
+
fd_dev = self._new_gpu_fd() if not system else os.open("/dev/nvidiactl", os.O_RDWR | os.O_CLOEXEC)
|
|
379
|
+
made = nv_gpu.nv_ioctl_nvos33_parameters_with_fd(fd=fd_dev,
|
|
380
|
+
params=nv_gpu.NVOS33_PARAMETERS(hClient=self.root, hDevice=self.device, hMemory=memory_handle, length=size, flags=flags))
|
|
381
|
+
nv_iowr(self.fd_ctl, nv_gpu.NV_ESC_RM_MAP_MEMORY, made)
|
|
382
|
+
if made.params.status != 0: raise RuntimeError(f"_gpu_map_to_cpu returned {made.params.status}")
|
|
383
|
+
return libc.mmap(target, size, mmap.PROT_READ|mmap.PROT_WRITE, mmap.MAP_SHARED | (MAP_FIXED if target is not None else 0), fd_dev, 0)
|
|
384
|
+
|
|
385
|
+
def _gpu_alloc(self, size:int, contig=False, huge_page=False, va_addr=None, map_to_cpu=False, map_flags=0):
|
|
386
|
+
size = round_up(size, align:=((4 << 10) if huge_page else (2 << 20))) # TODO: need hugepage option, any speedup?
|
|
387
|
+
alloc_params = nv_gpu.NV_MEMORY_ALLOCATION_PARAMS(owner=self.root, alignment=align, offset=0, limit=size-1, format=6, size=size,
|
|
388
|
+
attr=(((nv_gpu.NVOS32_ATTR_PAGE_SIZE_HUGE << 23) if huge_page else 0) |
|
|
389
|
+
((nv_gpu.NVOS32_ATTR_PHYSICALITY_CONTIGUOUS if contig else nv_gpu.NVOS32_ATTR_PHYSICALITY_ALLOW_NONCONTIGUOUS) << 27)),
|
|
390
|
+
attr2=((nv_gpu.NVOS32_ATTR2_ZBC_PREFER_NO_ZBC << 0) | (nv_gpu.NVOS32_ATTR2_GPU_CACHEABLE_YES << 2) |
|
|
391
|
+
((nv_gpu.NVOS32_ATTR2_PAGE_SIZE_HUGE_2MB << 20) if huge_page else 0)),
|
|
392
|
+
flags=(nv_gpu.NVOS32_ALLOC_FLAGS_ALIGNMENT_FORCE | nv_gpu.NVOS32_ALLOC_FLAGS_PERSISTENT_VIDMEM | nv_gpu.NVOS32_ALLOC_FLAGS_MAP_NOT_REQUIRED |
|
|
393
|
+
nv_gpu.NVOS32_ALLOC_FLAGS_IGNORE_BANK_PLACEMENT | nv_gpu.NVOS32_ALLOC_FLAGS_MEMORY_HANDLE_PROVIDED))
|
|
394
|
+
mem_handle = rm_alloc(self.fd_ctl, nv_gpu.NV1_MEMORY_USER, self.root, self.device, alloc_params).hObjectNew
|
|
395
|
+
|
|
396
|
+
if va_addr is None: va_addr = self._alloc_gpu_vaddr(size, alignment=align)
|
|
397
|
+
if map_to_cpu: va_addr = self._gpu_map_to_cpu(mem_handle, size, target=va_addr, flags=map_flags)
|
|
398
|
+
return self._gpu_uvm_map(va_addr, size, mem_handle)
|
|
399
|
+
|
|
400
|
+
def _gpu_system_alloc(self, size:int, va_addr=None, map_to_cpu=False, map_flags=0):
|
|
401
|
+
alloc_params = nv_gpu.NV_MEMORY_ALLOCATION_PARAMS(owner=self.root, type=13,
|
|
402
|
+
attr=(nv_gpu.NVOS32_ATTR_PHYSICALITY_ALLOW_NONCONTIGUOUS << 27) | (nv_gpu.NVOS32_ATTR_LOCATION_PCI << 25),
|
|
403
|
+
attr2=(nv_gpu.NVOS32_ATTR2_ZBC_PREFER_NO_ZBC << 0) | (nv_gpu.NVOS32_ATTR2_GPU_CACHEABLE_NO << 2),
|
|
404
|
+
flags=(nv_gpu.NVOS32_ALLOC_FLAGS_IGNORE_BANK_PLACEMENT | nv_gpu.NVOS32_ALLOC_FLAGS_MEMORY_HANDLE_PROVIDED |
|
|
405
|
+
nv_gpu.NVOS32_ALLOC_FLAGS_MAP_NOT_REQUIRED), format=6, size=size, alignment=(4<<10), offset=0, limit=size-1)
|
|
406
|
+
mem_handle = rm_alloc(self.fd_ctl, nv_gpu.NV1_MEMORY_SYSTEM, self.root, self.device, alloc_params).hObjectNew
|
|
407
|
+
|
|
408
|
+
if va_addr is None: va_addr = self._alloc_gpu_vaddr(size)
|
|
409
|
+
if map_to_cpu: va_addr = self._gpu_map_to_cpu(mem_handle, size, target=va_addr, flags=map_flags, system=True)
|
|
410
|
+
|
|
411
|
+
return self._gpu_uvm_map(va_addr, size, mem_handle)
|
|
412
|
+
|
|
413
|
+
def _gpu_host_alloc(self, size):
|
|
414
|
+
va_base = self._alloc_gpu_vaddr(sz:=round_up(size, 4 << 10))
|
|
415
|
+
libc.mmap(va_base, sz, mmap.PROT_READ|mmap.PROT_WRITE, MAP_FIXED|mmap.MAP_SHARED|mmap.MAP_ANONYMOUS, -1, 0)
|
|
416
|
+
return self._map_to_gpu(va_base, sz)
|
|
417
|
+
|
|
418
|
+
def _gpu_free(self, mem):
|
|
419
|
+
made = nv_gpu.NVOS00_PARAMETERS(hRoot=self.root, hObjectParent=self.device, hObjectOld=mem.hMemory)
|
|
420
|
+
nv_iowr(self.fd_ctl, nv_gpu.NV_ESC_RM_FREE, made)
|
|
421
|
+
if made.status != 0: raise RuntimeError(f"_gpu_free returned {made.status}")
|
|
422
|
+
uvm.free(self.fd_uvm, base=mem.base, length=mem.length)
|
|
423
|
+
|
|
424
|
+
def _gpu_host_free(self, mem):
|
|
425
|
+
uvm.free(self.fd_uvm, base=mem.base, length=mem.length)
|
|
426
|
+
libc.munmap(mem.base, mem.length)
|
|
427
|
+
|
|
428
|
+
def _map_to_gpu(self, va_base, size):
|
|
429
|
+
NVDevice.host_object_enumerator += 1
|
|
430
|
+
flags = ((nv_gpu.NVOS02_FLAGS_PHYSICALITY_NONCONTIGUOUS << 4) | (nv_gpu.NVOS02_FLAGS_COHERENCY_CACHED << 12) |
|
|
431
|
+
(nv_gpu.NVOS02_FLAGS_MAPPING_NO_MAP << 30))
|
|
432
|
+
made = nv_gpu.nv_ioctl_nvos02_parameters_with_fd(params=nv_gpu.NVOS02_PARAMETERS(hRoot=self.root, hObjectParent=self.device, flags=flags,
|
|
433
|
+
hObjectNew=NVDevice.host_object_enumerator, hClass=nv_gpu.NV01_MEMORY_SYSTEM_OS_DESCRIPTOR, pMemory=va_base, limit=size-1), fd=-1)
|
|
434
|
+
nv_iowr(self.fd_dev, nv_gpu.NV_ESC_RM_ALLOC_MEMORY, made)
|
|
435
|
+
if made.params.status != 0: raise RuntimeError(f"_map_to_gpu returned {made.params.status}")
|
|
436
|
+
return self._gpu_uvm_map(va_base, size, made.params.hObjectNew)
|
|
437
|
+
|
|
438
|
+
def _gpu_uvm_map(self, va_base, size, mem_handle, create_range=True) -> nv_gpu.UVM_MAP_EXTERNAL_ALLOCATION_PARAMS:
|
|
439
|
+
if create_range: uvm.create_external_range(self.fd_uvm, base=va_base, length=size)
|
|
440
|
+
gpu_attrs = (nv_gpu.struct_c__SA_UvmGpuMappingAttributes*256)(
|
|
441
|
+
nv_gpu.struct_c__SA_UvmGpuMappingAttributes(gpuUuid=nv_gpu.struct_nv_uuid(uuid=self.gpu_uuid), gpuMappingType = 1))
|
|
442
|
+
|
|
443
|
+
# NOTE: va_addr is set to make rawbufs compatable with AMD.
|
|
444
|
+
return uvm.map_external_allocation(self.fd_uvm, base=va_base, length=size, rmCtrlFd=self.fd_ctl, hClient=self.root, hMemory=mem_handle,
|
|
445
|
+
gpuAttributesCount=1, perGpuAttributes=gpu_attrs, va_addr=va_base)
|
|
446
|
+
|
|
447
|
+
def _gpu_map(self, mem):
|
|
448
|
+
if self.gpu_uuid in getattr(mem, "mapped_gpu_ids", []): return
|
|
449
|
+
mem.__setattr__("mapped_gpu_ids", getattr(mem, "mapped_gpu_ids", []) + [self.gpu_uuid])
|
|
450
|
+
return self._gpu_uvm_map(mem.base, mem.length, mem.hMemory, create_range=False)
|
|
451
|
+
|
|
452
|
+
def _alloc_gpu_vaddr(self, size, alignment=(4 << 10)):
|
|
453
|
+
NVDevice.uvm_vaddr = (res_va:=round_up(NVDevice.uvm_vaddr, alignment)) + size
|
|
454
|
+
return res_va
|
|
455
|
+
|
|
456
|
+
def __init__(self, device:str=""):
|
|
457
|
+
if NVDevice.root is None:
|
|
458
|
+
NVDevice.fd_ctl = os.open("/dev/nvidiactl", os.O_RDWR | os.O_CLOEXEC)
|
|
459
|
+
NVDevice.fd_uvm = os.open("/dev/nvidia-uvm", os.O_RDWR | os.O_CLOEXEC)
|
|
460
|
+
fd_uvm_2 = os.open("/dev/nvidia-uvm", os.O_RDWR | os.O_CLOEXEC)
|
|
461
|
+
NVDevice.root = rm_alloc(self.fd_ctl, nv_gpu.NV01_ROOT_CLIENT, 0, 0, None).hObjectNew
|
|
462
|
+
uvm.initialize(self.fd_uvm)
|
|
463
|
+
try:
|
|
464
|
+
uvm.mm_initialize(fd_uvm_2, uvmFd=self.fd_uvm)
|
|
465
|
+
except RuntimeError:
|
|
466
|
+
pass # this error is okay, CUDA hits it too
|
|
467
|
+
|
|
468
|
+
NVDevice.gpus_info = (nv_gpu.nv_ioctl_card_info_t*64)()
|
|
469
|
+
nv_iowr(NVDevice.fd_ctl, nv_gpu.NV_ESC_CARD_INFO, NVDevice.gpus_info)
|
|
470
|
+
|
|
471
|
+
# TODO: Get classes from NV0080_CTRL_CMD_GPU_GET_CLASSLIST_V2
|
|
472
|
+
self.device_id = int(device.split(":")[1]) if ":" in device else 0
|
|
473
|
+
self.fd_dev = self._new_gpu_fd()
|
|
474
|
+
|
|
475
|
+
assert NVDevice.gpus_info[self.device_id].valid
|
|
476
|
+
gpu_info = nv_gpu.NV0000_CTRL_GPU_GET_ID_INFO_V2_PARAMS(gpuId=NVDevice.gpus_info[self.device_id].gpu_id)
|
|
477
|
+
rm_control(self.fd_ctl, nv_gpu.NV0000_CTRL_CMD_GPU_GET_ID_INFO_V2, self.root, self.root, gpu_info)
|
|
478
|
+
device_id = NVDevice.gpus_info[self.device_id].pci_info.device_id
|
|
479
|
+
self.compute_type = nv_gpu.AMPERE_COMPUTE_B if device_id in [0x2204, 0x2206] else nv_gpu.ADA_COMPUTE_A
|
|
480
|
+
|
|
481
|
+
device_params = nv_gpu.NV0080_ALLOC_PARAMETERS(deviceId=gpu_info.deviceInstance, hClientShare=self.root,
|
|
482
|
+
vaMode=nv_gpu.NV_DEVICE_ALLOCATION_VAMODE_MULTIPLE_VASPACES)
|
|
483
|
+
self.device = rm_alloc(self.fd_ctl, nv_gpu.NV01_DEVICE_0, self.root, self.root, device_params).hObjectNew
|
|
484
|
+
self.subdevice = rm_alloc(self.fd_ctl, nv_gpu.NV20_SUBDEVICE_0, self.root, self.device, None).hObjectNew
|
|
485
|
+
self.usermode = rm_alloc(self.fd_ctl, nv_gpu.TURING_USERMODE_A, self.root, self.subdevice, None).hObjectNew
|
|
486
|
+
gpu_mmio_ptr = self._gpu_map_to_cpu(self.usermode, 0x10000, flags=2)
|
|
487
|
+
self.gpu_mmio = to_mv(gpu_mmio_ptr, 0x10000).cast("I")
|
|
488
|
+
|
|
489
|
+
boost_params = nv_gpu.struct_NV2080_CTRL_PERF_BOOST_PARAMS(duration=0xffffffff, flags=((nv_gpu.NV2080_CTRL_PERF_BOOST_FLAGS_CUDA_YES << 4) | \
|
|
490
|
+
(nv_gpu.NV2080_CTRL_PERF_BOOST_FLAGS_CUDA_PRIORITY_HIGH << 6) | (nv_gpu.NV2080_CTRL_PERF_BOOST_FLAGS_CMD_BOOST_TO_MAX << 0)))
|
|
491
|
+
rm_control(self.fd_ctl, nv_gpu.NV2080_CTRL_CMD_PERF_BOOST, self.root, self.subdevice, boost_params)
|
|
492
|
+
|
|
493
|
+
vaspace_params = nv_gpu.NV_VASPACE_ALLOCATION_PARAMETERS(vaBase=0x1000, vaSize=0x1fffffb000000,
|
|
494
|
+
flags=nv_gpu.NV_VASPACE_ALLOCATION_FLAGS_ENABLE_PAGE_FAULTING | nv_gpu.NV_VASPACE_ALLOCATION_FLAGS_IS_EXTERNALLY_OWNED)
|
|
495
|
+
vaspace = rm_alloc(self.fd_ctl, nv_gpu.FERMI_VASPACE_A, self.root, self.device, vaspace_params).hObjectNew
|
|
496
|
+
|
|
497
|
+
gpu_uuid_params = nv_gpu.NV2080_CTRL_GPU_GET_GID_INFO_PARAMS(flags=nv_gpu.NV2080_GPU_CMD_GPU_GET_GID_FLAGS_FORMAT_BINARY, length=16)
|
|
498
|
+
rm_control(self.fd_ctl, nv_gpu.NV2080_CTRL_CMD_GPU_GET_GID_INFO, self.root, self.subdevice, gpu_uuid_params)
|
|
499
|
+
self.gpu_uuid = (ctypes.c_ubyte*16)(*[gpu_uuid_params.data[i] for i in range(16)])
|
|
500
|
+
|
|
501
|
+
uvm.register_gpu(self.fd_uvm, rmCtrlFd=-1, gpu_uuid=nv_gpu.struct_nv_uuid(uuid=self.gpu_uuid))
|
|
502
|
+
uvm.register_gpu_vaspace(self.fd_uvm, gpuUuid=nv_gpu.struct_nv_uuid(uuid=self.gpu_uuid), rmCtrlFd=self.fd_ctl,
|
|
503
|
+
hClient=self.root, hVaSpace=vaspace)
|
|
504
|
+
|
|
505
|
+
for dev in self.devices:
|
|
506
|
+
uvm.enable_peer_access(self.fd_uvm, gpuUuidA=nv_gpu.struct_nv_uuid(uuid=self.gpu_uuid), gpuUuidB=nv_gpu.struct_nv_uuid(uuid=dev.gpu_uuid))
|
|
507
|
+
|
|
508
|
+
if NVDevice.signals_page is None:
|
|
509
|
+
NVDevice.signals_page = self._gpu_system_alloc(0x10000, map_to_cpu=True)
|
|
510
|
+
NVDevice.signals_pool = [to_mv(self.signals_page.base + off, 16).cast("Q") for off in range(0, NVDevice.signals_page.length, 16)]
|
|
511
|
+
else: self._gpu_map(NVDevice.signals_page)
|
|
512
|
+
|
|
513
|
+
channel_params = nv_gpu.NV_CHANNEL_GROUP_ALLOCATION_PARAMETERS(engineType=nv_gpu.NV2080_ENGINE_TYPE_GRAPHICS)
|
|
514
|
+
channel_group = rm_alloc(self.fd_ctl, nv_gpu.KEPLER_CHANNEL_GROUP_A, self.root, self.device, channel_params).hObjectNew
|
|
515
|
+
|
|
516
|
+
gpfifo = self._gpu_alloc(0x200000, contig=True, huge_page=True, map_to_cpu=True, map_flags=0x10d0000)
|
|
517
|
+
|
|
518
|
+
ctxshare_params = nv_gpu.NV_CTXSHARE_ALLOCATION_PARAMETERS(hVASpace=vaspace, flags=nv_gpu.NV_CTXSHARE_ALLOCATION_FLAGS_SUBCONTEXT_ASYNC)
|
|
519
|
+
ctxshare = rm_alloc(self.fd_ctl, nv_gpu.FERMI_CONTEXT_SHARE_A, self.root, channel_group, ctxshare_params).hObjectNew
|
|
520
|
+
|
|
521
|
+
self.compute_gpfifo_entries: int = 0x10000
|
|
522
|
+
self.compute_gpfifo_token: int = self._gpu_fifo_setup(gpfifo, ctxshare, channel_group, offset=0, entries=self.compute_gpfifo_entries)
|
|
523
|
+
self.compute_gpu_ring: memoryview = to_mv(gpfifo.base, self.compute_gpfifo_entries * 8).cast("Q")
|
|
524
|
+
self.compute_gpu_ring_controls = nv_gpu.AmpereAControlGPFifo.from_address(gpfifo.base + self.compute_gpfifo_entries * 8)
|
|
525
|
+
self.compute_put_value: int = 0
|
|
526
|
+
|
|
527
|
+
self.dma_gpfifo_entries: int = 0x10000
|
|
528
|
+
self.dma_gpfifo_token: int = self._gpu_fifo_setup(gpfifo, ctxshare, channel_group, offset=0x100000, entries=self.dma_gpfifo_entries)
|
|
529
|
+
self.dma_gpu_ring: memoryview = to_mv(gpfifo.base + 0x100000, self.dma_gpfifo_entries * 8).cast("Q")
|
|
530
|
+
self.dma_gpu_ring_controls = nv_gpu.AmpereAControlGPFifo.from_address(gpfifo.base + 0x100000 + self.dma_gpfifo_entries * 8)
|
|
531
|
+
self.dma_put_value: int = 0
|
|
532
|
+
|
|
533
|
+
en_fifo_params = nv_gpu.NVA06C_CTRL_GPFIFO_SCHEDULE_PARAMS(bEnable=1)
|
|
534
|
+
rm_control(self.fd_ctl, nv_gpu.NVA06C_CTRL_CMD_GPFIFO_SCHEDULE, self.root, channel_group, en_fifo_params)
|
|
535
|
+
|
|
536
|
+
self.timeline_value: int = 1
|
|
537
|
+
self.timeline_signal, self._shadow_timeline_signal = NVDevice._get_signal(), NVDevice._get_signal()
|
|
538
|
+
self.time_event_st, self.time_event_en = NVDevice._get_signal(), NVDevice._get_signal()
|
|
539
|
+
|
|
540
|
+
self.cmdq_page: nv_gpu.UVM_MAP_EXTERNAL_ALLOCATION_PARAMS = self._gpu_alloc(0x200000, map_to_cpu=True, huge_page=True)
|
|
541
|
+
self.cmdq: memoryview = to_mv(self.cmdq_page.base, 0x200000).cast("I")
|
|
542
|
+
self.cmdq_wptr: int = 0 # in bytes
|
|
543
|
+
|
|
544
|
+
self.kernargs_page: nv_gpu.UVM_MAP_EXTERNAL_ALLOCATION_PARAMS = self._gpu_alloc(0x4000000, map_to_cpu=True)
|
|
545
|
+
self.kernargs_ptr: int = self.kernargs_page.base
|
|
546
|
+
|
|
547
|
+
self.arch: str = "sm_89" if not MOCKGPU else "sm_35" # TODO: fix
|
|
548
|
+
|
|
549
|
+
from tinygrad.runtime.graph.hcq import HCQGraph
|
|
550
|
+
super().__init__(device, NVAllocator(self), NVRenderer(self.arch), CUDACompiler(self.arch) if MOCKGPU else NVCompiler(self.arch),
|
|
551
|
+
functools.partial(NVProgram, self), functools.partial(HCQGraph, NVDevice, HWComputeQueue, HWCopyQueue))
|
|
552
|
+
|
|
553
|
+
self._cmdq_setup_compute_gpfifo()
|
|
554
|
+
self._cmdq_setup_dma_gpfifo()
|
|
555
|
+
|
|
556
|
+
NVDevice.devices.append(self)
|
|
557
|
+
|
|
558
|
+
def synchronize(self):
|
|
559
|
+
NVDevice._wait_signal(self.timeline_signal, self.timeline_value - 1)
|
|
560
|
+
self.cmdq_wptr = 0
|
|
561
|
+
|
|
562
|
+
if self.timeline_value > (1 << 63):
|
|
563
|
+
self.timeline_signal, self._shadow_timeline_signal = self._shadow_timeline_signal, self.timeline_signal
|
|
564
|
+
self.timeline_signal[0], self.timeline_value = 0, 1
|
|
565
|
+
cast(NVAllocator, self.allocator).b_timeline = [0] * len(cast(NVAllocator, self.allocator).b)
|
|
566
|
+
|
|
567
|
+
@staticmethod
|
|
568
|
+
def synchronize_system():
|
|
569
|
+
for d in NVDevice.devices: d.synchronize()
|
|
570
|
+
|
|
571
|
+
@classmethod
|
|
572
|
+
def _set_signal(self, sig, value): sig[0] = value
|
|
573
|
+
|
|
574
|
+
@classmethod
|
|
575
|
+
def _get_signal(self, value=0) -> memoryview:
|
|
576
|
+
self._set_signal(sig := self.signals_pool.pop(), value)
|
|
577
|
+
return sig
|
|
578
|
+
|
|
579
|
+
@classmethod
|
|
580
|
+
def _wait_signal(self, signal, value=0, timeout=10000):
|
|
581
|
+
start_time = time.time() * 1000
|
|
582
|
+
sem_value = signal[0]
|
|
583
|
+
while sem_value < value:
|
|
584
|
+
sem_value = signal[0]
|
|
585
|
+
if time.time() * 1000 - start_time > timeout: raise RuntimeError(f"wait_result: {timeout} ms TIMEOUT!")
|
|
586
|
+
|
|
587
|
+
def _gpu_fifo_setup(self, gpfifo, ctxshare, channel_group, offset, entries=0x400):
|
|
588
|
+
notifier = self._gpu_system_alloc(48 << 20)
|
|
589
|
+
params = nv_gpu.NV_CHANNELGPFIFO_ALLOCATION_PARAMETERS(hObjectError=notifier.hMemory, hObjectBuffer=gpfifo.hMemory,
|
|
590
|
+
gpFifoOffset=gpfifo.base+offset, gpFifoEntries=entries, hContextShare=ctxshare,
|
|
591
|
+
hUserdMemory=(ctypes.c_uint32*8)(gpfifo.hMemory), userdOffset=(ctypes.c_uint64*8)(entries*8+offset))
|
|
592
|
+
gpfifo = rm_alloc(self.fd_ctl, nv_gpu.AMPERE_CHANNEL_GPFIFO_A, self.root, channel_group, params).hObjectNew
|
|
593
|
+
rm_alloc(self.fd_ctl, self.compute_type, self.root, gpfifo, None)
|
|
594
|
+
rm_alloc(self.fd_ctl, nv_gpu.AMPERE_DMA_COPY_B, self.root, gpfifo, None)
|
|
595
|
+
|
|
596
|
+
ws_token_params = nv_gpu.NVC36F_CTRL_CMD_GPFIFO_GET_WORK_SUBMIT_TOKEN_PARAMS(workSubmitToken=-1)
|
|
597
|
+
rm_control(self.fd_ctl, nv_gpu.NVC36F_CTRL_CMD_GPFIFO_GET_WORK_SUBMIT_TOKEN, self.root, gpfifo, ws_token_params)
|
|
598
|
+
assert ws_token_params.workSubmitToken != -1
|
|
599
|
+
|
|
600
|
+
channel_base = self._alloc_gpu_vaddr(0x4000000)
|
|
601
|
+
uvm.register_channel(self.fd_uvm, gpuUuid=nv_gpu.struct_nv_uuid(uuid=self.gpu_uuid), rmCtrlFd=self.fd_ctl, hClient=self.root,
|
|
602
|
+
hChannel=gpfifo, base=channel_base, length=0x4000000)
|
|
603
|
+
|
|
604
|
+
return ws_token_params.workSubmitToken
|
|
605
|
+
|
|
606
|
+
def _cmdq_setup_compute_gpfifo(self):
|
|
607
|
+
self.slm_per_thread = 0x900
|
|
608
|
+
bytes_per_warp = round_up(self.slm_per_thread * 32, 0x200)
|
|
609
|
+
bytes_per_tpc = round_up(bytes_per_warp * 48 * 2, 0x8000)
|
|
610
|
+
self.shader_local_mem = self._gpu_alloc(round_up(bytes_per_tpc * 64, 0x20000), huge_page=True, contig=True).base
|
|
611
|
+
|
|
612
|
+
# Set windows addresses to not collide with other allocated buffers.
|
|
613
|
+
self.shared_mem_window, self.local_mem_window = 0xfe000000, 0xff000000
|
|
614
|
+
|
|
615
|
+
queue = HWComputeQueue()
|
|
616
|
+
queue.q += [nvmethod(1, nv_gpu.NVC6C0_SET_OBJECT, 1), self.compute_type]
|
|
617
|
+
queue.q += [nvmethod(1, nv_gpu.NVC6C0_SET_SHADER_LOCAL_MEMORY_A, 2), *nvdata64(self.shader_local_mem)]
|
|
618
|
+
queue.q += [nvmethod(1, nv_gpu.NVC6C0_SET_SHADER_LOCAL_MEMORY_NON_THROTTLED_A, 3), *nvdata64(bytes_per_tpc), 0x40]
|
|
619
|
+
queue.q += [nvmethod(1, nv_gpu.NVC6C0_SET_SHADER_LOCAL_MEMORY_WINDOW_A, 2), *nvdata64(self.local_mem_window)]
|
|
620
|
+
queue.q += [nvmethod(1, nv_gpu.NVC6C0_SET_SHADER_SHARED_MEMORY_WINDOW_A, 2), *nvdata64(self.shared_mem_window)]
|
|
621
|
+
queue.signal(self.timeline_signal, self.timeline_value).submit(self)
|
|
622
|
+
self.timeline_value += 1
|
|
623
|
+
self.synchronize()
|
|
624
|
+
|
|
625
|
+
def _cmdq_setup_dma_gpfifo(self):
|
|
626
|
+
queue = HWCopyQueue()
|
|
627
|
+
queue.q += [nvmethod(4, nv_gpu.NVC6C0_SET_OBJECT, 1), nv_gpu.AMPERE_DMA_COPY_B]
|
|
628
|
+
queue.signal(self.timeline_signal, self.timeline_value).submit(self)
|
|
629
|
+
self.timeline_value += 1
|
|
630
|
+
self.synchronize()
|