tinygrad 0.7.0__py3-none-any.whl → 0.9.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tinygrad/__init__.py +6 -0
- tinygrad/codegen/kernel.py +572 -83
- tinygrad/codegen/linearizer.py +415 -395
- tinygrad/codegen/uops.py +415 -0
- tinygrad/device.py +183 -0
- tinygrad/dtype.py +113 -0
- tinygrad/engine/__init__.py +0 -0
- tinygrad/engine/graph.py +100 -0
- tinygrad/engine/jit.py +195 -0
- tinygrad/engine/realize.py +191 -0
- tinygrad/engine/schedule.py +362 -0
- tinygrad/engine/search.py +196 -0
- tinygrad/{mlops.py → function.py} +76 -55
- tinygrad/helpers.py +196 -89
- tinygrad/lazy.py +210 -371
- tinygrad/multi.py +169 -0
- tinygrad/nn/__init__.py +202 -22
- tinygrad/nn/datasets.py +7 -0
- tinygrad/nn/optim.py +112 -32
- tinygrad/nn/state.py +136 -39
- tinygrad/ops.py +119 -202
- tinygrad/renderer/__init__.py +61 -0
- tinygrad/renderer/assembly.py +276 -0
- tinygrad/renderer/cstyle.py +353 -166
- tinygrad/renderer/llvmir.py +150 -138
- tinygrad/runtime/autogen/amd_gpu.py +1900 -0
- tinygrad/runtime/autogen/comgr.py +865 -0
- tinygrad/runtime/autogen/cuda.py +5923 -0
- tinygrad/runtime/autogen/hip.py +5909 -0
- tinygrad/runtime/autogen/hsa.py +5761 -0
- tinygrad/runtime/autogen/kfd.py +812 -0
- tinygrad/runtime/autogen/nv_gpu.py +33328 -0
- tinygrad/runtime/autogen/opencl.py +1795 -0
- tinygrad/runtime/driver/hip_comgr.py +47 -0
- tinygrad/runtime/driver/hsa.py +143 -0
- tinygrad/runtime/graph/clang.py +38 -0
- tinygrad/runtime/graph/cuda.py +81 -0
- tinygrad/runtime/graph/hcq.py +143 -0
- tinygrad/runtime/graph/hsa.py +171 -0
- tinygrad/runtime/graph/metal.py +75 -0
- tinygrad/runtime/ops_amd.py +564 -0
- tinygrad/runtime/ops_clang.py +24 -77
- tinygrad/runtime/ops_cuda.py +175 -89
- tinygrad/runtime/ops_disk.py +56 -33
- tinygrad/runtime/ops_gpu.py +92 -95
- tinygrad/runtime/ops_hsa.py +278 -0
- tinygrad/runtime/ops_llvm.py +39 -60
- tinygrad/runtime/ops_metal.py +92 -74
- tinygrad/runtime/ops_npy.py +9 -0
- tinygrad/runtime/ops_nv.py +630 -0
- tinygrad/runtime/ops_python.py +204 -0
- tinygrad/shape/shapetracker.py +86 -254
- tinygrad/shape/symbolic.py +166 -141
- tinygrad/shape/view.py +296 -0
- tinygrad/tensor.py +2619 -448
- {tinygrad-0.7.0.dist-info → tinygrad-0.9.0.dist-info}/LICENSE +1 -1
- tinygrad-0.9.0.dist-info/METADATA +227 -0
- tinygrad-0.9.0.dist-info/RECORD +60 -0
- {tinygrad-0.7.0.dist-info → tinygrad-0.9.0.dist-info}/WHEEL +1 -1
- tinygrad/codegen/assembly.py +0 -190
- tinygrad/codegen/optimizer.py +0 -379
- tinygrad/codegen/search.py +0 -72
- tinygrad/graph.py +0 -83
- tinygrad/jit.py +0 -57
- tinygrad/nn/image.py +0 -100
- tinygrad/renderer/assembly_arm64.py +0 -169
- tinygrad/renderer/assembly_ptx.py +0 -98
- tinygrad/renderer/wgsl.py +0 -53
- tinygrad/runtime/lib.py +0 -113
- tinygrad/runtime/ops_cpu.py +0 -51
- tinygrad/runtime/ops_hip.py +0 -82
- tinygrad/runtime/ops_shm.py +0 -29
- tinygrad/runtime/ops_torch.py +0 -30
- tinygrad/runtime/ops_webgpu.py +0 -45
- tinygrad-0.7.0.dist-info/METADATA +0 -212
- tinygrad-0.7.0.dist-info/RECORD +0 -40
- {tinygrad-0.7.0.dist-info → tinygrad-0.9.0.dist-info}/top_level.txt +0 -0
tinygrad/codegen/kernel.py
CHANGED
@@ -1,10 +1,47 @@
|
|
1
|
-
from
|
2
|
-
import itertools
|
3
|
-
from
|
4
|
-
from tinygrad.
|
5
|
-
from tinygrad.
|
6
|
-
from tinygrad.
|
7
|
-
from tinygrad.
|
1
|
+
from __future__ import annotations
|
2
|
+
import math, itertools
|
3
|
+
from typing import NamedTuple, Optional, List, Tuple, cast, Dict, Union
|
4
|
+
from tinygrad.ops import LazyOp, UnaryOps, BinaryOps, ReduceOps, MemBuffer, ConstBuffer, BufferOps, UNSAFE_PAD_OPS
|
5
|
+
from tinygrad.device import Device
|
6
|
+
from tinygrad.renderer import Renderer, TensorCore
|
7
|
+
from tinygrad.dtype import dtypes, ImageDType, DType
|
8
|
+
from tinygrad.helpers import colored, ansilen, dedup, flatten, getenv, prod, DEBUG, round_up, all_int, get_contraction
|
9
|
+
from tinygrad.shape.shapetracker import ShapeTracker
|
10
|
+
from tinygrad.shape.symbolic import sint
|
11
|
+
from tinygrad.shape.view import View, strides_for_shape
|
12
|
+
from dataclasses import dataclass
|
13
|
+
from enum import Enum, auto
|
14
|
+
|
15
|
+
class OptOps(Enum):
|
16
|
+
TC = auto(); UPCAST = auto(); UPCASTMID = auto(); UNROLL = auto(); LOCAL = auto() # noqa: E702
|
17
|
+
GROUP = auto(); GROUPTOP = auto(); NOLOCALS = auto(); PADTO = auto() # noqa: E702
|
18
|
+
def __lt__(self, x:OptOps): return self.value < x.value
|
19
|
+
|
20
|
+
class KernelOptError(Exception): pass
|
21
|
+
|
22
|
+
def check(cond:bool, msg:str=""):
|
23
|
+
if not cond: raise KernelOptError(msg)
|
24
|
+
|
25
|
+
@dataclass(frozen=True, order=True)
|
26
|
+
class Opt:
|
27
|
+
op: OptOps
|
28
|
+
axis: Optional[int] = None
|
29
|
+
amt: Optional[int] = None
|
30
|
+
def __repr__(self): return f"Opt(op={self.op}, axis={self.axis}, amt={self.amt})"
|
31
|
+
def real_axis(self, k:Kernel):
|
32
|
+
if self.axis is None: return -1
|
33
|
+
if self.op is OptOps.UNROLL: return k.first_reduce+self.axis
|
34
|
+
if self.op in {OptOps.GROUP, OptOps.GROUPTOP}: return k.first_reduce+k.group_for_reduces+self.axis
|
35
|
+
return self.axis
|
36
|
+
|
37
|
+
class TensorCoreOptions(NamedTuple):
|
38
|
+
bufs: Tuple[int, int] # the local aliased buffers for A and B
|
39
|
+
axes: List[int] # the location of the original N and M axes if still in the shape
|
40
|
+
axes_exist: List[bool] # true if the original N and M axes are still in the shape
|
41
|
+
def fix_axes(self, removed_axis:int): # adjust the TC axes if necesssary when an dimension is removed
|
42
|
+
for tc_dim in [i for i in range(2) if self.axes_exist[i]]:
|
43
|
+
if removed_axis < self.axes[tc_dim]: self.axes[tc_dim] -= 1
|
44
|
+
elif removed_axis == self.axes[tc_dim]: self.axes_exist[tc_dim] = False
|
8
45
|
|
9
46
|
class LocalBuffer(NamedTuple):
|
10
47
|
name: str
|
@@ -13,107 +50,129 @@ class LocalBuffer(NamedTuple):
|
|
13
50
|
realized: None = None
|
14
51
|
def __str__(self): return f"localbuffer<{self.name}[{self.size}]>"
|
15
52
|
|
16
|
-
class LinearizerOptions(NamedTuple):
|
17
|
-
# TODO: make this generic with a list of supported types
|
18
|
-
supports_float4: bool = True
|
19
|
-
supports_float4_alu: bool = True
|
20
|
-
has_local: bool = True
|
21
|
-
# NOTE: these two should be in z,y,x(reversed) order for cstyle backends, they are flipped when kernel is rendered
|
22
|
-
global_max: Optional[List[int]] = None
|
23
|
-
local_max: Optional[List[int]] = None
|
24
|
-
|
25
53
|
class Kernel:
|
26
|
-
def __init__(self, ast:LazyOp,
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
self.bufs = [output_buffer] + dedup(ast.buffers)
|
33
|
-
self.arg_bufs = {x:f"data{i}" for i,x in enumerate(dedup([x.realized for x in self.bufs if buf_is_kernel_arg(x)]))}
|
34
|
-
|
35
|
-
# key for lookup in cache (can change, str might not be right)
|
36
|
-
# bufs are needed because kernels like f(x) = x + x and f(x, y) = x + y have the same str(ast), but are different kernels.
|
37
|
-
# mapping the buffers to integers is required because a-b != b-a (and how would you tell a and b apart?)
|
38
|
-
self.key = (ast.map_buffers({x:(self.arg_bufs[x.realized] if x.realized in self.arg_bufs else x) for x in self.bufs}).key, tuple([x.key for x in self.bufs]))
|
39
|
-
|
40
|
-
def process(self) -> None:
|
41
|
-
if hasattr(self, "sts"): return # already processed
|
42
|
-
|
43
|
-
# fetch lazyop info
|
44
|
-
self.info: FlopCounter = get_lazyop_info(cast(LazyOp, self.ast))
|
45
|
-
self.mem_estimate: int = sum(x.dtype.itemsize*(x.realized.size if x.realized is not None else prod(x.shape)) for x in self.bufs if x is not None)
|
54
|
+
def __init__(self, *ast:LazyOp, opts:Optional[Renderer]=None):
|
55
|
+
self.opts = opts if opts is not None else Device[Device.DEFAULT].renderer
|
56
|
+
assert all(op.op is BufferOps.STORE for op in ast), f"kernels must have stores as the output, got {ast}"
|
57
|
+
assert len(set(op.arg.st.size for op in ast)) == 1, f"all outbufs should have the same size, got {[op.arg.st for op in ast]}"
|
58
|
+
self.ast = ast
|
59
|
+
self.lazyops = flatten([op.lazyops for op in self.ast])
|
46
60
|
|
47
61
|
# there's only allowed to be one reduceop
|
48
|
-
|
49
|
-
|
50
|
-
|
62
|
+
cached_ordered_lazyops: Dict[LazyOp, List[LazyOp]] = {}
|
63
|
+
def ordered_lazyops(op):
|
64
|
+
if op not in cached_ordered_lazyops: cached_ordered_lazyops[op] = dedup([item for x in op.src for item in ordered_lazyops(x)] + [op])
|
65
|
+
return cached_ordered_lazyops[op]
|
66
|
+
self.reduceops = dedup([x for out in self.ast for x in ordered_lazyops(out) if x.op in ReduceOps])
|
67
|
+
assert len(self.reduceops) < 2, "Only one reduceop allowed"
|
68
|
+
|
69
|
+
self.outbufs, self.vars = [x.arg for x in self.ast], flatten([x.vars() for x in self.ast])
|
70
|
+
loadops = [BufferOps.LOAD, BufferOps.CONST]
|
71
|
+
self.bufs: List[Union[MemBuffer, ConstBuffer, LocalBuffer]] = self.outbufs + dedup([x.arg for x in self.lazyops if x.op in loadops])
|
51
72
|
|
52
73
|
# get earlybufs, before the one reduce op
|
53
|
-
self.earlybufs =
|
74
|
+
self.earlybufs = [x.arg for reduceop in self.reduceops for x in reduceop.lazyops if x.op in BufferOps]
|
75
|
+
self.full_buf_index: int = self.bufs.index(self.earlybufs[0]) if self.earlybufs else 0
|
54
76
|
|
55
77
|
# create new shapetrackers inside this kernel, we will permute them
|
56
|
-
self.sts: List[ShapeTracker] = [x.st
|
57
|
-
for st in self.sts: st.simplify()
|
78
|
+
self.sts: List[ShapeTracker] = [x.st for x in cast(List[Union[MemBuffer, ConstBuffer]], self.bufs)]
|
58
79
|
|
59
|
-
#
|
60
|
-
self.
|
61
|
-
|
80
|
+
# move all reduce axes to the end
|
81
|
+
reduce = list(enumerate(zip(self.full_shape, self.output_shape)))
|
82
|
+
permute = tuple([i for i,(s,n) in reduce if s == n] + [i for i,(s,n) in reduce if s != n])
|
83
|
+
self.reshape_and_permute(None, permute)
|
62
84
|
|
63
|
-
# parameters
|
64
|
-
self.
|
85
|
+
# parameters for optimization
|
86
|
+
self.applied_opts: List[Opt] = []
|
87
|
+
self.group_for_reduces: int = 0
|
65
88
|
self.upcasted: int = 0
|
66
89
|
self.local_dims: int = 0
|
67
90
|
self.local_alias: Dict[int, LocalBuffer] = {}
|
68
|
-
self.
|
69
|
-
self.
|
70
|
-
self.
|
91
|
+
self.tensor_core: Optional[TensorCore] = None
|
92
|
+
self.tensor_core_opts: Optional[TensorCoreOptions] = None
|
93
|
+
self.dont_use_locals: bool = False
|
71
94
|
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
|
95
|
+
# group simplifies
|
96
|
+
self.simplify_ones()
|
97
|
+
self.simplify_merge_adjacent()
|
98
|
+
|
99
|
+
# cache
|
100
|
+
self.applied_opts_cache: Optional[List[Opt]] = None
|
101
|
+
|
102
|
+
def copy(self):
|
103
|
+
ret = type(self).__new__(type(self))
|
104
|
+
|
105
|
+
# base linearizer params
|
106
|
+
ret.opts, ret.ast, ret.lazyops = self.opts, self.ast, self.lazyops
|
107
|
+
|
108
|
+
# things downstream of the AST
|
109
|
+
ret.reduceops, ret.outbufs, ret.vars, ret.bufs, ret.earlybufs, ret.full_buf_index = \
|
110
|
+
self.reduceops, self.outbufs, self.vars, [x for x in self.bufs if not isinstance(x, LocalBuffer)], self.earlybufs, self.full_buf_index
|
111
|
+
ret.sts = self.sts[:len(ret.bufs)] # NOTE: must redo the local buffers with TC in beam
|
112
|
+
|
113
|
+
# parameters for optimizations
|
114
|
+
ret.applied_opts, ret.group_for_reduces, ret.upcasted, ret.local_dims, ret.dont_use_locals = \
|
115
|
+
self.applied_opts[:], self.group_for_reduces, self.upcasted, self.local_dims, self.dont_use_locals
|
116
|
+
ret.tensor_core, ret.tensor_core_opts, ret.local_alias = self.tensor_core, self.tensor_core_opts, {}
|
117
|
+
|
118
|
+
# uncached since linearize didn't run
|
119
|
+
ret.applied_opts_cache = None
|
76
120
|
|
77
|
-
|
78
|
-
def float4_axis(self, i): return [x-(self.shape_len-self.upcasted) for x in self.sts[i].unit_stride_axes() if x >= self.shape_len-self.upcasted and self.sts[i].shape[x]%4 == 0]
|
121
|
+
return ret
|
79
122
|
|
80
|
-
|
81
|
-
|
82
|
-
|
123
|
+
@property
|
124
|
+
def membufs(self) -> List[MemBuffer]: return [x for x in self.bufs if isinstance(x, MemBuffer)]
|
125
|
+
|
126
|
+
# TODO: these need more tests or it might silently be no-op
|
127
|
+
def shape_offsets(self, i:int): return itertools.product(*[list(range(cast(int, s))) for s in self.sts[i].shape[self.shape_len-self.upcasted:][::-1]]) if self.upcasted > 0 else [tuple()] # noqa: E501
|
128
|
+
def float4_axis(self, i:int): return [x-(self.shape_len-self.upcasted) for x in self.sts[i].unit_stride_axes() if x >= self.shape_len-self.upcasted and self.sts[i].shape[x]%4 == 0] # noqa: E501
|
129
|
+
|
130
|
+
def upcasted_axis(self, i:int) -> List[Tuple[int, Optional[sint], bool]]:
|
131
|
+
upcasted_shape, upcasted_stride = self.sts[i].shape[self.shape_len-self.upcasted:], self.sts[i].real_strides()[self.shape_len-self.upcasted:]
|
132
|
+
assert all_int(upcasted_shape), f"cannot upcast a symbolic amount {upcasted_shape=}"
|
133
|
+
return list(zip(upcasted_shape, upcasted_stride,
|
83
134
|
[x!=y for x,y in zip(self.sts[0].shape[self.shape_len-self.upcasted:], self.full_shape[self.shape_len-self.upcasted:])]))
|
84
135
|
|
85
136
|
# TODO: is there a better way to write this?
|
86
|
-
def acc_offsets(self, i):
|
137
|
+
def acc_offsets(self, i:int) -> List[int]:
|
87
138
|
if self.upcasted == 0: return [0]
|
88
139
|
upcasted_i = self.upcasted_axis(i)
|
89
140
|
acc_strides = [x*(1-upcasted_i[::-1][i][2]) for i,x in enumerate(strides_for_shape(tuple(1 if r else s for s,_,r in upcasted_i[::-1])))]
|
90
141
|
return [sum(t) for t in itertools.product(*[[y*acc_strides[i] for y in range(x[0])] for i,x in enumerate(upcasted_i[::-1])])]
|
91
142
|
|
92
|
-
def
|
93
|
-
should_upcast = self.opts.supports_float4 and (self.bufs[i].dtype in
|
94
|
-
return [x for x in self.sts[i].unit_stride_axes() if
|
143
|
+
def get_float4_upcast_dim(self, i:int) -> List[int]:
|
144
|
+
should_upcast = self.opts.supports_float4 and (self.bufs[i].dtype in (dtypes.float, dtypes.half) or isinstance(self.bufs[i].dtype, ImageDType))
|
145
|
+
return [x for x in self.sts[i].unit_stride_axes() if x >= self.shape_len-self.upcasted and self.sts[i].shape[x] > 1] if should_upcast else []
|
146
|
+
|
147
|
+
@property
|
148
|
+
def first_reduce(self) -> int:
|
149
|
+
return [x!=y for x,y in zip(self.sts[0].shape[:self.shape_len-self.upcasted]+(0,), self.full_shape[:self.shape_len-self.upcasted]+(1,))].index(True) # noqa: E501
|
95
150
|
|
96
151
|
@property
|
97
|
-
def
|
152
|
+
def reduceop(self) -> Optional[LazyOp]: return self.reduceops[0] if len(self.reduceops) > 0 else None
|
98
153
|
|
99
154
|
@property
|
100
|
-
def output_shape(self) -> Tuple[
|
155
|
+
def output_shape(self) -> Tuple[sint, ...]: return self.sts[0].shape
|
101
156
|
|
102
157
|
@property
|
103
|
-
def full_shape(self) -> Tuple[
|
158
|
+
def full_shape(self) -> Tuple[sint, ...]: return self.sts[self.full_buf_index].shape
|
104
159
|
|
105
160
|
@property
|
106
|
-
def full_unupcasted_shape(self) -> Tuple[
|
161
|
+
def full_unupcasted_shape(self) -> Tuple[sint, ...]: return self.full_shape[:self.shape_len-self.upcasted]
|
107
162
|
|
108
163
|
@property
|
109
164
|
def shape_len(self) -> int: return len(self.sts[0].shape)
|
110
165
|
|
111
166
|
@property
|
112
|
-
def upcast_in_mid_reduce_axes(self) -> List[int]:
|
167
|
+
def upcast_in_mid_reduce_axes(self) -> List[int]:
|
168
|
+
return [j for j in range(self.first_reduce, self.first_reduce+self.group_for_reduces) if self.full_shape[j] == self.sts[0].shape[j]]
|
113
169
|
|
114
|
-
|
170
|
+
@property
|
171
|
+
def global_dims(self) -> int: return self.first_reduce-self.local_dims
|
172
|
+
|
173
|
+
# there's eight chunks of the shape
|
115
174
|
# blue -- global dims
|
116
|
-
# cyan -- local dims
|
175
|
+
# cyan -- local dims (warp ones first)
|
117
176
|
# *** self.first_reduce
|
118
177
|
# green -- reduce-local dims
|
119
178
|
# white -- reduce-late upcasted dim (self.upcast_in_mid_reduce_axes)
|
@@ -122,22 +181,452 @@ class Kernel:
|
|
122
181
|
# purple -- reduce upcasted
|
123
182
|
# yellow -- normal upcasted dimensions
|
124
183
|
def colors(self) -> List[str]:
|
125
|
-
#
|
126
|
-
colors = ["blue"] *
|
127
|
-
#
|
128
|
-
colors += ["cyan"] *
|
129
|
-
# between first_reduce and first_reduce +
|
130
|
-
colors += ["white" if i in self.upcast_in_mid_reduce_axes else "green" for i in range(self.first_reduce, self.first_reduce +
|
131
|
-
# between first_reduce +
|
132
|
-
colors += ["red"] * ((self.shape_len-self.upcasted) - (self.first_reduce +
|
184
|
+
# first non local non reduce dims are global (blue)
|
185
|
+
colors = ["blue"] * self.global_dims if not self.dont_use_locals else ["BLUE"] * self.global_dims
|
186
|
+
# after global are local_dims; warp ones used in tensor cores must be closest to first_reduce (cyan)
|
187
|
+
colors += ["cyan"] * self.local_dims
|
188
|
+
# between first_reduce and first_reduce + group_for_reduces, they are either upcast mid reduce (white), or late upcasted (green)
|
189
|
+
colors += ["white" if i in self.upcast_in_mid_reduce_axes else "green" for i in range(self.first_reduce, self.first_reduce + self.group_for_reduces)] # noqa: E501
|
190
|
+
# between first_reduce + group_for_reduces and upcasted, they are reduce (red)
|
191
|
+
colors += ["red"] * ((self.shape_len-self.upcasted) - (self.first_reduce + self.group_for_reduces))
|
133
192
|
# upcasted dimensions are reduce (magenta) or normal (yellow)
|
134
193
|
colors += ["magenta" if self.full_shape[i] != self.sts[0].shape[i] else "yellow" for i in range(self.shape_len-self.upcasted, self.shape_len)]
|
135
194
|
assert len(colors) == self.shape_len, "colors size mismatch"
|
136
195
|
return colors
|
137
196
|
|
138
|
-
def colored_shape(self
|
139
|
-
|
140
|
-
|
141
|
-
|
142
|
-
|
197
|
+
def colored_shape(self, pad:Optional[int]=None, dense=False) -> str:
|
198
|
+
ret = ' '.join(colored(s, color) for s,color in zip([f"{s:4d}" if isinstance(s, int) and not dense else s for s in self.full_shape], self.colors())) # noqa: E501
|
199
|
+
if pad: ret += ' '*(pad-ansilen(ret))
|
200
|
+
return ret
|
201
|
+
|
202
|
+
# ******************** base simplifiers ********************
|
203
|
+
|
204
|
+
# apply reshape and permute to all shapetrackers
|
205
|
+
def reshape_and_permute(self, new_shape_fxn, axis):
|
206
|
+
new_sts = []
|
207
|
+
for st in self.sts:
|
208
|
+
if new_shape_fxn is not None: st = st.reshape(tuple(new_shape_fxn(st.shape)))
|
209
|
+
if axis is not None: st = st.permute(tuple(axis))
|
210
|
+
new_sts.append(st)
|
211
|
+
self.sts = new_sts
|
212
|
+
|
213
|
+
# drops the final dimension
|
214
|
+
def upcast(self):
|
215
|
+
check(self.full_shape[-1] != 1, "can't upcast a dimension with size 1")
|
216
|
+
self.upcasted += 1
|
217
|
+
|
218
|
+
# axis : the axis to pull from
|
219
|
+
# amount : the amount to take
|
220
|
+
# top : if you want to pull that amount from the top
|
221
|
+
# insert_before : place to insert the new stuff
|
222
|
+
def shift_to(self, axis, amount, top=False, insert_before=None):
|
223
|
+
if insert_before is None: insert_before = self.shape_len
|
224
|
+
move_axis = axis if top else axis+1
|
225
|
+
if move_axis < insert_before: insert_before += 1
|
226
|
+
self.reshape_and_permute(
|
227
|
+
lambda x: list(x[0:axis]) + (([amount, x[axis]//amount] if top else [x[axis]//amount, amount]) if x[axis] > 1 else [1,1]) + list(x[axis+1:]),
|
228
|
+
[i for i in range(insert_before) if i != move_axis] + [move_axis] + [i for i in range(insert_before, self.shape_len+1) if i != move_axis])
|
229
|
+
|
230
|
+
# ******************** complex simplifiers ********************
|
231
|
+
|
232
|
+
def simplify_ones(self) -> bool:
|
233
|
+
# remove places where the shape is all ones
|
234
|
+
# TODO: this should be factored in to multi shape stride
|
235
|
+
if self.shape_len == 0: return False
|
236
|
+
all_ones = [s==1 for s in self.full_shape]
|
237
|
+
self.local_dims -= sum(all_ones[self.first_reduce-self.local_dims:self.first_reduce])
|
238
|
+
self.upcasted -= sum(all_ones[self.shape_len-self.upcasted:]) # TODO: no necessary since upcasted axis can't be un-upcasted
|
239
|
+
self.reshape_and_permute(lambda shape: [x for i,x in enumerate(shape) if not all_ones[i]], None)
|
240
|
+
return any(all_ones)
|
241
|
+
|
242
|
+
def simplify_merge_adjacent(self):
|
243
|
+
if self.shape_len == 0: return
|
244
|
+
shapes, strides = [x.shape for x in self.sts], [x.real_strides() for x in self.sts]
|
245
|
+
|
246
|
+
# if it's an image, insert fake strides such that this fusion doesn't happen across image axes
|
247
|
+
if isinstance(self.bufs[0].dtype, ImageDType):
|
248
|
+
base_shape = self.bufs[0].dtype.shape
|
249
|
+
if shape_idx_groups := get_contraction(self.output_shape, base_shape):
|
250
|
+
special_strides: Tuple[sint, ...] = tuple()
|
251
|
+
for i,g in enumerate(shape_idx_groups):
|
252
|
+
shape_piece = tuple(self.output_shape[x] for x in g)
|
253
|
+
assert prod(shape_piece) == base_shape[i], f"get_contraction was wrong? {shape_piece} != {base_shape[i]}"
|
254
|
+
special_strides += strides_for_shape(shape_piece)
|
255
|
+
# adding the fake image shape
|
256
|
+
shapes.append(self.output_shape)
|
257
|
+
strides.append(special_strides)
|
258
|
+
|
259
|
+
# merge dimensions if we can, multi get_shape_strides
|
260
|
+
# NOTE: this does not always preserve the reduce dimension
|
261
|
+
# TODO: move this into shapetracker, with tests!
|
262
|
+
rets = [[(shapes[j][0], strides[j][0])] for j in range(len(shapes))]
|
263
|
+
for i in range(1, len(shapes[0])):
|
264
|
+
can_merge = []
|
265
|
+
for j in range(len(shapes)):
|
266
|
+
# TODO: added the always mergeability of 1s, is this right? if so, add to shapetracker in the 1 case
|
267
|
+
can_merge.append(strides[j][i] is not None and ((strides[j][i] != 0 and rets[j][-1][1] == shapes[j][i]*cast(int, strides[j][i])) or (strides[j][i] == 0 and rets[j][-1][1] == 0))) # noqa: E501
|
268
|
+
# more can merge than this
|
269
|
+
mergeable = all(can_merge) and i != self.first_reduce
|
270
|
+
for j in range(len(shapes)):
|
271
|
+
if mergeable: rets[j][-1] = (rets[j][-1][0] * shapes[j][i], strides[j][i])
|
272
|
+
else: rets[j].append((shapes[j][i], strides[j][i]))
|
273
|
+
|
274
|
+
# do the reshapes
|
275
|
+
for i,x in enumerate(rets[:len(self.sts)]): self.sts[i] = self.sts[i].reshape(tuple([y[0] for y in x]))
|
276
|
+
|
277
|
+
# ******************** helpers ********************
|
278
|
+
|
279
|
+
def _limit_size(self, x: Tuple[int], max_size: List[Union[int,float]]) -> Tuple[int, ...]:
|
280
|
+
new_shape = list(x)
|
281
|
+
for i in range(len(new_shape)):
|
282
|
+
next_idx = (i + 1) % len(new_shape)
|
283
|
+
while new_shape[i] > max_size[i]:
|
284
|
+
# TODO: what if new_shape[i] is not a multiple of 2??
|
285
|
+
new_shape[i] = new_shape[i] // 2
|
286
|
+
next_idx = next_idx if new_shape[next_idx] <= max_size[next_idx] else (next_idx + 1) % len(new_shape)
|
287
|
+
new_shape[next_idx] = new_shape[next_idx] * 2
|
288
|
+
return tuple(new_shape)
|
289
|
+
|
290
|
+
def limit_dims_to_max(self, global_max: List[int], local_max: List[int]):
|
291
|
+
# Check the global allocation limit, current the global_size will be flipped during codegen
|
292
|
+
# and then padded right with 1s if its length < 3 which makes this part a bit awkward to write
|
293
|
+
if self.global_dims > 0:
|
294
|
+
if global_max:
|
295
|
+
tmp = global_max[:self.global_dims] + (local_max[:self.local_dims] if local_max else [])
|
296
|
+
if max(global_max) < max(self.full_shape[:self.global_dims]):
|
297
|
+
self.reshape_and_permute(lambda x: self._limit_size(x, tmp + [math.inf] * (len(self.full_shape)-len(tmp))), None)
|
298
|
+
assert max(global_max) >= max(self.full_shape[:self.global_dims]), f"device max allocation {max(self.full_shape[:self.global_dims])} exceeds global dim maximum {max(global_max)}" # noqa: E501
|
299
|
+
for i in range(self.global_dims-1):
|
300
|
+
if i < len(global_max) and self.full_shape[i] > global_max[i]:
|
301
|
+
order = list(range(len(self.full_shape)))
|
302
|
+
order[i], order[self.global_dims-1] = order[self.global_dims-1], order[i]
|
303
|
+
self.reshape_and_permute(None, order)
|
304
|
+
if DEBUG >= 3: print("permuted global dim", order, "due to allocation exceeds global limit")
|
305
|
+
|
306
|
+
def alias_buffer(self, i, pattern):
|
307
|
+
assert len(pattern) == len(self.sts[i].shape), f"must include a pattern for each shape {pattern} {self.sts[i].shape}"
|
308
|
+
|
309
|
+
bst = 1
|
310
|
+
real_strides = self.sts[i].real_strides()
|
311
|
+
shp, stride = [(s if p != 0 else 1) for s,p in zip(self.sts[i].shape, pattern)], [0]*len(pattern)
|
312
|
+
for priority in range(1, max(pattern)+1): # priority. 0 is non local and ignored
|
313
|
+
for j,p in enumerate(pattern):
|
314
|
+
if priority == p and real_strides[j] != 0:
|
315
|
+
stride[j] = bst
|
316
|
+
bst *= shp[j]
|
317
|
+
|
318
|
+
self.sts.append(ShapeTracker((View.create(tuple(shp), tuple(stride)),)))
|
319
|
+
self.bufs.append(LocalBuffer(name=f"ldata{i}", size=self.sts[-1].size))
|
320
|
+
if DEBUG >= 4: print("aliasing buffer", self.sts[i])
|
321
|
+
self.local_alias[i] = cast(LocalBuffer, self.bufs[-1])
|
322
|
+
|
323
|
+
# ******************** high level optimizers ********************
|
324
|
+
|
325
|
+
def _apply_tc_opt(self, use_tensor_cores:int, axis:int, opt_level:int) -> bool:
|
326
|
+
if use_tensor_cores and self.opts.has_local and self.reduceop is not None and self.reduceop.op is ReduceOps.SUM:
|
327
|
+
for tc in self.opts.tensor_cores:
|
328
|
+
has_cast = tc.dtype_in != tc.dtype_out
|
329
|
+
if has_cast and not(self.reduceop.src[0].op is UnaryOps.CAST and self.reduceop.src[0].arg == tc.dtype_out): continue
|
330
|
+
|
331
|
+
mul_op = self.reduceop.src[0].src[0] if has_cast else self.reduceop.src[0]
|
332
|
+
if mul_op.op is not BinaryOps.MUL: continue
|
333
|
+
|
334
|
+
def buf_index(src: LazyOp) -> Optional[int]:
|
335
|
+
# TODO: apply tc even if the sources are not from LOAD
|
336
|
+
if src.op is BufferOps.LOAD and src.arg.dtype == tc.dtype_in: return self.bufs.index(cast(MemBuffer, src.arg))
|
337
|
+
try:
|
338
|
+
if opt_level >= 1 and src.op is UnaryOps.CAST and src.arg == tc.dtype_in: return self.bufs.index(cast(MemBuffer, src.src[0].arg))
|
339
|
+
except ValueError: return None
|
340
|
+
return None
|
341
|
+
if (buf0:=buf_index(mul_op.src[0])) is None or (buf1:=buf_index(mul_op.src[1])) is None: continue
|
342
|
+
|
343
|
+
buf0_strides, buf1_strides = self.sts[buf0].real_strides(), self.sts[buf1].real_strides()
|
344
|
+
axis_buf0 = [(i,self.full_shape[i],buf1_strides[i]) for i,s in enumerate(buf0_strides[:self.first_reduce]) if s == 0]
|
345
|
+
axis_buf1 = [(i,self.full_shape[i],buf0_strides[i]) for i,s in enumerate(buf1_strides[:self.first_reduce]) if s == 0]
|
346
|
+
if not(axis_buf0 and axis_buf1 and ((self.shape_len-self.first_reduce) == 1 or (opt_level >= 1))): continue
|
347
|
+
|
348
|
+
axis_choices = list(itertools.product(axis_buf0, axis_buf1, range(self.first_reduce, self.shape_len)))
|
349
|
+
if not(axis < len(axis_choices)): continue
|
350
|
+
|
351
|
+
s0, s1, s2 = axis_choices[-(axis+1)][0][0], axis_choices[-(axis+1)][1][0], axis_choices[-(axis+1)][2] # s0 is n, s1 is m, s2 is k
|
352
|
+
axis_pads = [(x, tc.dims[i]) for i, x in enumerate([s0, s1, s2]) if self.full_shape[x]%tc.dims[i] != 0]
|
353
|
+
if axis_pads and (opt_level < 2): continue
|
354
|
+
|
355
|
+
# tensor core -- unroll the reduce dim, upcast input, then create the correct thread pattern
|
356
|
+
self.tensor_core_opts = (tc_opts:=TensorCoreOptions(bufs=(buf0, buf1), axes=[s0, s1], axes_exist=[True, True]))
|
357
|
+
|
358
|
+
# attempt to pad the tensor axes that require it
|
359
|
+
try:
|
360
|
+
for axis, dim in axis_pads: self.apply_opt(Opt(OptOps.PADTO, axis, dim), append_opt=False) # PADTO might fail
|
361
|
+
except KernelOptError: continue
|
362
|
+
self.apply_opt(Opt(OptOps.UNROLL, s2-self.first_reduce, tc.dims[2]), append_opt=False)
|
363
|
+
for i, sz in enumerate([prod(x) for x in [[x[1] for x in tc.threads if x[0]==dim] for dim in range(2)]]): # upcast non-local'd N, M
|
364
|
+
if tc.dims[i] > sz: self.apply_opt(Opt(OptOps.UPCAST, tc_opts.axes[i], tc.dims[i]//sz), append_opt=False)
|
365
|
+
for (tc_dim, tc_amt) in tc.threads:
|
366
|
+
self.apply_opt(Opt(OptOps.LOCAL, tc_opts.axes[tc_dim], tc_amt), append_opt=False)
|
367
|
+
|
368
|
+
# assert tensor core
|
369
|
+
if DEBUG >= 3: print("TENSOR CORES", axis_buf0, axis_buf1, tc)
|
370
|
+
if use_tensor_cores == 1: self.tensor_core = tc # TC=2 will do the shape ops without the WMMA
|
371
|
+
return True
|
372
|
+
return False
|
373
|
+
|
374
|
+
def apply_tensor_cores(self, use_tensor_cores=1, extra_opts:Optional[List[Opt]]=None, axis:int=0, tc_opt:int=getenv("TC_OPT")) -> bool:
|
375
|
+
""" Attempts to apply a tensor core optimization to the kernel. If one exists and applies properly, return true, otherwise return false.
|
376
|
+
Tensor cores are optimized instructions that matrix multiply-accumulate across a wave of threads: D(M, N) = A(M, K) * B(K, N) + C(M, N).
|
377
|
+
|
378
|
+
Keyword arguments:
|
379
|
+
use_tensor_cores -- controls how tensor cores are applied (default 1)
|
380
|
+
0: will disable any tensor core matching
|
381
|
+
1: enable tensor cores
|
382
|
+
2: apply tensor core shape but don't use UOp.WMMA
|
383
|
+
extra_opts -- additional Opt's to apply after the tensor core instead of the hand-coded additional Opt's (default None)
|
384
|
+
tc_opt -- controls which kinds of kernels may be eligible for tensor cores application (default 2 during BEAM, 0 otherwise)
|
385
|
+
0: applies to only kernels with a single reduce axis and direct BufferOps.LOAD into BinaryOps.MUL
|
386
|
+
1: allows kernels with multiple reduce axes and also multiplication of UnaryOps.CAST'd buffers
|
387
|
+
2: allows kernels with M, N, K axes that are not multiples of the tensor core dimensions by applying padding those axes as needed
|
388
|
+
"""
|
389
|
+
if not self.opts.tensor_cores and use_tensor_cores != 2: return False
|
390
|
+
try: # check TC first and apply hand-coded opts if successful
|
391
|
+
self.apply_opt(Opt(OptOps.TC, axis, tc_opt))
|
392
|
+
|
393
|
+
if (tc_opts:=self.tensor_core_opts) is not None:
|
394
|
+
if extra_opts is not None:
|
395
|
+
for opt in extra_opts: self.apply_opt(opt)
|
396
|
+
else:
|
397
|
+
# hand-coded TC opts
|
398
|
+
def late_upcast_tc(tc_dim: int):
|
399
|
+
if tc_opts.axes_exist[tc_dim]:
|
400
|
+
ax_div = [upc for upc in [5,4,3,2,1] if self.full_shape[tc_opts.axes[tc_dim]]%upc == 0][0]
|
401
|
+
if ax_div != 1: self.apply_opt(Opt(OptOps.UPCAST, tc_opts.axes[tc_dim], ax_div))
|
402
|
+
late_upcast_tc(1) # attempt to upcast M
|
403
|
+
late_upcast_tc(0) # attempt to upcast N
|
404
|
+
|
405
|
+
if self.tensor_core and tc_opts.axes_exist[0]: # attempt to local N
|
406
|
+
for upc in [4,2]:
|
407
|
+
if self.full_shape[tc_opts.axes[0]] % upc == 0:
|
408
|
+
self.apply_opt(Opt(OptOps.LOCAL, tc_opts.axes[0], upc))
|
409
|
+
break
|
410
|
+
|
411
|
+
return True
|
412
|
+
except KernelOptError:
|
413
|
+
return False
|
414
|
+
|
415
|
+
def apply_opt(self, opt:Opt, append_opt:bool=True):
|
416
|
+
check(not self.dont_use_locals or opt.op not in {OptOps.LOCAL, OptOps.GROUP, OptOps.GROUPTOP, OptOps.UPCASTMID}, "not using locals")
|
417
|
+
|
418
|
+
if opt.op is OptOps.TC:
|
419
|
+
check(len(self.applied_opts) == 0, "tensor core opts must be first") # TODO: things like PADTO might be fine
|
420
|
+
check(opt.axis is not None and opt.amt is not None, "tensor core opts must have an axis and amt")
|
421
|
+
check((use_tensor_cores:=getenv("TC", 1)) == 2 or len(self.opts.tensor_cores) > 0, "must have tensor cores or TC=2")
|
422
|
+
check(self._apply_tc_opt(use_tensor_cores, cast(int, opt.axis), cast(int, opt.amt)), "no tensor core available")
|
423
|
+
self.applied_opts.append(opt)
|
424
|
+
return
|
425
|
+
|
426
|
+
axis = opt.real_axis(self)
|
427
|
+
check(axis < len(self.full_shape), "invalid axis")
|
428
|
+
|
429
|
+
if opt.amt is not None:
|
430
|
+
amt = opt.amt if opt.amt != 0 else self.full_shape[axis]
|
431
|
+
check(isinstance(amt, int) and amt != 1, "shift/padto of amt 1 or Node is meaningless")
|
432
|
+
if opt.op is not OptOps.PADTO: check(self.full_shape[axis] % amt == 0, "no longer valid shift")
|
433
|
+
else: amt = -1
|
434
|
+
|
435
|
+
if self.reduceop and (opt.op in {OptOps.GROUP, OptOps.GROUPTOP} or (self.group_for_reduces and opt.op not in {OptOps.NOLOCALS, OptOps.PADTO})):
|
436
|
+
acc_sz, upcast_idx = dt.base.itemsize if isinstance((dt:=self.reduceop.dtype), ImageDType) else dt.itemsize, self.shape_len-self.upcasted
|
437
|
+
upcast_sz = prod([a for a,b in zip(self.full_shape[upcast_idx:], self.sts[0].shape[upcast_idx:]) if a == b])
|
438
|
+
local_sz = prod(self.full_shape[self.first_reduce-self.local_dims:self.first_reduce+self.group_for_reduces])
|
439
|
+
smem_sz = amt*acc_sz*upcast_sz*local_sz
|
440
|
+
check(smem_sz <= self.opts.shared_max, f"exceeds maximum shared memory size: needs {smem_sz}, max {self.opts.shared_max}")
|
441
|
+
|
442
|
+
if opt.op is OptOps.LOCAL: # cyan
|
443
|
+
check(self.opts.has_local, "target does not support local")
|
444
|
+
check(axis < self.global_dims, "local is for globals")
|
445
|
+
self.shift_to(axis, amt, insert_before=self.first_reduce)
|
446
|
+
self.local_dims += 1
|
447
|
+
elif opt.op in {OptOps.GROUP, OptOps.GROUPTOP}: # green
|
448
|
+
check(self.opts.has_local and self.opts.has_shared, "target does not support local or shared mem")
|
449
|
+
check(axis >= self.first_reduce + self.group_for_reduces and axis < self.shape_len-self.upcasted, "must be reduce axis to group")
|
450
|
+
check(not self.tensor_core, "can't group with tensor cores")
|
451
|
+
self.shift_to(axis, amt, top=(opt.op is OptOps.GROUPTOP), insert_before=self.first_reduce + self.group_for_reduces)
|
452
|
+
self.group_for_reduces += 1
|
453
|
+
elif opt.op is OptOps.UNROLL: # purple
|
454
|
+
check(axis < self.shape_len-self.upcasted, "can't upcasted already upcasted")
|
455
|
+
check(amt <= 32, "don't unroll more than 32")
|
456
|
+
# TODO: fix upcast_count to put purples before yellows. broken because of METAL tensor cores
|
457
|
+
#upcast_count = sum(x == y for x,y in zip(self.full_shape[-self.upcasted:], self.output_shape[-self.upcasted:])) if self.upcasted else 0
|
458
|
+
#self.shift_to(axis, amt, insert_before=None if upcast_count == 0 else self.shape_len-upcast_count)
|
459
|
+
if self.full_shape[axis] == amt and axis == self.first_reduce: self.local_dims += 1 # first_reduce will ++, so offset loss in simplify_ones
|
460
|
+
if self.full_shape[axis] == amt and axis < self.first_reduce+self.group_for_reduces: self.group_for_reduces -= 1 # fully unrolling a GROUP
|
461
|
+
self.shift_to(axis, amt, insert_before=None)
|
462
|
+
self.upcast()
|
463
|
+
elif opt.op is OptOps.UPCAST: # yellow
|
464
|
+
check(axis < self.first_reduce, "upcast is for non-reduce")
|
465
|
+
check(not(self.tensor_core and self.global_dims <= axis < self.global_dims+len(self.tensor_core.threads)), "can't upcast TC locals")
|
466
|
+
check(amt <= 8, "don't upcast more than 8")
|
467
|
+
self.shift_to(axis, amt, insert_before=None)
|
468
|
+
self.upcast()
|
469
|
+
elif opt.op is OptOps.UPCASTMID: # white
|
470
|
+
check(self.bufs[0].dtype.name.startswith('image') and not self.float4_axis(0) and self.group_for_reduces != 0 and self.first_reduce <= 2 and prod(self.sts[0].shape) > 1, "invalid upcast mid reduce") # noqa: E501
|
471
|
+
axes = self.sts[0].unit_stride_axes()
|
472
|
+
check(len(axes) == 1, f"wrong number of stride 1 axis : {axes}")
|
473
|
+
check(axes[0] == axis, "wrong axis")
|
474
|
+
check(amt == 4, "don't upcast mid anything but 4")
|
475
|
+
self.shift_to(axis, amt, insert_before=self.first_reduce + self.group_for_reduces)
|
476
|
+
self.group_for_reduces += 1
|
477
|
+
elif opt.op is OptOps.NOLOCALS:
|
478
|
+
check(self.opts.has_local and not self.dont_use_locals, "NOLOCALS is meaningless if target does not support local or already not using locals")
|
479
|
+
check(self.local_dims == 0 and self.group_for_reduces == 0, "can't have no locals with locals")
|
480
|
+
self.dont_use_locals = True
|
481
|
+
elif opt.op is OptOps.PADTO:
|
482
|
+
check(not self.vars, "does not work with symbolic shape")
|
483
|
+
check(axis < self.shape_len - self.upcasted, "cannot pad upcasted")
|
484
|
+
# ok to pad SUM if all parent ops have f(0) = 0
|
485
|
+
if self.first_reduce <= axis:
|
486
|
+
check((r:=cast(LazyOp, self.reduceop)).op is ReduceOps.SUM and \
|
487
|
+
all(op.op not in UNSAFE_PAD_OPS for ops in r.src for op in ops.lazyops), "cannot pad")
|
488
|
+
padded = False
|
489
|
+
for i,st in enumerate(self.sts):
|
490
|
+
if self.sts[i].shape[axis] == 1: continue # reduced
|
491
|
+
check(self.sts[i].shape[axis] > amt//4, f"pad adds more than quadruple the work {self.sts[i].shape[axis]=} > {amt//4=}")
|
492
|
+
if (ru := round_up(cast(int, self.sts[i].shape[axis]), cast(int, amt)) - self.sts[i].shape[axis]):
|
493
|
+
# pad right seems to be faster
|
494
|
+
self.sts[i] = st.pad(((0,0),) * axis + ((0,ru),) + ((0,0),) * (len(st.shape)-axis-1))
|
495
|
+
padded = True
|
496
|
+
check(padded, "nothing was padded")
|
497
|
+
|
498
|
+
if append_opt: self.applied_opts.append(opt)
|
499
|
+
if self.simplify_ones() and self.tensor_core_opts:
|
500
|
+
self.tensor_core_opts.fix_axes(axis) # fix up axes in TC opts if required after simplify_ones()
|
501
|
+
|
502
|
+
def required_optimizations(self):
|
503
|
+
if self.bufs[0].dtype.__class__ is ImageDType:
|
504
|
+
unit_stride_axes_mul_4 = [i for i in self.sts[0].unit_stride_axes(ignore_valid=True) if self.sts[0].shape[i]%4 == 0]
|
505
|
+
assert len(unit_stride_axes_mul_4) >= 1, f"needs a unit stride axis in {self.bufs[0]}"
|
506
|
+
if len(unit_stride_axes_mul_4) and all(x < (self.shape_len-self.upcasted) for x in unit_stride_axes_mul_4) and unit_stride_axes_mul_4[0] not in self.upcast_in_mid_reduce_axes: # noqa: E501
|
507
|
+
self.apply_opt(Opt(OptOps.UPCAST, unit_stride_axes_mul_4[0], 4))
|
508
|
+
|
509
|
+
def hand_coded_optimizations(self):
|
510
|
+
self.required_optimizations()
|
511
|
+
|
512
|
+
# should use matvec - TODO: adjust/tune based on the wide vs tall/large vs small mat
|
513
|
+
MV_BLOCKSIZE, MV_THREADS_PER_ROW, MV_ROWS_PER_THREAD = getenv("MV_BLOCKSIZE", 4), getenv("MV_THREADS_PER_ROW", 8), getenv("MV_ROWS_PER_THREAD", 4)
|
514
|
+
if self.opts.has_local and getenv("MV",1) != 0 and (MV_BLOCKSIZE > 1 or MV_THREADS_PER_ROW > 1 or MV_ROWS_PER_THREAD > 1) and \
|
515
|
+
self.reduceop is not None and self.reduceop.op is ReduceOps.SUM and len(self.full_shape) >= 2 and self.opts.has_shared and \
|
516
|
+
(mulop:=self.reduceop.src[0]).op is BinaryOps.MUL and mulop.src[0].op is BufferOps.LOAD and mulop.src[1].op is BufferOps.LOAD:
|
517
|
+
st0, st1 = self.sts[self.bufs.index(mulop.src[0].arg)], self.sts[self.bufs.index(mulop.src[1].arg)]
|
518
|
+
strides0, strides1 = st0.real_strides(), st1.real_strides()
|
519
|
+
def has_expanded_axis(shape, strides): return any(s > 1 and st == 0 for s,st in zip(shape,strides))
|
520
|
+
if strides0[self.first_reduce] == 1 and not (has_expanded_axis(st0.shape, strides0) and has_expanded_axis(st1.shape, strides1)):
|
521
|
+
for global_idx in range(self.global_dims):
|
522
|
+
if self.full_shape[self.first_reduce]%MV_THREADS_PER_ROW == 0 and self.full_shape[global_idx]%(MV_BLOCKSIZE*MV_ROWS_PER_THREAD) == 0:
|
523
|
+
if DEBUG >= 3:
|
524
|
+
print(f"MATVEC: {self.full_shape=} {self.first_reduce=} {strides0=} {MV_BLOCKSIZE=} {MV_THREADS_PER_ROW=} {MV_ROWS_PER_THREAD=}")
|
525
|
+
if MV_THREADS_PER_ROW > 1: self.apply_opt(Opt(OptOps.GROUP, 0, MV_THREADS_PER_ROW))
|
526
|
+
if MV_BLOCKSIZE > 1: self.apply_opt(Opt(OptOps.LOCAL, global_idx, MV_BLOCKSIZE))
|
527
|
+
if MV_ROWS_PER_THREAD > 1: self.apply_opt(Opt(OptOps.UPCAST, global_idx, MV_ROWS_PER_THREAD))
|
528
|
+
return
|
529
|
+
|
530
|
+
if self.opts.has_local and self.opts.has_shared and all_int(self.sts[0].shape[:self.first_reduce]):
|
531
|
+
# are we grouping? (requires local shape support)
|
532
|
+
if not self.float4_axis(0) and self.first_reduce <= 2 and self.first_reduce + 1 <= self.shape_len and prod(self.sts[0].shape[:self.first_reduce]) <= 2048: # noqa: E501
|
533
|
+
# TODO: use 1024 if it's allowed in a smarter way
|
534
|
+
for sz in (([256, 16]) if prod(self.sts[0].shape[:self.first_reduce]) <= 32 else [16]):
|
535
|
+
if all(st.shape[self.first_reduce] % sz == 0 or st.shape[self.first_reduce] == 1 for st in self.sts):
|
536
|
+
try: # may fail due to excessive smem usage
|
537
|
+
self.apply_opt(Opt(OptOps.GROUPTOP, 0, sz))
|
538
|
+
break
|
539
|
+
except KernelOptError: pass
|
540
|
+
|
541
|
+
# are we upcasting in mid reduce? (only for images)
|
542
|
+
if self.bufs[0].dtype.name.startswith('image') and not self.float4_axis(0) and self.group_for_reduces and self.first_reduce <= 2 and prod(self.sts[0].shape) > 1: # noqa: E501
|
543
|
+
axes = self.sts[0].unit_stride_axes()
|
544
|
+
assert len(axes) == 1, f"wrong number of stride 1 axis : {axes}"
|
545
|
+
if self.sts[0].shape[axes[0]]%4 == 0:
|
546
|
+
self.apply_opt(Opt(OptOps.UPCASTMID, axes[0], 4))
|
547
|
+
|
548
|
+
# upcast float4 images
|
549
|
+
for buf_index,buf in enumerate(self.bufs):
|
550
|
+
unit_stride_axes_mul_4 = [i for i in self.sts[buf_index].unit_stride_axes(ignore_valid=True) if self.sts[buf_index].shape[i]%4 == 0]
|
551
|
+
if buf.dtype.__class__ is ImageDType:
|
552
|
+
#assert len(unit_stride_axes_mul_4) >= 1, f"needs a unit stride axis in {self.bufs[buf_index]}"
|
553
|
+
if len(unit_stride_axes_mul_4) and all(x < (self.shape_len-self.upcasted) for x in unit_stride_axes_mul_4) and unit_stride_axes_mul_4[0] not in self.upcast_in_mid_reduce_axes: # noqa: E501
|
554
|
+
if unit_stride_axes_mul_4[0] < self.first_reduce:
|
555
|
+
self.apply_opt(Opt(OptOps.UPCAST, unit_stride_axes_mul_4[0], 4))
|
556
|
+
else:
|
557
|
+
self.apply_opt(Opt(OptOps.UNROLL, unit_stride_axes_mul_4[0]-self.first_reduce, 4))
|
558
|
+
|
559
|
+
# no more opt if we are grouping
|
560
|
+
if self.group_for_reduces: return
|
561
|
+
|
562
|
+
# **** below this line need to be optional and benchmarked ****
|
563
|
+
|
564
|
+
# TODO: doing extra upcasts with images doesn't work for some reason (maybe has to do with to_image_idx)
|
565
|
+
# to trigger the above bug, remove prod(self.full_shape[self.shape_len - self.upcasted:]) from the below
|
566
|
+
# expression and run test/test_ops.py with IMAGE=2
|
567
|
+
# if there are small dims with lots of valid masks, upcast them (they might be from Tensor.stack)
|
568
|
+
# this can be made much smarter
|
569
|
+
to_upcast: List[int] = []
|
570
|
+
# upcast leading axes first (hack-ish for winograd; we actually want to upcast masked axes with low stride first)
|
571
|
+
for axis in range(self.first_reduce):
|
572
|
+
# we might want to be able to split axes that are masked, or refuse to merge them in simplify_merge_adjacent
|
573
|
+
# for now skip upcasting here if there is a symbolic axis
|
574
|
+
if isinstance(self.full_shape[axis], int) and self.full_shape[axis] <= 7 and any(st.axis_is_masked(axis) for st in self.sts) and \
|
575
|
+
prod(self.full_shape[self.shape_len - self.upcasted:]) * prod(self.full_shape[j] for j in to_upcast) * self.full_shape[axis] <= 7 * 7:
|
576
|
+
if DEBUG >= 4: print(f"upcasting masked axis : {axis}")
|
577
|
+
to_upcast.append(axis)
|
578
|
+
for axis in to_upcast[::-1]: self.apply_opt(Opt(OptOps.UPCAST, axis, 0))
|
579
|
+
|
580
|
+
# potentially do more upcasts of non reduce axes based on a heuristic
|
581
|
+
upcasted_axis = set()
|
582
|
+
while prod(self.sts[0].shape[:self.first_reduce]) >= 1024:
|
583
|
+
xb_choices = []
|
584
|
+
for axis, upcast_amount in itertools.product(range(self.first_reduce), [3,4]): # consider all the non reduce axes, and a 3 or 4 reduce
|
585
|
+
# if we haven't upcasted it, it's not symbolic, it mods, and buffer has stride 0 on axis while having no stride 0 in the upcasted axis already
|
586
|
+
if axis not in upcasted_axis and isinstance(self.full_shape[axis], int) and self.full_shape[axis]%upcast_amount == 0 and any(st.views[-1].strides[axis] == 0 and not any(x[1] == 0 for x in self.upcasted_axis(buf_index)) for buf_index, st in enumerate(self.sts)): # noqa: E501
|
587
|
+
xb_choices.append((sum(st.views[-1].strides[axis]>0 for st in self.sts), sum(st.views[-1].strides[axis] for st in self.sts), axis, upcast_amount)) # noqa: E501
|
588
|
+
if xb_choices:
|
589
|
+
xb_choices = sorted(xb_choices)
|
590
|
+
if DEBUG >= 4: print(f"float4 merging axis : {xb_choices}")
|
591
|
+
self.apply_opt(Opt(OptOps.UPCAST, xb_choices[0][2], xb_choices[0][3]))
|
592
|
+
upcasted_axis.add(xb_choices[0][2])
|
593
|
+
else: break
|
594
|
+
|
595
|
+
# if last dim is small(ish) and it's a reduce dim, upcast the reduce (loop unrolling). no simplify needed since it's just an upcast.
|
596
|
+
if self.first_reduce < (self.shape_len-self.upcasted) and (len(list(self.shape_offsets(self.full_buf_index))) <= 4 or not any(r for _,_,r in self.upcasted_axis(self.full_buf_index))) and (self.upcasted == 0 or prod(self.full_shape[-self.upcasted:]) < 64): # noqa: E501
|
597
|
+
if (s:=self.full_unupcasted_shape[-1]) <= 32 and isinstance(s, int): # NOTE: cannot loop unroll symbolic axis
|
598
|
+
self.apply_opt(Opt(OptOps.UNROLL, len(self.full_unupcasted_shape)-1-self.first_reduce, 0))
|
599
|
+
# if it's small, upcast a second reduce dimension too
|
600
|
+
if self.first_reduce < (self.shape_len-self.upcasted) and s <= 3 and (s2:=self.full_unupcasted_shape[-1]) <= 3 and isinstance(s2, int):
|
601
|
+
self.apply_opt(Opt(OptOps.UNROLL, len(self.full_unupcasted_shape)-1-self.first_reduce, 0))
|
602
|
+
else:
|
603
|
+
for splits in [4]:
|
604
|
+
if self.full_unupcasted_shape[-1]%splits == 0:
|
605
|
+
self.apply_opt(Opt(OptOps.UNROLL, len(self.full_unupcasted_shape)-1-self.first_reduce, splits))
|
606
|
+
break
|
607
|
+
|
608
|
+
# if nothing at all is upcasted and it's easy to, do an upcast
|
609
|
+
# TODO: this is breaking the tests
|
610
|
+
for splits in [4]:
|
611
|
+
if self.upcasted == 0 and self.full_unupcasted_shape and self.full_unupcasted_shape[-1] % splits == 0:
|
612
|
+
self.apply_opt(Opt(OptOps.UPCAST, len(self.full_unupcasted_shape)-1, splits))
|
613
|
+
|
614
|
+
# **** local groups ****
|
143
615
|
|
616
|
+
if self.opts.has_local:
|
617
|
+
if getenv("NOLOCALS") and self.local_dims == 0 and not self.group_for_reduces:
|
618
|
+
self.apply_opt(Opt(OptOps.NOLOCALS))
|
619
|
+
else:
|
620
|
+
# prioritize making expand axes local
|
621
|
+
local_axis_ranking = [(any(self.sts[buf_index].views[-1].strides[axis] == 0 for buf_index in range(len(self.sts))), axis) for axis in range(len(self.full_shape[:self.first_reduce]))] # noqa: E501
|
622
|
+
to_local: List[Tuple[int, int]] = []
|
623
|
+
for _, axis in sorted(local_axis_ranking, key=lambda x: (-x[0], -x[1])):
|
624
|
+
local_size = prod(sz for _, sz in to_local)
|
625
|
+
local_sz: Optional[int] = next((x for x in ([32] * (axis == 0) + [16, 8, 4, 3, 2]) if self.full_shape[axis] % x == 0 and local_size * x <= 128), None) # noqa: E501
|
626
|
+
if local_sz is not None: to_local.append((axis, local_sz))
|
627
|
+
deleted_shape = 0
|
628
|
+
for axis, local_sz in sorted(to_local[:3]):
|
629
|
+
axis = axis - deleted_shape
|
630
|
+
will_delete_shape = local_sz == self.full_shape[axis]
|
631
|
+
self.apply_opt(Opt(OptOps.LOCAL, axis, local_sz))
|
632
|
+
if will_delete_shape: deleted_shape += 1
|