tinygrad 0.7.0__py3-none-any.whl → 0.9.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (77) hide show
  1. tinygrad/__init__.py +6 -0
  2. tinygrad/codegen/kernel.py +572 -83
  3. tinygrad/codegen/linearizer.py +415 -395
  4. tinygrad/codegen/uops.py +415 -0
  5. tinygrad/device.py +183 -0
  6. tinygrad/dtype.py +113 -0
  7. tinygrad/engine/__init__.py +0 -0
  8. tinygrad/engine/graph.py +100 -0
  9. tinygrad/engine/jit.py +195 -0
  10. tinygrad/engine/realize.py +191 -0
  11. tinygrad/engine/schedule.py +362 -0
  12. tinygrad/engine/search.py +196 -0
  13. tinygrad/{mlops.py → function.py} +76 -55
  14. tinygrad/helpers.py +196 -89
  15. tinygrad/lazy.py +210 -371
  16. tinygrad/multi.py +169 -0
  17. tinygrad/nn/__init__.py +202 -22
  18. tinygrad/nn/datasets.py +7 -0
  19. tinygrad/nn/optim.py +112 -32
  20. tinygrad/nn/state.py +136 -39
  21. tinygrad/ops.py +119 -202
  22. tinygrad/renderer/__init__.py +61 -0
  23. tinygrad/renderer/assembly.py +276 -0
  24. tinygrad/renderer/cstyle.py +353 -166
  25. tinygrad/renderer/llvmir.py +150 -138
  26. tinygrad/runtime/autogen/amd_gpu.py +1900 -0
  27. tinygrad/runtime/autogen/comgr.py +865 -0
  28. tinygrad/runtime/autogen/cuda.py +5923 -0
  29. tinygrad/runtime/autogen/hip.py +5909 -0
  30. tinygrad/runtime/autogen/hsa.py +5761 -0
  31. tinygrad/runtime/autogen/kfd.py +812 -0
  32. tinygrad/runtime/autogen/nv_gpu.py +33328 -0
  33. tinygrad/runtime/autogen/opencl.py +1795 -0
  34. tinygrad/runtime/driver/hip_comgr.py +47 -0
  35. tinygrad/runtime/driver/hsa.py +143 -0
  36. tinygrad/runtime/graph/clang.py +38 -0
  37. tinygrad/runtime/graph/cuda.py +81 -0
  38. tinygrad/runtime/graph/hcq.py +143 -0
  39. tinygrad/runtime/graph/hsa.py +171 -0
  40. tinygrad/runtime/graph/metal.py +75 -0
  41. tinygrad/runtime/ops_amd.py +564 -0
  42. tinygrad/runtime/ops_clang.py +24 -77
  43. tinygrad/runtime/ops_cuda.py +175 -89
  44. tinygrad/runtime/ops_disk.py +56 -33
  45. tinygrad/runtime/ops_gpu.py +92 -95
  46. tinygrad/runtime/ops_hsa.py +278 -0
  47. tinygrad/runtime/ops_llvm.py +39 -60
  48. tinygrad/runtime/ops_metal.py +92 -74
  49. tinygrad/runtime/ops_npy.py +9 -0
  50. tinygrad/runtime/ops_nv.py +630 -0
  51. tinygrad/runtime/ops_python.py +204 -0
  52. tinygrad/shape/shapetracker.py +86 -254
  53. tinygrad/shape/symbolic.py +166 -141
  54. tinygrad/shape/view.py +296 -0
  55. tinygrad/tensor.py +2619 -448
  56. {tinygrad-0.7.0.dist-info → tinygrad-0.9.0.dist-info}/LICENSE +1 -1
  57. tinygrad-0.9.0.dist-info/METADATA +227 -0
  58. tinygrad-0.9.0.dist-info/RECORD +60 -0
  59. {tinygrad-0.7.0.dist-info → tinygrad-0.9.0.dist-info}/WHEEL +1 -1
  60. tinygrad/codegen/assembly.py +0 -190
  61. tinygrad/codegen/optimizer.py +0 -379
  62. tinygrad/codegen/search.py +0 -72
  63. tinygrad/graph.py +0 -83
  64. tinygrad/jit.py +0 -57
  65. tinygrad/nn/image.py +0 -100
  66. tinygrad/renderer/assembly_arm64.py +0 -169
  67. tinygrad/renderer/assembly_ptx.py +0 -98
  68. tinygrad/renderer/wgsl.py +0 -53
  69. tinygrad/runtime/lib.py +0 -113
  70. tinygrad/runtime/ops_cpu.py +0 -51
  71. tinygrad/runtime/ops_hip.py +0 -82
  72. tinygrad/runtime/ops_shm.py +0 -29
  73. tinygrad/runtime/ops_torch.py +0 -30
  74. tinygrad/runtime/ops_webgpu.py +0 -45
  75. tinygrad-0.7.0.dist-info/METADATA +0 -212
  76. tinygrad-0.7.0.dist-info/RECORD +0 -40
  77. {tinygrad-0.7.0.dist-info → tinygrad-0.9.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,61 @@
1
+ from typing import Optional, List, Tuple, Dict
2
+ import functools
3
+ from dataclasses import dataclass
4
+ from tinygrad.helpers import to_function_name
5
+ from tinygrad.codegen.uops import UOpGraph
6
+ from tinygrad.shape.symbolic import sym_infer, sint, Variable
7
+ from tinygrad.dtype import DType
8
+
9
+ @dataclass(frozen=True)
10
+ class TensorCore: # D = A * B + C, A is (M x K), B is (K x N), C and D are (M x N)
11
+ dims: Tuple[int,int,int] # N, M, K
12
+ dtype_in: DType # dtype for A and B
13
+ dtype_out: DType # dtype for C and D
14
+ threads: List[Tuple[int,int]] # list of (TC dim,amt) that construct the warp thread structure
15
+ thread_local_aliases: List[List[List[int]]] # a list of [threads_1, ..., threads_n, upcast_1(unrolled), upcast_2(upcast)] defining the alias (-1 is upcast, 1-n is warp threads) for each TC dim # noqa: E501
16
+ thread_local_sizes: List[List[int]] # in each thread, the number of elements stored in registers for each TC dim
17
+ def __str__(self): return "_".join(["WMMA"] + list(map(str, self.dims)) + [self.dtype_in.name, self.dtype_out.name])
18
+ def num_upcasts(self): return len(self.thread_local_aliases[0]) - len(self.threads)
19
+
20
+ @dataclass(frozen=True)
21
+ class Program:
22
+ name:str
23
+ src:str
24
+ dname:str
25
+ global_size:Optional[List[int]]=None
26
+ local_size:Optional[List[int]]=None
27
+ uops:Optional[UOpGraph]=None
28
+ op_estimate:sint=0
29
+ mem_estimate:sint=0
30
+
31
+ @functools.cached_property
32
+ def vars(self) -> List[Variable]: return [] if self.uops is None else self.uops.vars()
33
+
34
+ @functools.cached_property
35
+ def globals(self) -> List[Tuple[int, bool]]: return [] if self.uops is None else self.uops.globals()
36
+
37
+ @functools.cached_property
38
+ def outcount(self) -> int: return sum(x[1] for x in self.globals)
39
+
40
+ @functools.cached_property
41
+ def function_name(self) -> str: return to_function_name(self.name)
42
+
43
+ def launch_dims(self, var_vals:Dict[Variable, int]):
44
+ global_size = [sym_infer(sz, var_vals) for sz in self.global_size] if self.global_size is not None else None
45
+ local_size = [sym_infer(sz, var_vals) for sz in self.local_size] if self.local_size is not None else None
46
+ return global_size, local_size
47
+
48
+ class Renderer:
49
+ device: str = ""
50
+ suffix: str = ""
51
+ # TODO: make this generic with a list of supported types
52
+ supports_float4: bool = True
53
+ has_local: bool = True
54
+ has_shared: bool = True
55
+ # NOTE: these two should be in z,y,x(reversed) order for cstyle backends, they are flipped when kernel is rendered
56
+ global_max: Optional[List[int]] = None
57
+ local_max: Optional[List[int]] = None
58
+ shared_max: int = 32768
59
+ tensor_cores: List[TensorCore] = []
60
+
61
+ def render(self, name:str, uops:UOpGraph) -> str: raise NotImplementedError("needs a renderer")
@@ -0,0 +1,276 @@
1
+ from typing import DefaultDict, Dict, List, Union, Optional, cast, Callable
2
+ import struct
3
+ from collections import defaultdict
4
+ from tinygrad.helpers import DEBUG
5
+ from tinygrad.codegen.linearizer import UOps, UOp
6
+ from tinygrad.ops import BinaryOps, UnaryOps, TernaryOps, Op
7
+ from tinygrad.dtype import dtypes, DType, PtrDType, ConstType
8
+ from tinygrad.codegen.uops import UOpGraph, PatternMatcher
9
+ from tinygrad.renderer import Renderer, TensorCore
10
+
11
+ def render_val(x, dtype):
12
+ if dtypes.is_float(dtype):
13
+ if dtype == dtypes.double: return "0d%02X%02X%02X%02X%02X%02X%02X%02X" % tuple(struct.pack("d",x)[::-1])
14
+ if dtype == dtypes.half: return "0x%02X%02X" % tuple(struct.pack("e",x)[::-1])
15
+ return "0f%02X%02X%02X%02X" % tuple(struct.pack("f",x)[::-1])
16
+ return str(int(x)) + ("U" if dtypes.is_unsigned(dtype) else "")
17
+
18
+ class PTXRenderer(Renderer):
19
+ device = "CUDA"
20
+ suffix = "PTX"
21
+ global_max = [65535, 65535, 2147483647]
22
+ local_max = [64, 1024, 1024]
23
+ shared_max = 49152
24
+ tensor_cores = [TensorCore(dims=(8,16,16), threads=[(0,2),(0,2),(1,2),(1,2),(0,2)], thread_local_sizes=[[2,2,2],[2,2],[2,2]], thread_local_aliases=[ [[0],[0],[5],[-2],[0],[-1,1,2,-3],[3,4]], [[3],[4],[0],[0],[5],[-1,1,2,-2],[0]], [[-1],[1],[5],[-2],[2],[0],[3,4]] ], dtype_in=di, dtype_out=do) for (di, do) in ([(dtypes.half, dtypes.float)])] # noqa: E501
25
+ def __init__(self, arch:str): self.tensor_cores = PTXRenderer.tensor_cores if int(arch[3:]) >= 80 else []
26
+
27
+ # language options
28
+ kernel_prefix = """.version VERSION
29
+ .target TARGET
30
+ .address_size 64
31
+ .visible .entry"""
32
+ barrier = "bar.sync\t0;"
33
+ has_pred = True
34
+ load_global = True
35
+ label_prefix = "$"
36
+ gid = [f'%ctaid.{chr(120+i)}' for i in range(3)]
37
+ gdim = [f'%nctaid.{chr(120+i)}' for i in range(3)]
38
+ lid = [f'%tid.{chr(120+i)}' for i in range(3)]
39
+ asm_for_op: Dict[Op, Callable] = {
40
+ UnaryOps.NEG: lambda d,a,dt,name: f"not.pred {d}, {a};" if name == "pred" else f"neg.{name} {d}, {a};",
41
+ UnaryOps.EXP2: lambda d,a,dt,name: f"ex2.approx.{name} {d}, {a};", UnaryOps.LOG2: lambda d,a,dt,name: f"lg2.approx.{name} {d}, {a};",
42
+ UnaryOps.SIN: lambda d,a,dt,name: f"sin.approx.{name} {d}, {a};", UnaryOps.SQRT: lambda d,a,dt,name: f"sqrt.approx.{name} {d}, {a};",
43
+ BinaryOps.ADD: lambda d,a,b,dt,name: f"{'or' if name == 'pred' else 'add'}.{name} {d}, {a}, {b};",
44
+ BinaryOps.SUB: lambda d,a,b,dt,name: f"sub.{name} {d}, {a}, {b};",
45
+ BinaryOps.MUL: lambda d,a,b,dt,name: ('and' if dt == dtypes.bool else 'mul') + f"{'.lo' if dtypes.is_int(dt) else ''}.{name} {d}, {a}, {b};",
46
+ BinaryOps.XOR: lambda d,a,b,dt,name: f"xor.pred {d}, {a}, {b};" if name == "pred" else f"xor.b{name[1:]} {d}, {a}, {b};",
47
+ BinaryOps.DIV: lambda d,a,b,dt,name: f"div{'.approx' if dtypes.is_float(dt) else ''}.{name} {d}, {a}, {b};",
48
+ BinaryOps.MAX: lambda d,a,b,dt,name: f"max.{name} {d}, {a}, {b};", BinaryOps.MOD: lambda d,a,b,dt,name: f"rem.{name} {d}, {a}, {b};",
49
+ BinaryOps.CMPLT: lambda d,a,b,dt,name: f"setp.lt.{name} {d}, {a}, {b};",
50
+ BinaryOps.CMPEQ: lambda d,a,b,dt,name: f"setp.eq.{name} {d}, {a}, {b};",
51
+ TernaryOps.MULACC: lambda d,a,b,c,dt,name: f"{'fma.rn' if dtypes.is_float(dt) else 'mad.lo'}.{name} {d}, {a}, {b}, {c};",
52
+ TernaryOps.WHERE: lambda d,a,b,c,dt,name:
53
+ f"@{a} mov.{name} {d}, {b};\n@!{a} mov.{name} {d}, {c};" if name == "pred" else f"selp.{'b16' if name == 'f16' else name} {d}, {b}, {c}, {a};"
54
+ }
55
+ supports_half: List[Op] = [UnaryOps.NEG, UnaryOps.EXP2, BinaryOps.ADD, BinaryOps.SUB, BinaryOps.MUL, BinaryOps.MAX, BinaryOps.CMPLT,
56
+ TernaryOps.WHERE]
57
+ # HACK: Use s16 and u16 for int8 and uint8 buffers. This can be wrong in cast.
58
+ types: Dict[DType, str] = { dtypes.int8: "s16", dtypes.int16: "s16", dtypes.int32: "s32", dtypes.int64: "s64",
59
+ dtypes.uint8: "u16", dtypes.uint16: "u16", dtypes.uint32: "u32", dtypes.uint64: "u64",
60
+ dtypes.float16: "f16", dtypes.float32: "f32", dtypes.float64: "f64", dtypes.bool: "pred" }
61
+
62
+ mem_types: Dict[DType, str] = types.copy()
63
+ mem_types.update({dtypes.int8: "s8", dtypes.uint8: "u8", dtypes.bool: "u8", dtypes.float16: "b16"})
64
+
65
+ const_requires_mov: List[DType] = [dtypes.half, dtypes.bool]
66
+
67
+ def render_const(self, x:ConstType, dtype:DType, mov=None) -> Union[List[str], str]:
68
+ val = render_val(x, dtype)
69
+ if dtype == dtypes.bool: return [f"setp.ne.s16 {mov}, {val}, 0;"]
70
+ return [f"mov.b{self.types[dtype][1:]} {mov}, {val};"] if mov else val
71
+
72
+ def render_local(self, dest, name, size, dtype) -> List[str]:
73
+ return [f".shared .align 4 .b8 {name}[{size*dtype.itemsize}];", f"mov.u64 {dest}, {name}[0];"]
74
+
75
+ def render_loop(self, idx, start, label, acc=None) -> List[str]: return [f"mov.u32 {idx}, {start};", f"{label}:"]
76
+
77
+ def render_bra(self, b1, pred=None, b2=None) -> List[str]: return [f"@{pred} bra {b1};", f"@!{pred} bra {b2};"] if pred else [f"bra {b1};"]
78
+
79
+ def render_load(self, loc, dest, dtype, gate=None, alt=None, ss="", offset=0) -> List[str]:
80
+ assert dtype != dtypes.bool
81
+ if gate: return [f"@{gate} ld{ss}.{self.mem_types[dtype]} {dest}, [{loc}+{offset}];", f"@!{gate} mov.b{self.types[dtype][1:]} {dest}, {alt};"]
82
+ return [f"ld{ss}.{self.mem_types[dtype]} {dest}, [{loc}+{offset}];"]
83
+
84
+ def render_store(self, loc, val, dtype, gate=None, ss="", offset=0) -> List[str]:
85
+ return [(f"@{gate} " if gate else "") + f"st{ss}.{self.mem_types[dtype]} [{loc}+{offset}], {val};"]
86
+
87
+ def render_cast(self, d:str, a:str, dtype:DType, atype:DType, bitcast=False, pred=False) -> List[str]:
88
+ if bitcast: return [f"mov.b{self.types[dtype][1:]} {d}, {a};"]
89
+ if atype == dtypes.bool: return[f"selp.b{self.types[dtype][1:]} {d}, {render_val(1, dtype)}, {render_val(0, dtype)}, {a};"]
90
+ if dtype == dtypes.bool: return [f"setp.ne.b{self.types[atype][1:]} {d}, {a}, {self.render_const(0, atype)};"]
91
+ rnd = ('.rzi' if dtypes.is_int(dtype) and dtypes.is_float(atype) else
92
+ '.rn' if dtypes.is_float(dtype) and (dtype.itemsize < atype.itemsize or dtypes.is_int(atype) or atype == dtypes.bool) else '')
93
+ return [f"cvt{rnd}.{self.types[dtype]}.{self.types[atype]} {d}, {a};"]
94
+
95
+ def render_kernel(self, kernel, function_name, bufs, regs) -> str:
96
+ kernel = [f".reg .{reg.split('_')[-2]} %{reg}<{cnt}>;" for reg,cnt in regs] + kernel + ["ret;"]
97
+ def fmt(line): return line if line[0]=="$" else "\t" + line.replace(" ", "\t" if len(line.split(" ")[0]) > 7 else "\t\t", 1)
98
+ return (f"{self.kernel_prefix} {function_name}(\n\t" +
99
+ ',\n\t'.join([f".param .{'u64' if dtype.__class__ == PtrDType else self.types[dtype]} {name}" for name,dtype in bufs]) + "\n)\n{\n" +
100
+ '\n'.join([fmt(line) for op in kernel for line in op.splitlines()]) +
101
+ "\n}")
102
+
103
+ def render(self, name:str, uops:UOpGraph) -> str:
104
+ kernel:List[str] = []
105
+ bufs = []
106
+
107
+ uops.linearize(ptx_matcher)
108
+ if DEBUG >= 4: uops.print()
109
+
110
+ def kk(*s: str): kernel.append("\n".join(s))
111
+
112
+ c: DefaultDict[str, int] = defaultdict(int)
113
+ r: Dict[UOp, Union[List[str], str]] = {}
114
+ def ssa(prefix:str, u:Optional[UOp]=None, dtype:Optional[str]=None) -> str:
115
+ nonlocal c, r
116
+ prefix += f"_{dtype if dtype is not None else self.types[cast(DType, cast(UOp, u).dtype)]}_"
117
+ c[prefix] += 1
118
+ if u is not None: r[u] = f"%{prefix}{c[prefix]-1}"
119
+ return f"%{prefix}{c[prefix]-1}"
120
+
121
+ c_label: DefaultDict[str, int] = defaultdict(int)
122
+ r_label: Dict[UOp, str] = {}
123
+ def ssa_label(prefix:str, u:UOp):
124
+ nonlocal c_label, r_label
125
+ c_label[prefix] += 1
126
+ r_label[u] = f"{self.label_prefix}{prefix}_{c_label[prefix]-1}"
127
+ return r_label[u]
128
+
129
+ def const(x:ConstType, dtype:DType, mov=False):
130
+ if mov or dtype in self.const_requires_mov:
131
+ kk(*self.render_const(x, dtype, mov=(out:=ssa('const', dtype=self.types[dtype]))))
132
+ return out
133
+ return self.render_const(x, dtype)
134
+
135
+ def _cast(a, dtype:DType, atype:DType, bitcast=False, u=None, pred=False):
136
+ if atype == dtype or isinstance(atype, PtrDType):
137
+ if u: r[u] = a
138
+ return a
139
+ kk(*self.render_cast((ret:=ssa('cast', u, self.types[dtype])), a, dtype, atype, bitcast))
140
+ return ret
141
+
142
+ for u in uops:
143
+ uop,dtype,vin,args = u.uop,u.dtype,u.vin,u.arg
144
+ if uop is UOps.IF:
145
+ assert vin[0].dtype is not None
146
+ kk(*self.render_bra(lb:=ssa_label('if', u), _cast(r[vin[0]], dtypes.bool, vin[0].dtype, u=u, pred=True), f"{lb}_true"), f"{lb}_true:")
147
+ elif uop is UOps.BARRIER and self.barrier: kk(self.barrier)
148
+ elif uop is UOps.ENDRANGE:
149
+ kk(self.asm_for_op[BinaryOps.ADD](r[vin[0]], r[vin[0]], "1", dtypes.int, self.types[dtypes.int]),
150
+ self.asm_for_op[BinaryOps.CMPLT](pred:=ssa("pred", dtype="pred"), r[vin[0]], r[vin[0].vin[1]], dtypes.int, self.types[dtypes.int]))
151
+ kk(*self.render_bra(r_label[vin[0]], pred, f"{r_label[vin[0]]}_exit"), f"{r_label[vin[0]]}_exit:")
152
+ elif uop is UOps.ENDIF:
153
+ kk(f"{r_label[vin[0]]}:")
154
+ elif uop is UOps.STORE:
155
+ assert vin[0].dtype is not None and vin[2].dtype is not None
156
+ assert vin[0].dtype == dtypes.int64, "store isn't int64"
157
+ assert vin[1].uop is UOps.CONST, f"store isn't const {u}"
158
+ mem_type = '.shared' if vin[0].uop is UOps.DEFINE_LOCAL or any(x.uop is UOps.DEFINE_LOCAL for x in vin[0].parents) else '.global'
159
+ if vin[2].dtype.count > 1:
160
+ kk((f"@{r[vin[3]]} " if len(vin)>3 else "") + \
161
+ f"st{mem_type}.v{vin[2].dtype.count}.{self.mem_types[vin[2].dtype.scalar()]} [{r[vin[0]]}+{vin[1].arg}], {{{', '.join(r[vin[2]])}}};")
162
+ else:
163
+ kk(*self.render_store(r[vin[0]], r[vin[2]], vin[2].dtype, gate=r[vin[3]] if len(vin)>3 else None, ss=mem_type, offset=vin[1].arg))
164
+ else:
165
+ assert dtype is not None, f"None dtype for uop {uop}"
166
+ if uop is UOps.RANGE: kk(*self.render_loop(ssa('ridx', u), r[vin[0]], ssa_label('loop', u)))
167
+ elif uop is UOps.ALU:
168
+ assert vin[0].dtype is not None
169
+ if args is BinaryOps.CMPLT or args is BinaryOps.CMPEQ:
170
+ # pass in the other dtype here
171
+ kk(self.asm_for_op[args](ssa("alu", u), *[r[x] for x in vin], vin[0].dtype, self.types[vin[0].dtype]))
172
+ else:
173
+ kk(self.asm_for_op[args](ssa("alu", u), *[r[x] for x in vin], dtype, self.types[dtype]))
174
+ elif uop is UOps.DEFINE_ACC:
175
+ if dtype.count > 1:
176
+ r[u] = [ssa('acc', dtype=self.types[dtype.scalar()]) for _ in range(dtype.count)]
177
+ for uu in r[u]: kk(f"mov.b{self.types[dtype.scalar()][1:]} {uu}, {const(args[0], dtype.scalar())};")
178
+ else: kk(f"mov.b{self.types[dtype][1:]} {ssa('acc', u)}, {const(args[0], dtype)};")
179
+ elif uop is UOps.SPECIAL:
180
+ assert args[1][0] != "i", "idx not supported"
181
+ kk(f"mov.u32 %{args[1]}, {(self.gid if args[1][0] == 'g' else self.lid)[args[0]]};")
182
+ r[u] = "%" + args[1]
183
+ kernel = [f".reg .u32 %{args[1]};"] + kernel
184
+ elif uop is UOps.CONST:
185
+ if dtype.count > 1: r[u] = [const(args, dtype.scalar(), mov=True) for _ in range(dtype.count)]
186
+ else: r[u] = const(args, dtype, mov=True)
187
+ elif uop is UOps.GEP: r[u] = r[vin[0]][u.arg]
188
+ elif uop is UOps.LOAD:
189
+ assert vin[0].dtype == dtypes.int64, "load isn't int64"
190
+ assert vin[1].uop is UOps.CONST, f"load isn't const {u}"
191
+ mem_type = '.shared' if vin[0].uop is UOps.DEFINE_LOCAL or any(x.uop is UOps.DEFINE_LOCAL for x in vin[0].parents) else '.global'
192
+ if dtype.count > 1:
193
+ r[u] = [ssa('val', dtype=self.types[dtype.scalar()]) for _ in range(dtype.count)]
194
+ if(len(vin)>3):
195
+ for v in r[u]: kk(f"mov.{self.mem_types[dtype.scalar()]} {v}, {render_val(0, dtype.scalar())};")
196
+ kk((f"@{r[vin[2]]}"if len(vin) > 3 else "")
197
+ + f" ld{mem_type}.v{dtype.count}.{self.mem_types[dtype.scalar()]} {{{', '.join(r[u])}}}, [{r[vin[0]]}+{vin[1].arg}];")
198
+ else:
199
+ kk(*self.render_load(r[vin[0]], ssa('val', u), dtype, gate=r[vin[2]] if len(vin) > 3 else None,
200
+ alt=r[vin[3]] if len(vin) > 3 else None, ss=mem_type, offset=vin[1].arg))
201
+ elif uop is UOps.PHI:
202
+ if dtype.count > 1:
203
+ for x0, x1 in zip(r[vin[0]], r[vin[1]]): kk(f"mov.b{self.types[dtype.scalar()][1:]} {x0}, {x1};")
204
+ else:
205
+ kk(f"mov.b{self.types[dtype][1:]} {r[vin[0]]}, {r[vin[1]]};")
206
+ r[u] = r[vin[0]]
207
+ elif uop in {UOps.CAST, UOps.BITCAST}:
208
+ assert vin[0].dtype is not None
209
+ if dtype.count>1: r[u] = [r[x] for x in vin] # type: ignore
210
+ else: _cast(r[vin[0]], dtype, vin[0].dtype, bitcast=uop is UOps.BITCAST, u=u)
211
+ elif uop is UOps.DEFINE_LOCAL:
212
+ # TODO: we should sum these, and fetch 0xC000 from somewhere
213
+ assert args[1]*dtype.itemsize <= 0xC000, "too large local"
214
+ kk(*self.render_local(ssa('local', u, self.types[dtypes.ulong]), args[0], args[1], dtype))
215
+ elif uop is UOps.DEFINE_VAR:
216
+ bufs.append((args.expr, dtype))
217
+ r[u] = f"%{args.expr}"
218
+ if self.load_global: kk(*self.render_load(args.expr, ssa('dat', u, self.types[dtype]), dtype, ss=".param"))
219
+ elif uop is UOps.DEFINE_GLOBAL:
220
+ bufs.append((nm:=f"data{args[0]}", dtype))
221
+ r[u] = f"%{nm}"
222
+ if self.load_global:
223
+ dt = dtypes.ulong if dtype.__class__ == PtrDType else dtype
224
+ kk(*self.render_load(nm, ssa('dat', u, self.types[dt]), dt, ss=".param"))
225
+ elif uop is UOps.WMMA:
226
+ wmma = []
227
+ for vv in vin[:2]:
228
+ for i in range(0, len(r[vv]), 2):
229
+ wmma.append(ssa("wmma", dtype="b32"))
230
+ kk(f'mov.b32 {wmma[-1]}, {{{", ".join(r[vv][i:i+2])}}};')
231
+ r[u] = [ssa("wmma", dtype=self.types[dtype.scalar()]) for _ in range(dtype.count)]
232
+ kk(f'mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32\
233
+ {{{", ".join(r[u])}}}, {{{", ".join(wmma[:4])}}}, {{{", ".join(wmma[4:])}}}, {{{", ".join(r[vin[2]])}}};')
234
+ else: raise NotImplementedError(f"no code for {uop}")
235
+
236
+ return self.render_kernel(kernel, name, bufs, c.items())
237
+
238
+ ptx_matcher = PatternMatcher([
239
+ ({"__name__": "root", "uop": UOps.ALU, "arg": BinaryOps.CMPEQ, "vin": ({"dtype": dtypes.bool},{})},
240
+ lambda root: UOp(UOps.ALU, dtypes.bool, (UOp(root.uop, root.dtype, root.vin, BinaryOps.XOR),), UnaryOps.NEG)),
241
+ ({"__name__": "root", "uop": UOps.ALU, "arg": BinaryOps.CMPLT, "vin": ({"__name__": "x", "dtype": dtypes.bool},{"__name__": "y"})},
242
+ lambda root,x,y: UOp(root.uop, root.dtype, (UOp(UOps.ALU, dtypes.bool, (x,), UnaryOps.NEG), y), BinaryOps.MUL)),
243
+ ({"__name__": "root", "uop": UOps.ALU, "arg": BinaryOps.ADD,
244
+ "vin": [{"__name__": "non_muls"}, {"__name__": "muls", "uop": UOps.ALU, "arg": BinaryOps.MUL}]},
245
+ lambda root, muls, non_muls: UOp(UOps.ALU, root.dtype, muls.vin + (non_muls,), TernaryOps.MULACC)),
246
+ *[({"__name__": "x", "uop": UOps.ALU, "dtype": dtypes.half, "arg": op},
247
+ lambda x: UOp(UOps.CAST, dtypes.half, (UOp(x.uop, dtypes.float32, tuple([UOp(UOps.CAST, dtypes.float32, (vv,)) for vv in x.vin]), x.arg),)))
248
+ for op in PTXRenderer.asm_for_op.keys() if op not in PTXRenderer.supports_half],
249
+ ({"__name__": "root", "uop": UOps.LOAD, "dtype": dtypes.bool,
250
+ "vin": ({"__name__": "x"},{"__name__": "y"},{"__name__": "z"},{"__name__": "k"})},
251
+ lambda root,x,y,z,k: UOp(UOps.CAST, dtypes.bool, (UOp(root.uop, dtypes.int8, (x,y,z,UOp(UOps.CAST, dtypes.uint8, (k,)))),), root.arg)),
252
+ ({"__name__": "root", "uop": UOps.LOAD,"dtype": dtypes.bool, "vin": ({},{})},
253
+ lambda root: UOp(UOps.CAST, dtypes.bool, (UOp(root.uop, dtypes.uint8, root.vin, root.arg),))),
254
+ ({"__name__": "root", "uop": UOps.STORE, "vin": ({},{},{"__name__": "z","dtype": dtypes.bool}, {})},
255
+ lambda root,z: UOp(root.uop, root.dtype, root.vin[:2] + (UOp(UOps.CAST, dtypes.uint8, (z,)),), root.arg)),
256
+ ({"__name__": "root", "uop": UOps.STORE, "vin": ({},{},{"__name__": "z","dtype": dtypes.bool})},
257
+ lambda root,z: UOp(root.uop, root.dtype, root.vin[:2] + (UOp(UOps.CAST, dtypes.uint8, (z,)),), root.arg)),
258
+ ({"__name__": "root", "uop": UOps.STORE, "vin": ({},{},{},{"__name__": "g", "dtype": dtypes.int})},
259
+ lambda root,g: UOp(root.uop, root.dtype, root.vin[:3] + (UOp(UOps.CAST, dtypes.bool, (g,)),), root.arg)),
260
+ # ptr_ar (load/store)
261
+ ({"__name__": "root", "uop": {UOps.LOAD, UOps.STORE}, "__allow_len__":[2,3,4,5], "vin": ({"uop":{UOps.DEFINE_LOCAL,UOps.DEFINE_GLOBAL}},
262
+ {"uop": UOps.ALU, "arg": BinaryOps.ADD,"vin":[{"__name__": "alu"}, {"__name__": "const", "uop":UOps.CONST}]})},
263
+ lambda root, alu, const: UOp(root.uop, root.dtype,
264
+ (alu.cast(dtypes.int64)*UOp.const(dtypes.int64, root.vin[0].dtype.itemsize)+root.vin[0].cast(dtypes.int64),
265
+ UOp.const(const.dtype, root.vin[0].dtype.itemsize)*const)+root.vin[2:])),
266
+ ({"__name__": "root", "uop": {UOps.LOAD, UOps.STORE}, "__allow_len__":[2,3,4,5], "vin": ({"uop":{UOps.DEFINE_LOCAL,UOps.DEFINE_GLOBAL}},
267
+ {"__name__": "const", "uop":UOps.CONST})},
268
+ lambda root, const: UOp(root.uop, root.dtype, (root.vin[0].cast(dtypes.int64),
269
+ UOp.const(dtypes.int64, const.arg * root.vin[0].dtype.itemsize),
270
+ )+root.vin[2:])),
271
+ ({"__name__": "root", "uop": {UOps.LOAD, UOps.STORE}, "__allow_len__":[2,3,4,5], "vin": ({"uop":{UOps.DEFINE_LOCAL,UOps.DEFINE_GLOBAL}},
272
+ {"__name__": "alu"})}, # no const here
273
+ lambda root, alu: UOp(root.uop, root.dtype,
274
+ (alu.cast(dtypes.int64)*UOp.const(dtypes.int64, root.vin[0].dtype.itemsize)+root.vin[0].cast(dtypes.int64),
275
+ UOp.const(dtypes.int64, 0))+root.vin[2:])),
276
+ ])