teradataml 20.0.0.6__py3-none-any.whl → 20.0.0.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (96) hide show
  1. teradataml/README.md +210 -0
  2. teradataml/__init__.py +1 -1
  3. teradataml/_version.py +1 -1
  4. teradataml/analytics/analytic_function_executor.py +162 -76
  5. teradataml/analytics/byom/__init__.py +1 -1
  6. teradataml/analytics/json_parser/__init__.py +2 -0
  7. teradataml/analytics/json_parser/analytic_functions_argument.py +95 -2
  8. teradataml/analytics/json_parser/metadata.py +22 -4
  9. teradataml/analytics/sqle/DecisionTreePredict.py +3 -2
  10. teradataml/analytics/sqle/NaiveBayesPredict.py +3 -2
  11. teradataml/analytics/sqle/__init__.py +3 -0
  12. teradataml/analytics/utils.py +4 -1
  13. teradataml/automl/__init__.py +2369 -464
  14. teradataml/automl/autodataprep/__init__.py +15 -0
  15. teradataml/automl/custom_json_utils.py +184 -112
  16. teradataml/automl/data_preparation.py +113 -58
  17. teradataml/automl/data_transformation.py +154 -53
  18. teradataml/automl/feature_engineering.py +113 -53
  19. teradataml/automl/feature_exploration.py +548 -25
  20. teradataml/automl/model_evaluation.py +260 -32
  21. teradataml/automl/model_training.py +399 -206
  22. teradataml/clients/auth_client.py +2 -2
  23. teradataml/common/aed_utils.py +11 -2
  24. teradataml/common/bulk_exposed_utils.py +4 -2
  25. teradataml/common/constants.py +62 -2
  26. teradataml/common/garbagecollector.py +50 -21
  27. teradataml/common/messagecodes.py +47 -2
  28. teradataml/common/messages.py +19 -1
  29. teradataml/common/sqlbundle.py +23 -6
  30. teradataml/common/utils.py +116 -10
  31. teradataml/context/aed_context.py +16 -10
  32. teradataml/data/Employee.csv +5 -0
  33. teradataml/data/Employee_Address.csv +4 -0
  34. teradataml/data/Employee_roles.csv +5 -0
  35. teradataml/data/JulesBelvezeDummyData.csv +100 -0
  36. teradataml/data/byom_example.json +5 -0
  37. teradataml/data/creditcard_data.csv +284618 -0
  38. teradataml/data/docs/byom/docs/ONNXSeq2Seq.py +255 -0
  39. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +1 -1
  40. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_20/TextParser.py +1 -1
  42. teradataml/data/jsons/byom/ONNXSeq2Seq.json +287 -0
  43. teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +3 -7
  44. teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +3 -7
  45. teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +3 -7
  46. teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +3 -7
  47. teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +3 -7
  48. teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +3 -7
  49. teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +3 -7
  50. teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +3 -7
  51. teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +3 -7
  52. teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +3 -7
  53. teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +3 -7
  54. teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json +151 -0
  55. teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json +182 -0
  56. teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json +183 -0
  57. teradataml/data/load_example_data.py +29 -11
  58. teradataml/data/payment_fraud_dataset.csv +10001 -0
  59. teradataml/data/teradataml_example.json +67 -0
  60. teradataml/dataframe/copy_to.py +714 -54
  61. teradataml/dataframe/dataframe.py +1153 -33
  62. teradataml/dataframe/dataframe_utils.py +8 -3
  63. teradataml/dataframe/functions.py +168 -1
  64. teradataml/dataframe/setop.py +4 -1
  65. teradataml/dataframe/sql.py +141 -9
  66. teradataml/dbutils/dbutils.py +470 -35
  67. teradataml/dbutils/filemgr.py +1 -1
  68. teradataml/hyperparameter_tuner/optimizer.py +456 -142
  69. teradataml/lib/aed_0_1.dll +0 -0
  70. teradataml/lib/libaed_0_1.dylib +0 -0
  71. teradataml/lib/libaed_0_1.so +0 -0
  72. teradataml/lib/libaed_0_1_aarch64.so +0 -0
  73. teradataml/scriptmgmt/UserEnv.py +234 -34
  74. teradataml/scriptmgmt/lls_utils.py +43 -17
  75. teradataml/sdk/_json_parser.py +1 -1
  76. teradataml/sdk/api_client.py +9 -6
  77. teradataml/sdk/modelops/_client.py +3 -0
  78. teradataml/series/series.py +12 -7
  79. teradataml/store/feature_store/constants.py +601 -234
  80. teradataml/store/feature_store/feature_store.py +2886 -616
  81. teradataml/store/feature_store/mind_map.py +639 -0
  82. teradataml/store/feature_store/models.py +5831 -214
  83. teradataml/store/feature_store/utils.py +390 -0
  84. teradataml/table_operators/table_operator_util.py +1 -1
  85. teradataml/table_operators/templates/dataframe_register.template +6 -2
  86. teradataml/table_operators/templates/dataframe_udf.template +6 -2
  87. teradataml/utils/docstring.py +527 -0
  88. teradataml/utils/dtypes.py +93 -0
  89. teradataml/utils/internal_buffer.py +2 -2
  90. teradataml/utils/utils.py +41 -2
  91. teradataml/utils/validators.py +694 -17
  92. {teradataml-20.0.0.6.dist-info → teradataml-20.0.0.7.dist-info}/METADATA +213 -2
  93. {teradataml-20.0.0.6.dist-info → teradataml-20.0.0.7.dist-info}/RECORD +96 -81
  94. {teradataml-20.0.0.6.dist-info → teradataml-20.0.0.7.dist-info}/WHEEL +0 -0
  95. {teradataml-20.0.0.6.dist-info → teradataml-20.0.0.7.dist-info}/top_level.txt +0 -0
  96. {teradataml-20.0.0.6.dist-info → teradataml-20.0.0.7.dist-info}/zip-safe +0 -0
@@ -1,6 +1,6 @@
1
1
  # ##################################################################
2
2
  #
3
- # Copyright 2024 Teradata. All rights reserved.
3
+ # Copyright 2025 Teradata. All rights reserved.
4
4
  # TERADATA CONFIDENTIAL AND TRADE SECRET
5
5
  #
6
6
  # Primary Owner: Sweta Shaw
@@ -51,9 +51,9 @@ class _FeatureEngineering:
51
51
  data,
52
52
  target_column,
53
53
  model_list,
54
- verbose = 0,
55
- task_type = "Regression",
56
- custom_data = None,
54
+ verbose=0,
55
+ task_type="Regression",
56
+ custom_data=None,
57
57
  **kwargs):
58
58
  """
59
59
  DESCRIPTION:
@@ -88,10 +88,10 @@ class _FeatureEngineering:
88
88
 
89
89
  task_type:
90
90
  Required Argument.
91
- Specifies the task type for AutoML, whether to apply regresion OR classification
91
+ Specifies the task type for AutoML, whether to apply regresion OR classification OR clustering
92
92
  on the provived dataset.
93
93
  Default Value: "Regression"
94
- Permitted Values: "Regression", "Classification"
94
+ Permitted Values: "Regression", "Classification", "Clustering"
95
95
  Types: str
96
96
 
97
97
  custom_data:
@@ -120,6 +120,30 @@ class _FeatureEngineering:
120
120
  session.
121
121
  Default Value: False
122
122
  Types: bool
123
+
124
+ cluster:
125
+ Optional Argument.
126
+ Specifies whether to apply clustering techniques.
127
+ Default Value: False
128
+ Types: bool
129
+
130
+ progress_prefix:
131
+ Optional Argument.
132
+ Specifies the prefix for the progress bar messages.
133
+ Default Value: None
134
+ Types: str.
135
+
136
+ automl_phases:
137
+ Optional Argument.
138
+ Specifies the phase of AutoML to be executed.
139
+ Default Value: None
140
+ Types: str or list of str.
141
+
142
+ auto_dataprep:
143
+ Optional Argument.
144
+ Specifies whether to run AutoDataPrep workflow.
145
+ Default Value: False
146
+ Types: bool
123
147
  """
124
148
  # Instance variables
125
149
  self.data = data
@@ -131,16 +155,18 @@ class _FeatureEngineering:
131
155
  self.excluded_cols=[]
132
156
  self.data_types = {key: value for key, value in self.data._column_names_and_types}
133
157
  self.target_label = None
134
- self.data_transform_dict = {}
158
+
135
159
  self.one_hot_obj_count = 0
136
160
  self.is_classification_type = lambda: self.task_type.upper() == 'CLASSIFICATION'
137
161
  self.persist = kwargs.get('persist', False)
138
162
  self.volatile = kwargs.get('volatile', False) or (configure.temp_object_type == TeradataConstants.TERADATA_VOLATILE_TABLE and self.persist is False)
163
+ self.cluster = kwargs.get('cluster', False)
139
164
 
140
165
  self.data_mapping = {}
141
166
  self.progress_prefix = kwargs.get('progress_prefix', None)
142
167
  self.aml_phases = kwargs.get('automl_phases', None)
143
-
168
+ self.auto_dataprep = kwargs.get('auto_dataprep', False)
169
+
144
170
  # Method for doing feature engineering on data -> adding id, removing futile col, imputation, encoding(one hot)
145
171
  def feature_engineering(self,
146
172
  auto=True):
@@ -165,13 +191,25 @@ class _FeatureEngineering:
165
191
  second element represents list of columns which are not participating in outlier tranformation.
166
192
  """
167
193
  # Assigning number of base jobs for progress bar.
168
- base_jobs = 12 if auto else 17
194
+ if self.cluster:
195
+ base_jobs = 11 if auto else 15
196
+ else:
197
+ base_jobs = 12 if auto else 17
169
198
 
170
199
  # Updating model list based on distinct value of target column for classification type
171
200
  if self.is_classification_type():
172
201
  if self.data.drop_duplicate(self.target_column).size > 2:
173
- unsupported_models = ['svm', 'glm']
202
+ unsupported_models = ['svm', 'glm'] # Models that don't support multiclass
203
+ for model in unsupported_models:
204
+ if model in self.model_list:
205
+ self._display_msg(inline_msg="\nMulti-class classification is "
206
+ "not supported by {} model. Skipping {} model."
207
+ .format(model, model))
174
208
  self.model_list = [model for model in self.model_list if model not in unsupported_models]
209
+
210
+ # After filtering models like glm/svm due to multiclass
211
+ if not self.auto_dataprep:
212
+ _Validators._validate_non_empty_list_or_valid_selection(self.model_list, "List of models")
175
213
 
176
214
  # Updating number of jobs for progress bar based on number of models.
177
215
  jobs = base_jobs + len(self.model_list)
@@ -187,13 +225,24 @@ class _FeatureEngineering:
187
225
  progress_bar=self.progress_bar)
188
226
 
189
227
  # Storing target column to data transform dictionary
190
- self.data_transform_dict['data_target_column'] = self.target_column
228
+ # Setting target column for supervised learning, for clustering it will be None.
229
+ if not self.cluster:
230
+ self.data_transform_dict['data_target_column'] = self.target_column
231
+ else:
232
+ self.data_transform_dict['data_target_column'] = None
233
+
191
234
  # Storing target column encoding indicator to data transform dictionary
192
- self.data_transform_dict['target_col_encode_ind'] = False
235
+ if "target_col_encode_ind" not in self.data_transform_dict:
236
+ self.data_transform_dict["target_col_encode_ind"] = False
237
+
238
+
193
239
  # Storing task type to data transform dictionary
194
- self.data_transform_dict['classification_type']=self.is_classification_type()
240
+ if not self.cluster:
241
+ self.data_transform_dict['classification_type'] = self.is_classification_type()
242
+ else:
243
+ self.data_transform_dict['classification_type'] = False
195
244
  # Storing params for performing one hot encoding
196
- self.data_transform_dict['one_hot_encoding_fit_obj'] ={}
245
+ self.data_transform_dict['one_hot_encoding_fit_obj'] = {}
197
246
  self.data_transform_dict['one_hot_encoding_drop_list'] = []
198
247
 
199
248
  if auto:
@@ -333,8 +382,8 @@ class _FeatureEngineering:
333
382
  # Removing id column, if exists
334
383
  if len(columns_to_be_removed) != 0:
335
384
  self.data = self.data.drop(columns_to_be_removed, axis=1)
336
- # Storing irrelevent column list in data transform dictionary
337
- self.data_transform_dict['drop_irrelevent_columns'] = columns_to_be_removed
385
+ # Storing irrelevant column list in data transform dictionary
386
+ self.data_transform_dict['drop_irrelevant_columns'] = columns_to_be_removed
338
387
 
339
388
  # Adding id columns
340
389
  obj = FillRowId(data=self.data, row_id_column='id')
@@ -355,18 +404,21 @@ class _FeatureEngineering:
355
404
 
356
405
  # Handling string type target column in classification
357
406
  # Performing Ordinal Encoding
358
- if self.data_types[self.target_column] in ['str']:
359
- self._ordinal_encoding([self.target_column])
407
+ if not self.cluster:
408
+ if self.data_types[self.target_column] in ['str']:
409
+ self._ordinal_encoding([self.target_column])
360
410
 
361
411
  # Detecting categorical columns
362
412
  categorical_columns = [col for col, d_type in self.data._column_names_and_types if d_type == 'str']
363
413
 
364
414
  # Detecting and removing futile columns, if categorical_column exists
365
415
  if len(categorical_columns) != 0:
416
+
366
417
  obj = CategoricalSummary(data=self.data,
367
418
  target_columns=categorical_columns,
368
419
  volatile=self.volatile,
369
420
  persist=self.persist)
421
+
370
422
  gfc_out = GetFutileColumns(data=self.data,
371
423
  object=obj,
372
424
  category_summary_column="ColumnName",
@@ -378,8 +430,8 @@ class _FeatureEngineering:
378
430
  f_cols = [row[0] for row in gfc_out.result.itertuples()]
379
431
 
380
432
  self.data_mapping['categorical_summary'] = obj.result._table_name
381
- self.data_mapping['futile_columns'] = gfc_out.result._table_name
382
-
433
+ self.data_mapping['futile_columns'] = gfc_out.result._table_name
434
+
383
435
  if len(f_cols) == 0:
384
436
  self._display_msg(inline_msg="Analysis indicates all categorical columns are significant. No action Needed.",
385
437
  progress_bar=self.progress_bar)
@@ -597,7 +649,8 @@ class _FeatureEngineering:
597
649
  """
598
650
 
599
651
  # Removing rows with missing target column value
600
- self.data = self.data.dropna(subset=[self.target_column])
652
+ if not self.cluster:
653
+ self.data = self.data.dropna(subset=[self.target_column])
601
654
 
602
655
  params = {
603
656
  "data": self.data,
@@ -664,6 +717,11 @@ class _FeatureEngineering:
664
717
  drop_cols.append(col)
665
718
  continue
666
719
 
720
+ # For clustering tasks, all columns with missing values are sent directly to imputation
721
+ if self.cluster:
722
+ self.imputation_cols[col] = val
723
+ continue
724
+
667
725
  if self.data_types[col] in ['float', 'int']:
668
726
  corr_df = self.data[col].corr(self.data[self.target_column])
669
727
  corr_val = self.data.assign(True, corr_=corr_df)
@@ -674,7 +732,7 @@ class _FeatureEngineering:
674
732
  if val < .02*d_size and related <= .25:
675
733
  delete_rows.append(col)
676
734
  continue
677
-
735
+
678
736
  elif self.data_types[col] in ['str']:
679
737
  # Delete row, if count of missing value < 4%
680
738
  if val < .04*d_size:
@@ -806,8 +864,7 @@ class _FeatureEngineering:
806
864
  self._display_msg(msg="Time taken to perform imputation: {:.2f} sec ".format(end_time - start_time),
807
865
  progress_bar=self.progress_bar,
808
866
  show_data=True)
809
-
810
-
867
+
811
868
  def _custom_handling_missing_value(self):
812
869
  """
813
870
  DESCRIPTION:
@@ -1001,7 +1058,7 @@ class _FeatureEngineering:
1001
1058
  # Extracting accumulate columns
1002
1059
  accumulate_columns = self._extract_list(self.data.columns, equal_width_bin_columns)
1003
1060
  # Adding transform parameters for performing binning with Equal-Width.
1004
- eql_transform_params={
1061
+ eql_transform_params = {
1005
1062
  "data" : self.data,
1006
1063
  "object" : eql_bin_code_fit.output,
1007
1064
  "accumulate" : accumulate_columns,
@@ -1021,7 +1078,7 @@ class _FeatureEngineering:
1021
1078
 
1022
1079
  self.data_mapping['fit_eql_width'] = eql_bin_code_fit.output._table_name
1023
1080
  self.data_mapping['eql_width_bincoded_data'] = self.data._table_name
1024
-
1081
+
1025
1082
  self._display_msg(msg="\nUpdated dataset sample after performing Equal-Width binning :-",
1026
1083
  data=self.data,
1027
1084
  progress_bar=self.progress_bar)
@@ -1150,7 +1207,7 @@ class _FeatureEngineering:
1150
1207
  string_operation = transform_val["StringOperation"]
1151
1208
 
1152
1209
  # Setting volatile and persist parameters for performing string manipulation
1153
- volatile, persist = self._set_generic_parameters(func_indicator="StringManipulationIndicator",
1210
+ volatile, persist = self._get_generic_parameters(func_indicator="StringManipulationIndicator",
1154
1211
  param_name="StringManipulationParam")
1155
1212
 
1156
1213
  # Storing general parameters for performing string transformation
@@ -1219,7 +1276,7 @@ class _FeatureEngineering:
1219
1276
  drop_lst = [ele + "_other" for ele in one_hot_columns]
1220
1277
 
1221
1278
  # Setting volatile and persist parameters for performing encoding
1222
- volatile, persist = self._set_generic_parameters(func_indicator="CategoricalEncodingIndicator",
1279
+ volatile, persist = self._get_generic_parameters(func_indicator="CategoricalEncodingIndicator",
1223
1280
  param_name="CategoricalEncodingParam")
1224
1281
 
1225
1282
  # Adding fit parameters for performing encoding
@@ -1280,7 +1337,7 @@ class _FeatureEngineering:
1280
1337
  Types: str or list of strings (str)
1281
1338
  """
1282
1339
  # Setting volatile and persist parameters for performing encoding
1283
- volatile, persist = self._set_generic_parameters(func_indicator="CategoricalEncodingIndicator",
1340
+ volatile, persist = self._get_generic_parameters(func_indicator="CategoricalEncodingIndicator",
1284
1341
  param_name="CategoricalEncodingParam")
1285
1342
 
1286
1343
  # Adding fit parameters for performing encoding
@@ -1326,11 +1383,10 @@ class _FeatureEngineering:
1326
1383
  self.data_mapping['fit_ordinal_output'] = ord_fit_obj.output_data._table_name
1327
1384
  self.data_mapping['fit_ordinal_result'] = ord_fit_obj.result._table_name
1328
1385
  self.data_mapping['ordinal_encoded_data'] = self.data._table_name
1329
-
1386
+
1330
1387
  if len(ordinal_columns) == 1 and ordinal_columns[0] == self.target_column:
1331
1388
  self.target_label = ord_fit_obj
1332
1389
 
1333
-
1334
1390
  def _target_encoding(self,
1335
1391
  target_encoding_list):
1336
1392
  """
@@ -1344,22 +1400,22 @@ class _FeatureEngineering:
1344
1400
  Types: str or list of strings (str)
1345
1401
  """
1346
1402
  # Fetching all columns on which target encoding will be performed.
1347
- target_columns= list(target_encoding_list.keys())
1403
+ target_columns = list(target_encoding_list.keys())
1348
1404
  # Checking for column present in dataset or not
1349
1405
  _Validators._validate_dataframe_has_argument_columns(target_columns, "TargetEncodingList", self.data, "df")
1350
1406
  # Finding distinct values and counts for columns.
1351
- cat_sum = CategoricalSummary(data = self.data,
1352
- target_columns = target_columns)
1353
- category_data=cat_sum.result.groupby("ColumnName").count()
1354
- category_data = category_data.assign(drop_columns = True,
1355
- ColumnName = category_data.ColumnName,
1356
- CategoryCount = category_data.count_DistinctValue)
1407
+ cat_sum = CategoricalSummary(data=self.data,
1408
+ target_columns=target_columns)
1409
+ category_data = cat_sum.result.groupby("ColumnName").count()
1410
+ category_data = category_data.assign(drop_columns=True,
1411
+ ColumnName=category_data.ColumnName,
1412
+ CategoryCount=category_data.count_DistinctValue)
1357
1413
  # Storing indicator and fit object for target encoding in data transform dictionary
1358
1414
  self.data_transform_dict["custom_target_encoding_ind"] = True
1359
1415
  self.data_transform_dict["custom_target_encoding_fit_obj"] = {}
1360
1416
 
1361
1417
  # Setting volatile and persist parameters for performing encoding
1362
- volatile, persist = self._set_generic_parameters(func_indicator="CategoricalEncodingIndicator",
1418
+ volatile, persist = self._get_generic_parameters(func_indicator="CategoricalEncodingIndicator",
1363
1419
  param_name="CategoricalEncodingParam")
1364
1420
 
1365
1421
  # Fetching required argument for performing target encoding
@@ -1392,7 +1448,7 @@ class _FeatureEngineering:
1392
1448
  "data" : self.data,
1393
1449
  "object" : tar_fit_obj,
1394
1450
  "accumulate" : accumulate_columns,
1395
- "persist" : True
1451
+ "persist" : True
1396
1452
  }
1397
1453
 
1398
1454
  # Disabling display table name if persist is True by default
@@ -1422,7 +1478,7 @@ class _FeatureEngineering:
1422
1478
  start_time = time.time()
1423
1479
 
1424
1480
  ohe_col = []
1425
- unique_count = []
1481
+ unique_count = []
1426
1482
 
1427
1483
  # List of columns before one hot
1428
1484
  col_bf_ohe = self.data.columns
@@ -1487,7 +1543,7 @@ class _FeatureEngineering:
1487
1543
  progress_bar=self.progress_bar)
1488
1544
  else:
1489
1545
  if onehot_encode_ind:
1490
- unique_count = []
1546
+ unique_count = []
1491
1547
  ohe_list = encoding_list.get("OneHotEncodingList", None)
1492
1548
  # Checking for empty list
1493
1549
  if not ohe_list:
@@ -1530,16 +1586,20 @@ class _FeatureEngineering:
1530
1586
  progress_bar=self.progress_bar)
1531
1587
 
1532
1588
  if target_encode_ind:
1533
- tar_list = encoding_list.get("TargetEncodingList", None)
1534
- if not tar_list:
1535
- self._display_msg(inline_msg="No information provided for customized target encoding technique.",
1536
- progress_bar=self.progress_bar)
1537
- else:
1538
- # Performing target encoding
1539
- self._target_encoding(tar_list)
1540
- self._display_msg(msg="Updated dataset sample after performing target encoding:",
1541
- data=self.data,
1589
+ if self.cluster:
1590
+ self._display_msg(inline_msg="Target Encoding is not applicable for clustering. Skipping it.",
1542
1591
  progress_bar=self.progress_bar)
1592
+ else:
1593
+ tar_list = encoding_list.get("TargetEncodingList", None)
1594
+ if not tar_list:
1595
+ self._display_msg(inline_msg="No information provided for customized target encoding technique.",
1596
+ progress_bar=self.progress_bar)
1597
+ else:
1598
+ # Performing target encoding
1599
+ self._target_encoding(tar_list)
1600
+ self._display_msg(msg="Updated dataset sample after performing target encoding:",
1601
+ data=self.data,
1602
+ progress_bar=self.progress_bar)
1543
1603
  else:
1544
1604
  self._display_msg(inline_msg="No input provided for performing customized categorical encoding. AutoML will proceed with default encoding technique.",
1545
1605
  progress_bar=self.progress_bar)
@@ -1571,7 +1631,7 @@ class _FeatureEngineering:
1571
1631
  apply_method = transform_val["apply_method"]
1572
1632
 
1573
1633
  # Setting volatile and persist parameters for performing transformation
1574
- volatile, persist = self._set_generic_parameters(func_indicator="MathameticalTransformationIndicator",
1634
+ volatile, persist = self._get_generic_parameters(func_indicator="MathameticalTransformationIndicator",
1575
1635
  param_name="MathameticalTransformationParam")
1576
1636
  # Adding fit parameters for performing transformation
1577
1637
  fit_params={
@@ -1855,7 +1915,7 @@ class _FeatureEngineering:
1855
1915
  self._display_msg(inline_msg="Skipping customized anti-select columns.",
1856
1916
  progress_bar=self.progress_bar)
1857
1917
 
1858
- def _set_generic_parameters(self,
1918
+ def _get_generic_parameters(self,
1859
1919
  func_indicator=None,
1860
1920
  param_name=None):
1861
1921
  """