teradataml 20.0.0.6__py3-none-any.whl → 20.0.0.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/README.md +210 -0
- teradataml/__init__.py +1 -1
- teradataml/_version.py +1 -1
- teradataml/analytics/analytic_function_executor.py +162 -76
- teradataml/analytics/byom/__init__.py +1 -1
- teradataml/analytics/json_parser/__init__.py +2 -0
- teradataml/analytics/json_parser/analytic_functions_argument.py +95 -2
- teradataml/analytics/json_parser/metadata.py +22 -4
- teradataml/analytics/sqle/DecisionTreePredict.py +3 -2
- teradataml/analytics/sqle/NaiveBayesPredict.py +3 -2
- teradataml/analytics/sqle/__init__.py +3 -0
- teradataml/analytics/utils.py +4 -1
- teradataml/automl/__init__.py +2369 -464
- teradataml/automl/autodataprep/__init__.py +15 -0
- teradataml/automl/custom_json_utils.py +184 -112
- teradataml/automl/data_preparation.py +113 -58
- teradataml/automl/data_transformation.py +154 -53
- teradataml/automl/feature_engineering.py +113 -53
- teradataml/automl/feature_exploration.py +548 -25
- teradataml/automl/model_evaluation.py +260 -32
- teradataml/automl/model_training.py +399 -206
- teradataml/clients/auth_client.py +2 -2
- teradataml/common/aed_utils.py +11 -2
- teradataml/common/bulk_exposed_utils.py +4 -2
- teradataml/common/constants.py +62 -2
- teradataml/common/garbagecollector.py +50 -21
- teradataml/common/messagecodes.py +47 -2
- teradataml/common/messages.py +19 -1
- teradataml/common/sqlbundle.py +23 -6
- teradataml/common/utils.py +116 -10
- teradataml/context/aed_context.py +16 -10
- teradataml/data/Employee.csv +5 -0
- teradataml/data/Employee_Address.csv +4 -0
- teradataml/data/Employee_roles.csv +5 -0
- teradataml/data/JulesBelvezeDummyData.csv +100 -0
- teradataml/data/byom_example.json +5 -0
- teradataml/data/creditcard_data.csv +284618 -0
- teradataml/data/docs/byom/docs/ONNXSeq2Seq.py +255 -0
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +1 -1
- teradataml/data/jsons/byom/ONNXSeq2Seq.json +287 -0
- teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +3 -7
- teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +3 -7
- teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +3 -7
- teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +3 -7
- teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +3 -7
- teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +3 -7
- teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +3 -7
- teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +3 -7
- teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +3 -7
- teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +3 -7
- teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +3 -7
- teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json +151 -0
- teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json +182 -0
- teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json +183 -0
- teradataml/data/load_example_data.py +29 -11
- teradataml/data/payment_fraud_dataset.csv +10001 -0
- teradataml/data/teradataml_example.json +67 -0
- teradataml/dataframe/copy_to.py +714 -54
- teradataml/dataframe/dataframe.py +1153 -33
- teradataml/dataframe/dataframe_utils.py +8 -3
- teradataml/dataframe/functions.py +168 -1
- teradataml/dataframe/setop.py +4 -1
- teradataml/dataframe/sql.py +141 -9
- teradataml/dbutils/dbutils.py +470 -35
- teradataml/dbutils/filemgr.py +1 -1
- teradataml/hyperparameter_tuner/optimizer.py +456 -142
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/lib/libaed_0_1_aarch64.so +0 -0
- teradataml/scriptmgmt/UserEnv.py +234 -34
- teradataml/scriptmgmt/lls_utils.py +43 -17
- teradataml/sdk/_json_parser.py +1 -1
- teradataml/sdk/api_client.py +9 -6
- teradataml/sdk/modelops/_client.py +3 -0
- teradataml/series/series.py +12 -7
- teradataml/store/feature_store/constants.py +601 -234
- teradataml/store/feature_store/feature_store.py +2886 -616
- teradataml/store/feature_store/mind_map.py +639 -0
- teradataml/store/feature_store/models.py +5831 -214
- teradataml/store/feature_store/utils.py +390 -0
- teradataml/table_operators/table_operator_util.py +1 -1
- teradataml/table_operators/templates/dataframe_register.template +6 -2
- teradataml/table_operators/templates/dataframe_udf.template +6 -2
- teradataml/utils/docstring.py +527 -0
- teradataml/utils/dtypes.py +93 -0
- teradataml/utils/internal_buffer.py +2 -2
- teradataml/utils/utils.py +41 -2
- teradataml/utils/validators.py +694 -17
- {teradataml-20.0.0.6.dist-info → teradataml-20.0.0.7.dist-info}/METADATA +213 -2
- {teradataml-20.0.0.6.dist-info → teradataml-20.0.0.7.dist-info}/RECORD +96 -81
- {teradataml-20.0.0.6.dist-info → teradataml-20.0.0.7.dist-info}/WHEEL +0 -0
- {teradataml-20.0.0.6.dist-info → teradataml-20.0.0.7.dist-info}/top_level.txt +0 -0
- {teradataml-20.0.0.6.dist-info → teradataml-20.0.0.7.dist-info}/zip-safe +0 -0
|
@@ -0,0 +1,255 @@
|
|
|
1
|
+
def ONNXSeq2Seq(newdata=None, modeldata=None, tokenizerdata=None, accumulate=None, model_output_tensor=None,
|
|
2
|
+
encode_max_length=512, show_model_properties=False, output_length=1000,
|
|
3
|
+
overwrite_cached_models="false", is_debug=False, skip_special_tokens=True,
|
|
4
|
+
enable_memory_check=False, const_=None, **generic_arguments):
|
|
5
|
+
"""
|
|
6
|
+
DESCRIPTION:
|
|
7
|
+
The ONNXSeq2Seq() function applies a sequence-to-sequence model that has
|
|
8
|
+
been created outside Vantage and exported to Vantage in ONNX format
|
|
9
|
+
to input data within Teradata Vantage.
|
|
10
|
+
|
|
11
|
+
PARAMETERS:
|
|
12
|
+
newdata:
|
|
13
|
+
Required Argument.
|
|
14
|
+
Specifies the input teradataml DataFrame that contains
|
|
15
|
+
the data to be scored.
|
|
16
|
+
Types: teradataml DataFrame
|
|
17
|
+
|
|
18
|
+
modeldata:
|
|
19
|
+
Required Argument.
|
|
20
|
+
Specifies the model teradataml DataFrame to be used for
|
|
21
|
+
scoring.
|
|
22
|
+
Note:
|
|
23
|
+
* Use `retrieve_byom()` to get the teradataml DataFrame that contains the model.
|
|
24
|
+
Types: teradataml DataFrame
|
|
25
|
+
|
|
26
|
+
tokenizerdata:
|
|
27
|
+
Required Argument.
|
|
28
|
+
Specifies the tokenizer teradataml DataFrame
|
|
29
|
+
which contains the tokenizer json file.
|
|
30
|
+
Types: teradataml DataFrame
|
|
31
|
+
|
|
32
|
+
accumulate:
|
|
33
|
+
Required Argument.
|
|
34
|
+
Specifies the name(s) of input teradataml DataFrame column(s) to
|
|
35
|
+
copy to the output. By default, the function copies all input
|
|
36
|
+
teradataml DataFrame columns to the output.
|
|
37
|
+
Types: str OR list of Strings (str) OR Feature OR list of Features
|
|
38
|
+
|
|
39
|
+
model_output_tensor:
|
|
40
|
+
Required Argument.
|
|
41
|
+
Specifies the column of the model's possible output fields
|
|
42
|
+
that the user wants to calculate and output.
|
|
43
|
+
Types: str
|
|
44
|
+
|
|
45
|
+
encode_max_length:
|
|
46
|
+
Optional Argument.
|
|
47
|
+
Specifies the maximum length of the tokenizer output token
|
|
48
|
+
encodings(only applies for models with symbolic dimensions).
|
|
49
|
+
Default Value: 512
|
|
50
|
+
Types: int
|
|
51
|
+
|
|
52
|
+
show_model_properties:
|
|
53
|
+
Optional Argument.
|
|
54
|
+
Specifies the default or expanded "model_input_fields_map" based on
|
|
55
|
+
input model for defaults or "model_input_fields_map" for expansion.
|
|
56
|
+
Default Value: False
|
|
57
|
+
Types: bool
|
|
58
|
+
|
|
59
|
+
output_length:
|
|
60
|
+
Optional Argument.
|
|
61
|
+
Specifies the output length for the model sequence output, in number of
|
|
62
|
+
characters for the VARCHAR output. If the value exceeds the maximum Unicode
|
|
63
|
+
VARCHAR size of 32000, a CLOB is created automatically.
|
|
64
|
+
Default Value: 1000
|
|
65
|
+
Types: int
|
|
66
|
+
|
|
67
|
+
overwrite_cached_models:
|
|
68
|
+
Optional Argument.
|
|
69
|
+
Specifies the model name that needs to be removed from the cache.
|
|
70
|
+
When a model loaded into the memory of the node fits in the cache,
|
|
71
|
+
it stays in the cache until being evicted to make space for another
|
|
72
|
+
model that needs to be loaded. Therefore, a model can remain in the
|
|
73
|
+
cache even after the completion of function execution. Other functions
|
|
74
|
+
that use the same model can use it, saving the cost of reloading it
|
|
75
|
+
into memory. User should overwrite a cached model only when it is updated,
|
|
76
|
+
to make sure that the Predict function uses the updated model instead
|
|
77
|
+
of the cached model.
|
|
78
|
+
Note:
|
|
79
|
+
Do not use the "overwrite_cached_models" argument except when user
|
|
80
|
+
is trying to replace a previously cached model. Using the argument
|
|
81
|
+
in other cases, including in concurrent queries or multiple times
|
|
82
|
+
within a short period of time lead to an OOM error.
|
|
83
|
+
Default Value: "false"
|
|
84
|
+
Permitted Values: true, t, yes, y, 1, false, f, no, n, 0, *,
|
|
85
|
+
current_cached_model
|
|
86
|
+
Types: str
|
|
87
|
+
|
|
88
|
+
is_debug:
|
|
89
|
+
Optional Argument.
|
|
90
|
+
Specifies whether debug statements are added to a trace table or not.
|
|
91
|
+
When set to True, debug statements are added to a trace table that must
|
|
92
|
+
be created beforehand.
|
|
93
|
+
Notes:
|
|
94
|
+
* Only available with BYOM version 3.00.00.02 and later.
|
|
95
|
+
* To save logs for debugging, user can create an error log by using
|
|
96
|
+
the is_debug=True parameter in the predict functions.
|
|
97
|
+
A database trace table is used to collect this information which
|
|
98
|
+
does impact performance of the function, so using small data input
|
|
99
|
+
sizes is recommended.
|
|
100
|
+
* To generate this log, user must do the following:
|
|
101
|
+
1. Create a global trace table with columns vproc_ID BYTE(2),
|
|
102
|
+
Sequence INTEGER, Trace_Output VARCHAR(31000)
|
|
103
|
+
2. Turn on session function tracing:
|
|
104
|
+
SET SESSION FUNCTION TRACE USING '' FOR TABLE <trace_table_name_created_in_step_1>;
|
|
105
|
+
3. Execute function with "is_debug" set to True.
|
|
106
|
+
4. Debug information is logged to the table created in step 1.
|
|
107
|
+
5. To turn off the logging, either disconnect from the session or
|
|
108
|
+
run following SQL:
|
|
109
|
+
SET SESSION FUNCTION TRACE OFF;
|
|
110
|
+
The trace table is temporary and the information is deleted if user
|
|
111
|
+
logs off from the session. If long term persistence is necessary,
|
|
112
|
+
user can copy the table to a permanent table before leaving the
|
|
113
|
+
session.
|
|
114
|
+
Default Value: False
|
|
115
|
+
Types: bool
|
|
116
|
+
|
|
117
|
+
enable_memory_check:
|
|
118
|
+
Optional Argument.
|
|
119
|
+
Specifies whether there is enough native memory for large models.
|
|
120
|
+
Default Value: True
|
|
121
|
+
Types: bool
|
|
122
|
+
|
|
123
|
+
skip_special_tokens:
|
|
124
|
+
Optional Argument.
|
|
125
|
+
Specifies whether to skip special tokens in the output.
|
|
126
|
+
Default Value: True
|
|
127
|
+
Types: bool
|
|
128
|
+
|
|
129
|
+
const_*:
|
|
130
|
+
Optional Argument.
|
|
131
|
+
Specifies the constant value to be used as a model input by using
|
|
132
|
+
the argument name const_<field_name>. Providing constant values as
|
|
133
|
+
parameters reduces system overhead, since the value will not be
|
|
134
|
+
added to every row being scored.
|
|
135
|
+
Types: str
|
|
136
|
+
|
|
137
|
+
**generic_arguments:
|
|
138
|
+
Specifies the generic keyword arguments SQLE functions accept. Below
|
|
139
|
+
are the generic keyword arguments:
|
|
140
|
+
persist:
|
|
141
|
+
Optional Argument.
|
|
142
|
+
Specifies whether to persist the results of the
|
|
143
|
+
function in a table or not. When set to True,
|
|
144
|
+
results are persisted in a table; otherwise,
|
|
145
|
+
results are garbage collected at the end of the
|
|
146
|
+
session.
|
|
147
|
+
Default Value: False
|
|
148
|
+
Types: bool
|
|
149
|
+
|
|
150
|
+
volatile:
|
|
151
|
+
Optional Argument.
|
|
152
|
+
Specifies whether to put the results of the
|
|
153
|
+
function in a volatile table or not. When set to
|
|
154
|
+
True, results are stored in a volatile table,
|
|
155
|
+
otherwise not.
|
|
156
|
+
Default Value: False
|
|
157
|
+
Types: bool
|
|
158
|
+
|
|
159
|
+
Function allows the user to partition, hash, order or local
|
|
160
|
+
order the input data. These generic arguments are available
|
|
161
|
+
for each argument that accepts teradataml DataFrame as
|
|
162
|
+
input and can be accessed as:
|
|
163
|
+
* "<input_data_arg_name>_partition_column" accepts str or
|
|
164
|
+
list of str (Strings) or PartitionKind
|
|
165
|
+
* "<input_data_arg_name>_hash_column" accepts str or list
|
|
166
|
+
of str (Strings)
|
|
167
|
+
* "<input_data_arg_name>_order_column" accepts str or list
|
|
168
|
+
of str (Strings)
|
|
169
|
+
* "local_order_<input_data_arg_name>" accepts boolean
|
|
170
|
+
Note:
|
|
171
|
+
These generic arguments are supported by teradataml if
|
|
172
|
+
the underlying SQL Engine function supports, else an
|
|
173
|
+
exception is raised.
|
|
174
|
+
|
|
175
|
+
RETURNS:
|
|
176
|
+
Instance of ONNXSeq2Seq.
|
|
177
|
+
Output teradataml DataFrame can be accessed using attribute
|
|
178
|
+
references, such as ONNXSeq2Seq.<attribute_name>.
|
|
179
|
+
Output teradataml DataFrame attribute name is:
|
|
180
|
+
result
|
|
181
|
+
|
|
182
|
+
|
|
183
|
+
RAISES:
|
|
184
|
+
TeradataMlException, TypeError, ValueError
|
|
185
|
+
|
|
186
|
+
|
|
187
|
+
EXAMPLES:
|
|
188
|
+
# Notes:
|
|
189
|
+
# 1. Get the connection to Vantage to execute the function.
|
|
190
|
+
# 2. One must import the required functions mentioned in
|
|
191
|
+
# the example from teradataml.
|
|
192
|
+
# 3. Function will raise error if not supported on the Vantage
|
|
193
|
+
# user is connected to.
|
|
194
|
+
# 4. To execute BYOM functions, set 'configure.byom_install_location' to the
|
|
195
|
+
# database name where BYOM functions are installed.
|
|
196
|
+
|
|
197
|
+
# Import required libraries / functions.
|
|
198
|
+
import os, teradataml
|
|
199
|
+
from teradataml import get_connection, DataFrame
|
|
200
|
+
from teradataml import save_byom, retrieve_byom, load_example_data
|
|
201
|
+
from teradataml import configure, display_analytic_functions, execute_sql
|
|
202
|
+
|
|
203
|
+
# Load example data.
|
|
204
|
+
load_example_data("byom", "JulesBelvezeDummyData")
|
|
205
|
+
|
|
206
|
+
# Create teradataml DataFrame objects.
|
|
207
|
+
jules_data = DataFrame.from_table("JulesBelvezeDummyData")
|
|
208
|
+
|
|
209
|
+
# Assigning txt column name to rev_txt column.
|
|
210
|
+
jules_data = jules_data[jules_data.id <= 5]
|
|
211
|
+
jules_data = jules_data.assign(txt=jules_data.content)
|
|
212
|
+
|
|
213
|
+
# Set install location of BYOM functions.
|
|
214
|
+
configure.byom_install_location = "td_mldb"
|
|
215
|
+
|
|
216
|
+
# Check the list of available analytic functions.
|
|
217
|
+
display_analytic_functions(type="BYOM")
|
|
218
|
+
|
|
219
|
+
# Note: User must have the model and tokenizer data already loaded in the database.
|
|
220
|
+
# Retrieve model.
|
|
221
|
+
modeldata = retrieve_byom("t5-small-headline-generator_fixed", table_name="seq_models")
|
|
222
|
+
tokenizerdata = retrieve_byom("t5-small-headline-generator_fixed", table_name="seq_tokenizers")
|
|
223
|
+
|
|
224
|
+
# Assigning tokenizer_id, tokenizer to model_id, model in Seq2Seq_tokenizers.
|
|
225
|
+
tokenizerdata_a1 = tokenizerdata.assign(tokenizer_id=tokenizerdata.model_id)
|
|
226
|
+
tokenizerdata_a2 = tokenizerdata_a1.assign(tokenizer=tokenizerdata_a1.model)
|
|
227
|
+
|
|
228
|
+
# Example 1: Showcasing the model properties of t5-small-headline-generator_fixed model
|
|
229
|
+
# that has been created outside the Vantage.
|
|
230
|
+
ONNXSeq2Seq_out = ONNXSeq2Seq(modeldata = modeldata,
|
|
231
|
+
tokenizerdata=tokenizerdata_a2.select(['tokenizer_id', 'tokenizer']),
|
|
232
|
+
newdata=jules_data.select(["id", "txt"]),
|
|
233
|
+
accumulate='id',
|
|
234
|
+
model_output_tensor= 'sequences',
|
|
235
|
+
show_model_properties=True)
|
|
236
|
+
|
|
237
|
+
# Print the results.
|
|
238
|
+
print(ONNXSeq2Seq_out.result)
|
|
239
|
+
|
|
240
|
+
# Example 2: Using ONNXSeq2Seq with constant values.
|
|
241
|
+
ONNXSeq2Seq_out = ONNXSeq2Seq(modeldata = modeldata,
|
|
242
|
+
tokenizerdata=tokenizerdata_a2.select(['tokenizer_id', 'tokenizer']),
|
|
243
|
+
newdata=jules_data.select(["id", "txt"]),
|
|
244
|
+
accumulate='id',
|
|
245
|
+
model_output_tensor= 'sequences',
|
|
246
|
+
const_min_length=10,
|
|
247
|
+
const_max_length=84,
|
|
248
|
+
const_num_beams=4,
|
|
249
|
+
const_repetition_penalty=1.2,
|
|
250
|
+
const_length_penalty=2.0,
|
|
251
|
+
const_num_return_sequences=1)
|
|
252
|
+
|
|
253
|
+
# Print the results.
|
|
254
|
+
print(ONNXSeq2Seq_out.result)
|
|
255
|
+
"""
|
|
@@ -37,7 +37,7 @@ def NGramSplitter(data=None, text_column=None, delimiter=" ", grams=None, overla
|
|
|
37
37
|
default value is the set of all whitespace characters which includes
|
|
38
38
|
the characters for space, tab, newline, carriage return and some
|
|
39
39
|
others.
|
|
40
|
-
Default Value: "[
|
|
40
|
+
Default Value: "[\\s]+"
|
|
41
41
|
Types: str
|
|
42
42
|
|
|
43
43
|
grams:
|
|
@@ -37,7 +37,7 @@ def NGramSplitter(data=None, text_column=None, delimiter=" ", grams=None, overla
|
|
|
37
37
|
default value is the set of all whitespace characters which includes
|
|
38
38
|
the characters for space, tab, newline, carriage return and some
|
|
39
39
|
others.
|
|
40
|
-
Default Value: "[
|
|
40
|
+
Default Value: "[\\s]+"
|
|
41
41
|
Types: str
|
|
42
42
|
|
|
43
43
|
grams:
|
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
def TextParser(data=None, object=None, text_column=None, enforce_token_limit=False,
|
|
2
2
|
convert_to_lowercase=True, stem_tokens=False, remove_stopwords=False,
|
|
3
3
|
accumulate=None, delimiter=" \t\n\f\r", delimiter_regex=None,
|
|
4
|
-
punctuation="!#$%&()*+,-./:;?@\^_`{|}~", token_col_name=None,
|
|
4
|
+
punctuation=r"!#$%&()*+,-./:;?@\^_`{|}~", token_col_name=None,
|
|
5
5
|
doc_id_column=None, list_positions=False, token_frequency=False,
|
|
6
6
|
output_by_word=True, **generic_arguments):
|
|
7
7
|
"""
|
|
@@ -0,0 +1,287 @@
|
|
|
1
|
+
{
|
|
2
|
+
"json_schema_major_version": "1",
|
|
3
|
+
"json_schema_minor_version": "2",
|
|
4
|
+
"json_content_version": "1",
|
|
5
|
+
"function_name": "ONNXSeq2Seq",
|
|
6
|
+
"function_version": "1.0",
|
|
7
|
+
"function_type": "byom",
|
|
8
|
+
"function_r_name": "aa.onnx.seq2seq",
|
|
9
|
+
"function_alias_name": "ONNXSeq2Seq",
|
|
10
|
+
"short_description": "This Function generates sequence values using an ONNX model in Vantage",
|
|
11
|
+
"long_description": "This function is used to calculate sequence values in Vantage with a HuggingFace model that has been created outside Vantage and exported to vantage using ONNX format",
|
|
12
|
+
"input_tables": [
|
|
13
|
+
{
|
|
14
|
+
"requiredInputKind": [
|
|
15
|
+
"PartitionByAny",
|
|
16
|
+
"PartitionByKey"
|
|
17
|
+
],
|
|
18
|
+
"isOrdered": false,
|
|
19
|
+
"partitionByOne": false,
|
|
20
|
+
"partitionByOneInclusive": false,
|
|
21
|
+
"name": "InputTable",
|
|
22
|
+
"alternateNames": [],
|
|
23
|
+
"isRequired": true,
|
|
24
|
+
"rDescription": "The input table that contains the text from which we generate sequence values ",
|
|
25
|
+
"description": "The input table that contains the text from which we generate sequence values ",
|
|
26
|
+
"datatype": "TABLE_ALIAS",
|
|
27
|
+
"allowsLists": false,
|
|
28
|
+
"rName": "newdata",
|
|
29
|
+
"useInR": true,
|
|
30
|
+
"rOrderNum": 1
|
|
31
|
+
},
|
|
32
|
+
{
|
|
33
|
+
"requiredInputKind": [
|
|
34
|
+
"Dimension"
|
|
35
|
+
],
|
|
36
|
+
"isOrdered": false,
|
|
37
|
+
"partitionByOne": false,
|
|
38
|
+
"partitionByOneInclusive": false,
|
|
39
|
+
"name": "ModelTable",
|
|
40
|
+
"alternateNames": [],
|
|
41
|
+
"isRequired": true,
|
|
42
|
+
"rDescription": "The model table to be used for calculating sequence values ",
|
|
43
|
+
"description": "The model table to be used for calculating sequence values ",
|
|
44
|
+
"datatype": "TABLE_ALIAS",
|
|
45
|
+
"allowsLists": false,
|
|
46
|
+
"rName": "modeldata",
|
|
47
|
+
"useInR": true,
|
|
48
|
+
"rOrderNum": 2
|
|
49
|
+
},
|
|
50
|
+
{
|
|
51
|
+
"requiredInputKind": [
|
|
52
|
+
"Dimension"
|
|
53
|
+
],
|
|
54
|
+
"isOrdered": false,
|
|
55
|
+
"partitionByOne": false,
|
|
56
|
+
"partitionByOneInclusive": false,
|
|
57
|
+
"name": "TokenizerTable",
|
|
58
|
+
"alternateNames": [],
|
|
59
|
+
"isRequired": true,
|
|
60
|
+
"rDescription": "The tokenizer table which contains the tokenizer json file ",
|
|
61
|
+
"description": "The tokenizer table which contains the tokenizer json file ",
|
|
62
|
+
"datatype": "TABLE_ALIAS",
|
|
63
|
+
"allowsLists": false,
|
|
64
|
+
"rName": "tokenizerdata",
|
|
65
|
+
"useInR": true,
|
|
66
|
+
"rOrderNum": 3
|
|
67
|
+
}
|
|
68
|
+
],
|
|
69
|
+
"argument_clauses": [
|
|
70
|
+
{
|
|
71
|
+
"targetTable": [
|
|
72
|
+
"InputTable"
|
|
73
|
+
],
|
|
74
|
+
"checkDuplicate": true,
|
|
75
|
+
"allowedTypes": [],
|
|
76
|
+
"allowedTypeGroups": [
|
|
77
|
+
"ALL"
|
|
78
|
+
],
|
|
79
|
+
"matchLengthOfArgument": "",
|
|
80
|
+
"allowPadding": true,
|
|
81
|
+
"name": "Accumulate",
|
|
82
|
+
"alternateNames": [],
|
|
83
|
+
"isRequired": true,
|
|
84
|
+
"rDescription": "Specifies the names of input_table columns to copy to the output table.",
|
|
85
|
+
"description": "Specify the names of the input columns to copy to the output table. ",
|
|
86
|
+
"datatype": "COLUMNS",
|
|
87
|
+
"allowsLists": true,
|
|
88
|
+
"rName": "accumulate",
|
|
89
|
+
"useInR": true,
|
|
90
|
+
"rOrderNum": 4
|
|
91
|
+
},
|
|
92
|
+
{
|
|
93
|
+
"checkDuplicate": true,
|
|
94
|
+
"allowedTypes": [],
|
|
95
|
+
"allowedTypeGroups": [
|
|
96
|
+
"ALL"
|
|
97
|
+
],
|
|
98
|
+
"matchLengthOfArgument": "",
|
|
99
|
+
"allowPadding": true,
|
|
100
|
+
"name": "ModelOutputTensor",
|
|
101
|
+
"alternateNames": [],
|
|
102
|
+
"isRequired": true,
|
|
103
|
+
"rDescription": "Specifies the column of the model's possible output fields that the user wants to calculate and output ",
|
|
104
|
+
"description": "Specifies the column of the model's possible output fields that the user wants to calculate and output ",
|
|
105
|
+
"datatype": "STRING",
|
|
106
|
+
"allowsLists": false,
|
|
107
|
+
"rName": "model.output.tensor",
|
|
108
|
+
"useInR": true,
|
|
109
|
+
"rOrderNum": 5
|
|
110
|
+
},
|
|
111
|
+
{
|
|
112
|
+
"defaultValue": 512,
|
|
113
|
+
"checkDuplicate": true,
|
|
114
|
+
"allowedTypes": [],
|
|
115
|
+
"allowedTypeGroups": [
|
|
116
|
+
"ALL"
|
|
117
|
+
],
|
|
118
|
+
"matchLengthOfArgument": "",
|
|
119
|
+
"allowPadding": true,
|
|
120
|
+
"name": "EncodeMaxLength",
|
|
121
|
+
"alternateNames": [],
|
|
122
|
+
"isRequired": false,
|
|
123
|
+
"rDescription": "Specifies the maximum length of the tokenizer output token encodings(only applies for models with symbolic dimensions) ",
|
|
124
|
+
"description": "Specifies the maximum length of the tokenizer output token encodings(only applies for models with symbolic dimensions) ",
|
|
125
|
+
"datatype": "INTEGER",
|
|
126
|
+
"allowsLists": false,
|
|
127
|
+
"rName": "encode.max.length",
|
|
128
|
+
"useInR": true,
|
|
129
|
+
"rOrderNum": 6
|
|
130
|
+
},
|
|
131
|
+
{
|
|
132
|
+
"defaultValue": false,
|
|
133
|
+
"checkDuplicate": true,
|
|
134
|
+
"allowedTypes": [],
|
|
135
|
+
"allowedTypeGroups": [
|
|
136
|
+
"ALL"
|
|
137
|
+
],
|
|
138
|
+
"matchLengthOfArgument": "",
|
|
139
|
+
"allowPadding": true,
|
|
140
|
+
"name": "ShowModelProperties",
|
|
141
|
+
"alternateNames": [],
|
|
142
|
+
"isRequired": false,
|
|
143
|
+
"rDescription": "Show input and output tensors for the ONNX model.",
|
|
144
|
+
"description": "Show input and output tensors for the ONNX model.",
|
|
145
|
+
"datatype": "BOOLEAN",
|
|
146
|
+
"allowsLists": false,
|
|
147
|
+
"rName": "show.model.properties",
|
|
148
|
+
"useInR": true,
|
|
149
|
+
"rOrderNum": 7
|
|
150
|
+
},
|
|
151
|
+
{
|
|
152
|
+
"defaultValue": 1000,
|
|
153
|
+
"checkDuplicate": true,
|
|
154
|
+
"allowedTypes": [],
|
|
155
|
+
"allowedTypeGroups": [
|
|
156
|
+
"ALL"
|
|
157
|
+
],
|
|
158
|
+
"matchLengthOfArgument": "",
|
|
159
|
+
"allowPadding": true,
|
|
160
|
+
"name": "OutputLength",
|
|
161
|
+
"alternateNames": [],
|
|
162
|
+
"isRequired": false,
|
|
163
|
+
"rDescription": "Specifies the output format for the model sequence output ",
|
|
164
|
+
"description": "Specifies the output format for the model sequence output ",
|
|
165
|
+
"datatype": "INTEGER",
|
|
166
|
+
"allowsLists": false,
|
|
167
|
+
"rName": "output.length",
|
|
168
|
+
"useInR": true,
|
|
169
|
+
"rOrderNum": 8
|
|
170
|
+
},
|
|
171
|
+
{
|
|
172
|
+
"permittedValues": [
|
|
173
|
+
"true",
|
|
174
|
+
"t",
|
|
175
|
+
"yes",
|
|
176
|
+
"y",
|
|
177
|
+
"1",
|
|
178
|
+
"false",
|
|
179
|
+
"f",
|
|
180
|
+
"no",
|
|
181
|
+
"n",
|
|
182
|
+
"0",
|
|
183
|
+
"*",
|
|
184
|
+
"current_cached_model"
|
|
185
|
+
],
|
|
186
|
+
"defaultValue": "false",
|
|
187
|
+
"checkDuplicate": true,
|
|
188
|
+
"allowedTypes": [],
|
|
189
|
+
"allowedTypeGroups": [
|
|
190
|
+
"ALL"
|
|
191
|
+
],
|
|
192
|
+
"matchLengthOfArgument": "",
|
|
193
|
+
"allowPadding": true,
|
|
194
|
+
"name": "OverwriteCachedModel",
|
|
195
|
+
"alternateNames": [],
|
|
196
|
+
"isRequired": false,
|
|
197
|
+
"rDescription": "Specifies the model name that needs to be removed from the cache. * can also be used to remove the models ",
|
|
198
|
+
"description": " Specifies the model name that needs to be removed from the cache. * can also be used to remove the models ",
|
|
199
|
+
"datatype": "STRING",
|
|
200
|
+
"allowsLists": false,
|
|
201
|
+
"rName": "overwrite.cached.models",
|
|
202
|
+
"useInR": true,
|
|
203
|
+
"rOrderNum": 9
|
|
204
|
+
},
|
|
205
|
+
{
|
|
206
|
+
"defaultValue": false,
|
|
207
|
+
"checkDuplicate": true,
|
|
208
|
+
"allowedTypes": [],
|
|
209
|
+
"allowedTypeGroups": [
|
|
210
|
+
"ALL"
|
|
211
|
+
],
|
|
212
|
+
"matchLengthOfArgument": "",
|
|
213
|
+
"allowPadding": true,
|
|
214
|
+
"name": "IsDebug",
|
|
215
|
+
"alternateNames": [],
|
|
216
|
+
"isRequired": false,
|
|
217
|
+
"rDescription": "Print additional information in trace table regarding execution of ONNXPredict ",
|
|
218
|
+
"description": " Print additional information in trace table regarding execution of ONNXPredict ",
|
|
219
|
+
"datatype": "BOOLEAN",
|
|
220
|
+
"allowsLists": false,
|
|
221
|
+
"rName": "is.debug",
|
|
222
|
+
"useInR": true,
|
|
223
|
+
"rOrderNum": 10
|
|
224
|
+
},
|
|
225
|
+
{
|
|
226
|
+
"defaultValue": true,
|
|
227
|
+
"checkDuplicate": true,
|
|
228
|
+
"allowedTypes": [],
|
|
229
|
+
"allowedTypeGroups": [
|
|
230
|
+
"ALL"
|
|
231
|
+
],
|
|
232
|
+
"matchLengthOfArgument": "",
|
|
233
|
+
"allowPadding": true,
|
|
234
|
+
"name": "EnableMemoryCheck",
|
|
235
|
+
"alternateNames": [],
|
|
236
|
+
"isRequired": false,
|
|
237
|
+
"rDescription": "If true, verifies if there is enough native memory for large models ",
|
|
238
|
+
"description": "If true, verifies if there is enough native memory for large models ",
|
|
239
|
+
"datatype": "BOOLEAN",
|
|
240
|
+
"allowsLists": false,
|
|
241
|
+
"rName": "enable.memory.check",
|
|
242
|
+
"useInR": true,
|
|
243
|
+
"rOrderNum": 11
|
|
244
|
+
},
|
|
245
|
+
{
|
|
246
|
+
"defaultValue": true,
|
|
247
|
+
"checkDuplicate": true,
|
|
248
|
+
"allowedTypes": [],
|
|
249
|
+
"allowedTypeGroups": [
|
|
250
|
+
"ALL"
|
|
251
|
+
],
|
|
252
|
+
"matchLengthOfArgument": "",
|
|
253
|
+
"allowPadding": true,
|
|
254
|
+
"name": "SkipSpecialTokens",
|
|
255
|
+
"alternateNames": [],
|
|
256
|
+
"isRequired": false,
|
|
257
|
+
"rDescription": "If true, skips special tokens on output ",
|
|
258
|
+
"description": "If true, skips special tokens on output ",
|
|
259
|
+
"datatype": "BOOLEAN",
|
|
260
|
+
"allowsLists": false,
|
|
261
|
+
"rName": "skip.special.tokens",
|
|
262
|
+
"useInR": true,
|
|
263
|
+
"rOrderNum": 12
|
|
264
|
+
},
|
|
265
|
+
{
|
|
266
|
+
"checkDuplicate": true,
|
|
267
|
+
"allowedTypes": ["NUMERIC","STRING"],
|
|
268
|
+
"allowedTypeGroups": [
|
|
269
|
+
"ALL"
|
|
270
|
+
],
|
|
271
|
+
"matchLengthOfArgument": "",
|
|
272
|
+
"allowPadding": true,
|
|
273
|
+
"name": "Const_",
|
|
274
|
+
"regexMatch": true,
|
|
275
|
+
"matchName": "const_",
|
|
276
|
+
"alternateNames": [],
|
|
277
|
+
"isRequired": false,
|
|
278
|
+
"rDescription": "Argument starts with prefix Const_ and then the name of a constant and its value. Can be a string or a number. ",
|
|
279
|
+
"description": "Argument starts with prefix Const_ and then the name of a constant and its value. Can be a string or a number.",
|
|
280
|
+
"datatype": ["STRING","NUMERIC"],
|
|
281
|
+
"allowsLists": false,
|
|
282
|
+
"rName": "const_*",
|
|
283
|
+
"useInR": true,
|
|
284
|
+
"rOrderNum": 13
|
|
285
|
+
}
|
|
286
|
+
]
|
|
287
|
+
}
|
|
@@ -268,20 +268,16 @@
|
|
|
268
268
|
},
|
|
269
269
|
|
|
270
270
|
{
|
|
271
|
-
"
|
|
272
|
-
"permittedValues": [
|
|
273
|
-
"true",
|
|
274
|
-
"false"
|
|
275
|
-
],
|
|
271
|
+
"permittedValues": ["TRUE", "FALSE"],
|
|
276
272
|
"isOutputColumn": false,
|
|
277
273
|
"name": "isDebug",
|
|
278
274
|
"alternateNames": [],
|
|
279
275
|
"isRequired": false,
|
|
280
276
|
"rDescription": "Specify whether error logging is required.",
|
|
281
277
|
"description": "Specify whether error logging is required.",
|
|
282
|
-
"datatype": "
|
|
278
|
+
"datatype": "STRING",
|
|
283
279
|
"allowsLists": false,
|
|
284
|
-
"rName": "
|
|
280
|
+
"rName": "is.debug",
|
|
285
281
|
"useInR": true,
|
|
286
282
|
"rOrderNum": 17
|
|
287
283
|
},
|
|
@@ -291,20 +291,16 @@
|
|
|
291
291
|
},
|
|
292
292
|
|
|
293
293
|
{
|
|
294
|
-
"
|
|
295
|
-
"permittedValues": [
|
|
296
|
-
"true",
|
|
297
|
-
"false"
|
|
298
|
-
],
|
|
294
|
+
"permittedValues": ["TRUE", "FALSE"],
|
|
299
295
|
"isOutputColumn": false,
|
|
300
296
|
"name": "isDebug",
|
|
301
297
|
"alternateNames": [],
|
|
302
298
|
"isRequired": false,
|
|
303
299
|
"rDescription": "Specify whether error logging is required.",
|
|
304
300
|
"description": "Specify whether error logging is required.",
|
|
305
|
-
"datatype": "
|
|
301
|
+
"datatype": "STRING",
|
|
306
302
|
"allowsLists": false,
|
|
307
|
-
"rName": "
|
|
303
|
+
"rName": "is.debug",
|
|
308
304
|
"useInR": true,
|
|
309
305
|
"rOrderNum": 17
|
|
310
306
|
},
|
|
@@ -268,20 +268,16 @@
|
|
|
268
268
|
},
|
|
269
269
|
|
|
270
270
|
{
|
|
271
|
-
"
|
|
272
|
-
"permittedValues": [
|
|
273
|
-
"true",
|
|
274
|
-
"false"
|
|
275
|
-
],
|
|
271
|
+
"permittedValues": ["TRUE", "FALSE"],
|
|
276
272
|
"isOutputColumn": false,
|
|
277
273
|
"name": "isDebug",
|
|
278
274
|
"alternateNames": [],
|
|
279
275
|
"isRequired": false,
|
|
280
276
|
"rDescription": "Specify whether error logging is required.",
|
|
281
277
|
"description": "Specify whether error logging is required.",
|
|
282
|
-
"datatype": "
|
|
278
|
+
"datatype": "STRING",
|
|
283
279
|
"allowsLists": false,
|
|
284
|
-
"rName": "
|
|
280
|
+
"rName": "is.debug",
|
|
285
281
|
"useInR": true,
|
|
286
282
|
"rOrderNum": 17
|
|
287
283
|
},
|
|
@@ -268,20 +268,16 @@
|
|
|
268
268
|
},
|
|
269
269
|
|
|
270
270
|
{
|
|
271
|
-
"
|
|
272
|
-
"permittedValues": [
|
|
273
|
-
"true",
|
|
274
|
-
"false"
|
|
275
|
-
],
|
|
271
|
+
"permittedValues": ["TRUE", "FALSE"],
|
|
276
272
|
"isOutputColumn": false,
|
|
277
273
|
"name": "isDebug",
|
|
278
274
|
"alternateNames": [],
|
|
279
275
|
"isRequired": false,
|
|
280
276
|
"rDescription": "Specify whether error logging is required.",
|
|
281
277
|
"description": "Specify whether error logging is required.",
|
|
282
|
-
"datatype": "
|
|
278
|
+
"datatype": "STRING",
|
|
283
279
|
"allowsLists": false,
|
|
284
|
-
"rName": "
|
|
280
|
+
"rName": "is.debug",
|
|
285
281
|
"useInR": true,
|
|
286
282
|
"rOrderNum": 17
|
|
287
283
|
},
|