teradataml 20.0.0.6__py3-none-any.whl → 20.0.0.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (96) hide show
  1. teradataml/README.md +210 -0
  2. teradataml/__init__.py +1 -1
  3. teradataml/_version.py +1 -1
  4. teradataml/analytics/analytic_function_executor.py +162 -76
  5. teradataml/analytics/byom/__init__.py +1 -1
  6. teradataml/analytics/json_parser/__init__.py +2 -0
  7. teradataml/analytics/json_parser/analytic_functions_argument.py +95 -2
  8. teradataml/analytics/json_parser/metadata.py +22 -4
  9. teradataml/analytics/sqle/DecisionTreePredict.py +3 -2
  10. teradataml/analytics/sqle/NaiveBayesPredict.py +3 -2
  11. teradataml/analytics/sqle/__init__.py +3 -0
  12. teradataml/analytics/utils.py +4 -1
  13. teradataml/automl/__init__.py +2369 -464
  14. teradataml/automl/autodataprep/__init__.py +15 -0
  15. teradataml/automl/custom_json_utils.py +184 -112
  16. teradataml/automl/data_preparation.py +113 -58
  17. teradataml/automl/data_transformation.py +154 -53
  18. teradataml/automl/feature_engineering.py +113 -53
  19. teradataml/automl/feature_exploration.py +548 -25
  20. teradataml/automl/model_evaluation.py +260 -32
  21. teradataml/automl/model_training.py +399 -206
  22. teradataml/clients/auth_client.py +2 -2
  23. teradataml/common/aed_utils.py +11 -2
  24. teradataml/common/bulk_exposed_utils.py +4 -2
  25. teradataml/common/constants.py +62 -2
  26. teradataml/common/garbagecollector.py +50 -21
  27. teradataml/common/messagecodes.py +47 -2
  28. teradataml/common/messages.py +19 -1
  29. teradataml/common/sqlbundle.py +23 -6
  30. teradataml/common/utils.py +116 -10
  31. teradataml/context/aed_context.py +16 -10
  32. teradataml/data/Employee.csv +5 -0
  33. teradataml/data/Employee_Address.csv +4 -0
  34. teradataml/data/Employee_roles.csv +5 -0
  35. teradataml/data/JulesBelvezeDummyData.csv +100 -0
  36. teradataml/data/byom_example.json +5 -0
  37. teradataml/data/creditcard_data.csv +284618 -0
  38. teradataml/data/docs/byom/docs/ONNXSeq2Seq.py +255 -0
  39. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +1 -1
  40. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_20/TextParser.py +1 -1
  42. teradataml/data/jsons/byom/ONNXSeq2Seq.json +287 -0
  43. teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +3 -7
  44. teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +3 -7
  45. teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +3 -7
  46. teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +3 -7
  47. teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +3 -7
  48. teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +3 -7
  49. teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +3 -7
  50. teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +3 -7
  51. teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +3 -7
  52. teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +3 -7
  53. teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +3 -7
  54. teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json +151 -0
  55. teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json +182 -0
  56. teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json +183 -0
  57. teradataml/data/load_example_data.py +29 -11
  58. teradataml/data/payment_fraud_dataset.csv +10001 -0
  59. teradataml/data/teradataml_example.json +67 -0
  60. teradataml/dataframe/copy_to.py +714 -54
  61. teradataml/dataframe/dataframe.py +1153 -33
  62. teradataml/dataframe/dataframe_utils.py +8 -3
  63. teradataml/dataframe/functions.py +168 -1
  64. teradataml/dataframe/setop.py +4 -1
  65. teradataml/dataframe/sql.py +141 -9
  66. teradataml/dbutils/dbutils.py +470 -35
  67. teradataml/dbutils/filemgr.py +1 -1
  68. teradataml/hyperparameter_tuner/optimizer.py +456 -142
  69. teradataml/lib/aed_0_1.dll +0 -0
  70. teradataml/lib/libaed_0_1.dylib +0 -0
  71. teradataml/lib/libaed_0_1.so +0 -0
  72. teradataml/lib/libaed_0_1_aarch64.so +0 -0
  73. teradataml/scriptmgmt/UserEnv.py +234 -34
  74. teradataml/scriptmgmt/lls_utils.py +43 -17
  75. teradataml/sdk/_json_parser.py +1 -1
  76. teradataml/sdk/api_client.py +9 -6
  77. teradataml/sdk/modelops/_client.py +3 -0
  78. teradataml/series/series.py +12 -7
  79. teradataml/store/feature_store/constants.py +601 -234
  80. teradataml/store/feature_store/feature_store.py +2886 -616
  81. teradataml/store/feature_store/mind_map.py +639 -0
  82. teradataml/store/feature_store/models.py +5831 -214
  83. teradataml/store/feature_store/utils.py +390 -0
  84. teradataml/table_operators/table_operator_util.py +1 -1
  85. teradataml/table_operators/templates/dataframe_register.template +6 -2
  86. teradataml/table_operators/templates/dataframe_udf.template +6 -2
  87. teradataml/utils/docstring.py +527 -0
  88. teradataml/utils/dtypes.py +93 -0
  89. teradataml/utils/internal_buffer.py +2 -2
  90. teradataml/utils/utils.py +41 -2
  91. teradataml/utils/validators.py +694 -17
  92. {teradataml-20.0.0.6.dist-info → teradataml-20.0.0.7.dist-info}/METADATA +213 -2
  93. {teradataml-20.0.0.6.dist-info → teradataml-20.0.0.7.dist-info}/RECORD +96 -81
  94. {teradataml-20.0.0.6.dist-info → teradataml-20.0.0.7.dist-info}/WHEEL +0 -0
  95. {teradataml-20.0.0.6.dist-info → teradataml-20.0.0.7.dist-info}/top_level.txt +0 -0
  96. {teradataml-20.0.0.6.dist-info → teradataml-20.0.0.7.dist-info}/zip-safe +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: teradataml
3
- Version: 20.0.0.6
3
+ Version: 20.0.0.7
4
4
  Summary: Teradata Vantage Python package for Advanced Analytics
5
5
  Home-page: http://www.teradata.com/
6
6
  Author: Teradata Corporation
@@ -18,7 +18,7 @@ Classifier: License :: Other/Proprietary License
18
18
  Requires-Python: >=3.8
19
19
  Description-Content-Type: text/markdown
20
20
  Requires-Dist: teradatasql (>=20.0.0.26)
21
- Requires-Dist: teradatasqlalchemy (>=20.0.0.6)
21
+ Requires-Dist: teradatasqlalchemy (>=20.0.0.7)
22
22
  Requires-Dist: pandas (>=0.22)
23
23
  Requires-Dist: psutil
24
24
  Requires-Dist: requests (>=2.25.1)
@@ -36,6 +36,7 @@ Requires-Dist: teradatamlwidgets (>=20.0.0.5)
36
36
  Requires-Dist: oauthlib (>=3.2.2)
37
37
  Requires-Dist: requests-oauthlib (>=2.0.0)
38
38
  Requires-Dist: pydantic (>=2.10.6)
39
+ Requires-Dist: PyYAML (>=6.0.2)
39
40
 
40
41
  ## Teradata Python package for Advanced Analytics.
41
42
 
@@ -56,6 +57,216 @@ Copyright 2025, Teradata. All Rights Reserved.
56
57
 
57
58
  ## Release Notes:
58
59
 
60
+ #### teradataml 20.00.00.07
61
+ * ##### New Features/Functionality
62
+ * ###### teradataml: DataFrame
63
+ * `DataFrame.df_type` - Added new property `df_type` to know the type of the DataFrame.
64
+ * `DataFrame.as_of()` - Added new function which supports temporal time qualifiers on teradataml DataFrame.
65
+ * `DataFrame.closed_rows()` - Added a new function to retrieve closed rows from a DataFrame created on a transaction-time or bi-temporal table/view.
66
+ * `DataFrame.open_rows()` - Added a new function to retrieve open rows from a DataFrame created on a transaction-time or bi-temporal table/view.
67
+ * `DataFrame.historic_rows()` - Added a new function to retrieve historical rows from a DataFrame created on a valid-time or bi-temporal table/view.
68
+ * `DataFrame.future_rows()` - Added a new function to retrieve future rows from a DataFrame created on a valid-time or bi-temporal table/view.
69
+ * `DataFrame.create_view()` - Creates a view from the DataFrame object. This function helps the user to persist the DataFrame as a view, which can be used across sessions.
70
+ * Added argument `persist` to `DataFrame.from_dict()`, `DataFrame.from_pandas()`, and `DataFrame.from_records()` to persist the created DataFrame.
71
+
72
+ * ###### teradataml DataFrameColumn a.k.a. ColumnExpression
73
+ * `DataFrameColumn.begin()` - Function to get beginning date or timestamp from a PERIOD column.
74
+ * `DataFrameColumn.end()` - Function to get ending date or timestamp from a PERIOD column.
75
+ * `DataFrameColumn.between()` - Function to check if the column value is between the lower and upper bounds.
76
+
77
+ * ###### teradataml: Functions
78
+ * `current_date()` - Gets the current date based on the specified time zone.
79
+ * `current_timestamp()` - Gets the current timestamp based on the specified time zone.
80
+
81
+ * ###### teradataml: General Functions
82
+ * Data Transfer Utility
83
+ * `copy_to_sql()`
84
+ * A new argument `partition_by` partitions the index while writing to Teradata Vantage.
85
+ * A new argument `partition_by_case` handles different cases for partitioning the index while writing to Teradata Vantage.
86
+ * A new argument `partition_by_range` partitions the data based on a range while writing to Teradata Vantage.
87
+ * A new argument `sub_partition` subpartitions the main partition according to the provided value.
88
+ * New keyword arguments `valid_time_columns` and `derived_column` helps to copy the data into temporal tables.
89
+
90
+ * ###### Enterprise Feature Store
91
+ * `FeatureStore` - Main class for managing Feature Store operations with comprehensive methods and properties.
92
+ * Methods:
93
+ * `apply()` - Adds Feature, Entity, DataSource, FeatureGroup to FeatureStore.
94
+ * `archive_data_source()` - Archives a specified DataSource.
95
+ * `archive_entity()` - Archives a specified Entity.
96
+ * `archive_feature()` - Archives a specified Feature.
97
+ * `archive_feature_group()` - Archives a specified FeatureGroup.
98
+ * `archive_feature_process()` - Archives a specified FeatureProcess.
99
+ * `delete()` - Deletes the FeatureStore and all its components.
100
+ * `delete_data_source()` - Deletes an archived DataSource.
101
+ * `delete_entity()` - Deletes an archived Entity.
102
+ * `delete_feature()` - Deletes an archived Feature.
103
+ * `delete_feature_group()` - Deletes an archived FeatureGroup.
104
+ * `delete_feature_process()` - Deletes an archived FeatureProcess.
105
+ * `get_data()` - Gets data based on features, entities, and processes.
106
+ * `get_data_domain()` - Retrieves DataDomain object.
107
+ * `get_data_source()` - Gets DataSources associated with FeatureStore.
108
+ * `get_dataset_catalog()` - Retrieves the DatasetCatalog object.
109
+ * `get_entity()` - Gets Entity associated with FeatureStore.
110
+ * `get_feature()` - Gets Feature associated with FeatureStore.
111
+ * `get_feature_group()` - Gets FeatureGroup associated with FeatureStore.
112
+ * `get_feature_process()` - Retrieves FeatureProcess based on arguments.
113
+ * `get_feature_catalog()` - Retrieves FeatureCatalog object.
114
+ * `get_group_features()` - Gets features from a specific feature group.
115
+ * `list_data_sources()` - Lists DataSources in the FeatureStore.
116
+ * `list_entities()` - Lists Entities in the FeatureStore.
117
+ * `list_feature_groups()` - Lists FeatureGroups in the FeatureStore.
118
+ * `list_features()` - Lists Features in the FeatureStore.
119
+ * `list_feature_processes()` - Lists all feature processes in the repo.
120
+ * `list_feature_runs()` - Lists feature process runs and execution status.
121
+ * `list_feature_catalogs()` - Lists all feature catalogs in the repo.
122
+ * `list_data_domains()` - Lists all data domains in the repo.
123
+ * `list_dataset_catalogs()` - Lists all dataset catalogs in the repo.
124
+ * `list_repos()` - Lists available repos configured for FeatureStore.
125
+ * `mind_map()` - Generates a mind map visualization of the feature store structure.
126
+ * `remove_data_domain()` - Removes the data domain from the feature store.
127
+ * `repair()` - Repairs the underlying FeatureStore schema on database.
128
+ * `set_features_active()` - Marks Features as active.
129
+ * `set_features_inactive()` - Marks Features as inactive.
130
+ * `setup()` - Sets up the FeatureStore for a repository.
131
+ * Properties:
132
+ * `data_domain` - Gets or sets the data domain of feature store.
133
+ * `grant` - Grants access to the FeatureStore.
134
+ * `repo` - Gets or sets the repository name.
135
+ * `revoke` - Revokes access from the FeatureStore.
136
+ * `version` - Gets the version of the FeatureStore.
137
+ * `FeatureGroup` - Represents a group of features with methods and properties.
138
+ * Methods:
139
+ * `apply()` - Applies the feature group to objects.
140
+ * `from_DataFrame()` - Creates a FeatureGroup from a DataFrame.
141
+ * `from_query()` - Creates a FeatureGroup from a query.
142
+ * `ingest_features()` - Ingests features from the FeatureGroup into the FeatureStore.
143
+ * `remove_feature()` - Removes a feature from the FeatureGroup.
144
+ * `reset_labels()` - Resets the labels of the FeatureGroup.
145
+ * `set_labels()` - Sets the labels of the FeatureGroup.
146
+ * Properties:
147
+ * `features` - Gets the features in the FeatureGroup.
148
+ * `labels` - Gets or sets the labels of the FeatureGroup.
149
+ * `DataDomain` - Represents a data domain within the FeatureStore with properties.
150
+ * Properties:
151
+ * `entities` - Gets the entities in the data domain.
152
+ * `features` - Gets the features in the data domain.
153
+ * `processes` - Gets the feature processes in the data domain.
154
+ * `datasets` - Gets the datasets in the data domain.
155
+ * `FeatureCatalog` - Manages features within a specific data domain.
156
+ * Methods:
157
+ * `upload_features()` - Uploads features to the catalog.
158
+ * `list_features()` - Lists features in the catalog.
159
+ * `list_feature_versions()` - Lists feature versions in the catalog.
160
+ * `archive_features()` - Archives features in the catalog.
161
+ * `delete_features()` - Deletes features from the catalog.
162
+ * Properties:
163
+ * `data_domain` - Gets the data domain of the catalog.
164
+ * `features` - Gets the features in the catalog.
165
+ * `entities` - Gets the entities in the catalog.
166
+ * `DatasetCatalog` - Manages datasets within a specific data domain.
167
+ * Methods:
168
+ * `build_dataset()` - Builds a dataset from features and entities.
169
+ * `build_time_series()` - Builds a time series dataset.
170
+ * `list_datasets()` - Lists datasets in the catalog.
171
+ * `list_entities()` - Lists entities available for dataset building.
172
+ * `list_features()` - Lists features available for dataset building.
173
+ * `get_dataset()` - Gets a specific dataset by ID.
174
+ * `archive_datasets()` - Archives datasets in the catalog.
175
+ * `delete_datasets()` - Deletes datasets from the catalog.
176
+ * Properties:
177
+ * `data_domain` - Gets the data domain of the catalog.
178
+ * `Dataset` - Represents a specific dataset in the catalog.
179
+ * Properties:
180
+ * `features` - Gets the features in the dataset.
181
+ * `entity` - Gets the entity of the dataset.
182
+ * `view_name` - Gets the view name of the dataset.
183
+ * `id` - Gets the ID of the dataset.
184
+ * `FeatureProcess` - Represents a feature processing workflow.
185
+ * Methods:
186
+ * `run()` - Executes the feature process with optional filters and as_of parameters.
187
+ * Properties:
188
+ * `process_id` - Gets the process ID.
189
+ * `df` - Gets the DataFrame associated with the process.
190
+ * `features` - Gets the features in the process.
191
+ * `entity` - Gets the entity in the process.
192
+ * `data_domain` - Gets the data domain of the process.
193
+ * `filters` - Gets the filters applied to the process.
194
+ * `as_of` - Gets the as_of parameter of the process.
195
+ * `description` - Gets the description of the process.
196
+ * `start_time` - Gets the start time of the process.
197
+ * `end_time` - Gets the end time of the process.
198
+ * `status` - Gets the status of the process.
199
+
200
+ * ###### OpensourceML
201
+ * `td_sklearn` - Now supports input from OTF tables.
202
+
203
+ * ###### BYOM Function
204
+ * `ONNXSeq2Seq()` - Applies sequence-to-sequence model in Vantage that has been created outside Vantage and stored in ONNX format.
205
+
206
+ * ###### teradataml: AutoFraud (Automated Machine Learning - Fraud Detection)
207
+ `AutoFraud` is a special purpose AutoML pipeline designed for fraud detection tasks. It automates the end-to-end process of data preprocessing, feature engineering, model training, evaluation, and deployment to efficiently identify fraudulent activities.
208
+ * Methods:
209
+ * `__init__()` - Instantiates an object of AutoFraud.
210
+ * `fit()` - Performs fit on specified data and target column.
211
+ * `leaderboard()` - Gets the leaderboard for the AutoFraud pipeline, with diverse models, feature selection methods, and performance metrics.
212
+ * `leader()` - Shows best performing model and its details such as feature selection method and performance metrics.
213
+ * `predict()` - Performs prediction on the data using the best model or the model of user's choice from the leaderboard.
214
+ * `evaluate()` - Performs evaluation on the data using the best model or the model of user's choice from the leaderboard.
215
+ * `load()` - Loads the saved model from database.
216
+ * `deploy()` - Saves the trained model inside database.
217
+ * `remove_saved_model()` - Removes the saved model in database.
218
+ * `model_hyperparameters()` - Returns the hyperparameters of fitted or loaded models.
219
+ * `get_persisted_tables()` - Lists the persisted tables created during AutoFraud execution.
220
+ * `visualize()` - Generates visualizations to analyze and understand the underlying patterns in the data.
221
+ * `generate_custom_config()` - Generates custom config JSON file required for customized run of AutoFraud.
222
+
223
+ * ###### teradataml: AutoChurn (Automated Machine Learning - Churn Prediction)
224
+ `AutoChurn` is a special purpose AutoML pipeline for customer churn prediction. It automates the end-to-end process of data preprocessing, feature engineering, model training, evaluation, and deployment to efficiently identify customers likely to churn.
225
+ * Methods:
226
+ * `__init__()` - Instantiates an object of AutoChurn.
227
+ * `fit()` - Performs fit on specified data and target column.
228
+ * `leaderboard()` - Gets the leaderboard for the AutoChurn pipeline, with diverse models, feature selection methods, and performance metrics.
229
+ * `leader()` - Shows best performing model and its details such as feature selection method and performance metrics.
230
+ * `predict()` - Performs prediction on the data using the best model or the model of user's choice from the leaderboard.
231
+ * `evaluate()` - Performs evaluation on the data using the best model or the model of user's choice from the leaderboard.
232
+ * `load()` - Loads the saved model from database.
233
+ * `deploy()` - Saves the trained model inside database.
234
+ * `remove_saved_model()` - Removes the saved model in database.
235
+ * `model_hyperparameters()` - Returns the hyperparameters of fitted or loaded models.
236
+ * `get_persisted_tables()` - Lists the persisted tables created during AutoChurn execution.
237
+ * `visualize()` - Generates visualizations to analyze and understand the underlying patterns in the data.
238
+ * `generate_custom_config()` - Generates custom config JSON file required for customized run of AutoChurn.
239
+
240
+ * ###### teradataml: AutoCluster (Automated Machine Learning - Clustering)
241
+ `AutoCluster` is a special purpose AutoML pipeline for clustering analysis. It automates the end-to-end process of data preprocessing, feature engineering, model training, and prediction to efficiently group data into clusters and extract insights from unlabeled datasets.
242
+ * Methods:
243
+ * `__init__()` - Instantiates an object of AutoCluster.
244
+ * `fit()` - Performs fit on specified data.
245
+ * `leaderboard()` - Gets the leaderboard for the AutoCluster pipeline, with diverse models, feature selection methods, and performance metrics.
246
+ * `leader()` - Shows best performing model and its details such as feature selection method and performance metrics.
247
+ * `predict()` - Performs prediction (cluster assignment) on the data using the best model or the model of user's choice from the leaderboard.
248
+ * `model_hyperparameters()` - Returns the hyperparameters of fitted or loaded models.
249
+ * `get_persisted_tables()` - Lists the persisted tables created during AutoCluster execution.
250
+ * `generate_custom_config()` - Generates custom config JSON file required for customized run of AutoCluster.
251
+
252
+ * ##### Updates
253
+ * ###### teradataml: Functions
254
+ * `udf()` - Added support for `td_buffer` to cache the data in the user defined function.
255
+
256
+ * ###### Open Analytics Framework (OpenAF)
257
+ * UserEnv Class.
258
+ * Properties:
259
+ * `models` - Supports listing of models installed from external model registry like HuggingFace as well.
260
+ * Methods:
261
+ * `install_model()` - Added new arguments `model_name`, `model_type` and `api_key` to support installation of models from external model registry like HuggingFace .
262
+ * `uninstall_model()` - Supports uninstallation of a model from user environment which is installed from external model registry like HuggingFace .
263
+
264
+ * ##### Bug Fixes
265
+ * `set_auth_token()` generates JWT token using default value for iat claim when authentication is being done using PEM file and PAT.
266
+ * `create_env` - When an unavailable R base environment is provided in `create_env()`, requested R user environment is created using latest R base environment version
267
+ out of available base environments. Earlier, `create_env()` would create user environment with latest Python base environment version even though the request is for R user environment.
268
+ * Fixed userWarning in `db_list_tables()`.
269
+
59
270
  #### teradataml 20.00.00.06
60
271
  * ##### New Features/Functionality
61
272
  * ###### teradataml: SDK
@@ -1,61 +1,61 @@
1
1
  teradataml/LICENSE-3RD-PARTY.pdf,sha256=vhxs8Emzgnk0ZApe2FMM4F6kZDvn12UoQ3NwQW3RnpE,594910
2
2
  teradataml/LICENSE.pdf,sha256=h9PSzKiUlTczm4oaa7dy83SO95nZRL11fAR4N1zsOzo,184254
3
- teradataml/README.md,sha256=UnO8Ets-_DATYOo0fRy_bgTrWpjcuk3n5xz255iK1xU,141461
4
- teradataml/__init__.py,sha256=OcxcbsK1UzsJxA158gWT_Q3Wz-KUp601dBK3PnxH-rk,2749
5
- teradataml/_version.py,sha256=14-Lygr0Bwm4n5zv37KkzqvHfVXnfvRoss5EEeigFqI,364
3
+ teradataml/README.md,sha256=8dCr-KrgnM2fQ8a1kHI0LKGuqknzUcFye84mgtTNWMA,156931
4
+ teradataml/__init__.py,sha256=qUmg4JpiT05-bMVP9Uj1YEuLvDlLdfmIpjLCwCe1nVc,2784
5
+ teradataml/_version.py,sha256=7vEKYJag5zQc1xk7Ak5tfEW7P_2QO1ii_EdoGOm1lI4,364
6
6
  teradataml/analytics/Transformations.py,sha256=5Ts7lqCSiO3LCi4xc3bA3D3FksODPJXAhxoyryf66js,149487
7
7
  teradataml/analytics/__init__.py,sha256=DnTOi9QlFJ-P20n2LbL2waKp76uL9KWE6w__6KG8m1I,3046
8
- teradataml/analytics/analytic_function_executor.py,sha256=D9XlxO7wGfmtc2sVmwCMSP6Bhc1IaaVi9eLZ2vVsw2E,106718
8
+ teradataml/analytics/analytic_function_executor.py,sha256=Ql9HmCvhCHNas6xMgT1G3o_6yPAJnwQajBl3X0eC9ck,110024
9
9
  teradataml/analytics/analytic_query_generator.py,sha256=Si1lhWEhfa7Q4j3TZaD904lM3MumIsX3F3N9oysCkY0,45915
10
10
  teradataml/analytics/meta_class.py,sha256=YRsFEvwv8S73boaG8W85altpJTOoRz9Wk7YTplm6z9M,8427
11
- teradataml/analytics/utils.py,sha256=TvL9AUHGqznj1B8570PSWr0pweCjiZ29US4Y9zlsm3Y,34122
11
+ teradataml/analytics/utils.py,sha256=CGcO_jRGPtgKPOiCPmH6Mh2zt59LkZZzFMhaSxDJ2KI,34376
12
12
  teradataml/analytics/valib.py,sha256=4iwJj9usJDkmAGNDNdKqkV1kwtrbvOH4OAXg8hFwIMQ,74380
13
13
  teradataml/analytics/byom/H2OPredict.py,sha256=S69BUkxG8Dr2pgzDAqYVIl2Wupf0eXdmW46i3hHNJp4,25128
14
14
  teradataml/analytics/byom/PMMLPredict.py,sha256=TCxQinbQ50ZHrL-8teN-gRpXf93JnQSekHi33Y618Eo,20269
15
- teradataml/analytics/byom/__init__.py,sha256=3dNopwwaA_b_JUd5Qv2Pehgl_WCLrSaabR9N5oRirj8,894
16
- teradataml/analytics/json_parser/__init__.py,sha256=0He6U5ogdUfyOb21DjOosv6QRBc9tu6P-5LJFN1pz5A,4392
17
- teradataml/analytics/json_parser/analytic_functions_argument.py,sha256=d3reu75UnirP6_wcJ47Ce04KvOrNyHKtIUePrEfNcxY,65915
15
+ teradataml/analytics/byom/__init__.py,sha256=SiMwYvr_LNrrikrDw7JEhcNkEQOtaH_g7rjqTyn042w,909
16
+ teradataml/analytics/json_parser/__init__.py,sha256=mjTXwbyDGKkVis0MjkpRS0pwlu9W_KElKuPlPPCXa2Y,4454
17
+ teradataml/analytics/json_parser/analytic_functions_argument.py,sha256=gHtIKpbZM_AzDFVL6T-yxrwWCa6OUxJeilZsiwteHAY,69213
18
18
  teradataml/analytics/json_parser/json_store.py,sha256=snwrJzvXzYBw3Xot6IRMsC7RtxBgxTq4eeXBeD9-Pps,7175
19
- teradataml/analytics/json_parser/metadata.py,sha256=09D3SdeYZh8VdJi17Ri_cYmq97puXdq8ACVMYWUUatk,74938
19
+ teradataml/analytics/json_parser/metadata.py,sha256=e5GKyoX-KWUetuWuTQM_T6GR8ZwnNqohD6KtPuq3-UQ,75919
20
20
  teradataml/analytics/json_parser/utils.py,sha256=EdhCRUdWW6_mvLsj-gHxrDuNcQY6kOT5CT2txkbsUsE,33977
21
- teradataml/analytics/sqle/DecisionTreePredict.py,sha256=gacMEgCbKPsLcrzpdiegBB5ySa_wsQvYouLEqp7eshk,22289
22
- teradataml/analytics/sqle/NaiveBayesPredict.py,sha256=uPw3srh5U_I4lhOZQY1KQnaTcBy0LqH-6nika9M_Y8o,19508
23
- teradataml/analytics/sqle/__init__.py,sha256=R9WhUuskRqV5Ff9CVw0TQ0xEARpbIVntKC6122l4zvI,4832
21
+ teradataml/analytics/sqle/DecisionTreePredict.py,sha256=7b2fYObx6QsSzgOYAe8EQJG-GOm4frxHCVosLaM_VUI,22285
22
+ teradataml/analytics/sqle/NaiveBayesPredict.py,sha256=7zy3U1VoKDgjtEJvaUdt64W9ICYo33KNzMrU2btiVK8,19504
23
+ teradataml/analytics/sqle/__init__.py,sha256=gq_hxgwcn6Dn1_ZbegDPFQgft_yaEqU6-rkevqz-Nh8,4940
24
24
  teradataml/analytics/sqle/json/decisiontreepredict_sqle.json,sha256=rQ9nB-IE7FgWEZH6KY1MxxbhWT9n1kRPuZCqEL5-R5Y,2196
25
25
  teradataml/analytics/sqle/json/naivebayespredict_sqle.json,sha256=ehvbAugEnH73nUxdJqfOfzWL70zIc_oIWfdgEOnpO7Y,1683
26
26
  teradataml/analytics/table_operator/__init__.py,sha256=OBxjuKXWlwhCw2lowtl2VfRGwS729Y4rbZkmRt2Mp8o,545
27
27
  teradataml/analytics/uaf/__init__.py,sha256=Esh1vLn8CUOWPAMlqv0JUHGzNdj3l1I9RDlOI9lNXc8,3028
28
- teradataml/automl/__init__.py,sha256=A7s7XKdgfc4g7yKsdeWKYguC0qx5kR1Cd09oRpyc84c,143313
29
- teradataml/automl/custom_json_utils.py,sha256=LRcORPatvV15fGbDcp8tQWcEiIZYnK7SakATy5QUVyM,66780
30
- teradataml/automl/data_preparation.py,sha256=qbKgvIgrV7oLm669dIe7KPvPyuLncM6j-wrydu8Veg0,44697
31
- teradataml/automl/data_transformation.py,sha256=Nz3mQOWLKrGJTSKENhIc2mpgJcsrZ6NrdymRUm7llOs,45174
32
- teradataml/automl/feature_engineering.py,sha256=Z-RGh2UbMliL8QbiEZqHjTVCX9Wf26Wa4Vh2ToroEqA,99088
33
- teradataml/automl/feature_exploration.py,sha256=m003nP6AACu9zxXTR3W78yO5F7CxpAT3zBdbu8Q0SQg,45543
34
- teradataml/automl/model_evaluation.py,sha256=A_j7hiw4DRrsGOAcfUZV5ejjJ0Hs2eYNpxpisTKBhoc,5867
35
- teradataml/automl/model_training.py,sha256=yDIbXbeJNUGAW9j4g-5bzn4TGm0lEA5kOwC1DG6qflE,42716
36
- teradataml/automl/autodataprep/__init__.py,sha256=YPWAMg3YzrTR9Ij6xT6XKEWHdPDwNDclppo6RBRa9oo,18101
28
+ teradataml/automl/__init__.py,sha256=eu-P2l_XaBsnYqsIiP5mbA0lXbqBQDqwX8-RMP7iTMs,232035
29
+ teradataml/automl/custom_json_utils.py,sha256=y4RMDjLNuAKFuWjVHuiHyl3SXka2617TANICx511wzQ,70160
30
+ teradataml/automl/data_preparation.py,sha256=SM6eMlgtlu0KcZGhGwMx0Z-DmBXFb5cdpesQlDbeeAQ,47647
31
+ teradataml/automl/data_transformation.py,sha256=G5p5Jf5_9RaRh_arOTs4m0cph421NAeMJuUZ32bh21I,49964
32
+ teradataml/automl/feature_engineering.py,sha256=HzV5GY3ftYzjDvjTq8p4nOEjiWW6h8KfX0XZ96syay4,101834
33
+ teradataml/automl/feature_exploration.py,sha256=Jr5Kh6VN246go0UYIbgkyBAEd559VHF-nmwhL2WhV7s,68752
34
+ teradataml/automl/model_evaluation.py,sha256=zZ1uJuuPWRaldA-wyDn90LFNvYa-MIZvDQJbJlv2A_M,15883
35
+ teradataml/automl/model_training.py,sha256=J0RffvY99t9Sj-wX3qmLxxus092eSM33TR4NHpcPv8o,51701
36
+ teradataml/automl/autodataprep/__init__.py,sha256=VcvXXhu2aMYD-_lgsjrotFXDOsJjUDwvTf98zmUvaT4,18528
37
37
  teradataml/catalog/__init__.py,sha256=JmX5fC634ewbSyYy24rsTIk9mg9gSIMFTc15coJKTWQ,134
38
38
  teradataml/catalog/byom.py,sha256=6sZ-lyOr65XGmDcJo1SHogXmoSvCFooFOKeAIN8JUms,99687
39
39
  teradataml/catalog/function_argument_mapper.py,sha256=fTu0YrTb4ZgbcFmw15H-G7I8iln_QRImy38BhXsph34,40018
40
40
  teradataml/catalog/model_cataloging_utils.py,sha256=g6S6kwkE87c1rd02YAWIQ-u2z9OhduX1RXsLqsmSPsI,20624
41
41
  teradataml/clients/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
42
- teradataml/clients/auth_client.py,sha256=jxjrlqM3Xjl8yhH83Q-Rtuq8O4yMER8GKc4qTYf5RUQ,4341
42
+ teradataml/clients/auth_client.py,sha256=t2gWzohdbRxM8aj6hNEnIjWw5BmFvW_pGXpjHSPfmnY,4355
43
43
  teradataml/clients/keycloak_client.py,sha256=5asUIBalHt3nEVaUMUfyOa9SsOoO3tCK8i3eyKrlGjo,6131
44
44
  teradataml/clients/pkce_client.py,sha256=m7FYwfMf_xTP7-L4_wFLQdWWpO4sTEEIyZCZSHJVjkA,16604
45
45
  teradataml/common/__init__.py,sha256=KeFSq3wtcYMpZEFepWsgC7e9ocmmsv6WSrDosIviAVY,52
46
- teradataml/common/aed_utils.py,sha256=oMxLrtf5M2LVd5Xrm9hLkistQ9QFs5Uxki1omAmW3RA,106195
47
- teradataml/common/bulk_exposed_utils.py,sha256=tV5xvysJAXibUIm8AyzV4cE4USQFe7Eubhyl9m4ZiJY,4622
48
- teradataml/common/constants.py,sha256=-6_fJZUF_qVsauQpxTJ3UoKiNW3zkEYQ1m52YA4ZL-o,63706
46
+ teradataml/common/aed_utils.py,sha256=e1mCMv0r0cmQwGeyD1aiq8Npispph2I9XJokTVbm4Ho,106600
47
+ teradataml/common/bulk_exposed_utils.py,sha256=pmiMz8f-nJZrXLUFnwx3trygkVJJschmf1Bdpt4vIjc,4687
48
+ teradataml/common/constants.py,sha256=WkzJi0HJc1RlErDIpsn0_-_uKhKiboP30ZK9XQeWGWc,66265
49
49
  teradataml/common/deprecations.py,sha256=-KkDiJe9_08CIvCR4Xbzg3_WPZlJ5rqyKVlfpMhKrk0,6211
50
50
  teradataml/common/exceptions.py,sha256=FX51jVCyMgQ-h20l-im_EwT-I1_fz5XdgJzpwEeOcgc,3760
51
51
  teradataml/common/formula.py,sha256=IBBDwllFru21EerpV4v9zjbYCBqILZJy4M-vQnT1yd8,31089
52
- teradataml/common/garbagecollector.py,sha256=ebvLmRn-M4dNPJCrTH1l0gccljmcT_gdIId5xaRf6vo,28428
53
- teradataml/common/messagecodes.py,sha256=k1NuIBtqYeQmlDjWLtaSvC6E91tB38lD__jBBBBvLhM,31291
54
- teradataml/common/messages.py,sha256=ABbdWCLipRYyUovhTLL0gNQyMX2qKSJds1eXwBO20z4,19008
52
+ teradataml/common/garbagecollector.py,sha256=XBgyioiL1WvTq0qw45oU3a9xXf46afEVaVzLZiOKQqk,29983
53
+ teradataml/common/messagecodes.py,sha256=EI2qYB995gMliutInK_DJh_fDsBhds7gvMUe5-1I4AI,34521
54
+ teradataml/common/messages.py,sha256=xM7xb2FszkGqLcx0ST_t5t0Bc4p00FGQSlTA_B5CVWA,20530
55
55
  teradataml/common/pylogger.py,sha256=8G36wPGbnCVAaabYeimuSuRazwbnX-NhKyZc-a_deJ0,1752
56
- teradataml/common/sqlbundle.py,sha256=8KSYwm_BMM4HNRYwMyVNhCiMTJuqUVeGoV5Si5NIrkY,26681
56
+ teradataml/common/sqlbundle.py,sha256=OsYNon2ZF3LnO3bcghs5fcYmPQhzFmRWkZqCWpStot0,27995
57
57
  teradataml/common/td_coltype_code_to_tdtype.py,sha256=8RzvJAnC9iHXsCHVVDbPXG3e1ESyZFLVtvw00M1Tj3I,1193
58
- teradataml/common/utils.py,sha256=FuO8DSL4H0U0MoB3a_D7rgPUKqK0Cg6BUW1sr2XF2iw,113230
58
+ teradataml/common/utils.py,sha256=HJLV7R8sRQdLz257dTOaKNY4A3MvQdj-MR6_a4yceTg,117698
59
59
  teradataml/common/warnings.py,sha256=PO6nQT9W3pIeT9TLYyLLbwe-f897Zk-j5E8RqyPFs48,1049
60
60
  teradataml/common/wrapper_utils.py,sha256=f2DxS-FqgEqbAJbHpOtKD4wU7GLj2XSX_d3xWNn9VvM,27843
61
61
  teradataml/config/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -65,7 +65,7 @@ teradataml/config/sqlengine_alias_definitions_v1.0,sha256=jFH-HwBXPZDe2O8mG1Z5va
65
65
  teradataml/config/sqlengine_alias_definitions_v1.1,sha256=iHEB832KDSO0DdugW8MivhBxcYGia1ZzLzPST42pI90,547
66
66
  teradataml/config/sqlengine_alias_definitions_v1.3,sha256=pCt661hEVA_YM_i4WL69DwwD1wKm_A4uzqHqwzRf0bo,534
67
67
  teradataml/context/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
68
- teradataml/context/aed_context.py,sha256=qNCX27R8KxJ3LScU9wXQzos1Gm78Cv0ahVdwSg5iq6Y,7578
68
+ teradataml/context/aed_context.py,sha256=s7NqkaTGzcvRzMbYK7u2trzDIU1KqP5kU9IEaJ1e62M,7738
69
69
  teradataml/context/context.py,sha256=rqx0-rsQVGB06nrdPPQjJGyT1LXv2lHgkmyIw6kGgkk,61029
70
70
  teradataml/data/A_loan.csv,sha256=HFfTfH1cC-xh4yiYGddaoiB0hHG17pWKbmySolOLdoc,584
71
71
  teradataml/data/BINARY_REALS_LEFT.csv,sha256=LW8o1jCKyUv9UFM3E5WbRMDYPQfwkFMZtifDAf9cp30,416
@@ -79,6 +79,10 @@ teradataml/data/Convolve2RealsRight.csv,sha256=33UBzQ5gYn6-F8t0Fb1NZZYdQjXrV19nD
79
79
  teradataml/data/Convolve2ValidLeft.csv,sha256=YrkcTPRDppFzsAk4LWqY_S0I-6k3mSKYrsOS-KMflWU,467
80
80
  teradataml/data/Convolve2ValidRight.csv,sha256=YrkcTPRDppFzsAk4LWqY_S0I-6k3mSKYrsOS-KMflWU,467
81
81
  teradataml/data/DFFTConv_Real_8_8.csv,sha256=IKpOjDob6Hp7j8I5klHvN-GLTirahB4mOEmpUfGJuKU,940
82
+ teradataml/data/Employee.csv,sha256=sP4uTt8UHjzsSTgqGOeNUGTtAlm3wqOdBnCQp0H15gs,346
83
+ teradataml/data/Employee_Address.csv,sha256=CVMHzIIlzt5gU78eVytwtjaLsNSJjPQiclxsxr8FmjE,128
84
+ teradataml/data/Employee_roles.csv,sha256=89QgoXaHPALGRKee4PcUN4IWXqkEkR5BqiabZDs85k4,268
85
+ teradataml/data/JulesBelvezeDummyData.csv,sha256=0nuphdbP7NYyJeBY8N5SgoOyr_yLnaBs1rfRPttSivI,67511
82
86
  teradataml/data/Orders1_12mf.csv,sha256=YpBMpVutv0H7uEaagw7zsb-8KRMMbKi2e-TbztNlpfk,312
83
87
  teradataml/data/Pi_loan.csv,sha256=7-kKbP69zD3W0GwpkSE39ZPFCQTbCrxsmDCt5QPdZSY,191
84
88
  teradataml/data/SMOOTHED_DATA.csv,sha256=jYD3ps_XSKCFAWEjVjB6Yv-r_IpTIlpZB_bcaC8OUYE,117
@@ -134,7 +138,7 @@ teradataml/data/breast_cancer.csv,sha256=YJjbRrFwf5PWU7Al4NB46Y2yXNyfJMrZ06YDMY-
134
138
  teradataml/data/buoydata_mix.csv,sha256=FhIW7ZyLFFSt2Ju6cYfJJV5_bUWoGMU-fl4RqX85HiA,1630
135
139
  teradataml/data/burst_data.csv,sha256=4ZEOicUtb4iejEC7Qh5VewTACJMG5qdpKEVq3RVO4yo,172
136
140
  teradataml/data/burst_example.json,sha256=ijC2YaBUGL-ZKR2lM3CHgBTPHYXr4LpTrXzhHzXhcB4,434
137
- teradataml/data/byom_example.json,sha256=wUUvHH0QhQJcoMCNLyyCSiQD9zZV7xKN9LoV1gxd8rg,726
141
+ teradataml/data/byom_example.json,sha256=VCKk7FEVelIJNEf1DSB2OKMDAtS_1inLlNHY49v5_-c,849
138
142
  teradataml/data/bytes_table.csv,sha256=nztKCmykXMySGFj1PtbkzmUWA9BFD4zxku0VZduH2MU,109
139
143
  teradataml/data/cal_housing_ex_raw.csv,sha256=W_r-AMQBLmTatsni_FXdhmmVHNMxQ1ndGdmhS-_2t0s,9459
140
144
  teradataml/data/callers.csv,sha256=uarzTiXzCuveKX-HtULkFM7BWlAhpp-nI8kmcWT73iM,93
@@ -182,6 +186,7 @@ teradataml/data/coxph_example.json,sha256=7D5kTyggIC5NqQS2ovMSMCCmGpcGQoMoQmsMSP
182
186
  teradataml/data/coxsurvival_example.json,sha256=av6ciraJe5zDHfgLFkO5aV_L7i9bLFICwhdWmKA771U,860
183
187
  teradataml/data/cpt.csv,sha256=IMQwhawu2su6zaOkGyHQk7IYGjH-A8jqJqIwUCgkMfI,908
184
188
  teradataml/data/credit_ex_merged.csv,sha256=9yoTcOJLvM4iGlu87F2i1NzT0yjjHEugafgRAl16hpw,10493
189
+ teradataml/data/creditcard_data.csv,sha256=Yyifzh23MRBxycPFN9HBmoFuZ-oz8QI0fzGZbHfAQ3o,9434151
185
190
  teradataml/data/customer_loyalty.csv,sha256=Z5YW-Apil6Xz6MgTS12kxJYptQXo5dLH84vfWuswjSk,8663
186
191
  teradataml/data/customer_loyalty_newseq.csv,sha256=ufn_bjCqWoLaZ5l0ZSVAdWfboinduvc4L5jwiGxZAFc,805
187
192
  teradataml/data/customer_segmentation_test.csv,sha256=8iaPDIFgn249mytmwxOi8cU_FnzRo0EtaRV_SXrxmP4,125982
@@ -299,7 +304,7 @@ teradataml/data/ldatopicsummary_example.json,sha256=ibooCwaH6DkARnnfNZzSuotxGJJz
299
304
  teradataml/data/levendist_input.csv,sha256=E4mV_0mw3GGlk3Vqwzu8jtSaQq9YEwMKVT2X_7XYIPg,405
300
305
  teradataml/data/levenshteindistance_example.json,sha256=V2PX8TXU9usGRo4l0BqCJZrdlUjvsOpPzixd78TMPnk,260
301
306
  teradataml/data/linreg_example.json,sha256=M1RFDST8ZKyXBBSyLSR8je8cZ7zMlhUFuJWhuMi6Trw,204
302
- teradataml/data/load_example_data.py,sha256=6fEDd5l87SfzAy6clQTwBM7PkNYhjaiY8-2XLotKcPI,14582
307
+ teradataml/data/load_example_data.py,sha256=0HmSVIAsEYecaeC2mzk2fq9REhEy_JFFhnVcPyySk8U,15797
303
308
  teradataml/data/loan_prediction.csv,sha256=lEXZzLSKXaZbdpaQgYVBwcMa3-r5S8OemwMsQoD89rc,4591
304
309
  teradataml/data/lungcancer.csv,sha256=ek_VkMKU2EbttSTjXzcwzGs47jcW-o_QHhjJbKhqFfY,5873
305
310
  teradataml/data/mappingdata.csv,sha256=hYsq_JLXcCjyEHx577POhxdvScQ_ynKUlcnTJiAjPeg,84
@@ -368,6 +373,7 @@ teradataml/data/pathanalyzer_example.json,sha256=AiiJxKnvF4Q536y1-6kdr6ZcfxtQqME
368
373
  teradataml/data/pathgenerator_example.json,sha256=AiiJxKnvF4Q536y1-6kdr6ZcfxtQqMERTHiEn1nxebM,138
369
374
  teradataml/data/patient_profile.csv,sha256=TwZzE3TII362SjT_1yMfscZnkJ6gK6hvy7k3KyUfigg,3729
370
375
  teradataml/data/pattern_matching_data.csv,sha256=YJ0iZUuRa2_H9Um01oFsiYqwM6bpxkUq4jnX92zneA4,313
376
+ teradataml/data/payment_fraud_dataset.csv,sha256=Awmv4kRPscmxnH5_dIV35LN72rlcuuLKSyLQYztiJaE,694535
371
377
  teradataml/data/peppers.png,sha256=imrSYKQni781u4YSajHlrS9qVM7NRMtkB6buXYb_PjU,732014
372
378
  teradataml/data/phrases.csv,sha256=CX_QEgAX37IUVKf8ctD6uNkG4bixeH0Tn1LM0nCEco0,110
373
379
  teradataml/data/pivot_example.json,sha256=ZHd3QFtx0yXPZm7fIfss8SsyZU5-mTG40Wv1Qliln5M,165
@@ -460,7 +466,7 @@ teradataml/data/target_udt_data.csv,sha256=BRiHn4P68J1Pyh9MvTmxtKe0eEze-EUuBVYMV
460
466
  teradataml/data/tdnerextractor_example.json,sha256=yjRT9NSUb0d4Oi5yqF40sfnEwN-FgIbsjJG7G8aIVwg,275
461
467
  teradataml/data/templatedata.csv,sha256=_NYyMgobQ0-oIjZhIUcv16iOM4EtajZ4mKOrx39cfDY,22391
462
468
  teradataml/data/teradata_icon.ico,sha256=M4qHNiblJAmGmYqsy9bD5xSP83ePf6089KdFuoQhaFM,1150
463
- teradataml/data/teradataml_example.json,sha256=bFGM6aPlRUU6trmJ3qdnEFd-i35ONShsj6jQtbrfp1s,42389
469
+ teradataml/data/teradataml_example.json,sha256=U7U2Mz45XdT2sp1oiPCeaMR58ZazFUD1f4kHbuYb2bI,44465
464
470
  teradataml/data/test_classification.csv,sha256=BDKuA82t60YWQu23BDxMn3j7X2Ws_HJXfUoFcwa76Og,9523
465
471
  teradataml/data/test_loan_prediction.csv,sha256=RW7R4PPMRGdpHmHxvH-1TssLQFg5bVfd8tteuJ3Ukg0,863
466
472
  teradataml/data/test_pacf_12.csv,sha256=ltIEUeJksRLCcvfXyrFhGcc7GkI89NXhRbQ5gOidvNM,1003
@@ -538,6 +544,7 @@ teradataml/data/docs/byom/docs/DataikuPredict.py,sha256=FVcY_XTK-n7j3IEa63_TA4eb
538
544
  teradataml/data/docs/byom/docs/H2OPredict.py,sha256=cljoRRvWzm5ShXaipcPqDPwCFxNh_wixkl8KSi4uACI,16452
539
545
  teradataml/data/docs/byom/docs/ONNXEmbeddings.py,sha256=lRAsNLdoANcu4KMd5FXKVZIFfvviEsAx70OdUirSjGE,11858
540
546
  teradataml/data/docs/byom/docs/ONNXPredict.py,sha256=qxNMVkw-Xz92yD7OHp0Kp_BOu0t-av8qzHnFN3wgzTA,14354
547
+ teradataml/data/docs/byom/docs/ONNXSeq2Seq.py,sha256=tzfCsDKMTDsnuN_87s3F8IzCHlbzdM52xeZFhgzpGZg,12457
541
548
  teradataml/data/docs/byom/docs/PMMLPredict.py,sha256=lLh7VYxNLA4m8mtMffdkJAoKZM3AQ8IEtKJ1LlrnrYw,13165
542
549
  teradataml/data/docs/byom/docs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
543
550
  teradataml/data/docs/sqle/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -559,7 +566,7 @@ teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py,sha256=eCDp5XGq
559
566
  teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py,sha256=yAn5Hmb5389Mj-Tpz0O5B8_kLdC8TncwJN225U9GNyg,3603
560
567
  teradataml/data/docs/sqle/docs_17_10/Histogram.py,sha256=4MO_HgXcFKZOujUrM3FLBtIaiDfIE0v4ZRgy2ctWFSk,7249
561
568
  teradataml/data/docs/sqle/docs_17_10/MovingAverage.py,sha256=fZJSr51I2_cTbZFJX0CHXYCm3Xdb__-yf9luJMYtlJI,5731
562
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py,sha256=NUXVLBRLRwbhOfkoq-PVz3hboQm9ZuZhupS-NTMS3FA,9351
569
+ teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py,sha256=60U3jTusbpGeOQ7h4CMGkqW1OZr1EoCMO39n2ZXy4aA,9352
563
570
  teradataml/data/docs/sqle/docs_17_10/NPath.py,sha256=cseXGtYLU8j2G2f9phS40zlzY0uIGgJdKSNvSXWzpyo,13924
564
571
  teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py,sha256=yGvYOiQekom0ph2hOGrHqWmHEjk8u5_pI8yHQYQKwA0,5372
565
572
  teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py,sha256=mV90klHkHEdTybUFYTF8b4Gv2UZ_o9Q7XV9UhRLSv1o,8102
@@ -622,7 +629,7 @@ teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py,sha256=tgVCNf8iqFZ86URQ7zC
622
629
  teradataml/data/docs/sqle/docs_17_20/KNN.py,sha256=qsTD6BbQ7UFTS5WtnV_-ZBBvLVqMdDQZmJlb4ujzapk,9540
623
630
  teradataml/data/docs/sqle/docs_17_20/MovingAverage.py,sha256=DSbxNLB1OpnYgS_6v_MVAJDxtS49UtGIcOrOzUVhbus,5738
624
631
  teradataml/data/docs/sqle/docs_17_20/NERExtractor.py,sha256=2JnXUaPpmNGQ0uf8-Q0CuOMr7JI_e_tg-v8afHafSmU,5372
625
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py,sha256=PEZ0pkJdmTcgKmSjvHKi2nquy30qXUErW1ogYuIMqys,9430
632
+ teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py,sha256=FD6glilRNZ5Ab-JhKJnSCGZreQfDNiBOUW9TVx_cHu8,9431
626
633
  teradataml/data/docs/sqle/docs_17_20/NPath.py,sha256=CBof2pQwE0tXJRLYxPruimIyOd6nEnwj6f8r1SpTys8,13931
627
634
  teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py,sha256=_O_MUZX1qmaZTpAehrdiy5dre3OLoQ0o0yZYFLU8yKA,7665
628
635
  teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py,sha256=9P9iLhGmB3bPvrNZzh2gtWRjZRP8s66NHhzvqLKJuRs,5379
@@ -673,7 +680,7 @@ teradataml/data/docs/sqle/docs_17_20/TFIDF.py,sha256=Kjvggu2W2EV3PjA8In1ksyYo4By
673
680
  teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py,sha256=K_BOaUNA9Zi2XaHC32vMpLbTfA51AieaUR0LMimWflQ,12698
674
681
  teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py,sha256=ga8DeTlJUmszVPBJj_kfASst6aK7Oc1yb46lPSwuoog,6510
675
682
  teradataml/data/docs/sqle/docs_17_20/TextMorph.py,sha256=y6jIiTv9473TLqm-v6ZYBw3HM8spRprkWDkqcqH1ij0,5148
676
- teradataml/data/docs/sqle/docs_17_20/TextParser.py,sha256=HWizryh0QtY2-q8-uN_v9tCLKzPt4P-Tymj7on0dIoE,9673
683
+ teradataml/data/docs/sqle/docs_17_20/TextParser.py,sha256=a33vVXl5XiXVntgvdqV2S4vpE5tqx63FnaPoAEoA5Ok,9674
677
684
  teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py,sha256=WtGPOcE8GdX2BYcaaUQHO_Q15HdUdzzUMeu5ZnEr1Tg,7603
678
685
  teradataml/data/docs/sqle/docs_17_20/Transform.py,sha256=Mm2SYFZpEnJ3nOATDA8ZOxfNz73r7O-N8JsRkeM9c3A,5732
679
686
  teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py,sha256=PUPH8k-CRdL5kM6mJ5i7wIadRyJvsP8B4eww39FLGbU,6001
@@ -766,6 +773,7 @@ teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py,sha256=Qcuc2OHmBHXoEHqLByZizE3
766
773
  teradataml/data/docs/uaf/docs_17_20/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
767
774
  teradataml/data/jsons/anly_function_name.json,sha256=EHJ68E45KgNfECT6AK9-DMQ-yP8SsvxpcRv0hXD1zi0,146
768
775
  teradataml/data/jsons/paired_functions.json,sha256=5EGDbgTwKrR-HcjwMa187tPyOm23aYcmgMrFDDXSXRo,9814
776
+ teradataml/data/jsons/byom/ONNXSeq2Seq.json,sha256=rq0-hgzfEgDlAEpAmMxQoxoh0PyvyCurXSgPgzVqHJE,9360
769
777
  teradataml/data/jsons/byom/dataikupredict.json,sha256=szvH79NGcniprg7eborSyKb_1JL8-Zg8lC0KT8efM3c,4752
770
778
  teradataml/data/jsons/byom/datarobotpredict.json,sha256=42VOrJFvlc87ZKgq6mu0FwcUkIFEaY41rzW2PTibVTM,4735
771
779
  teradataml/data/jsons/byom/h2opredict.json,sha256=-neUkuTjHSVWAoK7uyIcAv9HfAa0IGiiWXuNES73fgc,6132
@@ -961,17 +969,20 @@ teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json,sha256=vePCDT17Ho9H1b1cx
961
969
  teradataml/data/jsons/sqle/17.20/TD_ZTest.json,sha256=vDxIYCnmgPTnxJnfrivB8AkOKNrJXY_s84_moFFjsLE,8202
962
970
  teradataml/data/jsons/sqle/17.20/Unpack.json,sha256=XoTH6HH8cQ-WWMkhx4gIH-hkn0q4G8StVxNMcUIM3SY,13420
963
971
  teradataml/data/jsons/sqle/17.20/nPath.json,sha256=_x0_7ZVAZ23JNd3Xy-xfBFfXD-VWpgDKzhpnUmt5GAs,14122
964
- teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json,sha256=8yVLR2aIQNNVew_MExBE8H7tvEqSG7eTgEUPWRZYanM,11453
965
- teradataml/data/jsons/sqle/20.00/AI_AskLLM.json,sha256=D84RdVhoWqEiZ52ZPisguBkIFbXKeqU8HOb1UlGRG7g,14542
966
- teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json,sha256=KX-2B8c_HTN2PLI5nn7TJ41AfZDnBxU10c3cqaaA3BU,12048
967
- teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json,sha256=5eE8_J1i784ScBQhxtrivOEYPodWlIwd7M2m8c_NqIU,11452
968
- teradataml/data/jsons/sqle/20.00/AI_MaskPII.json,sha256=k9NNxnzHhAPId1AoxdaJ_dfVSnCghyODuCcYuUd7yFY,11744
969
- teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json,sha256=ib6UBvEmv-jTGu4j1L5Oi8jKJ7MS0sRGq1mJDcN2Vjo,11644
970
- teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json,sha256=oMsDxZo5qcnN12TkRPWplKv8i_5zj_cEFdOa7vsquII,11765
971
- teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json,sha256=7KQY14C_2TqZocRYVQy8srVO1Kz9XXbprtsvV1-QRgA,12475
972
- teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json,sha256=iQoImkHb3_P9RHpma3pF1G3fDSmUOLpRcg0n3xAoF7g,12341
973
- teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json,sha256=3u1K9VK9dKGKdnARjgXC5CPuIP0SRVqftFH3__sy15U,12126
974
- teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json,sha256=66wVJwkjnuNSyqP5Ac6UMbxPQuMnB0RGRg8Jmf3M42s,12110
972
+ teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json,sha256=TrlPzEbbVFHgUUh-ORvBd7tioUUL75FgsKVhkVdoZD0,11389
973
+ teradataml/data/jsons/sqle/20.00/AI_AskLLM.json,sha256=698V5pbJ6Q0kSz7Or8lhrlcPNJOjOTGH8h0sKSZAFWU,14478
974
+ teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json,sha256=OQkMwOyP4kLqm7k1-Q6RKyszPQsfPqioUVxcmWa5OZo,11984
975
+ teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json,sha256=2gDTXbYk6nFKyTpjffYvwSabXbFUVsBOXC5ehkh-Sfk,11388
976
+ teradataml/data/jsons/sqle/20.00/AI_MaskPII.json,sha256=LN0Xd6sI3P9cOQwY87authxmmXs2A0VZ-QyMkUCuriY,11680
977
+ teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json,sha256=FZImNZc797FfEmKiCcbCuEljOWygAf_rcQRiMs6HMHs,11580
978
+ teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json,sha256=PVgaDuGDf3eYPqw0JToiL1PzDNqyWJlifdyu1A47DcQ,11701
979
+ teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json,sha256=0CC6HbyUV8uHJeJWlfHoGbCFH5X2u6-bhyno3PCWZ0M,12411
980
+ teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json,sha256=01zOYNeE3ks9atFTcj-1mEmqDZEpIgJ2qnQDgK8h-30,12277
981
+ teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json,sha256=sM5NShSEWyC7puYO2e8TemBdYaJt5AHr9vNl8Bik818,12062
982
+ teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json,sha256=mN-LS3WMWoC1Ca7KOWjuD_JbWcfhlNriV9_1twzT68M,12046
983
+ teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json,sha256=-XmhY8b6XTXQzBgpIIcNuM_O9yFKH8_nzyW9hmbA4Bk,5857
984
+ teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json,sha256=DGscxp7mopb301h1_Nvx7r9720YKjAwXcCEcN2446v0,6723
985
+ teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json,sha256=Ok3JzaoqijiA2BjxART6gaa7Cl35OPT9n3QN61EK_6Y,6744
975
986
  teradataml/data/jsons/sqle/20.00/TD_HNSW.json,sha256=yaIasMPo3m0fGkA1IJWWZKeQqMnknGf9i9neaRHrh7A,10031
976
987
  teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json,sha256=m7_9216qzwrgnpubaD-0Jnx260KfxBb8Fz6faullUn4,7040
977
988
  teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json,sha256=PPYYKEFZpYjNIBpBkA4kyeqVpdlGdl260Qm0lRB8ivw,1229
@@ -1089,24 +1100,24 @@ teradataml/data/scripts/sklearn/sklearn_transform.py,sha256=EgrVc5_Uw0AMdhy2GBDh
1089
1100
  teradataml/data/sdk/modelops/modelops_spec.json,sha256=HRF5rpVdaivyUVTGagaiHASbV9aLq7TrlQ77JaHIpDQ,5329976
1090
1101
  teradataml/data/templates/open_source_ml.json,sha256=dLbP86NVftkR8eoQRLQr_vFpJYszhnPvWNcSF1LRG78,308
1091
1102
  teradataml/dataframe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1092
- teradataml/dataframe/copy_to.py,sha256=dL1evyK-lXxM-MQjBIPPXJo3_Gp5TKgE9gVGodys3lw,77304
1103
+ teradataml/dataframe/copy_to.py,sha256=mWVe1iDBaQOlihJXAZO3cUdGTiwuraCW9fR1lslbKrc,107917
1093
1104
  teradataml/dataframe/data_transfer.py,sha256=AgSb7OMzVgBQQ8vvhs-joO0i62JAueLJ5IzwWHG3OHw,125128
1094
- teradataml/dataframe/dataframe.py,sha256=BtLPSDYIYVELTkytENJgwka2hXbt-9HUK8ZyTHOlo4I,1045652
1095
- teradataml/dataframe/dataframe_utils.py,sha256=UAtmXgWD6tTiPiItLws9Bxntf0FfxXlcXU-vWltCp6M,96882
1105
+ teradataml/dataframe/dataframe.py,sha256=SSOCCJEofkMOxfS8m_XjnEITm7aZBqIeevoUb7FI4GA,1109257
1106
+ teradataml/dataframe/dataframe_utils.py,sha256=tpf3j9CYQL_1T8QOV1kWdTZFHaMTvAQxuJZc-PVLwRQ,97274
1096
1107
  teradataml/dataframe/fastload.py,sha256=Qyq4xEzS9E5NRDvEUlmv3hoAQy5nhTDEfW1QiVg3e9U,42032
1097
- teradataml/dataframe/functions.py,sha256=BxHJQYtFQ5vMaMIpvp6N7xMETWVNJq2_nqOFQScR7e0,148370
1108
+ teradataml/dataframe/functions.py,sha256=eNQzwxy4b3Ch3po-HjWyGDV2VCVnXpi0mvgW2jDh4cs,156530
1098
1109
  teradataml/dataframe/indexer.py,sha256=xDLYMuUy77VpVo1rO0RHrM-fpexr1Mm3o1hF_I3PsdQ,19787
1099
1110
  teradataml/dataframe/row.py,sha256=zgt4G-05ZE8QOfC0aCJVpK3WwC9_ExIgpMV7ZD3wKu0,4622
1100
- teradataml/dataframe/setop.py,sha256=lgXCXZ8ACAAHIzf0YDws31Ydzdl9b9xcZYLeziSRPu0,57203
1101
- teradataml/dataframe/sql.py,sha256=IbRl_5Fv2mYFbNFv4XFp85v8btpVbnMniy99_d8ISms,584258
1111
+ teradataml/dataframe/setop.py,sha256=p_cip7eijc7fF9RrM-TZXJd9Q5NtegDmuaQxXf3mChs,57412
1112
+ teradataml/dataframe/sql.py,sha256=BTVwCvdOXwyWKKMQ81dpyJvAZZ_BE3T5KnBUva_-hlc,590149
1102
1113
  teradataml/dataframe/sql_function_parameters.py,sha256=BVuHGJ78TjxbrwMdytXfUVKrMZb4Ge20taVwcj0E8gU,22241
1103
1114
  teradataml/dataframe/sql_functions.py,sha256=-v5Gx8x_Tr-Ru9YrmjrM-JfIDhguk8HcO2G1xMcg0Wo,29482
1104
1115
  teradataml/dataframe/sql_interfaces.py,sha256=WzM-jq7JyRmEMs7yZTgX6W3nnD7YjxXwdTHauI4BQPA,3812
1105
1116
  teradataml/dataframe/vantage_function_types.py,sha256=4p4EX3ZtbqYBqcdQ7l_Vx0UW8sEIeEVnpRghcGpyFNY,28381
1106
1117
  teradataml/dataframe/window.py,sha256=YkrBcLPrvebZ4Ekylkv3JO8kMedAQ80pnOapMaarJNI,32755
1107
1118
  teradataml/dbutils/__init__.py,sha256=qnquQDBxYoHuaLb3VzM0Mb08Ooc-sDVO6JQCcPhSYlE,221
1108
- teradataml/dbutils/dbutils.py,sha256=kJJldHGiD-SnZz3KZcUHgFYKUsteOscEOvYrvCc9HFc,98471
1109
- teradataml/dbutils/filemgr.py,sha256=oJmI99H_CEpX_-xwr-ZdtnL_ky-KDfZGSNfxJcxL9lE,14381
1119
+ teradataml/dbutils/dbutils.py,sha256=Jjj4NxpW5WzbFdzs5dgXj-7xSzVFwwBD0dun6EA3kvY,115410
1120
+ teradataml/dbutils/filemgr.py,sha256=BIvOSUrd0W4p2W9a0-bGjkUn0PRF_rWs0hUHED1-7Tk,14381
1110
1121
  teradataml/gen_ai/__init__.py,sha256=kYGvNpZOR_E2VDcf3-LOfvFGox1YRpPeblwa5mqDvAM,91
1111
1122
  teradataml/gen_ai/convAI.py,sha256=HN_Rm38FY5Nr2Pq5nMmuT9gH9XsTwtE47NaQIaFyiFg,16473
1112
1123
  teradataml/geospatial/__init__.py,sha256=DZZNBHBYN1EDYSXz-7C_Ic_W2ZsVuak69hw_nWTcto8,292
@@ -1114,12 +1125,13 @@ teradataml/geospatial/geodataframe.py,sha256=0PKZeIr7LNA-zQffezYuqYpuxPf_caB3ue9
1114
1125
  teradataml/geospatial/geodataframecolumn.py,sha256=znNHkjpbOoS3a8xrYS2Q0ou4-hhm0rZOjrBXRCU2-ng,16325
1115
1126
  teradataml/geospatial/geometry_types.py,sha256=hUKAUluD8ufvXaLY1-cwnsB3RsFkHR8Wr7eVE4YCtoU,38518
1116
1127
  teradataml/hyperparameter_tuner/__init__.py,sha256=RQvotxJqh80M8Du-5IWdjdJvKYHDiGlepkgm5oyKqpY,80
1117
- teradataml/hyperparameter_tuner/optimizer.py,sha256=TOm7bTFuHoLz5yRDxFw5FJvuFpiCdrRxMmcTq-QBzks,198688
1128
+ teradataml/hyperparameter_tuner/optimizer.py,sha256=hvTdXb-TG2EhQek1y_TwTMsKaqTkY881aBMc57iJ5qI,217023
1118
1129
  teradataml/hyperparameter_tuner/utils.py,sha256=du8Xy2JVKvnW8Vk06xI7VZA7499nRPVBxVkvqm6sVyE,11877
1119
1130
  teradataml/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1120
- teradataml/lib/aed_0_1.dll,sha256=AgsH4Zd7G546nljFZIDR2ESakpXJmLlPXGLT3EiJTZ4,3735757
1121
- teradataml/lib/libaed_0_1.dylib,sha256=nKlbPxiSJw-kCw6NktpqMy-UDfq4zYq7gLy6S2N2Ppg,1806401
1122
- teradataml/lib/libaed_0_1.so,sha256=xi4gwYQtbbdUlRTXsTEJSf0J0e9jt-cguTzdPQdrsEU,1040824
1131
+ teradataml/lib/aed_0_1.dll,sha256=BHB-E4YxcIsU__fM2bu1c8bDuobfUylH_KM5cE1Edrw,3737505
1132
+ teradataml/lib/libaed_0_1.dylib,sha256=Iiw-HQh4En15AbOTXJL_DtWtiK7tb-HkrXc2d0DrKeo,1823393
1133
+ teradataml/lib/libaed_0_1.so,sha256=nIsbLM5UYKDXCQ6HtNvubJsNfKlSBr4SgwW2F-RxY5I,1045144
1134
+ teradataml/lib/libaed_0_1_aarch64.so,sha256=kHtnCKbLda1Q62XrzRuJLPtd2t_H2Or9n_v0Z4kSTH0,1118984
1123
1135
  teradataml/opensource/__init__.py,sha256=-EOpCOiaaHWuCFP1vDCOlHkqyPNid4CrnkQnQ0BOzKo,66
1124
1136
  teradataml/opensource/_base.py,sha256=TcY6vHt8oc31Mka4MkF8t0x9Y4AsB7GlAmLjvEpOkf4,64347
1125
1137
  teradataml/opensource/_class.py,sha256=6Qo0pu2_Y0SK8RN9PistIFRCP1_q3fEsXRL0ZJSYo6I,18463
@@ -1137,31 +1149,33 @@ teradataml/plot/figure.py,sha256=aWqABKdtdJ0awymC0i4fa310mrs6dnTG2ofKGLI-E8E,132
1137
1149
  teradataml/plot/plot.py,sha256=3gnC6rtrLxhV9wY5Tfejqx-DvxDFzPW3m8_bYTmcFdg,32450
1138
1150
  teradataml/plot/query_generator.py,sha256=so8_w73Qday0b5hGUvJNrx9ELkYgXFpwjTUsbjNZvJg,3552
1139
1151
  teradataml/plot/subplot.py,sha256=c-Npnr5LWb4TUHwfdwzMsZBiti6FunzdFC5EtcuOWjY,10246
1140
- teradataml/scriptmgmt/UserEnv.py,sha256=02aW3NXcecAUOHgloADEzozB9LxUYjJim6oW_3FjCRU,192350
1152
+ teradataml/scriptmgmt/UserEnv.py,sha256=TgGLSHnOraBqrKtEKch_53Y7CZLrPTL6gfTqHt8jA7w,203912
1141
1153
  teradataml/scriptmgmt/__init__.py,sha256=dG0Yef5V3gLu1KasRhBLd6OgdC2NAFqjzJC8BDhark8,185
1142
- teradataml/scriptmgmt/lls_utils.py,sha256=KzhCMUOmdvIecjOQmkRC1WY2kjBUuP1ahMnzhO6woWg,96662
1154
+ teradataml/scriptmgmt/lls_utils.py,sha256=L2DvY1I9NQlKx-3QQ2eKGFg3MGsVKfTY0LJ-i-CsVsM,97663
1143
1155
  teradataml/sdk/README.md,sha256=VGfz2dKiH0pA8iJqfsbDU_rh43fsn7xYK2oam_K0590,5355
1144
1156
  teradataml/sdk/__init__.py,sha256=aKiN-rFiaGECXKhgRpgDrSRHSLYReZ34ddaiuC_2w-g,233
1145
1157
  teradataml/sdk/_auth_modes.py,sha256=4O8W5LLceD4xp2F1xe--DgnTl6uhha6H0D57YGG1nCk,15183
1146
1158
  teradataml/sdk/_func_params.py,sha256=mzyvuB4MoXlHJU9fNuj0fqdrIw1bEmgoguEGrBsghN4,21110
1147
- teradataml/sdk/_json_parser.py,sha256=sQwiNLgk-f5VvVTUHwyq2u_sr_HCxy7K4ydhy8g1Ges,22135
1159
+ teradataml/sdk/_json_parser.py,sha256=GuFslG-MKPSFgw_SrzzICB-HoNzpgtWQ0gz1Pa2N0Rg,22136
1148
1160
  teradataml/sdk/_openapi_spec_constants.py,sha256=osIt-Z0DZKAqiF_7CUhiV87VhK8GKKWIYCZH29dYJa0,6850
1149
1161
  teradataml/sdk/_utils.py,sha256=cmCFjQgjTJdCaP-xoaNZysmiTBx_qCCmxNfsIk3D8Ko,10717
1150
- teradataml/sdk/api_client.py,sha256=olvhphWyyhS-TaKi18YCanIuRpVTnteOk0sg5zr6VvU,37271
1162
+ teradataml/sdk/api_client.py,sha256=T6-3pJXuTA3NHquy-TouXFcnv0eLncCrgZSx-kJrA_w,37458
1151
1163
  teradataml/sdk/constants.py,sha256=uzohRFJTk6Y3IqEjd1cDwrprPzIEuSlYWlN06k0mTI4,1751
1152
1164
  teradataml/sdk/spinner.py,sha256=dF4aOGpNQWBWeczgkvWIVN6t8rr-vf1IGRlhl6jowPo,2979
1153
1165
  teradataml/sdk/modelops/__init__.py,sha256=LC4W2Ytq8bAVccBp_UX4mieeN0kQoNrV8sow2wM_Cxs,3690
1154
- teradataml/sdk/modelops/_client.py,sha256=OAqE4e3RJDrO6Inf7UyUuqc5HGlncVf3B6oX6o3T3So,16969
1166
+ teradataml/sdk/modelops/_client.py,sha256=ioy8GZ9ACNNM7xn0Qaq6NRS3IU1oQJbVhsE1CIGJkSg,17150
1155
1167
  teradataml/sdk/modelops/_constants.py,sha256=FR2Mwr6JEW2QRUfcqFESeV72t0wJ8CtnLivnUxDQow8,9383
1156
1168
  teradataml/sdk/modelops/models.py,sha256=6jMB5E7qPy2E_DfAw352LgFNcr6ogHDw_ucunkaf4Ws,72632
1157
1169
  teradataml/series/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1158
- teradataml/series/series.py,sha256=nJF6tJmF_rsPHH1kboGrWdTvEUZZFu_JunKSoKnN3tI,17724
1170
+ teradataml/series/series.py,sha256=zYA9NlfdmXNoLG_jkxyW8kxaltoS6vOZrbsM2XKNFYQ,18089
1159
1171
  teradataml/series/series_utils.py,sha256=ufuY8Z5oVB6K3ro23AXaxg6aAjjjEYg4jbAf1_W8aDU,2681
1160
1172
  teradataml/store/__init__.py,sha256=ZpAk6_ccnFm6VjBKooLZigHAKVjjNeccyMb52NbWZJA,396
1161
1173
  teradataml/store/feature_store/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1162
- teradataml/store/feature_store/constants.py,sha256=KliwCsQyd65XG1ERW2GIHjy47rGEUC2CA3zBs97wh8s,8918
1163
- teradataml/store/feature_store/feature_store.py,sha256=XD4kJoVkYTNgk46-jzA344rRJjhdJcMIV182MQC00JQ,91058
1164
- teradataml/store/feature_store/models.py,sha256=c9jXQ9eDrcFREkrmwy_fL5ULVZ7eNEBnwvETH5e2Jh0,57741
1174
+ teradataml/store/feature_store/constants.py,sha256=lVHu9FWWoF8yH66UQo-s0XEp8kxnDebAzfpc1MsctQM,27559
1175
+ teradataml/store/feature_store/feature_store.py,sha256=NV_jS5Vt6SQtq9xyl-jpXbEGFMvAlGrgNdUFKY1kvtw,200833
1176
+ teradataml/store/feature_store/mind_map.py,sha256=tqMzJ2SanhlE-PpSZ7SWFWSYs7b_F5oxFCzhi-cDMAg,25682
1177
+ teradataml/store/feature_store/models.py,sha256=9VI-0ApTraKLuJ3Afl8uFZY_fASAuQlHrjj1bhratX0,307066
1178
+ teradataml/store/feature_store/utils.py,sha256=brQIvP-e70WWl6GH2tH6h6GRWkv8tmzLHsiws1Pxr5M,15109
1165
1179
  teradataml/table_operators/Apply.py,sha256=ABtXaR42SYymw6sHtAN9YvwxLpn5kudxIkAeNfH_piM,44487
1166
1180
  teradataml/table_operators/Script.py,sha256=Quh9_GngNHbNnIEd3xrw5R8hR1EBSWddbxZBU4FIhm0,78495
1167
1181
  teradataml/table_operators/TableOperator.py,sha256=yKn0XLtQwhjs1cdDG0IM4ZLEZBO9sRn_vBE_RTIIoKg,77099
@@ -1169,22 +1183,23 @@ teradataml/table_operators/__init__.py,sha256=MTuTiCyGt7Le4MQ5XEfTyp_9Za-vAIreZh
1169
1183
  teradataml/table_operators/apply_query_generator.py,sha256=41ah294SyyG0tl88h8og7AXOWDzT1Lb1J1GjO0M1swA,12207
1170
1184
  teradataml/table_operators/query_generator.py,sha256=odqpOTD2IzNg2TB6YgZBwWYY3nDK8rLv5VhqdjpDBYE,22291
1171
1185
  teradataml/table_operators/table_operator_query_generator.py,sha256=luATy6uVS8-ixvObaxmPvNro76BNCiVwytYIHOnAnK8,22456
1172
- teradataml/table_operators/table_operator_util.py,sha256=jR5fYekNG7Bjo-eLLMUaDIETolWYack0MqSKJ2l7lks,33870
1186
+ teradataml/table_operators/table_operator_util.py,sha256=AwzrLJpA5ZsoFbuc5aSiW-pXxa2ZXM2YRvmy6TOZAhE,33871
1173
1187
  teradataml/table_operators/templates/dataframe_apply.template,sha256=3FiK_nivSf343xlYHfCJA2pn0dycvX_pB0daKBXg64M,8054
1174
1188
  teradataml/table_operators/templates/dataframe_map.template,sha256=KrTTYj0HFco0Z_mV6FcLvkw-kzngCDw-zhmmTSX0J7k,7683
1175
- teradataml/table_operators/templates/dataframe_register.template,sha256=VfBq8Pay_GZuaAY566vVNsk2LVPywJZ_pM3RGb3UJTw,2836
1176
- teradataml/table_operators/templates/dataframe_udf.template,sha256=kAr5FcafoUrGQs4aRjEj5E9sS69pa8msZ5UnaWMvx7s,2555
1189
+ teradataml/table_operators/templates/dataframe_register.template,sha256=hYVok9TDP7jUR5KRJay4pkeulUKAGAn6JQNxsahqPu0,2955
1190
+ teradataml/table_operators/templates/dataframe_udf.template,sha256=VAYPTrJxNArs2Vs3Yc0u-PS2RWGRonJbF97KDuBGVxI,2674
1177
1191
  teradataml/table_operators/templates/script_executor.template,sha256=dLqU8z2WXi1BfGppyD3sRdv-oukjrjhO5gr0ClUljI0,6976
1178
1192
  teradataml/telemetry_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1179
1193
  teradataml/telemetry_utils/queryband.py,sha256=yMq-hY81elmNoFpHNsMBxOMv--jMB81d9QFxDUppV4g,2354
1180
1194
  teradataml/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1181
- teradataml/utils/dtypes.py,sha256=J9fWcQBOG8CVW7ctMrywcUo-Sn4_oSwzQyh4sVzXx2M,28009
1182
- teradataml/utils/internal_buffer.py,sha256=Amjji6Dmosc0zWjIHBMUxLVj3eO-UbknohYkIOreLPQ,3042
1195
+ teradataml/utils/docstring.py,sha256=86XEfseOqhHl0NBTc8XWd-ubY6447fGLH-WrVvkxPiw,18919
1196
+ teradataml/utils/dtypes.py,sha256=Ci5iGAcWvQIw3-3jUHg8lAl8NOqpMSs7UniK6lTGwXg,32125
1197
+ teradataml/utils/internal_buffer.py,sha256=NpvcNqKh7X0svppEoW2cjYkHc7HoLzmMRuCe7jCtKSg,3056
1183
1198
  teradataml/utils/print_versions.py,sha256=m-ByrRZEQkiCmDyaBNknwpE8UhYY1bPPlW3YYHDTrlc,6535
1184
- teradataml/utils/utils.py,sha256=cgxkL7wOe2PZsEbmF4AyKWGXDFZiHCVFrU97EYdURGI,17252
1185
- teradataml/utils/validators.py,sha256=mwMYsCoQ24preyF50KvnGmTh91AWzoIYPVnutNrrtLU,109020
1186
- teradataml-20.0.0.6.dist-info/METADATA,sha256=ppB-Ksd_3kjy9qnvnxCCw2oGVNqM2OwqnsVy3VYoGG4,140232
1187
- teradataml-20.0.0.6.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
1188
- teradataml-20.0.0.6.dist-info/top_level.txt,sha256=j0jkK8Hmxb5acGSNrbbEePXSgqTQEItdFZXhyJT7qUM,11
1189
- teradataml-20.0.0.6.dist-info/zip-safe,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
1190
- teradataml-20.0.0.6.dist-info/RECORD,,
1199
+ teradataml/utils/utils.py,sha256=eIod0G6uRprA0G4L7mN1UTwO4OrfIv74-4jxBr3688Q,19129
1200
+ teradataml/utils/validators.py,sha256=O1HyFGa2J3gDIHRLx-LS_BiH9cP6YJJlZ1oVMsYT5Z4,135553
1201
+ teradataml-20.0.0.7.dist-info/METADATA,sha256=xXmt1XIYMG3DqVAB-5BVmq8Po9RbXTV6uhF7nwA9k6Q,155514
1202
+ teradataml-20.0.0.7.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
1203
+ teradataml-20.0.0.7.dist-info/top_level.txt,sha256=j0jkK8Hmxb5acGSNrbbEePXSgqTQEItdFZXhyJT7qUM,11
1204
+ teradataml-20.0.0.7.dist-info/zip-safe,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
1205
+ teradataml-20.0.0.7.dist-info/RECORD,,