teradataml 20.0.0.6__py3-none-any.whl → 20.0.0.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/README.md +210 -0
- teradataml/__init__.py +1 -1
- teradataml/_version.py +1 -1
- teradataml/analytics/analytic_function_executor.py +162 -76
- teradataml/analytics/byom/__init__.py +1 -1
- teradataml/analytics/json_parser/__init__.py +2 -0
- teradataml/analytics/json_parser/analytic_functions_argument.py +95 -2
- teradataml/analytics/json_parser/metadata.py +22 -4
- teradataml/analytics/sqle/DecisionTreePredict.py +3 -2
- teradataml/analytics/sqle/NaiveBayesPredict.py +3 -2
- teradataml/analytics/sqle/__init__.py +3 -0
- teradataml/analytics/utils.py +4 -1
- teradataml/automl/__init__.py +2369 -464
- teradataml/automl/autodataprep/__init__.py +15 -0
- teradataml/automl/custom_json_utils.py +184 -112
- teradataml/automl/data_preparation.py +113 -58
- teradataml/automl/data_transformation.py +154 -53
- teradataml/automl/feature_engineering.py +113 -53
- teradataml/automl/feature_exploration.py +548 -25
- teradataml/automl/model_evaluation.py +260 -32
- teradataml/automl/model_training.py +399 -206
- teradataml/clients/auth_client.py +2 -2
- teradataml/common/aed_utils.py +11 -2
- teradataml/common/bulk_exposed_utils.py +4 -2
- teradataml/common/constants.py +62 -2
- teradataml/common/garbagecollector.py +50 -21
- teradataml/common/messagecodes.py +47 -2
- teradataml/common/messages.py +19 -1
- teradataml/common/sqlbundle.py +23 -6
- teradataml/common/utils.py +116 -10
- teradataml/context/aed_context.py +16 -10
- teradataml/data/Employee.csv +5 -0
- teradataml/data/Employee_Address.csv +4 -0
- teradataml/data/Employee_roles.csv +5 -0
- teradataml/data/JulesBelvezeDummyData.csv +100 -0
- teradataml/data/byom_example.json +5 -0
- teradataml/data/creditcard_data.csv +284618 -0
- teradataml/data/docs/byom/docs/ONNXSeq2Seq.py +255 -0
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +1 -1
- teradataml/data/jsons/byom/ONNXSeq2Seq.json +287 -0
- teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +3 -7
- teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +3 -7
- teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +3 -7
- teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +3 -7
- teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +3 -7
- teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +3 -7
- teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +3 -7
- teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +3 -7
- teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +3 -7
- teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +3 -7
- teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +3 -7
- teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json +151 -0
- teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json +182 -0
- teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json +183 -0
- teradataml/data/load_example_data.py +29 -11
- teradataml/data/payment_fraud_dataset.csv +10001 -0
- teradataml/data/teradataml_example.json +67 -0
- teradataml/dataframe/copy_to.py +714 -54
- teradataml/dataframe/dataframe.py +1153 -33
- teradataml/dataframe/dataframe_utils.py +8 -3
- teradataml/dataframe/functions.py +168 -1
- teradataml/dataframe/setop.py +4 -1
- teradataml/dataframe/sql.py +141 -9
- teradataml/dbutils/dbutils.py +470 -35
- teradataml/dbutils/filemgr.py +1 -1
- teradataml/hyperparameter_tuner/optimizer.py +456 -142
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/lib/libaed_0_1_aarch64.so +0 -0
- teradataml/scriptmgmt/UserEnv.py +234 -34
- teradataml/scriptmgmt/lls_utils.py +43 -17
- teradataml/sdk/_json_parser.py +1 -1
- teradataml/sdk/api_client.py +9 -6
- teradataml/sdk/modelops/_client.py +3 -0
- teradataml/series/series.py +12 -7
- teradataml/store/feature_store/constants.py +601 -234
- teradataml/store/feature_store/feature_store.py +2886 -616
- teradataml/store/feature_store/mind_map.py +639 -0
- teradataml/store/feature_store/models.py +5831 -214
- teradataml/store/feature_store/utils.py +390 -0
- teradataml/table_operators/table_operator_util.py +1 -1
- teradataml/table_operators/templates/dataframe_register.template +6 -2
- teradataml/table_operators/templates/dataframe_udf.template +6 -2
- teradataml/utils/docstring.py +527 -0
- teradataml/utils/dtypes.py +93 -0
- teradataml/utils/internal_buffer.py +2 -2
- teradataml/utils/utils.py +41 -2
- teradataml/utils/validators.py +694 -17
- {teradataml-20.0.0.6.dist-info → teradataml-20.0.0.7.dist-info}/METADATA +213 -2
- {teradataml-20.0.0.6.dist-info → teradataml-20.0.0.7.dist-info}/RECORD +96 -81
- {teradataml-20.0.0.6.dist-info → teradataml-20.0.0.7.dist-info}/WHEEL +0 -0
- {teradataml-20.0.0.6.dist-info → teradataml-20.0.0.7.dist-info}/top_level.txt +0 -0
- {teradataml-20.0.0.6.dist-info → teradataml-20.0.0.7.dist-info}/zip-safe +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: teradataml
|
|
3
|
-
Version: 20.0.0.
|
|
3
|
+
Version: 20.0.0.7
|
|
4
4
|
Summary: Teradata Vantage Python package for Advanced Analytics
|
|
5
5
|
Home-page: http://www.teradata.com/
|
|
6
6
|
Author: Teradata Corporation
|
|
@@ -18,7 +18,7 @@ Classifier: License :: Other/Proprietary License
|
|
|
18
18
|
Requires-Python: >=3.8
|
|
19
19
|
Description-Content-Type: text/markdown
|
|
20
20
|
Requires-Dist: teradatasql (>=20.0.0.26)
|
|
21
|
-
Requires-Dist: teradatasqlalchemy (>=20.0.0.
|
|
21
|
+
Requires-Dist: teradatasqlalchemy (>=20.0.0.7)
|
|
22
22
|
Requires-Dist: pandas (>=0.22)
|
|
23
23
|
Requires-Dist: psutil
|
|
24
24
|
Requires-Dist: requests (>=2.25.1)
|
|
@@ -36,6 +36,7 @@ Requires-Dist: teradatamlwidgets (>=20.0.0.5)
|
|
|
36
36
|
Requires-Dist: oauthlib (>=3.2.2)
|
|
37
37
|
Requires-Dist: requests-oauthlib (>=2.0.0)
|
|
38
38
|
Requires-Dist: pydantic (>=2.10.6)
|
|
39
|
+
Requires-Dist: PyYAML (>=6.0.2)
|
|
39
40
|
|
|
40
41
|
## Teradata Python package for Advanced Analytics.
|
|
41
42
|
|
|
@@ -56,6 +57,216 @@ Copyright 2025, Teradata. All Rights Reserved.
|
|
|
56
57
|
|
|
57
58
|
## Release Notes:
|
|
58
59
|
|
|
60
|
+
#### teradataml 20.00.00.07
|
|
61
|
+
* ##### New Features/Functionality
|
|
62
|
+
* ###### teradataml: DataFrame
|
|
63
|
+
* `DataFrame.df_type` - Added new property `df_type` to know the type of the DataFrame.
|
|
64
|
+
* `DataFrame.as_of()` - Added new function which supports temporal time qualifiers on teradataml DataFrame.
|
|
65
|
+
* `DataFrame.closed_rows()` - Added a new function to retrieve closed rows from a DataFrame created on a transaction-time or bi-temporal table/view.
|
|
66
|
+
* `DataFrame.open_rows()` - Added a new function to retrieve open rows from a DataFrame created on a transaction-time or bi-temporal table/view.
|
|
67
|
+
* `DataFrame.historic_rows()` - Added a new function to retrieve historical rows from a DataFrame created on a valid-time or bi-temporal table/view.
|
|
68
|
+
* `DataFrame.future_rows()` - Added a new function to retrieve future rows from a DataFrame created on a valid-time or bi-temporal table/view.
|
|
69
|
+
* `DataFrame.create_view()` - Creates a view from the DataFrame object. This function helps the user to persist the DataFrame as a view, which can be used across sessions.
|
|
70
|
+
* Added argument `persist` to `DataFrame.from_dict()`, `DataFrame.from_pandas()`, and `DataFrame.from_records()` to persist the created DataFrame.
|
|
71
|
+
|
|
72
|
+
* ###### teradataml DataFrameColumn a.k.a. ColumnExpression
|
|
73
|
+
* `DataFrameColumn.begin()` - Function to get beginning date or timestamp from a PERIOD column.
|
|
74
|
+
* `DataFrameColumn.end()` - Function to get ending date or timestamp from a PERIOD column.
|
|
75
|
+
* `DataFrameColumn.between()` - Function to check if the column value is between the lower and upper bounds.
|
|
76
|
+
|
|
77
|
+
* ###### teradataml: Functions
|
|
78
|
+
* `current_date()` - Gets the current date based on the specified time zone.
|
|
79
|
+
* `current_timestamp()` - Gets the current timestamp based on the specified time zone.
|
|
80
|
+
|
|
81
|
+
* ###### teradataml: General Functions
|
|
82
|
+
* Data Transfer Utility
|
|
83
|
+
* `copy_to_sql()`
|
|
84
|
+
* A new argument `partition_by` partitions the index while writing to Teradata Vantage.
|
|
85
|
+
* A new argument `partition_by_case` handles different cases for partitioning the index while writing to Teradata Vantage.
|
|
86
|
+
* A new argument `partition_by_range` partitions the data based on a range while writing to Teradata Vantage.
|
|
87
|
+
* A new argument `sub_partition` subpartitions the main partition according to the provided value.
|
|
88
|
+
* New keyword arguments `valid_time_columns` and `derived_column` helps to copy the data into temporal tables.
|
|
89
|
+
|
|
90
|
+
* ###### Enterprise Feature Store
|
|
91
|
+
* `FeatureStore` - Main class for managing Feature Store operations with comprehensive methods and properties.
|
|
92
|
+
* Methods:
|
|
93
|
+
* `apply()` - Adds Feature, Entity, DataSource, FeatureGroup to FeatureStore.
|
|
94
|
+
* `archive_data_source()` - Archives a specified DataSource.
|
|
95
|
+
* `archive_entity()` - Archives a specified Entity.
|
|
96
|
+
* `archive_feature()` - Archives a specified Feature.
|
|
97
|
+
* `archive_feature_group()` - Archives a specified FeatureGroup.
|
|
98
|
+
* `archive_feature_process()` - Archives a specified FeatureProcess.
|
|
99
|
+
* `delete()` - Deletes the FeatureStore and all its components.
|
|
100
|
+
* `delete_data_source()` - Deletes an archived DataSource.
|
|
101
|
+
* `delete_entity()` - Deletes an archived Entity.
|
|
102
|
+
* `delete_feature()` - Deletes an archived Feature.
|
|
103
|
+
* `delete_feature_group()` - Deletes an archived FeatureGroup.
|
|
104
|
+
* `delete_feature_process()` - Deletes an archived FeatureProcess.
|
|
105
|
+
* `get_data()` - Gets data based on features, entities, and processes.
|
|
106
|
+
* `get_data_domain()` - Retrieves DataDomain object.
|
|
107
|
+
* `get_data_source()` - Gets DataSources associated with FeatureStore.
|
|
108
|
+
* `get_dataset_catalog()` - Retrieves the DatasetCatalog object.
|
|
109
|
+
* `get_entity()` - Gets Entity associated with FeatureStore.
|
|
110
|
+
* `get_feature()` - Gets Feature associated with FeatureStore.
|
|
111
|
+
* `get_feature_group()` - Gets FeatureGroup associated with FeatureStore.
|
|
112
|
+
* `get_feature_process()` - Retrieves FeatureProcess based on arguments.
|
|
113
|
+
* `get_feature_catalog()` - Retrieves FeatureCatalog object.
|
|
114
|
+
* `get_group_features()` - Gets features from a specific feature group.
|
|
115
|
+
* `list_data_sources()` - Lists DataSources in the FeatureStore.
|
|
116
|
+
* `list_entities()` - Lists Entities in the FeatureStore.
|
|
117
|
+
* `list_feature_groups()` - Lists FeatureGroups in the FeatureStore.
|
|
118
|
+
* `list_features()` - Lists Features in the FeatureStore.
|
|
119
|
+
* `list_feature_processes()` - Lists all feature processes in the repo.
|
|
120
|
+
* `list_feature_runs()` - Lists feature process runs and execution status.
|
|
121
|
+
* `list_feature_catalogs()` - Lists all feature catalogs in the repo.
|
|
122
|
+
* `list_data_domains()` - Lists all data domains in the repo.
|
|
123
|
+
* `list_dataset_catalogs()` - Lists all dataset catalogs in the repo.
|
|
124
|
+
* `list_repos()` - Lists available repos configured for FeatureStore.
|
|
125
|
+
* `mind_map()` - Generates a mind map visualization of the feature store structure.
|
|
126
|
+
* `remove_data_domain()` - Removes the data domain from the feature store.
|
|
127
|
+
* `repair()` - Repairs the underlying FeatureStore schema on database.
|
|
128
|
+
* `set_features_active()` - Marks Features as active.
|
|
129
|
+
* `set_features_inactive()` - Marks Features as inactive.
|
|
130
|
+
* `setup()` - Sets up the FeatureStore for a repository.
|
|
131
|
+
* Properties:
|
|
132
|
+
* `data_domain` - Gets or sets the data domain of feature store.
|
|
133
|
+
* `grant` - Grants access to the FeatureStore.
|
|
134
|
+
* `repo` - Gets or sets the repository name.
|
|
135
|
+
* `revoke` - Revokes access from the FeatureStore.
|
|
136
|
+
* `version` - Gets the version of the FeatureStore.
|
|
137
|
+
* `FeatureGroup` - Represents a group of features with methods and properties.
|
|
138
|
+
* Methods:
|
|
139
|
+
* `apply()` - Applies the feature group to objects.
|
|
140
|
+
* `from_DataFrame()` - Creates a FeatureGroup from a DataFrame.
|
|
141
|
+
* `from_query()` - Creates a FeatureGroup from a query.
|
|
142
|
+
* `ingest_features()` - Ingests features from the FeatureGroup into the FeatureStore.
|
|
143
|
+
* `remove_feature()` - Removes a feature from the FeatureGroup.
|
|
144
|
+
* `reset_labels()` - Resets the labels of the FeatureGroup.
|
|
145
|
+
* `set_labels()` - Sets the labels of the FeatureGroup.
|
|
146
|
+
* Properties:
|
|
147
|
+
* `features` - Gets the features in the FeatureGroup.
|
|
148
|
+
* `labels` - Gets or sets the labels of the FeatureGroup.
|
|
149
|
+
* `DataDomain` - Represents a data domain within the FeatureStore with properties.
|
|
150
|
+
* Properties:
|
|
151
|
+
* `entities` - Gets the entities in the data domain.
|
|
152
|
+
* `features` - Gets the features in the data domain.
|
|
153
|
+
* `processes` - Gets the feature processes in the data domain.
|
|
154
|
+
* `datasets` - Gets the datasets in the data domain.
|
|
155
|
+
* `FeatureCatalog` - Manages features within a specific data domain.
|
|
156
|
+
* Methods:
|
|
157
|
+
* `upload_features()` - Uploads features to the catalog.
|
|
158
|
+
* `list_features()` - Lists features in the catalog.
|
|
159
|
+
* `list_feature_versions()` - Lists feature versions in the catalog.
|
|
160
|
+
* `archive_features()` - Archives features in the catalog.
|
|
161
|
+
* `delete_features()` - Deletes features from the catalog.
|
|
162
|
+
* Properties:
|
|
163
|
+
* `data_domain` - Gets the data domain of the catalog.
|
|
164
|
+
* `features` - Gets the features in the catalog.
|
|
165
|
+
* `entities` - Gets the entities in the catalog.
|
|
166
|
+
* `DatasetCatalog` - Manages datasets within a specific data domain.
|
|
167
|
+
* Methods:
|
|
168
|
+
* `build_dataset()` - Builds a dataset from features and entities.
|
|
169
|
+
* `build_time_series()` - Builds a time series dataset.
|
|
170
|
+
* `list_datasets()` - Lists datasets in the catalog.
|
|
171
|
+
* `list_entities()` - Lists entities available for dataset building.
|
|
172
|
+
* `list_features()` - Lists features available for dataset building.
|
|
173
|
+
* `get_dataset()` - Gets a specific dataset by ID.
|
|
174
|
+
* `archive_datasets()` - Archives datasets in the catalog.
|
|
175
|
+
* `delete_datasets()` - Deletes datasets from the catalog.
|
|
176
|
+
* Properties:
|
|
177
|
+
* `data_domain` - Gets the data domain of the catalog.
|
|
178
|
+
* `Dataset` - Represents a specific dataset in the catalog.
|
|
179
|
+
* Properties:
|
|
180
|
+
* `features` - Gets the features in the dataset.
|
|
181
|
+
* `entity` - Gets the entity of the dataset.
|
|
182
|
+
* `view_name` - Gets the view name of the dataset.
|
|
183
|
+
* `id` - Gets the ID of the dataset.
|
|
184
|
+
* `FeatureProcess` - Represents a feature processing workflow.
|
|
185
|
+
* Methods:
|
|
186
|
+
* `run()` - Executes the feature process with optional filters and as_of parameters.
|
|
187
|
+
* Properties:
|
|
188
|
+
* `process_id` - Gets the process ID.
|
|
189
|
+
* `df` - Gets the DataFrame associated with the process.
|
|
190
|
+
* `features` - Gets the features in the process.
|
|
191
|
+
* `entity` - Gets the entity in the process.
|
|
192
|
+
* `data_domain` - Gets the data domain of the process.
|
|
193
|
+
* `filters` - Gets the filters applied to the process.
|
|
194
|
+
* `as_of` - Gets the as_of parameter of the process.
|
|
195
|
+
* `description` - Gets the description of the process.
|
|
196
|
+
* `start_time` - Gets the start time of the process.
|
|
197
|
+
* `end_time` - Gets the end time of the process.
|
|
198
|
+
* `status` - Gets the status of the process.
|
|
199
|
+
|
|
200
|
+
* ###### OpensourceML
|
|
201
|
+
* `td_sklearn` - Now supports input from OTF tables.
|
|
202
|
+
|
|
203
|
+
* ###### BYOM Function
|
|
204
|
+
* `ONNXSeq2Seq()` - Applies sequence-to-sequence model in Vantage that has been created outside Vantage and stored in ONNX format.
|
|
205
|
+
|
|
206
|
+
* ###### teradataml: AutoFraud (Automated Machine Learning - Fraud Detection)
|
|
207
|
+
`AutoFraud` is a special purpose AutoML pipeline designed for fraud detection tasks. It automates the end-to-end process of data preprocessing, feature engineering, model training, evaluation, and deployment to efficiently identify fraudulent activities.
|
|
208
|
+
* Methods:
|
|
209
|
+
* `__init__()` - Instantiates an object of AutoFraud.
|
|
210
|
+
* `fit()` - Performs fit on specified data and target column.
|
|
211
|
+
* `leaderboard()` - Gets the leaderboard for the AutoFraud pipeline, with diverse models, feature selection methods, and performance metrics.
|
|
212
|
+
* `leader()` - Shows best performing model and its details such as feature selection method and performance metrics.
|
|
213
|
+
* `predict()` - Performs prediction on the data using the best model or the model of user's choice from the leaderboard.
|
|
214
|
+
* `evaluate()` - Performs evaluation on the data using the best model or the model of user's choice from the leaderboard.
|
|
215
|
+
* `load()` - Loads the saved model from database.
|
|
216
|
+
* `deploy()` - Saves the trained model inside database.
|
|
217
|
+
* `remove_saved_model()` - Removes the saved model in database.
|
|
218
|
+
* `model_hyperparameters()` - Returns the hyperparameters of fitted or loaded models.
|
|
219
|
+
* `get_persisted_tables()` - Lists the persisted tables created during AutoFraud execution.
|
|
220
|
+
* `visualize()` - Generates visualizations to analyze and understand the underlying patterns in the data.
|
|
221
|
+
* `generate_custom_config()` - Generates custom config JSON file required for customized run of AutoFraud.
|
|
222
|
+
|
|
223
|
+
* ###### teradataml: AutoChurn (Automated Machine Learning - Churn Prediction)
|
|
224
|
+
`AutoChurn` is a special purpose AutoML pipeline for customer churn prediction. It automates the end-to-end process of data preprocessing, feature engineering, model training, evaluation, and deployment to efficiently identify customers likely to churn.
|
|
225
|
+
* Methods:
|
|
226
|
+
* `__init__()` - Instantiates an object of AutoChurn.
|
|
227
|
+
* `fit()` - Performs fit on specified data and target column.
|
|
228
|
+
* `leaderboard()` - Gets the leaderboard for the AutoChurn pipeline, with diverse models, feature selection methods, and performance metrics.
|
|
229
|
+
* `leader()` - Shows best performing model and its details such as feature selection method and performance metrics.
|
|
230
|
+
* `predict()` - Performs prediction on the data using the best model or the model of user's choice from the leaderboard.
|
|
231
|
+
* `evaluate()` - Performs evaluation on the data using the best model or the model of user's choice from the leaderboard.
|
|
232
|
+
* `load()` - Loads the saved model from database.
|
|
233
|
+
* `deploy()` - Saves the trained model inside database.
|
|
234
|
+
* `remove_saved_model()` - Removes the saved model in database.
|
|
235
|
+
* `model_hyperparameters()` - Returns the hyperparameters of fitted or loaded models.
|
|
236
|
+
* `get_persisted_tables()` - Lists the persisted tables created during AutoChurn execution.
|
|
237
|
+
* `visualize()` - Generates visualizations to analyze and understand the underlying patterns in the data.
|
|
238
|
+
* `generate_custom_config()` - Generates custom config JSON file required for customized run of AutoChurn.
|
|
239
|
+
|
|
240
|
+
* ###### teradataml: AutoCluster (Automated Machine Learning - Clustering)
|
|
241
|
+
`AutoCluster` is a special purpose AutoML pipeline for clustering analysis. It automates the end-to-end process of data preprocessing, feature engineering, model training, and prediction to efficiently group data into clusters and extract insights from unlabeled datasets.
|
|
242
|
+
* Methods:
|
|
243
|
+
* `__init__()` - Instantiates an object of AutoCluster.
|
|
244
|
+
* `fit()` - Performs fit on specified data.
|
|
245
|
+
* `leaderboard()` - Gets the leaderboard for the AutoCluster pipeline, with diverse models, feature selection methods, and performance metrics.
|
|
246
|
+
* `leader()` - Shows best performing model and its details such as feature selection method and performance metrics.
|
|
247
|
+
* `predict()` - Performs prediction (cluster assignment) on the data using the best model or the model of user's choice from the leaderboard.
|
|
248
|
+
* `model_hyperparameters()` - Returns the hyperparameters of fitted or loaded models.
|
|
249
|
+
* `get_persisted_tables()` - Lists the persisted tables created during AutoCluster execution.
|
|
250
|
+
* `generate_custom_config()` - Generates custom config JSON file required for customized run of AutoCluster.
|
|
251
|
+
|
|
252
|
+
* ##### Updates
|
|
253
|
+
* ###### teradataml: Functions
|
|
254
|
+
* `udf()` - Added support for `td_buffer` to cache the data in the user defined function.
|
|
255
|
+
|
|
256
|
+
* ###### Open Analytics Framework (OpenAF)
|
|
257
|
+
* UserEnv Class.
|
|
258
|
+
* Properties:
|
|
259
|
+
* `models` - Supports listing of models installed from external model registry like HuggingFace as well.
|
|
260
|
+
* Methods:
|
|
261
|
+
* `install_model()` - Added new arguments `model_name`, `model_type` and `api_key` to support installation of models from external model registry like HuggingFace .
|
|
262
|
+
* `uninstall_model()` - Supports uninstallation of a model from user environment which is installed from external model registry like HuggingFace .
|
|
263
|
+
|
|
264
|
+
* ##### Bug Fixes
|
|
265
|
+
* `set_auth_token()` generates JWT token using default value for iat claim when authentication is being done using PEM file and PAT.
|
|
266
|
+
* `create_env` - When an unavailable R base environment is provided in `create_env()`, requested R user environment is created using latest R base environment version
|
|
267
|
+
out of available base environments. Earlier, `create_env()` would create user environment with latest Python base environment version even though the request is for R user environment.
|
|
268
|
+
* Fixed userWarning in `db_list_tables()`.
|
|
269
|
+
|
|
59
270
|
#### teradataml 20.00.00.06
|
|
60
271
|
* ##### New Features/Functionality
|
|
61
272
|
* ###### teradataml: SDK
|
|
@@ -1,61 +1,61 @@
|
|
|
1
1
|
teradataml/LICENSE-3RD-PARTY.pdf,sha256=vhxs8Emzgnk0ZApe2FMM4F6kZDvn12UoQ3NwQW3RnpE,594910
|
|
2
2
|
teradataml/LICENSE.pdf,sha256=h9PSzKiUlTczm4oaa7dy83SO95nZRL11fAR4N1zsOzo,184254
|
|
3
|
-
teradataml/README.md,sha256=
|
|
4
|
-
teradataml/__init__.py,sha256=
|
|
5
|
-
teradataml/_version.py,sha256=
|
|
3
|
+
teradataml/README.md,sha256=8dCr-KrgnM2fQ8a1kHI0LKGuqknzUcFye84mgtTNWMA,156931
|
|
4
|
+
teradataml/__init__.py,sha256=qUmg4JpiT05-bMVP9Uj1YEuLvDlLdfmIpjLCwCe1nVc,2784
|
|
5
|
+
teradataml/_version.py,sha256=7vEKYJag5zQc1xk7Ak5tfEW7P_2QO1ii_EdoGOm1lI4,364
|
|
6
6
|
teradataml/analytics/Transformations.py,sha256=5Ts7lqCSiO3LCi4xc3bA3D3FksODPJXAhxoyryf66js,149487
|
|
7
7
|
teradataml/analytics/__init__.py,sha256=DnTOi9QlFJ-P20n2LbL2waKp76uL9KWE6w__6KG8m1I,3046
|
|
8
|
-
teradataml/analytics/analytic_function_executor.py,sha256=
|
|
8
|
+
teradataml/analytics/analytic_function_executor.py,sha256=Ql9HmCvhCHNas6xMgT1G3o_6yPAJnwQajBl3X0eC9ck,110024
|
|
9
9
|
teradataml/analytics/analytic_query_generator.py,sha256=Si1lhWEhfa7Q4j3TZaD904lM3MumIsX3F3N9oysCkY0,45915
|
|
10
10
|
teradataml/analytics/meta_class.py,sha256=YRsFEvwv8S73boaG8W85altpJTOoRz9Wk7YTplm6z9M,8427
|
|
11
|
-
teradataml/analytics/utils.py,sha256=
|
|
11
|
+
teradataml/analytics/utils.py,sha256=CGcO_jRGPtgKPOiCPmH6Mh2zt59LkZZzFMhaSxDJ2KI,34376
|
|
12
12
|
teradataml/analytics/valib.py,sha256=4iwJj9usJDkmAGNDNdKqkV1kwtrbvOH4OAXg8hFwIMQ,74380
|
|
13
13
|
teradataml/analytics/byom/H2OPredict.py,sha256=S69BUkxG8Dr2pgzDAqYVIl2Wupf0eXdmW46i3hHNJp4,25128
|
|
14
14
|
teradataml/analytics/byom/PMMLPredict.py,sha256=TCxQinbQ50ZHrL-8teN-gRpXf93JnQSekHi33Y618Eo,20269
|
|
15
|
-
teradataml/analytics/byom/__init__.py,sha256=
|
|
16
|
-
teradataml/analytics/json_parser/__init__.py,sha256=
|
|
17
|
-
teradataml/analytics/json_parser/analytic_functions_argument.py,sha256=
|
|
15
|
+
teradataml/analytics/byom/__init__.py,sha256=SiMwYvr_LNrrikrDw7JEhcNkEQOtaH_g7rjqTyn042w,909
|
|
16
|
+
teradataml/analytics/json_parser/__init__.py,sha256=mjTXwbyDGKkVis0MjkpRS0pwlu9W_KElKuPlPPCXa2Y,4454
|
|
17
|
+
teradataml/analytics/json_parser/analytic_functions_argument.py,sha256=gHtIKpbZM_AzDFVL6T-yxrwWCa6OUxJeilZsiwteHAY,69213
|
|
18
18
|
teradataml/analytics/json_parser/json_store.py,sha256=snwrJzvXzYBw3Xot6IRMsC7RtxBgxTq4eeXBeD9-Pps,7175
|
|
19
|
-
teradataml/analytics/json_parser/metadata.py,sha256=
|
|
19
|
+
teradataml/analytics/json_parser/metadata.py,sha256=e5GKyoX-KWUetuWuTQM_T6GR8ZwnNqohD6KtPuq3-UQ,75919
|
|
20
20
|
teradataml/analytics/json_parser/utils.py,sha256=EdhCRUdWW6_mvLsj-gHxrDuNcQY6kOT5CT2txkbsUsE,33977
|
|
21
|
-
teradataml/analytics/sqle/DecisionTreePredict.py,sha256=
|
|
22
|
-
teradataml/analytics/sqle/NaiveBayesPredict.py,sha256=
|
|
23
|
-
teradataml/analytics/sqle/__init__.py,sha256=
|
|
21
|
+
teradataml/analytics/sqle/DecisionTreePredict.py,sha256=7b2fYObx6QsSzgOYAe8EQJG-GOm4frxHCVosLaM_VUI,22285
|
|
22
|
+
teradataml/analytics/sqle/NaiveBayesPredict.py,sha256=7zy3U1VoKDgjtEJvaUdt64W9ICYo33KNzMrU2btiVK8,19504
|
|
23
|
+
teradataml/analytics/sqle/__init__.py,sha256=gq_hxgwcn6Dn1_ZbegDPFQgft_yaEqU6-rkevqz-Nh8,4940
|
|
24
24
|
teradataml/analytics/sqle/json/decisiontreepredict_sqle.json,sha256=rQ9nB-IE7FgWEZH6KY1MxxbhWT9n1kRPuZCqEL5-R5Y,2196
|
|
25
25
|
teradataml/analytics/sqle/json/naivebayespredict_sqle.json,sha256=ehvbAugEnH73nUxdJqfOfzWL70zIc_oIWfdgEOnpO7Y,1683
|
|
26
26
|
teradataml/analytics/table_operator/__init__.py,sha256=OBxjuKXWlwhCw2lowtl2VfRGwS729Y4rbZkmRt2Mp8o,545
|
|
27
27
|
teradataml/analytics/uaf/__init__.py,sha256=Esh1vLn8CUOWPAMlqv0JUHGzNdj3l1I9RDlOI9lNXc8,3028
|
|
28
|
-
teradataml/automl/__init__.py,sha256=
|
|
29
|
-
teradataml/automl/custom_json_utils.py,sha256=
|
|
30
|
-
teradataml/automl/data_preparation.py,sha256=
|
|
31
|
-
teradataml/automl/data_transformation.py,sha256=
|
|
32
|
-
teradataml/automl/feature_engineering.py,sha256=
|
|
33
|
-
teradataml/automl/feature_exploration.py,sha256=
|
|
34
|
-
teradataml/automl/model_evaluation.py,sha256=
|
|
35
|
-
teradataml/automl/model_training.py,sha256=
|
|
36
|
-
teradataml/automl/autodataprep/__init__.py,sha256=
|
|
28
|
+
teradataml/automl/__init__.py,sha256=eu-P2l_XaBsnYqsIiP5mbA0lXbqBQDqwX8-RMP7iTMs,232035
|
|
29
|
+
teradataml/automl/custom_json_utils.py,sha256=y4RMDjLNuAKFuWjVHuiHyl3SXka2617TANICx511wzQ,70160
|
|
30
|
+
teradataml/automl/data_preparation.py,sha256=SM6eMlgtlu0KcZGhGwMx0Z-DmBXFb5cdpesQlDbeeAQ,47647
|
|
31
|
+
teradataml/automl/data_transformation.py,sha256=G5p5Jf5_9RaRh_arOTs4m0cph421NAeMJuUZ32bh21I,49964
|
|
32
|
+
teradataml/automl/feature_engineering.py,sha256=HzV5GY3ftYzjDvjTq8p4nOEjiWW6h8KfX0XZ96syay4,101834
|
|
33
|
+
teradataml/automl/feature_exploration.py,sha256=Jr5Kh6VN246go0UYIbgkyBAEd559VHF-nmwhL2WhV7s,68752
|
|
34
|
+
teradataml/automl/model_evaluation.py,sha256=zZ1uJuuPWRaldA-wyDn90LFNvYa-MIZvDQJbJlv2A_M,15883
|
|
35
|
+
teradataml/automl/model_training.py,sha256=J0RffvY99t9Sj-wX3qmLxxus092eSM33TR4NHpcPv8o,51701
|
|
36
|
+
teradataml/automl/autodataprep/__init__.py,sha256=VcvXXhu2aMYD-_lgsjrotFXDOsJjUDwvTf98zmUvaT4,18528
|
|
37
37
|
teradataml/catalog/__init__.py,sha256=JmX5fC634ewbSyYy24rsTIk9mg9gSIMFTc15coJKTWQ,134
|
|
38
38
|
teradataml/catalog/byom.py,sha256=6sZ-lyOr65XGmDcJo1SHogXmoSvCFooFOKeAIN8JUms,99687
|
|
39
39
|
teradataml/catalog/function_argument_mapper.py,sha256=fTu0YrTb4ZgbcFmw15H-G7I8iln_QRImy38BhXsph34,40018
|
|
40
40
|
teradataml/catalog/model_cataloging_utils.py,sha256=g6S6kwkE87c1rd02YAWIQ-u2z9OhduX1RXsLqsmSPsI,20624
|
|
41
41
|
teradataml/clients/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
42
|
-
teradataml/clients/auth_client.py,sha256=
|
|
42
|
+
teradataml/clients/auth_client.py,sha256=t2gWzohdbRxM8aj6hNEnIjWw5BmFvW_pGXpjHSPfmnY,4355
|
|
43
43
|
teradataml/clients/keycloak_client.py,sha256=5asUIBalHt3nEVaUMUfyOa9SsOoO3tCK8i3eyKrlGjo,6131
|
|
44
44
|
teradataml/clients/pkce_client.py,sha256=m7FYwfMf_xTP7-L4_wFLQdWWpO4sTEEIyZCZSHJVjkA,16604
|
|
45
45
|
teradataml/common/__init__.py,sha256=KeFSq3wtcYMpZEFepWsgC7e9ocmmsv6WSrDosIviAVY,52
|
|
46
|
-
teradataml/common/aed_utils.py,sha256=
|
|
47
|
-
teradataml/common/bulk_exposed_utils.py,sha256=
|
|
48
|
-
teradataml/common/constants.py,sha256
|
|
46
|
+
teradataml/common/aed_utils.py,sha256=e1mCMv0r0cmQwGeyD1aiq8Npispph2I9XJokTVbm4Ho,106600
|
|
47
|
+
teradataml/common/bulk_exposed_utils.py,sha256=pmiMz8f-nJZrXLUFnwx3trygkVJJschmf1Bdpt4vIjc,4687
|
|
48
|
+
teradataml/common/constants.py,sha256=WkzJi0HJc1RlErDIpsn0_-_uKhKiboP30ZK9XQeWGWc,66265
|
|
49
49
|
teradataml/common/deprecations.py,sha256=-KkDiJe9_08CIvCR4Xbzg3_WPZlJ5rqyKVlfpMhKrk0,6211
|
|
50
50
|
teradataml/common/exceptions.py,sha256=FX51jVCyMgQ-h20l-im_EwT-I1_fz5XdgJzpwEeOcgc,3760
|
|
51
51
|
teradataml/common/formula.py,sha256=IBBDwllFru21EerpV4v9zjbYCBqILZJy4M-vQnT1yd8,31089
|
|
52
|
-
teradataml/common/garbagecollector.py,sha256=
|
|
53
|
-
teradataml/common/messagecodes.py,sha256=
|
|
54
|
-
teradataml/common/messages.py,sha256=
|
|
52
|
+
teradataml/common/garbagecollector.py,sha256=XBgyioiL1WvTq0qw45oU3a9xXf46afEVaVzLZiOKQqk,29983
|
|
53
|
+
teradataml/common/messagecodes.py,sha256=EI2qYB995gMliutInK_DJh_fDsBhds7gvMUe5-1I4AI,34521
|
|
54
|
+
teradataml/common/messages.py,sha256=xM7xb2FszkGqLcx0ST_t5t0Bc4p00FGQSlTA_B5CVWA,20530
|
|
55
55
|
teradataml/common/pylogger.py,sha256=8G36wPGbnCVAaabYeimuSuRazwbnX-NhKyZc-a_deJ0,1752
|
|
56
|
-
teradataml/common/sqlbundle.py,sha256=
|
|
56
|
+
teradataml/common/sqlbundle.py,sha256=OsYNon2ZF3LnO3bcghs5fcYmPQhzFmRWkZqCWpStot0,27995
|
|
57
57
|
teradataml/common/td_coltype_code_to_tdtype.py,sha256=8RzvJAnC9iHXsCHVVDbPXG3e1ESyZFLVtvw00M1Tj3I,1193
|
|
58
|
-
teradataml/common/utils.py,sha256=
|
|
58
|
+
teradataml/common/utils.py,sha256=HJLV7R8sRQdLz257dTOaKNY4A3MvQdj-MR6_a4yceTg,117698
|
|
59
59
|
teradataml/common/warnings.py,sha256=PO6nQT9W3pIeT9TLYyLLbwe-f897Zk-j5E8RqyPFs48,1049
|
|
60
60
|
teradataml/common/wrapper_utils.py,sha256=f2DxS-FqgEqbAJbHpOtKD4wU7GLj2XSX_d3xWNn9VvM,27843
|
|
61
61
|
teradataml/config/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -65,7 +65,7 @@ teradataml/config/sqlengine_alias_definitions_v1.0,sha256=jFH-HwBXPZDe2O8mG1Z5va
|
|
|
65
65
|
teradataml/config/sqlengine_alias_definitions_v1.1,sha256=iHEB832KDSO0DdugW8MivhBxcYGia1ZzLzPST42pI90,547
|
|
66
66
|
teradataml/config/sqlengine_alias_definitions_v1.3,sha256=pCt661hEVA_YM_i4WL69DwwD1wKm_A4uzqHqwzRf0bo,534
|
|
67
67
|
teradataml/context/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
68
|
-
teradataml/context/aed_context.py,sha256=
|
|
68
|
+
teradataml/context/aed_context.py,sha256=s7NqkaTGzcvRzMbYK7u2trzDIU1KqP5kU9IEaJ1e62M,7738
|
|
69
69
|
teradataml/context/context.py,sha256=rqx0-rsQVGB06nrdPPQjJGyT1LXv2lHgkmyIw6kGgkk,61029
|
|
70
70
|
teradataml/data/A_loan.csv,sha256=HFfTfH1cC-xh4yiYGddaoiB0hHG17pWKbmySolOLdoc,584
|
|
71
71
|
teradataml/data/BINARY_REALS_LEFT.csv,sha256=LW8o1jCKyUv9UFM3E5WbRMDYPQfwkFMZtifDAf9cp30,416
|
|
@@ -79,6 +79,10 @@ teradataml/data/Convolve2RealsRight.csv,sha256=33UBzQ5gYn6-F8t0Fb1NZZYdQjXrV19nD
|
|
|
79
79
|
teradataml/data/Convolve2ValidLeft.csv,sha256=YrkcTPRDppFzsAk4LWqY_S0I-6k3mSKYrsOS-KMflWU,467
|
|
80
80
|
teradataml/data/Convolve2ValidRight.csv,sha256=YrkcTPRDppFzsAk4LWqY_S0I-6k3mSKYrsOS-KMflWU,467
|
|
81
81
|
teradataml/data/DFFTConv_Real_8_8.csv,sha256=IKpOjDob6Hp7j8I5klHvN-GLTirahB4mOEmpUfGJuKU,940
|
|
82
|
+
teradataml/data/Employee.csv,sha256=sP4uTt8UHjzsSTgqGOeNUGTtAlm3wqOdBnCQp0H15gs,346
|
|
83
|
+
teradataml/data/Employee_Address.csv,sha256=CVMHzIIlzt5gU78eVytwtjaLsNSJjPQiclxsxr8FmjE,128
|
|
84
|
+
teradataml/data/Employee_roles.csv,sha256=89QgoXaHPALGRKee4PcUN4IWXqkEkR5BqiabZDs85k4,268
|
|
85
|
+
teradataml/data/JulesBelvezeDummyData.csv,sha256=0nuphdbP7NYyJeBY8N5SgoOyr_yLnaBs1rfRPttSivI,67511
|
|
82
86
|
teradataml/data/Orders1_12mf.csv,sha256=YpBMpVutv0H7uEaagw7zsb-8KRMMbKi2e-TbztNlpfk,312
|
|
83
87
|
teradataml/data/Pi_loan.csv,sha256=7-kKbP69zD3W0GwpkSE39ZPFCQTbCrxsmDCt5QPdZSY,191
|
|
84
88
|
teradataml/data/SMOOTHED_DATA.csv,sha256=jYD3ps_XSKCFAWEjVjB6Yv-r_IpTIlpZB_bcaC8OUYE,117
|
|
@@ -134,7 +138,7 @@ teradataml/data/breast_cancer.csv,sha256=YJjbRrFwf5PWU7Al4NB46Y2yXNyfJMrZ06YDMY-
|
|
|
134
138
|
teradataml/data/buoydata_mix.csv,sha256=FhIW7ZyLFFSt2Ju6cYfJJV5_bUWoGMU-fl4RqX85HiA,1630
|
|
135
139
|
teradataml/data/burst_data.csv,sha256=4ZEOicUtb4iejEC7Qh5VewTACJMG5qdpKEVq3RVO4yo,172
|
|
136
140
|
teradataml/data/burst_example.json,sha256=ijC2YaBUGL-ZKR2lM3CHgBTPHYXr4LpTrXzhHzXhcB4,434
|
|
137
|
-
teradataml/data/byom_example.json,sha256=
|
|
141
|
+
teradataml/data/byom_example.json,sha256=VCKk7FEVelIJNEf1DSB2OKMDAtS_1inLlNHY49v5_-c,849
|
|
138
142
|
teradataml/data/bytes_table.csv,sha256=nztKCmykXMySGFj1PtbkzmUWA9BFD4zxku0VZduH2MU,109
|
|
139
143
|
teradataml/data/cal_housing_ex_raw.csv,sha256=W_r-AMQBLmTatsni_FXdhmmVHNMxQ1ndGdmhS-_2t0s,9459
|
|
140
144
|
teradataml/data/callers.csv,sha256=uarzTiXzCuveKX-HtULkFM7BWlAhpp-nI8kmcWT73iM,93
|
|
@@ -182,6 +186,7 @@ teradataml/data/coxph_example.json,sha256=7D5kTyggIC5NqQS2ovMSMCCmGpcGQoMoQmsMSP
|
|
|
182
186
|
teradataml/data/coxsurvival_example.json,sha256=av6ciraJe5zDHfgLFkO5aV_L7i9bLFICwhdWmKA771U,860
|
|
183
187
|
teradataml/data/cpt.csv,sha256=IMQwhawu2su6zaOkGyHQk7IYGjH-A8jqJqIwUCgkMfI,908
|
|
184
188
|
teradataml/data/credit_ex_merged.csv,sha256=9yoTcOJLvM4iGlu87F2i1NzT0yjjHEugafgRAl16hpw,10493
|
|
189
|
+
teradataml/data/creditcard_data.csv,sha256=Yyifzh23MRBxycPFN9HBmoFuZ-oz8QI0fzGZbHfAQ3o,9434151
|
|
185
190
|
teradataml/data/customer_loyalty.csv,sha256=Z5YW-Apil6Xz6MgTS12kxJYptQXo5dLH84vfWuswjSk,8663
|
|
186
191
|
teradataml/data/customer_loyalty_newseq.csv,sha256=ufn_bjCqWoLaZ5l0ZSVAdWfboinduvc4L5jwiGxZAFc,805
|
|
187
192
|
teradataml/data/customer_segmentation_test.csv,sha256=8iaPDIFgn249mytmwxOi8cU_FnzRo0EtaRV_SXrxmP4,125982
|
|
@@ -299,7 +304,7 @@ teradataml/data/ldatopicsummary_example.json,sha256=ibooCwaH6DkARnnfNZzSuotxGJJz
|
|
|
299
304
|
teradataml/data/levendist_input.csv,sha256=E4mV_0mw3GGlk3Vqwzu8jtSaQq9YEwMKVT2X_7XYIPg,405
|
|
300
305
|
teradataml/data/levenshteindistance_example.json,sha256=V2PX8TXU9usGRo4l0BqCJZrdlUjvsOpPzixd78TMPnk,260
|
|
301
306
|
teradataml/data/linreg_example.json,sha256=M1RFDST8ZKyXBBSyLSR8je8cZ7zMlhUFuJWhuMi6Trw,204
|
|
302
|
-
teradataml/data/load_example_data.py,sha256=
|
|
307
|
+
teradataml/data/load_example_data.py,sha256=0HmSVIAsEYecaeC2mzk2fq9REhEy_JFFhnVcPyySk8U,15797
|
|
303
308
|
teradataml/data/loan_prediction.csv,sha256=lEXZzLSKXaZbdpaQgYVBwcMa3-r5S8OemwMsQoD89rc,4591
|
|
304
309
|
teradataml/data/lungcancer.csv,sha256=ek_VkMKU2EbttSTjXzcwzGs47jcW-o_QHhjJbKhqFfY,5873
|
|
305
310
|
teradataml/data/mappingdata.csv,sha256=hYsq_JLXcCjyEHx577POhxdvScQ_ynKUlcnTJiAjPeg,84
|
|
@@ -368,6 +373,7 @@ teradataml/data/pathanalyzer_example.json,sha256=AiiJxKnvF4Q536y1-6kdr6ZcfxtQqME
|
|
|
368
373
|
teradataml/data/pathgenerator_example.json,sha256=AiiJxKnvF4Q536y1-6kdr6ZcfxtQqMERTHiEn1nxebM,138
|
|
369
374
|
teradataml/data/patient_profile.csv,sha256=TwZzE3TII362SjT_1yMfscZnkJ6gK6hvy7k3KyUfigg,3729
|
|
370
375
|
teradataml/data/pattern_matching_data.csv,sha256=YJ0iZUuRa2_H9Um01oFsiYqwM6bpxkUq4jnX92zneA4,313
|
|
376
|
+
teradataml/data/payment_fraud_dataset.csv,sha256=Awmv4kRPscmxnH5_dIV35LN72rlcuuLKSyLQYztiJaE,694535
|
|
371
377
|
teradataml/data/peppers.png,sha256=imrSYKQni781u4YSajHlrS9qVM7NRMtkB6buXYb_PjU,732014
|
|
372
378
|
teradataml/data/phrases.csv,sha256=CX_QEgAX37IUVKf8ctD6uNkG4bixeH0Tn1LM0nCEco0,110
|
|
373
379
|
teradataml/data/pivot_example.json,sha256=ZHd3QFtx0yXPZm7fIfss8SsyZU5-mTG40Wv1Qliln5M,165
|
|
@@ -460,7 +466,7 @@ teradataml/data/target_udt_data.csv,sha256=BRiHn4P68J1Pyh9MvTmxtKe0eEze-EUuBVYMV
|
|
|
460
466
|
teradataml/data/tdnerextractor_example.json,sha256=yjRT9NSUb0d4Oi5yqF40sfnEwN-FgIbsjJG7G8aIVwg,275
|
|
461
467
|
teradataml/data/templatedata.csv,sha256=_NYyMgobQ0-oIjZhIUcv16iOM4EtajZ4mKOrx39cfDY,22391
|
|
462
468
|
teradataml/data/teradata_icon.ico,sha256=M4qHNiblJAmGmYqsy9bD5xSP83ePf6089KdFuoQhaFM,1150
|
|
463
|
-
teradataml/data/teradataml_example.json,sha256=
|
|
469
|
+
teradataml/data/teradataml_example.json,sha256=U7U2Mz45XdT2sp1oiPCeaMR58ZazFUD1f4kHbuYb2bI,44465
|
|
464
470
|
teradataml/data/test_classification.csv,sha256=BDKuA82t60YWQu23BDxMn3j7X2Ws_HJXfUoFcwa76Og,9523
|
|
465
471
|
teradataml/data/test_loan_prediction.csv,sha256=RW7R4PPMRGdpHmHxvH-1TssLQFg5bVfd8tteuJ3Ukg0,863
|
|
466
472
|
teradataml/data/test_pacf_12.csv,sha256=ltIEUeJksRLCcvfXyrFhGcc7GkI89NXhRbQ5gOidvNM,1003
|
|
@@ -538,6 +544,7 @@ teradataml/data/docs/byom/docs/DataikuPredict.py,sha256=FVcY_XTK-n7j3IEa63_TA4eb
|
|
|
538
544
|
teradataml/data/docs/byom/docs/H2OPredict.py,sha256=cljoRRvWzm5ShXaipcPqDPwCFxNh_wixkl8KSi4uACI,16452
|
|
539
545
|
teradataml/data/docs/byom/docs/ONNXEmbeddings.py,sha256=lRAsNLdoANcu4KMd5FXKVZIFfvviEsAx70OdUirSjGE,11858
|
|
540
546
|
teradataml/data/docs/byom/docs/ONNXPredict.py,sha256=qxNMVkw-Xz92yD7OHp0Kp_BOu0t-av8qzHnFN3wgzTA,14354
|
|
547
|
+
teradataml/data/docs/byom/docs/ONNXSeq2Seq.py,sha256=tzfCsDKMTDsnuN_87s3F8IzCHlbzdM52xeZFhgzpGZg,12457
|
|
541
548
|
teradataml/data/docs/byom/docs/PMMLPredict.py,sha256=lLh7VYxNLA4m8mtMffdkJAoKZM3AQ8IEtKJ1LlrnrYw,13165
|
|
542
549
|
teradataml/data/docs/byom/docs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
543
550
|
teradataml/data/docs/sqle/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -559,7 +566,7 @@ teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py,sha256=eCDp5XGq
|
|
|
559
566
|
teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py,sha256=yAn5Hmb5389Mj-Tpz0O5B8_kLdC8TncwJN225U9GNyg,3603
|
|
560
567
|
teradataml/data/docs/sqle/docs_17_10/Histogram.py,sha256=4MO_HgXcFKZOujUrM3FLBtIaiDfIE0v4ZRgy2ctWFSk,7249
|
|
561
568
|
teradataml/data/docs/sqle/docs_17_10/MovingAverage.py,sha256=fZJSr51I2_cTbZFJX0CHXYCm3Xdb__-yf9luJMYtlJI,5731
|
|
562
|
-
teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py,sha256=
|
|
569
|
+
teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py,sha256=60U3jTusbpGeOQ7h4CMGkqW1OZr1EoCMO39n2ZXy4aA,9352
|
|
563
570
|
teradataml/data/docs/sqle/docs_17_10/NPath.py,sha256=cseXGtYLU8j2G2f9phS40zlzY0uIGgJdKSNvSXWzpyo,13924
|
|
564
571
|
teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py,sha256=yGvYOiQekom0ph2hOGrHqWmHEjk8u5_pI8yHQYQKwA0,5372
|
|
565
572
|
teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py,sha256=mV90klHkHEdTybUFYTF8b4Gv2UZ_o9Q7XV9UhRLSv1o,8102
|
|
@@ -622,7 +629,7 @@ teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py,sha256=tgVCNf8iqFZ86URQ7zC
|
|
|
622
629
|
teradataml/data/docs/sqle/docs_17_20/KNN.py,sha256=qsTD6BbQ7UFTS5WtnV_-ZBBvLVqMdDQZmJlb4ujzapk,9540
|
|
623
630
|
teradataml/data/docs/sqle/docs_17_20/MovingAverage.py,sha256=DSbxNLB1OpnYgS_6v_MVAJDxtS49UtGIcOrOzUVhbus,5738
|
|
624
631
|
teradataml/data/docs/sqle/docs_17_20/NERExtractor.py,sha256=2JnXUaPpmNGQ0uf8-Q0CuOMr7JI_e_tg-v8afHafSmU,5372
|
|
625
|
-
teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py,sha256=
|
|
632
|
+
teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py,sha256=FD6glilRNZ5Ab-JhKJnSCGZreQfDNiBOUW9TVx_cHu8,9431
|
|
626
633
|
teradataml/data/docs/sqle/docs_17_20/NPath.py,sha256=CBof2pQwE0tXJRLYxPruimIyOd6nEnwj6f8r1SpTys8,13931
|
|
627
634
|
teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py,sha256=_O_MUZX1qmaZTpAehrdiy5dre3OLoQ0o0yZYFLU8yKA,7665
|
|
628
635
|
teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py,sha256=9P9iLhGmB3bPvrNZzh2gtWRjZRP8s66NHhzvqLKJuRs,5379
|
|
@@ -673,7 +680,7 @@ teradataml/data/docs/sqle/docs_17_20/TFIDF.py,sha256=Kjvggu2W2EV3PjA8In1ksyYo4By
|
|
|
673
680
|
teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py,sha256=K_BOaUNA9Zi2XaHC32vMpLbTfA51AieaUR0LMimWflQ,12698
|
|
674
681
|
teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py,sha256=ga8DeTlJUmszVPBJj_kfASst6aK7Oc1yb46lPSwuoog,6510
|
|
675
682
|
teradataml/data/docs/sqle/docs_17_20/TextMorph.py,sha256=y6jIiTv9473TLqm-v6ZYBw3HM8spRprkWDkqcqH1ij0,5148
|
|
676
|
-
teradataml/data/docs/sqle/docs_17_20/TextParser.py,sha256=
|
|
683
|
+
teradataml/data/docs/sqle/docs_17_20/TextParser.py,sha256=a33vVXl5XiXVntgvdqV2S4vpE5tqx63FnaPoAEoA5Ok,9674
|
|
677
684
|
teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py,sha256=WtGPOcE8GdX2BYcaaUQHO_Q15HdUdzzUMeu5ZnEr1Tg,7603
|
|
678
685
|
teradataml/data/docs/sqle/docs_17_20/Transform.py,sha256=Mm2SYFZpEnJ3nOATDA8ZOxfNz73r7O-N8JsRkeM9c3A,5732
|
|
679
686
|
teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py,sha256=PUPH8k-CRdL5kM6mJ5i7wIadRyJvsP8B4eww39FLGbU,6001
|
|
@@ -766,6 +773,7 @@ teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py,sha256=Qcuc2OHmBHXoEHqLByZizE3
|
|
|
766
773
|
teradataml/data/docs/uaf/docs_17_20/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
767
774
|
teradataml/data/jsons/anly_function_name.json,sha256=EHJ68E45KgNfECT6AK9-DMQ-yP8SsvxpcRv0hXD1zi0,146
|
|
768
775
|
teradataml/data/jsons/paired_functions.json,sha256=5EGDbgTwKrR-HcjwMa187tPyOm23aYcmgMrFDDXSXRo,9814
|
|
776
|
+
teradataml/data/jsons/byom/ONNXSeq2Seq.json,sha256=rq0-hgzfEgDlAEpAmMxQoxoh0PyvyCurXSgPgzVqHJE,9360
|
|
769
777
|
teradataml/data/jsons/byom/dataikupredict.json,sha256=szvH79NGcniprg7eborSyKb_1JL8-Zg8lC0KT8efM3c,4752
|
|
770
778
|
teradataml/data/jsons/byom/datarobotpredict.json,sha256=42VOrJFvlc87ZKgq6mu0FwcUkIFEaY41rzW2PTibVTM,4735
|
|
771
779
|
teradataml/data/jsons/byom/h2opredict.json,sha256=-neUkuTjHSVWAoK7uyIcAv9HfAa0IGiiWXuNES73fgc,6132
|
|
@@ -961,17 +969,20 @@ teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json,sha256=vePCDT17Ho9H1b1cx
|
|
|
961
969
|
teradataml/data/jsons/sqle/17.20/TD_ZTest.json,sha256=vDxIYCnmgPTnxJnfrivB8AkOKNrJXY_s84_moFFjsLE,8202
|
|
962
970
|
teradataml/data/jsons/sqle/17.20/Unpack.json,sha256=XoTH6HH8cQ-WWMkhx4gIH-hkn0q4G8StVxNMcUIM3SY,13420
|
|
963
971
|
teradataml/data/jsons/sqle/17.20/nPath.json,sha256=_x0_7ZVAZ23JNd3Xy-xfBFfXD-VWpgDKzhpnUmt5GAs,14122
|
|
964
|
-
teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json,sha256=
|
|
965
|
-
teradataml/data/jsons/sqle/20.00/AI_AskLLM.json,sha256=
|
|
966
|
-
teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json,sha256=
|
|
967
|
-
teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json,sha256=
|
|
968
|
-
teradataml/data/jsons/sqle/20.00/AI_MaskPII.json,sha256=
|
|
969
|
-
teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json,sha256=
|
|
970
|
-
teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json,sha256=
|
|
971
|
-
teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json,sha256=
|
|
972
|
-
teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json,sha256=
|
|
973
|
-
teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json,sha256=
|
|
974
|
-
teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json,sha256=
|
|
972
|
+
teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json,sha256=TrlPzEbbVFHgUUh-ORvBd7tioUUL75FgsKVhkVdoZD0,11389
|
|
973
|
+
teradataml/data/jsons/sqle/20.00/AI_AskLLM.json,sha256=698V5pbJ6Q0kSz7Or8lhrlcPNJOjOTGH8h0sKSZAFWU,14478
|
|
974
|
+
teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json,sha256=OQkMwOyP4kLqm7k1-Q6RKyszPQsfPqioUVxcmWa5OZo,11984
|
|
975
|
+
teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json,sha256=2gDTXbYk6nFKyTpjffYvwSabXbFUVsBOXC5ehkh-Sfk,11388
|
|
976
|
+
teradataml/data/jsons/sqle/20.00/AI_MaskPII.json,sha256=LN0Xd6sI3P9cOQwY87authxmmXs2A0VZ-QyMkUCuriY,11680
|
|
977
|
+
teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json,sha256=FZImNZc797FfEmKiCcbCuEljOWygAf_rcQRiMs6HMHs,11580
|
|
978
|
+
teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json,sha256=PVgaDuGDf3eYPqw0JToiL1PzDNqyWJlifdyu1A47DcQ,11701
|
|
979
|
+
teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json,sha256=0CC6HbyUV8uHJeJWlfHoGbCFH5X2u6-bhyno3PCWZ0M,12411
|
|
980
|
+
teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json,sha256=01zOYNeE3ks9atFTcj-1mEmqDZEpIgJ2qnQDgK8h-30,12277
|
|
981
|
+
teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json,sha256=sM5NShSEWyC7puYO2e8TemBdYaJt5AHr9vNl8Bik818,12062
|
|
982
|
+
teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json,sha256=mN-LS3WMWoC1Ca7KOWjuD_JbWcfhlNriV9_1twzT68M,12046
|
|
983
|
+
teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json,sha256=-XmhY8b6XTXQzBgpIIcNuM_O9yFKH8_nzyW9hmbA4Bk,5857
|
|
984
|
+
teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json,sha256=DGscxp7mopb301h1_Nvx7r9720YKjAwXcCEcN2446v0,6723
|
|
985
|
+
teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json,sha256=Ok3JzaoqijiA2BjxART6gaa7Cl35OPT9n3QN61EK_6Y,6744
|
|
975
986
|
teradataml/data/jsons/sqle/20.00/TD_HNSW.json,sha256=yaIasMPo3m0fGkA1IJWWZKeQqMnknGf9i9neaRHrh7A,10031
|
|
976
987
|
teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json,sha256=m7_9216qzwrgnpubaD-0Jnx260KfxBb8Fz6faullUn4,7040
|
|
977
988
|
teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json,sha256=PPYYKEFZpYjNIBpBkA4kyeqVpdlGdl260Qm0lRB8ivw,1229
|
|
@@ -1089,24 +1100,24 @@ teradataml/data/scripts/sklearn/sklearn_transform.py,sha256=EgrVc5_Uw0AMdhy2GBDh
|
|
|
1089
1100
|
teradataml/data/sdk/modelops/modelops_spec.json,sha256=HRF5rpVdaivyUVTGagaiHASbV9aLq7TrlQ77JaHIpDQ,5329976
|
|
1090
1101
|
teradataml/data/templates/open_source_ml.json,sha256=dLbP86NVftkR8eoQRLQr_vFpJYszhnPvWNcSF1LRG78,308
|
|
1091
1102
|
teradataml/dataframe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
1092
|
-
teradataml/dataframe/copy_to.py,sha256=
|
|
1103
|
+
teradataml/dataframe/copy_to.py,sha256=mWVe1iDBaQOlihJXAZO3cUdGTiwuraCW9fR1lslbKrc,107917
|
|
1093
1104
|
teradataml/dataframe/data_transfer.py,sha256=AgSb7OMzVgBQQ8vvhs-joO0i62JAueLJ5IzwWHG3OHw,125128
|
|
1094
|
-
teradataml/dataframe/dataframe.py,sha256=
|
|
1095
|
-
teradataml/dataframe/dataframe_utils.py,sha256=
|
|
1105
|
+
teradataml/dataframe/dataframe.py,sha256=SSOCCJEofkMOxfS8m_XjnEITm7aZBqIeevoUb7FI4GA,1109257
|
|
1106
|
+
teradataml/dataframe/dataframe_utils.py,sha256=tpf3j9CYQL_1T8QOV1kWdTZFHaMTvAQxuJZc-PVLwRQ,97274
|
|
1096
1107
|
teradataml/dataframe/fastload.py,sha256=Qyq4xEzS9E5NRDvEUlmv3hoAQy5nhTDEfW1QiVg3e9U,42032
|
|
1097
|
-
teradataml/dataframe/functions.py,sha256=
|
|
1108
|
+
teradataml/dataframe/functions.py,sha256=eNQzwxy4b3Ch3po-HjWyGDV2VCVnXpi0mvgW2jDh4cs,156530
|
|
1098
1109
|
teradataml/dataframe/indexer.py,sha256=xDLYMuUy77VpVo1rO0RHrM-fpexr1Mm3o1hF_I3PsdQ,19787
|
|
1099
1110
|
teradataml/dataframe/row.py,sha256=zgt4G-05ZE8QOfC0aCJVpK3WwC9_ExIgpMV7ZD3wKu0,4622
|
|
1100
|
-
teradataml/dataframe/setop.py,sha256=
|
|
1101
|
-
teradataml/dataframe/sql.py,sha256=
|
|
1111
|
+
teradataml/dataframe/setop.py,sha256=p_cip7eijc7fF9RrM-TZXJd9Q5NtegDmuaQxXf3mChs,57412
|
|
1112
|
+
teradataml/dataframe/sql.py,sha256=BTVwCvdOXwyWKKMQ81dpyJvAZZ_BE3T5KnBUva_-hlc,590149
|
|
1102
1113
|
teradataml/dataframe/sql_function_parameters.py,sha256=BVuHGJ78TjxbrwMdytXfUVKrMZb4Ge20taVwcj0E8gU,22241
|
|
1103
1114
|
teradataml/dataframe/sql_functions.py,sha256=-v5Gx8x_Tr-Ru9YrmjrM-JfIDhguk8HcO2G1xMcg0Wo,29482
|
|
1104
1115
|
teradataml/dataframe/sql_interfaces.py,sha256=WzM-jq7JyRmEMs7yZTgX6W3nnD7YjxXwdTHauI4BQPA,3812
|
|
1105
1116
|
teradataml/dataframe/vantage_function_types.py,sha256=4p4EX3ZtbqYBqcdQ7l_Vx0UW8sEIeEVnpRghcGpyFNY,28381
|
|
1106
1117
|
teradataml/dataframe/window.py,sha256=YkrBcLPrvebZ4Ekylkv3JO8kMedAQ80pnOapMaarJNI,32755
|
|
1107
1118
|
teradataml/dbutils/__init__.py,sha256=qnquQDBxYoHuaLb3VzM0Mb08Ooc-sDVO6JQCcPhSYlE,221
|
|
1108
|
-
teradataml/dbutils/dbutils.py,sha256=
|
|
1109
|
-
teradataml/dbutils/filemgr.py,sha256=
|
|
1119
|
+
teradataml/dbutils/dbutils.py,sha256=Jjj4NxpW5WzbFdzs5dgXj-7xSzVFwwBD0dun6EA3kvY,115410
|
|
1120
|
+
teradataml/dbutils/filemgr.py,sha256=BIvOSUrd0W4p2W9a0-bGjkUn0PRF_rWs0hUHED1-7Tk,14381
|
|
1110
1121
|
teradataml/gen_ai/__init__.py,sha256=kYGvNpZOR_E2VDcf3-LOfvFGox1YRpPeblwa5mqDvAM,91
|
|
1111
1122
|
teradataml/gen_ai/convAI.py,sha256=HN_Rm38FY5Nr2Pq5nMmuT9gH9XsTwtE47NaQIaFyiFg,16473
|
|
1112
1123
|
teradataml/geospatial/__init__.py,sha256=DZZNBHBYN1EDYSXz-7C_Ic_W2ZsVuak69hw_nWTcto8,292
|
|
@@ -1114,12 +1125,13 @@ teradataml/geospatial/geodataframe.py,sha256=0PKZeIr7LNA-zQffezYuqYpuxPf_caB3ue9
|
|
|
1114
1125
|
teradataml/geospatial/geodataframecolumn.py,sha256=znNHkjpbOoS3a8xrYS2Q0ou4-hhm0rZOjrBXRCU2-ng,16325
|
|
1115
1126
|
teradataml/geospatial/geometry_types.py,sha256=hUKAUluD8ufvXaLY1-cwnsB3RsFkHR8Wr7eVE4YCtoU,38518
|
|
1116
1127
|
teradataml/hyperparameter_tuner/__init__.py,sha256=RQvotxJqh80M8Du-5IWdjdJvKYHDiGlepkgm5oyKqpY,80
|
|
1117
|
-
teradataml/hyperparameter_tuner/optimizer.py,sha256=
|
|
1128
|
+
teradataml/hyperparameter_tuner/optimizer.py,sha256=hvTdXb-TG2EhQek1y_TwTMsKaqTkY881aBMc57iJ5qI,217023
|
|
1118
1129
|
teradataml/hyperparameter_tuner/utils.py,sha256=du8Xy2JVKvnW8Vk06xI7VZA7499nRPVBxVkvqm6sVyE,11877
|
|
1119
1130
|
teradataml/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
1120
|
-
teradataml/lib/aed_0_1.dll,sha256=
|
|
1121
|
-
teradataml/lib/libaed_0_1.dylib,sha256=
|
|
1122
|
-
teradataml/lib/libaed_0_1.so,sha256=
|
|
1131
|
+
teradataml/lib/aed_0_1.dll,sha256=BHB-E4YxcIsU__fM2bu1c8bDuobfUylH_KM5cE1Edrw,3737505
|
|
1132
|
+
teradataml/lib/libaed_0_1.dylib,sha256=Iiw-HQh4En15AbOTXJL_DtWtiK7tb-HkrXc2d0DrKeo,1823393
|
|
1133
|
+
teradataml/lib/libaed_0_1.so,sha256=nIsbLM5UYKDXCQ6HtNvubJsNfKlSBr4SgwW2F-RxY5I,1045144
|
|
1134
|
+
teradataml/lib/libaed_0_1_aarch64.so,sha256=kHtnCKbLda1Q62XrzRuJLPtd2t_H2Or9n_v0Z4kSTH0,1118984
|
|
1123
1135
|
teradataml/opensource/__init__.py,sha256=-EOpCOiaaHWuCFP1vDCOlHkqyPNid4CrnkQnQ0BOzKo,66
|
|
1124
1136
|
teradataml/opensource/_base.py,sha256=TcY6vHt8oc31Mka4MkF8t0x9Y4AsB7GlAmLjvEpOkf4,64347
|
|
1125
1137
|
teradataml/opensource/_class.py,sha256=6Qo0pu2_Y0SK8RN9PistIFRCP1_q3fEsXRL0ZJSYo6I,18463
|
|
@@ -1137,31 +1149,33 @@ teradataml/plot/figure.py,sha256=aWqABKdtdJ0awymC0i4fa310mrs6dnTG2ofKGLI-E8E,132
|
|
|
1137
1149
|
teradataml/plot/plot.py,sha256=3gnC6rtrLxhV9wY5Tfejqx-DvxDFzPW3m8_bYTmcFdg,32450
|
|
1138
1150
|
teradataml/plot/query_generator.py,sha256=so8_w73Qday0b5hGUvJNrx9ELkYgXFpwjTUsbjNZvJg,3552
|
|
1139
1151
|
teradataml/plot/subplot.py,sha256=c-Npnr5LWb4TUHwfdwzMsZBiti6FunzdFC5EtcuOWjY,10246
|
|
1140
|
-
teradataml/scriptmgmt/UserEnv.py,sha256=
|
|
1152
|
+
teradataml/scriptmgmt/UserEnv.py,sha256=TgGLSHnOraBqrKtEKch_53Y7CZLrPTL6gfTqHt8jA7w,203912
|
|
1141
1153
|
teradataml/scriptmgmt/__init__.py,sha256=dG0Yef5V3gLu1KasRhBLd6OgdC2NAFqjzJC8BDhark8,185
|
|
1142
|
-
teradataml/scriptmgmt/lls_utils.py,sha256=
|
|
1154
|
+
teradataml/scriptmgmt/lls_utils.py,sha256=L2DvY1I9NQlKx-3QQ2eKGFg3MGsVKfTY0LJ-i-CsVsM,97663
|
|
1143
1155
|
teradataml/sdk/README.md,sha256=VGfz2dKiH0pA8iJqfsbDU_rh43fsn7xYK2oam_K0590,5355
|
|
1144
1156
|
teradataml/sdk/__init__.py,sha256=aKiN-rFiaGECXKhgRpgDrSRHSLYReZ34ddaiuC_2w-g,233
|
|
1145
1157
|
teradataml/sdk/_auth_modes.py,sha256=4O8W5LLceD4xp2F1xe--DgnTl6uhha6H0D57YGG1nCk,15183
|
|
1146
1158
|
teradataml/sdk/_func_params.py,sha256=mzyvuB4MoXlHJU9fNuj0fqdrIw1bEmgoguEGrBsghN4,21110
|
|
1147
|
-
teradataml/sdk/_json_parser.py,sha256=
|
|
1159
|
+
teradataml/sdk/_json_parser.py,sha256=GuFslG-MKPSFgw_SrzzICB-HoNzpgtWQ0gz1Pa2N0Rg,22136
|
|
1148
1160
|
teradataml/sdk/_openapi_spec_constants.py,sha256=osIt-Z0DZKAqiF_7CUhiV87VhK8GKKWIYCZH29dYJa0,6850
|
|
1149
1161
|
teradataml/sdk/_utils.py,sha256=cmCFjQgjTJdCaP-xoaNZysmiTBx_qCCmxNfsIk3D8Ko,10717
|
|
1150
|
-
teradataml/sdk/api_client.py,sha256=
|
|
1162
|
+
teradataml/sdk/api_client.py,sha256=T6-3pJXuTA3NHquy-TouXFcnv0eLncCrgZSx-kJrA_w,37458
|
|
1151
1163
|
teradataml/sdk/constants.py,sha256=uzohRFJTk6Y3IqEjd1cDwrprPzIEuSlYWlN06k0mTI4,1751
|
|
1152
1164
|
teradataml/sdk/spinner.py,sha256=dF4aOGpNQWBWeczgkvWIVN6t8rr-vf1IGRlhl6jowPo,2979
|
|
1153
1165
|
teradataml/sdk/modelops/__init__.py,sha256=LC4W2Ytq8bAVccBp_UX4mieeN0kQoNrV8sow2wM_Cxs,3690
|
|
1154
|
-
teradataml/sdk/modelops/_client.py,sha256=
|
|
1166
|
+
teradataml/sdk/modelops/_client.py,sha256=ioy8GZ9ACNNM7xn0Qaq6NRS3IU1oQJbVhsE1CIGJkSg,17150
|
|
1155
1167
|
teradataml/sdk/modelops/_constants.py,sha256=FR2Mwr6JEW2QRUfcqFESeV72t0wJ8CtnLivnUxDQow8,9383
|
|
1156
1168
|
teradataml/sdk/modelops/models.py,sha256=6jMB5E7qPy2E_DfAw352LgFNcr6ogHDw_ucunkaf4Ws,72632
|
|
1157
1169
|
teradataml/series/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
1158
|
-
teradataml/series/series.py,sha256=
|
|
1170
|
+
teradataml/series/series.py,sha256=zYA9NlfdmXNoLG_jkxyW8kxaltoS6vOZrbsM2XKNFYQ,18089
|
|
1159
1171
|
teradataml/series/series_utils.py,sha256=ufuY8Z5oVB6K3ro23AXaxg6aAjjjEYg4jbAf1_W8aDU,2681
|
|
1160
1172
|
teradataml/store/__init__.py,sha256=ZpAk6_ccnFm6VjBKooLZigHAKVjjNeccyMb52NbWZJA,396
|
|
1161
1173
|
teradataml/store/feature_store/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
1162
|
-
teradataml/store/feature_store/constants.py,sha256=
|
|
1163
|
-
teradataml/store/feature_store/feature_store.py,sha256=
|
|
1164
|
-
teradataml/store/feature_store/
|
|
1174
|
+
teradataml/store/feature_store/constants.py,sha256=lVHu9FWWoF8yH66UQo-s0XEp8kxnDebAzfpc1MsctQM,27559
|
|
1175
|
+
teradataml/store/feature_store/feature_store.py,sha256=NV_jS5Vt6SQtq9xyl-jpXbEGFMvAlGrgNdUFKY1kvtw,200833
|
|
1176
|
+
teradataml/store/feature_store/mind_map.py,sha256=tqMzJ2SanhlE-PpSZ7SWFWSYs7b_F5oxFCzhi-cDMAg,25682
|
|
1177
|
+
teradataml/store/feature_store/models.py,sha256=9VI-0ApTraKLuJ3Afl8uFZY_fASAuQlHrjj1bhratX0,307066
|
|
1178
|
+
teradataml/store/feature_store/utils.py,sha256=brQIvP-e70WWl6GH2tH6h6GRWkv8tmzLHsiws1Pxr5M,15109
|
|
1165
1179
|
teradataml/table_operators/Apply.py,sha256=ABtXaR42SYymw6sHtAN9YvwxLpn5kudxIkAeNfH_piM,44487
|
|
1166
1180
|
teradataml/table_operators/Script.py,sha256=Quh9_GngNHbNnIEd3xrw5R8hR1EBSWddbxZBU4FIhm0,78495
|
|
1167
1181
|
teradataml/table_operators/TableOperator.py,sha256=yKn0XLtQwhjs1cdDG0IM4ZLEZBO9sRn_vBE_RTIIoKg,77099
|
|
@@ -1169,22 +1183,23 @@ teradataml/table_operators/__init__.py,sha256=MTuTiCyGt7Le4MQ5XEfTyp_9Za-vAIreZh
|
|
|
1169
1183
|
teradataml/table_operators/apply_query_generator.py,sha256=41ah294SyyG0tl88h8og7AXOWDzT1Lb1J1GjO0M1swA,12207
|
|
1170
1184
|
teradataml/table_operators/query_generator.py,sha256=odqpOTD2IzNg2TB6YgZBwWYY3nDK8rLv5VhqdjpDBYE,22291
|
|
1171
1185
|
teradataml/table_operators/table_operator_query_generator.py,sha256=luATy6uVS8-ixvObaxmPvNro76BNCiVwytYIHOnAnK8,22456
|
|
1172
|
-
teradataml/table_operators/table_operator_util.py,sha256=
|
|
1186
|
+
teradataml/table_operators/table_operator_util.py,sha256=AwzrLJpA5ZsoFbuc5aSiW-pXxa2ZXM2YRvmy6TOZAhE,33871
|
|
1173
1187
|
teradataml/table_operators/templates/dataframe_apply.template,sha256=3FiK_nivSf343xlYHfCJA2pn0dycvX_pB0daKBXg64M,8054
|
|
1174
1188
|
teradataml/table_operators/templates/dataframe_map.template,sha256=KrTTYj0HFco0Z_mV6FcLvkw-kzngCDw-zhmmTSX0J7k,7683
|
|
1175
|
-
teradataml/table_operators/templates/dataframe_register.template,sha256=
|
|
1176
|
-
teradataml/table_operators/templates/dataframe_udf.template,sha256=
|
|
1189
|
+
teradataml/table_operators/templates/dataframe_register.template,sha256=hYVok9TDP7jUR5KRJay4pkeulUKAGAn6JQNxsahqPu0,2955
|
|
1190
|
+
teradataml/table_operators/templates/dataframe_udf.template,sha256=VAYPTrJxNArs2Vs3Yc0u-PS2RWGRonJbF97KDuBGVxI,2674
|
|
1177
1191
|
teradataml/table_operators/templates/script_executor.template,sha256=dLqU8z2WXi1BfGppyD3sRdv-oukjrjhO5gr0ClUljI0,6976
|
|
1178
1192
|
teradataml/telemetry_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
1179
1193
|
teradataml/telemetry_utils/queryband.py,sha256=yMq-hY81elmNoFpHNsMBxOMv--jMB81d9QFxDUppV4g,2354
|
|
1180
1194
|
teradataml/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
1181
|
-
teradataml/utils/
|
|
1182
|
-
teradataml/utils/
|
|
1195
|
+
teradataml/utils/docstring.py,sha256=86XEfseOqhHl0NBTc8XWd-ubY6447fGLH-WrVvkxPiw,18919
|
|
1196
|
+
teradataml/utils/dtypes.py,sha256=Ci5iGAcWvQIw3-3jUHg8lAl8NOqpMSs7UniK6lTGwXg,32125
|
|
1197
|
+
teradataml/utils/internal_buffer.py,sha256=NpvcNqKh7X0svppEoW2cjYkHc7HoLzmMRuCe7jCtKSg,3056
|
|
1183
1198
|
teradataml/utils/print_versions.py,sha256=m-ByrRZEQkiCmDyaBNknwpE8UhYY1bPPlW3YYHDTrlc,6535
|
|
1184
|
-
teradataml/utils/utils.py,sha256=
|
|
1185
|
-
teradataml/utils/validators.py,sha256=
|
|
1186
|
-
teradataml-20.0.0.
|
|
1187
|
-
teradataml-20.0.0.
|
|
1188
|
-
teradataml-20.0.0.
|
|
1189
|
-
teradataml-20.0.0.
|
|
1190
|
-
teradataml-20.0.0.
|
|
1199
|
+
teradataml/utils/utils.py,sha256=eIod0G6uRprA0G4L7mN1UTwO4OrfIv74-4jxBr3688Q,19129
|
|
1200
|
+
teradataml/utils/validators.py,sha256=O1HyFGa2J3gDIHRLx-LS_BiH9cP6YJJlZ1oVMsYT5Z4,135553
|
|
1201
|
+
teradataml-20.0.0.7.dist-info/METADATA,sha256=xXmt1XIYMG3DqVAB-5BVmq8Po9RbXTV6uhF7nwA9k6Q,155514
|
|
1202
|
+
teradataml-20.0.0.7.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
|
|
1203
|
+
teradataml-20.0.0.7.dist-info/top_level.txt,sha256=j0jkK8Hmxb5acGSNrbbEePXSgqTQEItdFZXhyJT7qUM,11
|
|
1204
|
+
teradataml-20.0.0.7.dist-info/zip-safe,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
|
|
1205
|
+
teradataml-20.0.0.7.dist-info/RECORD,,
|
|
File without changes
|