teradataml 20.0.0.3__py3-none-any.whl → 20.0.0.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/README.md +193 -1
- teradataml/__init__.py +2 -1
- teradataml/_version.py +2 -2
- teradataml/analytics/analytic_function_executor.py +25 -18
- teradataml/analytics/byom/__init__.py +1 -1
- teradataml/analytics/json_parser/analytic_functions_argument.py +4 -0
- teradataml/analytics/sqle/__init__.py +20 -2
- teradataml/analytics/utils.py +15 -1
- teradataml/analytics/valib.py +18 -4
- teradataml/automl/__init__.py +341 -112
- teradataml/automl/autodataprep/__init__.py +471 -0
- teradataml/automl/data_preparation.py +84 -42
- teradataml/automl/data_transformation.py +69 -33
- teradataml/automl/feature_engineering.py +76 -9
- teradataml/automl/feature_exploration.py +639 -25
- teradataml/automl/model_training.py +35 -14
- teradataml/clients/auth_client.py +2 -2
- teradataml/common/__init__.py +1 -2
- teradataml/common/constants.py +122 -63
- teradataml/common/messagecodes.py +14 -3
- teradataml/common/messages.py +8 -4
- teradataml/common/sqlbundle.py +40 -10
- teradataml/common/utils.py +366 -74
- teradataml/common/warnings.py +11 -0
- teradataml/context/context.py +348 -86
- teradataml/data/amazon_reviews_25.csv +26 -0
- teradataml/data/apriori_example.json +22 -0
- teradataml/data/byom_example.json +11 -0
- teradataml/data/docs/byom/docs/DataRobotPredict.py +2 -2
- teradataml/data/docs/byom/docs/DataikuPredict.py +40 -1
- teradataml/data/docs/byom/docs/H2OPredict.py +2 -2
- teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
- teradataml/data/docs/byom/docs/ONNXPredict.py +2 -2
- teradataml/data/docs/byom/docs/PMMLPredict.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
- teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
- teradataml/data/docs/sqle/docs_17_20/Shap.py +28 -6
- teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +54 -3
- teradataml/data/docs/uaf/docs_17_20/ACF.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +4 -1
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +4 -4
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +6 -6
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +4 -4
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/PACF.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +3 -3
- teradataml/data/docs/uaf/docs_17_20/Resample.py +5 -5
- teradataml/data/docs/uaf/docs_17_20/SAX.py +3 -3
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +3 -3
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +1 -1
- teradataml/data/hnsw_alter_data.csv +5 -0
- teradataml/data/hnsw_data.csv +10 -0
- teradataml/data/jsons/byom/h2opredict.json +1 -1
- teradataml/data/jsons/byom/onnxembeddings.json +266 -0
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +6 -6
- teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
- teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
- teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +0 -1
- teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +114 -9
- teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +328 -0
- teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +420 -0
- teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +343 -0
- teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +328 -0
- teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +328 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +328 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +328 -0
- teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +359 -0
- teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +360 -0
- teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +343 -0
- teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +343 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
- teradataml/data/jsons/sqle/20.00/TD_KMeans.json +2 -2
- teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +3 -3
- teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +6 -6
- teradataml/data/ner_dict.csv +8 -0
- teradataml/data/ner_input_eng.csv +7 -0
- teradataml/data/ner_rule.csv +5 -0
- teradataml/data/pos_input.csv +40 -0
- teradataml/data/tdnerextractor_example.json +14 -0
- teradataml/data/teradataml_example.json +21 -0
- teradataml/data/textmorph_example.json +5 -0
- teradataml/data/to_num_data.csv +4 -0
- teradataml/data/tochar_data.csv +5 -0
- teradataml/data/trans_dense.csv +16 -0
- teradataml/data/trans_sparse.csv +55 -0
- teradataml/data/vectordistance_example.json +1 -1
- teradataml/dataframe/copy_to.py +45 -29
- teradataml/dataframe/data_transfer.py +72 -46
- teradataml/dataframe/dataframe.py +642 -166
- teradataml/dataframe/dataframe_utils.py +167 -22
- teradataml/dataframe/functions.py +135 -20
- teradataml/dataframe/setop.py +11 -6
- teradataml/dataframe/sql.py +330 -78
- teradataml/dbutils/dbutils.py +556 -140
- teradataml/dbutils/filemgr.py +14 -10
- teradataml/hyperparameter_tuner/optimizer.py +12 -1
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/opensource/{sklearn/_sklearn_wrapper.py → _base.py} +168 -1013
- teradataml/opensource/_class.py +141 -17
- teradataml/opensource/{constants.py → _constants.py} +7 -3
- teradataml/opensource/_lightgbm.py +52 -53
- teradataml/opensource/_sklearn.py +1008 -0
- teradataml/opensource/_wrapper_utils.py +5 -5
- teradataml/options/__init__.py +47 -15
- teradataml/options/configure.py +103 -26
- teradataml/options/display.py +13 -2
- teradataml/plot/axis.py +47 -8
- teradataml/plot/figure.py +33 -0
- teradataml/plot/plot.py +63 -13
- teradataml/scriptmgmt/UserEnv.py +307 -40
- teradataml/scriptmgmt/lls_utils.py +428 -145
- teradataml/store/__init__.py +2 -3
- teradataml/store/feature_store/feature_store.py +102 -7
- teradataml/table_operators/Apply.py +48 -19
- teradataml/table_operators/Script.py +23 -2
- teradataml/table_operators/TableOperator.py +3 -1
- teradataml/table_operators/table_operator_util.py +58 -9
- teradataml/utils/dtypes.py +49 -1
- teradataml/utils/internal_buffer.py +38 -0
- teradataml/utils/validators.py +377 -62
- {teradataml-20.0.0.3.dist-info → teradataml-20.0.0.5.dist-info}/METADATA +200 -4
- {teradataml-20.0.0.3.dist-info → teradataml-20.0.0.5.dist-info}/RECORD +146 -112
- teradataml/data/SQL_Fundamentals.pdf +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/sklearn/__init__.py +0 -0
- teradataml/store/vector_store/__init__.py +0 -1586
- {teradataml-20.0.0.3.dist-info → teradataml-20.0.0.5.dist-info}/WHEEL +0 -0
- {teradataml-20.0.0.3.dist-info → teradataml-20.0.0.5.dist-info}/top_level.txt +0 -0
- {teradataml-20.0.0.3.dist-info → teradataml-20.0.0.5.dist-info}/zip-safe +0 -0
|
@@ -26,10 +26,10 @@ from teradataml.context import context as tdmlctx
|
|
|
26
26
|
from teradataml.dataframe.copy_to import copy_to_sql
|
|
27
27
|
from teradataml.dataframe.dataframe import DataFrame
|
|
28
28
|
from teradataml import execute_sql, get_connection
|
|
29
|
-
from teradataml import SVM, GLM, DecisionForest, XGBoost, GridSearch, KNN, RandomSearch
|
|
29
|
+
from teradataml import configure, SVM, GLM, DecisionForest, XGBoost, GridSearch, KNN, RandomSearch
|
|
30
30
|
from teradataml.utils.validators import _Validators
|
|
31
31
|
from teradataml.common.utils import UtilFuncs
|
|
32
|
-
|
|
32
|
+
from teradataml.common.constants import TeradataConstants
|
|
33
33
|
|
|
34
34
|
class _ModelTraining:
|
|
35
35
|
|
|
@@ -114,6 +114,12 @@ class _ModelTraining:
|
|
|
114
114
|
session.
|
|
115
115
|
Default Value: False
|
|
116
116
|
Types: bool
|
|
117
|
+
|
|
118
|
+
seed:
|
|
119
|
+
Optional Argument.
|
|
120
|
+
Specifies the random seed for reproducibility.
|
|
121
|
+
Default Value: 42
|
|
122
|
+
Types: int
|
|
117
123
|
"""
|
|
118
124
|
self.data = data
|
|
119
125
|
self.target_column = target_column
|
|
@@ -126,6 +132,7 @@ class _ModelTraining:
|
|
|
126
132
|
self.startify_col = None
|
|
127
133
|
self.persist = kwargs.get("persist", False)
|
|
128
134
|
self.volatile = kwargs.get("volatile", False)
|
|
135
|
+
self.seed = kwargs.get("seed", 42)
|
|
129
136
|
|
|
130
137
|
def model_training(self,
|
|
131
138
|
auto=True,
|
|
@@ -499,7 +506,7 @@ class _ModelTraining:
|
|
|
499
506
|
'max_depth': tuple(max_depth),
|
|
500
507
|
'min_node_size': tuple(min_node_size),
|
|
501
508
|
'iter_num': tuple(iter_num),
|
|
502
|
-
'seed':
|
|
509
|
+
'seed':self.seed
|
|
503
510
|
}
|
|
504
511
|
# Hyperparameters for Decision Forest model
|
|
505
512
|
df_params = {
|
|
@@ -510,7 +517,7 @@ class _ModelTraining:
|
|
|
510
517
|
'max_depth': tuple(max_depth),
|
|
511
518
|
'min_node_size': tuple(min_node_size),
|
|
512
519
|
'num_trees': tuple(num_trees),
|
|
513
|
-
'seed':
|
|
520
|
+
'seed':self.seed
|
|
514
521
|
}
|
|
515
522
|
|
|
516
523
|
# Updating model type in case of classification
|
|
@@ -768,7 +775,7 @@ class _ModelTraining:
|
|
|
768
775
|
|
|
769
776
|
# Defining training data
|
|
770
777
|
data_types = ['lasso', 'rfe', 'pca']
|
|
771
|
-
trainng_datas = tuple(DataFrame(self.
|
|
778
|
+
trainng_datas = tuple(DataFrame(self.data_mapping[f'{data_type}_train']) for data_type in data_types)
|
|
772
779
|
|
|
773
780
|
if self.task_type == "Classification":
|
|
774
781
|
response_values = trainng_datas[0].get(self.target_column).drop_duplicate().get_values().flatten().tolist()
|
|
@@ -874,16 +881,30 @@ class _ModelTraining:
|
|
|
874
881
|
verbose = 0
|
|
875
882
|
|
|
876
883
|
# Hyperparameter tunning
|
|
884
|
+
# Parallel run opens multiple connections for parallel execution,
|
|
885
|
+
# but volatile tables are not accessible across different sessions.
|
|
886
|
+
# Therefore, execution is performed sequentially by setting run_parallel=False.
|
|
887
|
+
|
|
888
|
+
run_parallel = configure.temp_object_type != TeradataConstants.TERADATA_VOLATILE_TABLE
|
|
889
|
+
|
|
890
|
+
common_params = {
|
|
891
|
+
"data": train_data,
|
|
892
|
+
"evaluation_metric": self.stopping_metric,
|
|
893
|
+
"early_stop": self.stopping_tolerance,
|
|
894
|
+
"run_parallel": run_parallel,
|
|
895
|
+
"sample_seed": self.seed,
|
|
896
|
+
"sample_id_column": "id",
|
|
897
|
+
"discard_invalid_column_params": True,
|
|
898
|
+
"stratify_column": self.startify_col,
|
|
899
|
+
"verbose": verbose,
|
|
900
|
+
"max_time": self.max_runtime_secs,
|
|
901
|
+
"suppress_refer_msg": True
|
|
902
|
+
}
|
|
903
|
+
|
|
877
904
|
if model_param['name'] == 'knn':
|
|
878
|
-
_obj.fit(
|
|
879
|
-
early_stop=self.stopping_tolerance, run_parallel=True,
|
|
880
|
-
sample_seed=42, sample_id_column='id', discard_invalid_column_params=True,
|
|
881
|
-
stratify_column=self.startify_col,verbose=verbose, max_time=self.max_runtime_secs)
|
|
905
|
+
_obj.fit(**common_params)
|
|
882
906
|
else:
|
|
883
|
-
_obj.fit(
|
|
884
|
-
early_stop=self.stopping_tolerance, **eval_params,
|
|
885
|
-
run_parallel=True, discard_invalid_column_params=True, sample_seed=42,
|
|
886
|
-
sample_id_column='id',stratify_column=self.startify_col, verbose=verbose, max_time=self.max_runtime_secs)
|
|
907
|
+
_obj.fit(**common_params, **eval_params)
|
|
887
908
|
|
|
888
909
|
# Getting all passed models
|
|
889
910
|
model_info = _obj.model_stats.merge(_obj.models[_obj.models['STATUS']=='PASS'][['MODEL_ID', 'DATA_ID', 'PARAMETERS']],
|
|
@@ -992,4 +1013,4 @@ class _ModelTraining:
|
|
|
992
1013
|
elif ml_name == 'glm':
|
|
993
1014
|
eval_params['family'] = 'GAUSSIAN'
|
|
994
1015
|
|
|
995
|
-
return eval_params
|
|
1016
|
+
return eval_params
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
"""
|
|
2
2
|
Unpublished work.
|
|
3
|
-
Copyright (c)
|
|
3
|
+
Copyright (c) 2025 by Teradata Corporation. All rights reserved.
|
|
4
4
|
TERADATA CORPORATION CONFIDENTIAL AND TRADE SECRET
|
|
5
5
|
Primary Owner: gouri.patwardhan@teradata.com
|
|
6
6
|
Secondary Owner: Pradeep.Garre@teradata.com
|
|
@@ -67,7 +67,7 @@ class _AuthWorkflow:
|
|
|
67
67
|
dict
|
|
68
68
|
"""
|
|
69
69
|
# Extract the pem file name without extension.
|
|
70
|
-
kid = pathlib.Path(self.state.get('pem_file')).stem
|
|
70
|
+
kid = pathlib.Path(self.state.get('pem_file')).stem if not self.state.get('kid') else self.state['kid']
|
|
71
71
|
header = {
|
|
72
72
|
"alg": "RS256",
|
|
73
73
|
"kid": kid,
|
teradataml/common/__init__.py
CHANGED
|
@@ -1,2 +1 @@
|
|
|
1
|
-
from teradataml.common.formula import as_categorical
|
|
2
|
-
from teradataml.common.constants import Action, Permission
|
|
1
|
+
from teradataml.common.formula import as_categorical
|
teradataml/common/constants.py
CHANGED
|
@@ -14,14 +14,13 @@ A class for holding all constants
|
|
|
14
14
|
import re
|
|
15
15
|
import sqlalchemy
|
|
16
16
|
from enum import Enum
|
|
17
|
-
from teradataml.options.configure import configure
|
|
18
17
|
from teradatasqlalchemy.types import (INTEGER, SMALLINT, BIGINT, BYTEINT, DECIMAL, FLOAT, NUMBER, VARCHAR)
|
|
19
18
|
from teradatasqlalchemy.types import (DATE, TIME, TIMESTAMP)
|
|
20
19
|
from teradatasqlalchemy.types import (BYTE, VARBYTE, BLOB)
|
|
21
20
|
from teradatasqlalchemy import (CHAR, CLOB)
|
|
22
21
|
from teradatasqlalchemy import (PERIOD_DATE, PERIOD_TIME, PERIOD_TIMESTAMP)
|
|
23
22
|
from teradatasqlalchemy import (INTERVAL_YEAR, INTERVAL_YEAR_TO_MONTH, INTERVAL_MONTH,
|
|
24
|
-
INTERVAL_DAY,INTERVAL_DAY_TO_HOUR, INTERVAL_DAY_TO_MINUTE,
|
|
23
|
+
INTERVAL_DAY, INTERVAL_DAY_TO_HOUR, INTERVAL_DAY_TO_MINUTE,
|
|
25
24
|
INTERVAL_DAY_TO_SECOND, INTERVAL_HOUR,
|
|
26
25
|
INTERVAL_HOUR_TO_MINUTE, INTERVAL_HOUR_TO_SECOND,
|
|
27
26
|
INTERVAL_MINUTE, INTERVAL_MINUTE_TO_SECOND,
|
|
@@ -62,6 +61,8 @@ class SQLConstants(Enum):
|
|
|
62
61
|
SQL_DELETE_SPECIFIC_ROW = 30
|
|
63
62
|
SQL_EXEC_STORED_PROCEDURE = 31
|
|
64
63
|
SQL_SELECT_COLUMNNAMES_WITH_WHERE = 32
|
|
64
|
+
SQL_HELP_DATABASE = 33
|
|
65
|
+
SQL_HELP_DATALAKE = 34
|
|
65
66
|
CONSTRAINT = ["check_constraint", "primary_key_constraint",
|
|
66
67
|
"foreign_key_constraint", "unique_key_constraint"]
|
|
67
68
|
|
|
@@ -81,7 +82,7 @@ class TeradataConstants(Enum):
|
|
|
81
82
|
# Order of operators
|
|
82
83
|
# shouldn't be changed. This is the order in which join condition is tested - first, operators
|
|
83
84
|
# with two characters and then the operators with single character.
|
|
84
|
-
SUPPORTED_ENGINES = {"ENGINE_SQL"
|
|
85
|
+
SUPPORTED_ENGINES = {"ENGINE_SQL": {"name": "sqle", "file": "sqlengine_alias_definitions"}}
|
|
85
86
|
SUPPORTED_VANTAGE_VERSIONS = {"vantage1.0": "v1.0", "vantage1.1": "v1.1",
|
|
86
87
|
"vantage1.3": "v1.3", "vantage2.0": "v1.1"}
|
|
87
88
|
RANGE_SEPARATORS = [":"]
|
|
@@ -89,7 +90,7 @@ class TeradataConstants(Enum):
|
|
|
89
90
|
|
|
90
91
|
class AEDConstants(Enum):
|
|
91
92
|
AED_NODE_NOT_EXECUTED = 0
|
|
92
|
-
AED_NODE_EXECUTED
|
|
93
|
+
AED_NODE_EXECUTED = 1
|
|
93
94
|
AED_DB_OBJECT_NAME_BUFFER_SIZE = 128
|
|
94
95
|
AED_NODE_TYPE_BUFFER_SIZE = 32
|
|
95
96
|
AED_ASSIGN_DROP_EXISITING_COLUMNS = "Y"
|
|
@@ -147,7 +148,7 @@ class TeradataTableKindConstants(Enum):
|
|
|
147
148
|
TABLE = "table"
|
|
148
149
|
VIEW = "view"
|
|
149
150
|
TEMP = "temp"
|
|
150
|
-
ALL
|
|
151
|
+
ALL = "all"
|
|
151
152
|
ML_PATTERN = "ml_%"
|
|
152
153
|
VOLATILE_TABLE_NAME = 'Table Name'
|
|
153
154
|
REGULAR_TABLE_NAME = 'TableName'
|
|
@@ -219,7 +220,7 @@ class ModelCatalogingConstants(Enum):
|
|
|
219
220
|
|
|
220
221
|
|
|
221
222
|
class CopyToConstants(Enum):
|
|
222
|
-
DBAPI_BATCHSIZE
|
|
223
|
+
DBAPI_BATCHSIZE = 16383
|
|
223
224
|
|
|
224
225
|
|
|
225
226
|
class PTITableConstants(Enum):
|
|
@@ -376,34 +377,34 @@ class GeospatialConstants(Enum):
|
|
|
376
377
|
"buffer": lambda x: "ST_Buffer",
|
|
377
378
|
"contains": lambda x: "ST_Contains",
|
|
378
379
|
"crosses": lambda x: "ST_Crosses",
|
|
379
|
-
"difference": lambda x: "ST_Difference",
|
|
380
|
+
"difference": lambda x: "ST_Difference", # M
|
|
380
381
|
"disjoint": lambda x: "ST_Disjoint",
|
|
381
|
-
"distance": lambda x: "ST_Distance",
|
|
382
|
-
"distance_3D": lambda x: "ST_3DDistance",
|
|
382
|
+
"distance": lambda x: "ST_Distance", # M
|
|
383
|
+
"distance_3D": lambda x: "ST_3DDistance", # M
|
|
383
384
|
"geom_equals": lambda x: "ST_Equals",
|
|
384
385
|
"intersection": lambda x: "ST_Intersection",
|
|
385
|
-
#"intersect": lambda x: "ST_Intersect", # M
|
|
386
|
+
# "intersect": lambda x: "ST_Intersect", # M
|
|
386
387
|
"make_2D": lambda x: "Make_2D",
|
|
387
388
|
"overlaps": lambda x: "ST_Overlaps",
|
|
388
389
|
"relates": lambda x: "ST_Relate",
|
|
389
390
|
"simplify": lambda x: "SimplifyPreserveTopology",
|
|
390
|
-
"sym_difference": lambda x: "ST_SymDifference",
|
|
391
|
+
"sym_difference": lambda x: "ST_SymDifference", # M
|
|
391
392
|
"touches": lambda x: "ST_Touches",
|
|
392
393
|
"transform": lambda x: "ST_Transform",
|
|
393
394
|
"union": lambda x: "ST_Union",
|
|
394
395
|
"within": lambda x: "ST_Within",
|
|
395
|
-
"wkb_geom_to_sql": lambda x: "ST_WKBToSQL",
|
|
396
|
-
"wkt_geom_to_sql": lambda x: "ST_WKTToSQL",
|
|
396
|
+
"wkb_geom_to_sql": lambda x: "ST_WKBToSQL", # M
|
|
397
|
+
"wkt_geom_to_sql": lambda x: "ST_WKTToSQL", # M
|
|
397
398
|
"set_srid": lambda x: "ST_SRID",
|
|
398
399
|
|
|
399
400
|
## *** Geometry Type ST_Point Methods *** ##
|
|
400
401
|
"set_x": lambda x: "ST_X",
|
|
401
402
|
"set_y": lambda x: "ST_Y",
|
|
402
403
|
"set_z": lambda x: "ST_Z",
|
|
403
|
-
"spherical_buffer": lambda x: "ST_SphericalBufferMBR",
|
|
404
|
-
"spherical_distance": lambda x: "ST_SphericalDistance",
|
|
405
|
-
"spheroidal_buffer": lambda x: "ST_SpheroidalBufferMBR",
|
|
406
|
-
"spheroidal_distance": lambda x: "ST_SpheroidalDistance",
|
|
404
|
+
"spherical_buffer": lambda x: "ST_SphericalBufferMBR", # M
|
|
405
|
+
"spherical_distance": lambda x: "ST_SphericalDistance", # M
|
|
406
|
+
"spheroidal_buffer": lambda x: "ST_SpheroidalBufferMBR", # M
|
|
407
|
+
"spheroidal_distance": lambda x: "ST_SpheroidalDistance", # M
|
|
407
408
|
|
|
408
409
|
## *** Geometry Type ST_LineString Methods *** ##
|
|
409
410
|
"line_interpolate_point": lambda x: "ST_Line_Interpolate_Point",
|
|
@@ -485,11 +486,18 @@ class TableOperatorConstants(Enum):
|
|
|
485
486
|
|
|
486
487
|
# Check if Python interpretor and add-ons are installed or not.
|
|
487
488
|
# Location of In-DB packages is indicated by configure.indb_install_location.
|
|
489
|
+
# Check for both python and pip versions.
|
|
488
490
|
CHECK_PYTHON_INSTALLED = """SELECT distinct * FROM SCRIPT(
|
|
489
491
|
ON (select 1) PARTITION BY ANY
|
|
490
|
-
SCRIPT_COMMAND('{}/bin/pip3 --version')
|
|
491
|
-
returns('
|
|
492
|
+
SCRIPT_COMMAND('echo $({0}/bin/pip3 --version) -- $({0}/bin/python3 --version)')
|
|
493
|
+
returns('pip VARCHAR(256)'))
|
|
492
494
|
"""
|
|
495
|
+
# Check which version of rpms are installed.
|
|
496
|
+
INDB_PYTHON_PATH = """SEL DISTINCT os_ver
|
|
497
|
+
FROM SCRIPT(
|
|
498
|
+
SCRIPT_COMMAND('grep CPE_NAME /etc/os-release')
|
|
499
|
+
RETURNS('os_ver VARCHAR(100)')
|
|
500
|
+
);"""
|
|
493
501
|
|
|
494
502
|
# Script Query to get Python packages and corresponding versions.
|
|
495
503
|
# Location of In-DB packages is indicated by configure.indb_install_location.
|
|
@@ -501,9 +509,18 @@ class TableOperatorConstants(Enum):
|
|
|
501
509
|
"delimiter(' ') " \
|
|
502
510
|
"returns('package VARCHAR({2}), " \
|
|
503
511
|
"version VARCHAR({2})'))"
|
|
504
|
-
|
|
512
|
+
|
|
505
513
|
SCRIPT_LIST_FILES_QUERY = "SELECT DISTINCT * FROM SCRIPT (SCRIPT_COMMAND " \
|
|
506
|
-
|
|
514
|
+
"('ls ./{}') RETURNS ('Files VARCHAR({})'))"
|
|
515
|
+
|
|
516
|
+
|
|
517
|
+
# OpenBlas by default is multi-threaded, needs to be set to single-threaded.
|
|
518
|
+
OPENBLAS_NUM_THREADS = "OPENBLAS_NUM_THREADS=1"
|
|
519
|
+
|
|
520
|
+
# Query to create a DataFrame with a range of numbers.
|
|
521
|
+
RANGE_QUERY = "WITH RECURSIVE NumberSeries (id) AS (SELECT id AS id from {0} "\
|
|
522
|
+
"UNION ALL SELECT id {3} {1} FROM NumberSeries WHERE id {3} {1} {4} {2}) "\
|
|
523
|
+
"SELECT id FROM NumberSeries;"
|
|
507
524
|
|
|
508
525
|
class ValibConstants(Enum):
|
|
509
526
|
# A dictionary that maps teradataml name of the exposed VALIB function name
|
|
@@ -802,7 +819,8 @@ class ValibConstants(Enum):
|
|
|
802
819
|
"subdivision_method": "subdivisionmethod",
|
|
803
820
|
"subdivision_threshold": "subdivisionthreshold",
|
|
804
821
|
"filter": "where",
|
|
805
|
-
"gen_sql_only": "gensqlonly"
|
|
822
|
+
"gen_sql_only": "gensqlonly",
|
|
823
|
+
"charset": "charset"
|
|
806
824
|
},
|
|
807
825
|
|
|
808
826
|
"DATAEXPLORER": {
|
|
@@ -819,7 +837,8 @@ class ValibConstants(Enum):
|
|
|
819
837
|
"stats_options": "statsoptions",
|
|
820
838
|
"distinct": "uniques",
|
|
821
839
|
"filter": "where",
|
|
822
|
-
"gen_sql": "gensql"
|
|
840
|
+
"gen_sql": "gensql",
|
|
841
|
+
"charset": "charset"
|
|
823
842
|
},
|
|
824
843
|
|
|
825
844
|
"FREQUENCY": {
|
|
@@ -833,7 +852,8 @@ class ValibConstants(Enum):
|
|
|
833
852
|
"style": "style",
|
|
834
853
|
"top_n": "topvalues",
|
|
835
854
|
"filter": "where",
|
|
836
|
-
"gen_sql_only": "gensqlonly"
|
|
855
|
+
"gen_sql_only": "gensqlonly",
|
|
856
|
+
"charset": "charset"
|
|
837
857
|
},
|
|
838
858
|
|
|
839
859
|
"HISTOGRAM": {
|
|
@@ -848,7 +868,8 @@ class ValibConstants(Enum):
|
|
|
848
868
|
"stats_columns": "statisticscolumns",
|
|
849
869
|
"hist_style": "style",
|
|
850
870
|
"filter": "where",
|
|
851
|
-
"gen_sql_only": "gensqlonly"
|
|
871
|
+
"gen_sql_only": "gensqlonly",
|
|
872
|
+
"charset": "charset"
|
|
852
873
|
},
|
|
853
874
|
|
|
854
875
|
"STATISTICS": {
|
|
@@ -859,7 +880,8 @@ class ValibConstants(Enum):
|
|
|
859
880
|
"statistical_method": "statisticalmethod",
|
|
860
881
|
"stats_options": "statsoptions",
|
|
861
882
|
"filter": "where",
|
|
862
|
-
"gen_sql_only": "gensqlonly"
|
|
883
|
+
"gen_sql_only": "gensqlonly",
|
|
884
|
+
"charset": "charset"
|
|
863
885
|
},
|
|
864
886
|
|
|
865
887
|
"TEXTFIELDANALYZER": {
|
|
@@ -867,7 +889,8 @@ class ValibConstants(Enum):
|
|
|
867
889
|
"exclude_columns": "columnstoexclude",
|
|
868
890
|
"analyze_numerics": "extendednumericanalysis",
|
|
869
891
|
"analyze_unicode": "extendedunicodeanalysis",
|
|
870
|
-
"gen_sql_only": "gensqlonly"
|
|
892
|
+
"gen_sql_only": "gensqlonly",
|
|
893
|
+
"charset": "charset"
|
|
871
894
|
},
|
|
872
895
|
|
|
873
896
|
"VALUES": {
|
|
@@ -876,7 +899,8 @@ class ValibConstants(Enum):
|
|
|
876
899
|
"group_columns": "groupby",
|
|
877
900
|
"distinct": "uniques",
|
|
878
901
|
"filter": "where",
|
|
879
|
-
"gen_sql_only": "gensqlonly"
|
|
902
|
+
"gen_sql_only": "gensqlonly",
|
|
903
|
+
"charset": "charset"
|
|
880
904
|
},
|
|
881
905
|
|
|
882
906
|
"ASSOCIATION": {
|
|
@@ -901,7 +925,8 @@ class ValibConstants(Enum):
|
|
|
901
925
|
"filter": "where",
|
|
902
926
|
"no_support_results": "dropsupporttables",
|
|
903
927
|
"support_result_prefix": "resulttableprefix",
|
|
904
|
-
"gen_sql_only": "gensqlonly"
|
|
928
|
+
"gen_sql_only": "gensqlonly",
|
|
929
|
+
"charset": "charset"
|
|
905
930
|
},
|
|
906
931
|
|
|
907
932
|
"KMEANS": {
|
|
@@ -911,7 +936,8 @@ class ValibConstants(Enum):
|
|
|
911
936
|
"continuation": "continuation",
|
|
912
937
|
"max_iter": "iterations",
|
|
913
938
|
"operator_database": "operatordatabase",
|
|
914
|
-
"threshold": "threshold"
|
|
939
|
+
"threshold": "threshold",
|
|
940
|
+
"charset": "charset"
|
|
915
941
|
},
|
|
916
942
|
|
|
917
943
|
"KMEANSSCORE": {
|
|
@@ -919,7 +945,8 @@ class ValibConstants(Enum):
|
|
|
919
945
|
"cluster_column": "clustername",
|
|
920
946
|
"fallback": "fallback",
|
|
921
947
|
"operator_database": "operatordatabase",
|
|
922
|
-
"accumulate": "retain"
|
|
948
|
+
"accumulate": "retain",
|
|
949
|
+
"charset": "charset"
|
|
923
950
|
},
|
|
924
951
|
|
|
925
952
|
"DECISIONTREE": {
|
|
@@ -931,7 +958,8 @@ class ValibConstants(Enum):
|
|
|
931
958
|
"max_depth": "max_depth",
|
|
932
959
|
"num_splits": "min_records",
|
|
933
960
|
"operator_database": "operatordatabase",
|
|
934
|
-
"pruning": "pruning"
|
|
961
|
+
"pruning": "pruning",
|
|
962
|
+
"charset": "charset"
|
|
935
963
|
},
|
|
936
964
|
|
|
937
965
|
"DECISIONTREESCORE": {
|
|
@@ -941,7 +969,8 @@ class ValibConstants(Enum):
|
|
|
941
969
|
"profile": "profiletables",
|
|
942
970
|
"accumulate": "retain",
|
|
943
971
|
"targeted_value": "targetedvalue",
|
|
944
|
-
"gen_sql_only": "gensqlonly"
|
|
972
|
+
"gen_sql_only": "gensqlonly",
|
|
973
|
+
"charset": "charset"
|
|
945
974
|
},
|
|
946
975
|
|
|
947
976
|
"MATRIX": {
|
|
@@ -951,7 +980,8 @@ class ValibConstants(Enum):
|
|
|
951
980
|
"matrix_output": "matrixoutput",
|
|
952
981
|
"type": "matrixtype",
|
|
953
982
|
"handle_nulls": "nullhandling",
|
|
954
|
-
"filter": "where"
|
|
983
|
+
"filter": "where",
|
|
984
|
+
"charset": "charset"
|
|
955
985
|
},
|
|
956
986
|
|
|
957
987
|
"LINEAR": {
|
|
@@ -973,7 +1003,8 @@ class ValibConstants(Enum):
|
|
|
973
1003
|
"stepwise": "stepwise",
|
|
974
1004
|
"use_fstat": "usefstat",
|
|
975
1005
|
"use_pvalue": "usepvalue",
|
|
976
|
-
"variance_prop_threshold": "varianceproportionthreshold"
|
|
1006
|
+
"variance_prop_threshold": "varianceproportionthreshold",
|
|
1007
|
+
"charset": "charset"
|
|
977
1008
|
},
|
|
978
1009
|
|
|
979
1010
|
"LINEARSCORE": {
|
|
@@ -981,7 +1012,8 @@ class ValibConstants(Enum):
|
|
|
981
1012
|
"response_column": "predicted",
|
|
982
1013
|
"residual_column": "residual",
|
|
983
1014
|
"accumulate": "retain",
|
|
984
|
-
"gen_sql_only": "gensqlonly"
|
|
1015
|
+
"gen_sql_only": "gensqlonly",
|
|
1016
|
+
"charset": "charset"
|
|
985
1017
|
},
|
|
986
1018
|
|
|
987
1019
|
"LOGISTIC": {
|
|
@@ -1011,7 +1043,8 @@ class ValibConstants(Enum):
|
|
|
1011
1043
|
"end_threshold": "thresholdend",
|
|
1012
1044
|
"increment_threshold": "thresholdincrement",
|
|
1013
1045
|
"threshold_output": "thresholdtable",
|
|
1014
|
-
"variance_prop_threshold": "varianceproportionthreshold"
|
|
1046
|
+
"variance_prop_threshold": "varianceproportionthreshold",
|
|
1047
|
+
"charset": "charset"
|
|
1015
1048
|
},
|
|
1016
1049
|
|
|
1017
1050
|
"LOGISTICSCORE": {
|
|
@@ -1023,7 +1056,8 @@ class ValibConstants(Enum):
|
|
|
1023
1056
|
"start_threshold": "thresholdbegin",
|
|
1024
1057
|
"end_threshold": "thresholdend",
|
|
1025
1058
|
"increment_threshold": "thresholdincrement",
|
|
1026
|
-
"gen_sql_only": "gensqlonly"
|
|
1059
|
+
"gen_sql_only": "gensqlonly",
|
|
1060
|
+
"charset": "charset"
|
|
1027
1061
|
|
|
1028
1062
|
# The following 3 arguments three should not be present for LogRegPredict function
|
|
1029
1063
|
# where as when the function is LogRegEvaluator, at least one of these should be
|
|
@@ -1051,13 +1085,15 @@ class ValibConstants(Enum):
|
|
|
1051
1085
|
"rotation_type": "rotationtype",
|
|
1052
1086
|
"load_threshold": "thresholdloading",
|
|
1053
1087
|
"percent_threshold": "thresholdpercent",
|
|
1054
|
-
"variance_prop_threshold": "varianceproportionthreshold"
|
|
1088
|
+
"variance_prop_threshold": "varianceproportionthreshold",
|
|
1089
|
+
"charset": "charset"
|
|
1055
1090
|
},
|
|
1056
1091
|
|
|
1057
1092
|
"FACTORSCORE": {
|
|
1058
1093
|
"index_columns": "index",
|
|
1059
1094
|
"accumulate": "retain",
|
|
1060
|
-
"gen_sql_only": "gensqlonly"
|
|
1095
|
+
"gen_sql_only": "gensqlonly",
|
|
1096
|
+
"charset": "charset"
|
|
1061
1097
|
},
|
|
1062
1098
|
|
|
1063
1099
|
"PARAMETRICTEST": {
|
|
@@ -1076,7 +1112,8 @@ class ValibConstants(Enum):
|
|
|
1076
1112
|
"style": "teststyle",
|
|
1077
1113
|
"probability_threshold": "thresholdprobability",
|
|
1078
1114
|
"with_indicator": "withindicator",
|
|
1079
|
-
"gen_sql_only": "gensqlonly"
|
|
1115
|
+
"gen_sql_only": "gensqlonly",
|
|
1116
|
+
"charset": "charset"
|
|
1080
1117
|
},
|
|
1081
1118
|
|
|
1082
1119
|
"BINOMIALTEST": {
|
|
@@ -1091,7 +1128,8 @@ class ValibConstants(Enum):
|
|
|
1091
1128
|
"stats_database": "statsdatabase",
|
|
1092
1129
|
"style": "teststyle",
|
|
1093
1130
|
"probability_threshold": "thresholdprobability",
|
|
1094
|
-
"gen_sql_only": "gensqlonly"
|
|
1131
|
+
"gen_sql_only": "gensqlonly",
|
|
1132
|
+
"charset": "charset"
|
|
1095
1133
|
},
|
|
1096
1134
|
|
|
1097
1135
|
"KSTEST": {
|
|
@@ -1103,7 +1141,8 @@ class ValibConstants(Enum):
|
|
|
1103
1141
|
"stats_database": "statsdatabase",
|
|
1104
1142
|
"style": "teststyle",
|
|
1105
1143
|
"probability_threshold": "thresholdprobability",
|
|
1106
|
-
"gen_sql_only": "gensqlonly"
|
|
1144
|
+
"gen_sql_only": "gensqlonly",
|
|
1145
|
+
"charset": "charset"
|
|
1107
1146
|
},
|
|
1108
1147
|
|
|
1109
1148
|
"CHISQUARETEST": {
|
|
@@ -1117,7 +1156,8 @@ class ValibConstants(Enum):
|
|
|
1117
1156
|
"stats_database": "statsdatabase",
|
|
1118
1157
|
"style": "teststyle",
|
|
1119
1158
|
"probability_threshold": "thresholdprobability",
|
|
1120
|
-
"gen_sql_only": "gensqlonly"
|
|
1159
|
+
"gen_sql_only": "gensqlonly",
|
|
1160
|
+
"charset": "charset"
|
|
1121
1161
|
},
|
|
1122
1162
|
|
|
1123
1163
|
"RANKTEST": {
|
|
@@ -1136,7 +1176,8 @@ class ValibConstants(Enum):
|
|
|
1136
1176
|
"style": "teststyle",
|
|
1137
1177
|
"probability_threshold": "thresholdprobability",
|
|
1138
1178
|
"treatment_column": "treatmentcolumn",
|
|
1139
|
-
"gen_sql_only": "gensqlonly"
|
|
1179
|
+
"gen_sql_only": "gensqlonly",
|
|
1180
|
+
"charset": "charset"
|
|
1140
1181
|
},
|
|
1141
1182
|
|
|
1142
1183
|
"VARTRAN": {
|
|
@@ -1147,13 +1188,15 @@ class ValibConstants(Enum):
|
|
|
1147
1188
|
"allow_duplicates": "multiset",
|
|
1148
1189
|
"nopi": "noindex",
|
|
1149
1190
|
"filter": "whereclause",
|
|
1150
|
-
"gen_sql_only": "gensqlonly"
|
|
1191
|
+
"gen_sql_only": "gensqlonly",
|
|
1192
|
+
"charset": "charset"
|
|
1151
1193
|
},
|
|
1152
1194
|
|
|
1153
1195
|
"REPORT": {
|
|
1154
1196
|
"analysis_type": "analysistype",
|
|
1155
1197
|
"filter": "where",
|
|
1156
|
-
"gen_sql_only": "gensqlonly"
|
|
1198
|
+
"gen_sql_only": "gensqlonly",
|
|
1199
|
+
"charset": "charset"
|
|
1157
1200
|
}
|
|
1158
1201
|
}
|
|
1159
1202
|
|
|
@@ -1321,7 +1364,7 @@ class SQLFunctionConstants(Enum):
|
|
|
1321
1364
|
"regexp_replace": "REGEXP_REPLACE",
|
|
1322
1365
|
"regexp_similar": "REGEXP_SIMILAR",
|
|
1323
1366
|
"regexp_substr": "REGEXP_SUBSTR",
|
|
1324
|
-
|
|
1367
|
+
|
|
1325
1368
|
# DateTime Functions
|
|
1326
1369
|
'week_begin': 'td_week_begin',
|
|
1327
1370
|
'week_start': 'td_week_begin',
|
|
@@ -1392,6 +1435,7 @@ class TeradataReservedKeywords(Enum):
|
|
|
1392
1435
|
"TYPE"
|
|
1393
1436
|
]
|
|
1394
1437
|
|
|
1438
|
+
|
|
1395
1439
|
class TeradataAnalyticFunctionTypes(Enum):
|
|
1396
1440
|
SQLE = "FASTPATH"
|
|
1397
1441
|
UAF = "UAF"
|
|
@@ -1401,15 +1445,15 @@ class TeradataAnalyticFunctionTypes(Enum):
|
|
|
1401
1445
|
|
|
1402
1446
|
|
|
1403
1447
|
class TeradataAnalyticFunctionInfo(Enum):
|
|
1404
|
-
|
|
1405
|
-
FASTPATH = {"func_type": "sqle", "lowest_version": "16.20", "display_function_type_name" :"SQLE"}
|
|
1448
|
+
FASTPATH = {"func_type": "sqle", "lowest_version": "16.20", "display_function_type_name": "SQLE"}
|
|
1406
1449
|
UAF = {"func_type": "uaf", "lowest_version": "17.20", "display_function_type_name": "UAF",
|
|
1407
|
-
"metadata_class"
|
|
1450
|
+
"metadata_class": "_AnlyFuncMetadataUAF"}
|
|
1408
1451
|
TABLE_OPERATOR = {"func_type": "tableoperator", "lowest_version": "17.00 ",
|
|
1409
|
-
"display_function_type_name"
|
|
1452
|
+
"display_function_type_name": "TABLE OPERATOR"}
|
|
1410
1453
|
BYOM = {"func_type": "byom", "lowest_version": None, "display_function_type_name": "BYOM"}
|
|
1411
1454
|
STORED_PROCEDURE = {"func_type": "storedprocedure", "lowest_version": "17.20", "display_function_type_name": "UAF",
|
|
1412
|
-
|
|
1455
|
+
"metadata_class": "_AnlyFuncMetadataUAF"}
|
|
1456
|
+
|
|
1413
1457
|
|
|
1414
1458
|
class TeradataUAFSpecificArgs(Enum):
|
|
1415
1459
|
INPUT_MODE = "input_mode"
|
|
@@ -1417,9 +1461,11 @@ class TeradataUAFSpecificArgs(Enum):
|
|
|
1417
1461
|
OUTPUT_FMT_INDEX = "output_fmt_index"
|
|
1418
1462
|
OUTPUT_FMT_INDEX_STYLE = "output_fmt_index_style"
|
|
1419
1463
|
|
|
1464
|
+
|
|
1420
1465
|
class Query(Enum):
|
|
1421
1466
|
VANTAGE_VERSION = "SELECT InfoData FROM DBC.DBCInfoV where InfoKey = 'VERSION'"
|
|
1422
1467
|
|
|
1468
|
+
|
|
1423
1469
|
class DriverEscapeFunctions(Enum):
|
|
1424
1470
|
# Holds variables for the teradatasql driver escape functions to be used
|
|
1425
1471
|
NATIVE_SQL = "{fn teradata_nativesql}"
|
|
@@ -1448,6 +1494,7 @@ class HTTPRequest(Enum):
|
|
|
1448
1494
|
POST = "post"
|
|
1449
1495
|
PUT = "put"
|
|
1450
1496
|
DELETE = "delete"
|
|
1497
|
+
PATCH = "patch"
|
|
1451
1498
|
|
|
1452
1499
|
|
|
1453
1500
|
class AsyncStatusColumns(Enum):
|
|
@@ -1459,6 +1506,13 @@ class AsyncStatusColumns(Enum):
|
|
|
1459
1506
|
ADDITIONAL_DETAILS = "Additional Details"
|
|
1460
1507
|
|
|
1461
1508
|
|
|
1509
|
+
class AsyncOpStatus(Enum):
|
|
1510
|
+
# Holds valid status for asynchronous operatiosns in UES.
|
|
1511
|
+
FILE_INSTALLED = "File Installed"
|
|
1512
|
+
ERRED = "Errored"
|
|
1513
|
+
FINISHED = "Finished"
|
|
1514
|
+
|
|
1515
|
+
|
|
1462
1516
|
class CloudProvider(Enum):
|
|
1463
1517
|
# Holds variable names for Cloud Providers.
|
|
1464
1518
|
AWS = "AWS"
|
|
@@ -1468,7 +1522,8 @@ class CloudProvider(Enum):
|
|
|
1468
1522
|
X_MS_VERSION = "2019-12-12"
|
|
1469
1523
|
X_MS_BLOB_TYPE = "BlockBlob"
|
|
1470
1524
|
|
|
1471
|
-
|
|
1525
|
+
|
|
1526
|
+
class SessionParamsSQL(Enum):
|
|
1472
1527
|
# Holds the SQL Statements for Session params.
|
|
1473
1528
|
TIMEZONE = "SET TIME ZONE {}"
|
|
1474
1529
|
ACCOUNT = "SET SESSION ACCOUNT = '{}' FOR {}"
|
|
@@ -1488,7 +1543,8 @@ class SessionParamsSQL:
|
|
|
1488
1543
|
QUERY_BAND = "SET QUERY_BAND = {} FOR {}"
|
|
1489
1544
|
UDFSEARCHPATH = "SET SESSION UDFSEARCHPATH = {} FOR FUNCTION = {}"
|
|
1490
1545
|
|
|
1491
|
-
|
|
1546
|
+
|
|
1547
|
+
class SessionParamsPythonNames(Enum):
|
|
1492
1548
|
# Holds the SQL Statements for Session params.
|
|
1493
1549
|
TIMEZONE = "Session Time Zone"
|
|
1494
1550
|
ACCOUNT = "Account Name"
|
|
@@ -1498,13 +1554,16 @@ class SessionParamsPythonNames:
|
|
|
1498
1554
|
DATEFORM = 'Current DateForm'
|
|
1499
1555
|
|
|
1500
1556
|
|
|
1501
|
-
class
|
|
1502
|
-
#
|
|
1503
|
-
|
|
1504
|
-
REVOKE = "REVOKE"
|
|
1557
|
+
class AutoMLConstants(Enum):
|
|
1558
|
+
# List stores feature selection methods
|
|
1559
|
+
FEATURE_SELECTION_MTDS = ["lasso", "rfe", "pca"]
|
|
1505
1560
|
|
|
1506
|
-
class Permission(Enum):
|
|
1507
|
-
# Holds variable names for the type of permission to be provided.
|
|
1508
|
-
READ = "READ"
|
|
1509
|
-
WRITE = "WRITE"
|
|
1510
1561
|
|
|
1562
|
+
class AuthMechs(Enum):
|
|
1563
|
+
"""
|
|
1564
|
+
Enum to hold permitted values for authentication mechanism.
|
|
1565
|
+
"""
|
|
1566
|
+
OAUTH = "OAuth"
|
|
1567
|
+
JWT = "JWT"
|
|
1568
|
+
PAT = "PAT"
|
|
1569
|
+
BASIC = "BASIC"
|