teradataml 20.0.0.3__py3-none-any.whl → 20.0.0.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/README.md +193 -1
- teradataml/__init__.py +2 -1
- teradataml/_version.py +2 -2
- teradataml/analytics/analytic_function_executor.py +25 -18
- teradataml/analytics/byom/__init__.py +1 -1
- teradataml/analytics/json_parser/analytic_functions_argument.py +4 -0
- teradataml/analytics/sqle/__init__.py +20 -2
- teradataml/analytics/utils.py +15 -1
- teradataml/analytics/valib.py +18 -4
- teradataml/automl/__init__.py +341 -112
- teradataml/automl/autodataprep/__init__.py +471 -0
- teradataml/automl/data_preparation.py +84 -42
- teradataml/automl/data_transformation.py +69 -33
- teradataml/automl/feature_engineering.py +76 -9
- teradataml/automl/feature_exploration.py +639 -25
- teradataml/automl/model_training.py +35 -14
- teradataml/clients/auth_client.py +2 -2
- teradataml/common/__init__.py +1 -2
- teradataml/common/constants.py +122 -63
- teradataml/common/messagecodes.py +14 -3
- teradataml/common/messages.py +8 -4
- teradataml/common/sqlbundle.py +40 -10
- teradataml/common/utils.py +366 -74
- teradataml/common/warnings.py +11 -0
- teradataml/context/context.py +348 -86
- teradataml/data/amazon_reviews_25.csv +26 -0
- teradataml/data/apriori_example.json +22 -0
- teradataml/data/byom_example.json +11 -0
- teradataml/data/docs/byom/docs/DataRobotPredict.py +2 -2
- teradataml/data/docs/byom/docs/DataikuPredict.py +40 -1
- teradataml/data/docs/byom/docs/H2OPredict.py +2 -2
- teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
- teradataml/data/docs/byom/docs/ONNXPredict.py +2 -2
- teradataml/data/docs/byom/docs/PMMLPredict.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
- teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
- teradataml/data/docs/sqle/docs_17_20/Shap.py +28 -6
- teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +54 -3
- teradataml/data/docs/uaf/docs_17_20/ACF.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +4 -1
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +4 -4
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +6 -6
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +4 -4
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/PACF.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +2 -2
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +3 -3
- teradataml/data/docs/uaf/docs_17_20/Resample.py +5 -5
- teradataml/data/docs/uaf/docs_17_20/SAX.py +3 -3
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +1 -1
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +3 -3
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +1 -1
- teradataml/data/hnsw_alter_data.csv +5 -0
- teradataml/data/hnsw_data.csv +10 -0
- teradataml/data/jsons/byom/h2opredict.json +1 -1
- teradataml/data/jsons/byom/onnxembeddings.json +266 -0
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +6 -6
- teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
- teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
- teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +0 -1
- teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +114 -9
- teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +328 -0
- teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +420 -0
- teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +343 -0
- teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +328 -0
- teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +328 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +328 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +328 -0
- teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +359 -0
- teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +360 -0
- teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +343 -0
- teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +343 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
- teradataml/data/jsons/sqle/20.00/TD_KMeans.json +2 -2
- teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +3 -3
- teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +6 -6
- teradataml/data/ner_dict.csv +8 -0
- teradataml/data/ner_input_eng.csv +7 -0
- teradataml/data/ner_rule.csv +5 -0
- teradataml/data/pos_input.csv +40 -0
- teradataml/data/tdnerextractor_example.json +14 -0
- teradataml/data/teradataml_example.json +21 -0
- teradataml/data/textmorph_example.json +5 -0
- teradataml/data/to_num_data.csv +4 -0
- teradataml/data/tochar_data.csv +5 -0
- teradataml/data/trans_dense.csv +16 -0
- teradataml/data/trans_sparse.csv +55 -0
- teradataml/data/vectordistance_example.json +1 -1
- teradataml/dataframe/copy_to.py +45 -29
- teradataml/dataframe/data_transfer.py +72 -46
- teradataml/dataframe/dataframe.py +642 -166
- teradataml/dataframe/dataframe_utils.py +167 -22
- teradataml/dataframe/functions.py +135 -20
- teradataml/dataframe/setop.py +11 -6
- teradataml/dataframe/sql.py +330 -78
- teradataml/dbutils/dbutils.py +556 -140
- teradataml/dbutils/filemgr.py +14 -10
- teradataml/hyperparameter_tuner/optimizer.py +12 -1
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/opensource/{sklearn/_sklearn_wrapper.py → _base.py} +168 -1013
- teradataml/opensource/_class.py +141 -17
- teradataml/opensource/{constants.py → _constants.py} +7 -3
- teradataml/opensource/_lightgbm.py +52 -53
- teradataml/opensource/_sklearn.py +1008 -0
- teradataml/opensource/_wrapper_utils.py +5 -5
- teradataml/options/__init__.py +47 -15
- teradataml/options/configure.py +103 -26
- teradataml/options/display.py +13 -2
- teradataml/plot/axis.py +47 -8
- teradataml/plot/figure.py +33 -0
- teradataml/plot/plot.py +63 -13
- teradataml/scriptmgmt/UserEnv.py +307 -40
- teradataml/scriptmgmt/lls_utils.py +428 -145
- teradataml/store/__init__.py +2 -3
- teradataml/store/feature_store/feature_store.py +102 -7
- teradataml/table_operators/Apply.py +48 -19
- teradataml/table_operators/Script.py +23 -2
- teradataml/table_operators/TableOperator.py +3 -1
- teradataml/table_operators/table_operator_util.py +58 -9
- teradataml/utils/dtypes.py +49 -1
- teradataml/utils/internal_buffer.py +38 -0
- teradataml/utils/validators.py +377 -62
- {teradataml-20.0.0.3.dist-info → teradataml-20.0.0.5.dist-info}/METADATA +200 -4
- {teradataml-20.0.0.3.dist-info → teradataml-20.0.0.5.dist-info}/RECORD +146 -112
- teradataml/data/SQL_Fundamentals.pdf +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/sklearn/__init__.py +0 -0
- teradataml/store/vector_store/__init__.py +0 -1586
- {teradataml-20.0.0.3.dist-info → teradataml-20.0.0.5.dist-info}/WHEEL +0 -0
- {teradataml-20.0.0.3.dist-info → teradataml-20.0.0.5.dist-info}/top_level.txt +0 -0
- {teradataml-20.0.0.3.dist-info → teradataml-20.0.0.5.dist-info}/zip-safe +0 -0
|
@@ -57,7 +57,7 @@ def DFFT(data=None, data_filter_expr=None, zero_padding_ok=True,
|
|
|
57
57
|
obtained by sampling at a rate of 10,000 hertz.
|
|
58
58
|
Note:
|
|
59
59
|
Applicable only when "freq_style" is set to 'K_HERTZ'.
|
|
60
|
-
Types: float
|
|
60
|
+
Types: int OR float
|
|
61
61
|
|
|
62
62
|
algorithm:
|
|
63
63
|
Optional Argument.
|
|
@@ -54,7 +54,7 @@ def DFFT2Conv(data=None, data_filter_expr=None, conv=None,
|
|
|
54
54
|
were obtained by sampling at a rate of 10,000 hertz.
|
|
55
55
|
Note:
|
|
56
56
|
* Applicable only when "freq_style" is set to 'K_HERTZ'.
|
|
57
|
-
Types: float
|
|
57
|
+
Types: int OR float
|
|
58
58
|
|
|
59
59
|
output_fmt_content:
|
|
60
60
|
Optional Argument.
|
|
@@ -202,7 +202,10 @@ def DWT2D(data1=None, data1_filter_expr=None, data2=None,
|
|
|
202
202
|
data2_filter_expr=data2.id==1,
|
|
203
203
|
input_fmt_input_mode="MANY2ONE")
|
|
204
204
|
|
|
205
|
-
#
|
|
205
|
+
# Print the result DataFrame.
|
|
206
|
+
print(uaf_out.result)
|
|
207
|
+
|
|
208
|
+
# Example 2: Perform discrete wavelet transform (DWT) for two-dimensional data
|
|
206
209
|
# using only one matrix as input and wavelet as 'haar'.
|
|
207
210
|
uaf_out = DWT2D(data1=data1_matrix_df,
|
|
208
211
|
wavelet='haar')
|
|
@@ -57,27 +57,27 @@ def FilterFactory1d(filter_id=None, filter_type=None,
|
|
|
57
57
|
A smaller value produces faster drop off at the cost of more coefficients.
|
|
58
58
|
Not used when "filter_length" is supplied.
|
|
59
59
|
Default is bandwidth from "filter_length".
|
|
60
|
-
Types: float
|
|
60
|
+
Types: int OR float
|
|
61
61
|
|
|
62
62
|
low_cutoff:
|
|
63
63
|
Optional Argument.
|
|
64
64
|
Specifies the lower frequency that change between a passband
|
|
65
65
|
and stopband occurs. It must be greater
|
|
66
66
|
than 0. It is not used by default with 'HIGHPASS' filter.
|
|
67
|
-
Types: float
|
|
67
|
+
Types: int OR float
|
|
68
68
|
|
|
69
69
|
high_cutoff:
|
|
70
70
|
Optional Argument.
|
|
71
71
|
Specifies the higher frequency that change
|
|
72
72
|
between a passband and stopband occurs. It must be greater
|
|
73
73
|
than 0 and not used by default with 'LOWPASS' filter.
|
|
74
|
-
Types: float
|
|
74
|
+
Types: int OR float
|
|
75
75
|
|
|
76
76
|
sampling_frequency:
|
|
77
77
|
Required Argument.
|
|
78
78
|
Specifies the frequency that the data to be filtered was
|
|
79
79
|
sampled. It must be greater than 0.
|
|
80
|
-
Types: float
|
|
80
|
+
Types: int OR float
|
|
81
81
|
|
|
82
82
|
filter_description:
|
|
83
83
|
Optional Argument.
|
|
@@ -40,8 +40,8 @@ def GenseriesSinusoids(data=None, data_filter_expr=None, periodicities=None,
|
|
|
40
40
|
Specifies the periodicity as a comma-separated list, which
|
|
41
41
|
contains one or more floating point values representing
|
|
42
42
|
periodicities.
|
|
43
|
-
Types: float, list of float
|
|
44
|
-
|
|
43
|
+
Types: int, list of int, float, list of float
|
|
44
|
+
|
|
45
45
|
output_fmt_index_style:
|
|
46
46
|
Optional Argument.
|
|
47
47
|
Specifies the index style of the output format.
|
|
@@ -53,7 +53,7 @@ def GoldfeldQuandt(data=None, data_filter_expr=None,
|
|
|
53
53
|
* not specified, then split-point index is calculate as:
|
|
54
54
|
start_idx = (N - omit) / 2
|
|
55
55
|
Where, 'N' is the total number of entries in the data series.
|
|
56
|
-
Types: float
|
|
56
|
+
Types: int OR float
|
|
57
57
|
|
|
58
58
|
omit:
|
|
59
59
|
Required Argument.
|
|
@@ -66,7 +66,7 @@ def GoldfeldQuandt(data=None, data_filter_expr=None,
|
|
|
66
66
|
Where 'N' is the total number of entries in the data series
|
|
67
67
|
* greater than 1.0, then "omit" is interpreted as number of
|
|
68
68
|
central points to omit.
|
|
69
|
-
Types: float
|
|
69
|
+
Types: int OR float
|
|
70
70
|
|
|
71
71
|
significance_level:
|
|
72
72
|
Required Argument.
|
|
@@ -37,7 +37,7 @@ def HoltWintersForecaster(data=None, data_filter_expr=None, forecast_periods=Non
|
|
|
37
37
|
the forecasting, else the "alpha" value is estimated using
|
|
38
38
|
goodness-of-fit metrics. Value must be greater than or equal
|
|
39
39
|
to 0 and less than or equal to 1.
|
|
40
|
-
Types: float
|
|
40
|
+
Types: int OR float
|
|
41
41
|
|
|
42
42
|
beta:
|
|
43
43
|
Optional Argument.
|
|
@@ -47,7 +47,7 @@ def HoltWintersForecaster(data=None, data_filter_expr=None, forecast_periods=Non
|
|
|
47
47
|
the forecasting, else the "beta" value is estimated using
|
|
48
48
|
goodness-of-fit metrics. Value must be greater than or equal
|
|
49
49
|
to 0 and less than or equal to 1.
|
|
50
|
-
Types: float
|
|
50
|
+
Types: int OR float
|
|
51
51
|
|
|
52
52
|
gamma:
|
|
53
53
|
Optional Argument.
|
|
@@ -57,7 +57,7 @@ def HoltWintersForecaster(data=None, data_filter_expr=None, forecast_periods=Non
|
|
|
57
57
|
the forecasting, else the "gamma" value is estimated using
|
|
58
58
|
goodness-of-fit metrics. Value must be greater than or equal
|
|
59
59
|
to 0 and less than or equal to 1.
|
|
60
|
-
Types: float
|
|
60
|
+
Types: int OR float
|
|
61
61
|
|
|
62
62
|
seasonal_periods:
|
|
63
63
|
Optional Argument.
|
|
@@ -74,14 +74,14 @@ def HoltWintersForecaster(data=None, data_filter_expr=None, forecast_periods=Non
|
|
|
74
74
|
Specifies the initialization value used as part of the fitting
|
|
75
75
|
and forecasting operations. If not specified, then the initialization
|
|
76
76
|
value is calculated as an additive level.
|
|
77
|
-
Types: float
|
|
77
|
+
Types: int OR float
|
|
78
78
|
|
|
79
79
|
init_trend:
|
|
80
80
|
Optional Argument.
|
|
81
81
|
Specifies the initialization value used as part of the fitting
|
|
82
82
|
and forecasting operations. If not specified, then the initialization
|
|
83
83
|
value is calculated as an additive trend.
|
|
84
|
-
Types: float
|
|
84
|
+
Types: int OR float
|
|
85
85
|
|
|
86
86
|
init_season:
|
|
87
87
|
Optional Argument.
|
|
@@ -89,7 +89,7 @@ def HoltWintersForecaster(data=None, data_filter_expr=None, forecast_periods=Non
|
|
|
89
89
|
specified, the initialization value is used as part of the
|
|
90
90
|
fitting and forecasting operations, else the initialization
|
|
91
91
|
value is calculated as a multiplicative seasonality.
|
|
92
|
-
Types: float, list of float
|
|
92
|
+
Types: int, list of int, float, list of float
|
|
93
93
|
|
|
94
94
|
model:
|
|
95
95
|
Required Argument.
|
|
@@ -68,7 +68,7 @@ def LineSpec(data=None, data_filter_expr=None, freq_style="K_INTEGRAL",
|
|
|
68
68
|
A value of 10000.0 indicates that the sample points were obtained
|
|
69
69
|
by sampling at a rate of 10,000 hertz. This hertz interpretation
|
|
70
70
|
applies to both the ROW_I and COLUMN_I indices.
|
|
71
|
-
Types: float
|
|
71
|
+
Types: int OR float
|
|
72
72
|
|
|
73
73
|
**generic_arguments:
|
|
74
74
|
Specifies the generic keyword arguments of UAF functions.
|
|
@@ -70,28 +70,28 @@ def Matrix2Image(data=None, data_filter_expr=None, image="PNG", type=None,
|
|
|
70
70
|
scaled. By default, the MIN and MAX values of the
|
|
71
71
|
payload are used as the range. Used when "type" is 'GRAY'
|
|
72
72
|
or 'COLORMAP'.
|
|
73
|
-
Types: float, list of float
|
|
73
|
+
Types: int, list of int, float, list of float
|
|
74
74
|
|
|
75
75
|
red:
|
|
76
76
|
Optional Argument.
|
|
77
77
|
Specifies the range of the first payload value. By
|
|
78
78
|
default, the MIN and MAX values of the payload are
|
|
79
79
|
used as the range. It is only used when "type" is 'RGB'.
|
|
80
|
-
Types: float, list of float
|
|
80
|
+
Types: int, list of int, float, list of float
|
|
81
81
|
|
|
82
82
|
green:
|
|
83
83
|
Optional Argument.
|
|
84
84
|
Specifies the range of the second payload value.By
|
|
85
85
|
default, the MIN and MAX values of the payload are
|
|
86
86
|
used as the range. It is only used when "type" is 'RGB'.
|
|
87
|
-
Types: float, list of float
|
|
87
|
+
Types: int, list of int, float, list of float
|
|
88
88
|
|
|
89
89
|
blue:
|
|
90
90
|
Optional Argument.
|
|
91
91
|
Specifies the range of the third payload value. By
|
|
92
92
|
default, the MIN and MAX values of the payload are
|
|
93
93
|
used as the range. It is only used when "type" is 'RGB'.
|
|
94
|
-
Types: float, list of float
|
|
94
|
+
Types: int, list of int, float, list of float
|
|
95
95
|
|
|
96
96
|
flip_x:
|
|
97
97
|
Optional Argument.
|
|
@@ -64,7 +64,7 @@ def PACF(data=None, data_filter_expr=None,
|
|
|
64
64
|
Specifies confidence intervals for the given level. For example, if 0.05 is entered,
|
|
65
65
|
then 95% confidence intervals are returned for standard deviation computed according
|
|
66
66
|
to Bartlett’s formula.
|
|
67
|
-
Types: float
|
|
67
|
+
Types: int OR float
|
|
68
68
|
|
|
69
69
|
**generic_arguments:
|
|
70
70
|
Specifies the generic keyword arguments of UAF functions.
|
|
@@ -51,7 +51,7 @@ def PowerSpec(data=None, data_filter_expr=None, freq_style=None,
|
|
|
51
51
|
points were obtained by sampling at a rate of 10,000 hertz.
|
|
52
52
|
Note:
|
|
53
53
|
* Only used with "freq_style" set to 'K_HERTZ'.
|
|
54
|
-
Types: float
|
|
54
|
+
Types: int OR float
|
|
55
55
|
|
|
56
56
|
zero_padding_ok:
|
|
57
57
|
Optional Argument.
|
|
@@ -111,7 +111,7 @@ def PowerSpec(data=None, data_filter_expr=None, freq_style=None,
|
|
|
111
111
|
hertz.
|
|
112
112
|
Note:
|
|
113
113
|
* Use when "window_name" is set to 'TUKEY'.
|
|
114
|
-
Types: float
|
|
114
|
+
Types: int OR float
|
|
115
115
|
|
|
116
116
|
**generic_arguments:
|
|
117
117
|
Specifies the generic keyword arguments of UAF functions.
|
|
@@ -43,18 +43,18 @@ def PowerTransform(data=None, data_filter_expr=None, back_transform=False,
|
|
|
43
43
|
p:
|
|
44
44
|
Required Argument.
|
|
45
45
|
Specifies the power to use in the transform equation.
|
|
46
|
-
Types: float
|
|
46
|
+
Types: int OR float
|
|
47
47
|
|
|
48
48
|
b:
|
|
49
49
|
Required Argument.
|
|
50
50
|
Specifies the logarithm to be applied for the transform equation.
|
|
51
|
-
Types: float
|
|
51
|
+
Types: int OR float
|
|
52
52
|
|
|
53
53
|
lambda1:
|
|
54
54
|
Required Argument.
|
|
55
55
|
Specifies the parameter used to decide the preferred
|
|
56
56
|
power transform operation during the Box-Cox transformation.
|
|
57
|
-
Types: float
|
|
57
|
+
Types: int OR float
|
|
58
58
|
|
|
59
59
|
output_fmt_index_style:
|
|
60
60
|
Optional Argument.
|
|
@@ -56,7 +56,7 @@ def Resample(data=None, data_filter_expr=None, timecode_start_value=None,
|
|
|
56
56
|
Provide either arguments "timecode_start_value" and
|
|
57
57
|
"timecode_duration", or arguments "sequence_start_value"
|
|
58
58
|
and "sequence_duration".
|
|
59
|
-
Types: float
|
|
59
|
+
Types: int OR float
|
|
60
60
|
|
|
61
61
|
sequence_duration:
|
|
62
62
|
Optional Argument.
|
|
@@ -65,7 +65,7 @@ def Resample(data=None, data_filter_expr=None, timecode_start_value=None,
|
|
|
65
65
|
Provide either arguments "timecode_start_value" and
|
|
66
66
|
"timecode_duration", or arguments "sequence_start_value"
|
|
67
67
|
and "sequence_duration".
|
|
68
|
-
Types: float
|
|
68
|
+
Types: int OR float
|
|
69
69
|
|
|
70
70
|
interpolate:
|
|
71
71
|
Required Argument.
|
|
@@ -84,7 +84,7 @@ def Resample(data=None, data_filter_expr=None, timecode_start_value=None,
|
|
|
84
84
|
Note:
|
|
85
85
|
* Applicable only when "interpolate" set to 'WEIGHTED'.
|
|
86
86
|
* The interpolated value is calculated as: Y_t = Y_{t_LEFT} * (1 - WEIGHT) + (Y-{t_RIGHT} * WEIGHT).
|
|
87
|
-
Types: float
|
|
87
|
+
Types: int OR float
|
|
88
88
|
|
|
89
89
|
spline_params_method:
|
|
90
90
|
Optional Argument.
|
|
@@ -106,7 +106,7 @@ def Resample(data=None, data_filter_expr=None, timecode_start_value=None,
|
|
|
106
106
|
* Used only when "interpolate" set to 'SPLINE'.
|
|
107
107
|
* Used only when "spline_params_method" set to 'CLAMPED'.
|
|
108
108
|
Default Value: 0.0
|
|
109
|
-
Types: float
|
|
109
|
+
Types: int OR float
|
|
110
110
|
|
|
111
111
|
spline_params_ypn:
|
|
112
112
|
Optional Argument.
|
|
@@ -116,7 +116,7 @@ def Resample(data=None, data_filter_expr=None, timecode_start_value=None,
|
|
|
116
116
|
* Used only when "interpolate" set to 'SPLINE'.
|
|
117
117
|
* Used only when "spline_params_method" set to 'CLAMPED'.
|
|
118
118
|
Default Value: 0.0
|
|
119
|
-
Types: float
|
|
119
|
+
Types: int OR float
|
|
120
120
|
|
|
121
121
|
output_fmt_index_style:
|
|
122
122
|
Optional Argument.
|
|
@@ -49,7 +49,7 @@ def SAX(data=None, data_filter_expr=None, window_type='GLOBAL',
|
|
|
49
49
|
the specified value will apply to all payloads.
|
|
50
50
|
* If "mean" specifies multiple values, each value will be
|
|
51
51
|
applied to its corresponding payload.
|
|
52
|
-
Types: float, list of float
|
|
52
|
+
Types: int, list of int, float, list of float
|
|
53
53
|
|
|
54
54
|
std_dev:
|
|
55
55
|
Optional Argument.
|
|
@@ -62,7 +62,7 @@ def SAX(data=None, data_filter_expr=None, window_type='GLOBAL',
|
|
|
62
62
|
the specified value will apply to all payloads.
|
|
63
63
|
* If "std_dev" specifies multiple values, each value will be
|
|
64
64
|
applied to its corresponding payload.
|
|
65
|
-
Types: float, list of float
|
|
65
|
+
Types: int, list of int, float, list of float
|
|
66
66
|
|
|
67
67
|
window_size:
|
|
68
68
|
Optional Argument, Required if "window_type" is SLIDING.
|
|
@@ -124,7 +124,7 @@ def SAX(data=None, data_filter_expr=None, window_type='GLOBAL',
|
|
|
124
124
|
breakpoints:
|
|
125
125
|
Optional Argument.
|
|
126
126
|
Specifies the breakpoints to form the SAX code based on "data".
|
|
127
|
-
Types: float, list of float
|
|
127
|
+
Types: int, list of int, float, list of float
|
|
128
128
|
|
|
129
129
|
output_fmt_index_style:
|
|
130
130
|
Optional Argument.
|
|
@@ -47,7 +47,7 @@ def SignifPeriodicities(data=None, data_filter_expr=None,
|
|
|
47
47
|
Required Argument.
|
|
48
48
|
Specifies the significant periodicities to perform
|
|
49
49
|
tests for each period.
|
|
50
|
-
Types: float
|
|
50
|
+
Types: int, list of int, float, list of float
|
|
51
51
|
|
|
52
52
|
**generic_arguments:
|
|
53
53
|
Specifies the generic keyword arguments of UAF functions.
|
|
@@ -36,7 +36,7 @@ def SimpleExp(data=None, data_filter_expr=None, forecast_periods=None,
|
|
|
36
36
|
is not specified, the value of 'alpha' is estimated by using
|
|
37
37
|
goodness-of-fit metrics. Value must be greater than or equal to
|
|
38
38
|
0 and less than or equal to 1.
|
|
39
|
-
Types: float
|
|
39
|
+
Types: int OR float
|
|
40
40
|
|
|
41
41
|
prediction_intervals:
|
|
42
42
|
Optional Argument.
|
|
@@ -67,7 +67,7 @@ def Smoothma(data=None, data_filter_expr=None, ma=None, window=None,
|
|
|
67
67
|
faster.
|
|
68
68
|
Note:
|
|
69
69
|
* Applicable only when "ma" is set to 'EXPONENTIAL'.
|
|
70
|
-
Types: float
|
|
70
|
+
Types: int OR float
|
|
71
71
|
|
|
72
72
|
weights:
|
|
73
73
|
Optional Argument.
|
|
@@ -80,7 +80,7 @@ def Smoothma(data=None, data_filter_expr=None, ma=None, window=None,
|
|
|
80
80
|
value if it is not specified.
|
|
81
81
|
Note:
|
|
82
82
|
* Applicable only when "ma" is set to 'MEAN'.
|
|
83
|
-
Types: float
|
|
83
|
+
Types: int OR float
|
|
84
84
|
|
|
85
85
|
well_known:
|
|
86
86
|
Optional Argument.
|
|
@@ -109,7 +109,7 @@ def Smoothma(data=None, data_filter_expr=None, ma=None, window=None,
|
|
|
109
109
|
For example, pad=4.5 applies a pad value of 4.5 for a series less than "window".
|
|
110
110
|
Note:
|
|
111
111
|
* Applicable only when "ma" is set to 'MEAN' or 'MEDIAN'.
|
|
112
|
-
Types: float
|
|
112
|
+
Types: int, float
|
|
113
113
|
|
|
114
114
|
output_fmt_index_style:
|
|
115
115
|
Optional Argument.
|
|
@@ -59,7 +59,7 @@ def UNDIFF(data1=None, data1_filter_expr=None, data2=None,
|
|
|
59
59
|
initial_values:
|
|
60
60
|
Optional Argument.
|
|
61
61
|
Specifies the starting values for the undifferencing operation.
|
|
62
|
-
Types: float OR list of float
|
|
62
|
+
Types: int, list of int, float OR list of float
|
|
63
63
|
|
|
64
64
|
input_fmt_input_mode:
|
|
65
65
|
Optional Argument.
|
|
@@ -142,7 +142,7 @@
|
|
|
142
142
|
"rDescription": " Specifies the model type as 'DAI' or 'OpenSource' for H2O model prediction. ",
|
|
143
143
|
"description": " Specifies the model type as 'DAI' or 'OpenSource' for H2O model prediction. ",
|
|
144
144
|
"datatype": "STRING",
|
|
145
|
-
"allowsLists":
|
|
145
|
+
"allowsLists": false,
|
|
146
146
|
"rName": "model.type",
|
|
147
147
|
"useInR": true,
|
|
148
148
|
"rOrderNum": 6
|