teradataml 20.0.0.3__py3-none-any.whl → 20.0.0.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (151) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/README.md +193 -1
  3. teradataml/__init__.py +2 -1
  4. teradataml/_version.py +2 -2
  5. teradataml/analytics/analytic_function_executor.py +25 -18
  6. teradataml/analytics/byom/__init__.py +1 -1
  7. teradataml/analytics/json_parser/analytic_functions_argument.py +4 -0
  8. teradataml/analytics/sqle/__init__.py +20 -2
  9. teradataml/analytics/utils.py +15 -1
  10. teradataml/analytics/valib.py +18 -4
  11. teradataml/automl/__init__.py +341 -112
  12. teradataml/automl/autodataprep/__init__.py +471 -0
  13. teradataml/automl/data_preparation.py +84 -42
  14. teradataml/automl/data_transformation.py +69 -33
  15. teradataml/automl/feature_engineering.py +76 -9
  16. teradataml/automl/feature_exploration.py +639 -25
  17. teradataml/automl/model_training.py +35 -14
  18. teradataml/clients/auth_client.py +2 -2
  19. teradataml/common/__init__.py +1 -2
  20. teradataml/common/constants.py +122 -63
  21. teradataml/common/messagecodes.py +14 -3
  22. teradataml/common/messages.py +8 -4
  23. teradataml/common/sqlbundle.py +40 -10
  24. teradataml/common/utils.py +366 -74
  25. teradataml/common/warnings.py +11 -0
  26. teradataml/context/context.py +348 -86
  27. teradataml/data/amazon_reviews_25.csv +26 -0
  28. teradataml/data/apriori_example.json +22 -0
  29. teradataml/data/byom_example.json +11 -0
  30. teradataml/data/docs/byom/docs/DataRobotPredict.py +2 -2
  31. teradataml/data/docs/byom/docs/DataikuPredict.py +40 -1
  32. teradataml/data/docs/byom/docs/H2OPredict.py +2 -2
  33. teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
  34. teradataml/data/docs/byom/docs/ONNXPredict.py +2 -2
  35. teradataml/data/docs/byom/docs/PMMLPredict.py +2 -2
  36. teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
  37. teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
  38. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
  40. teradataml/data/docs/sqle/docs_17_20/Shap.py +28 -6
  41. teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
  42. teradataml/data/docs/sqle/docs_17_20/TextParser.py +54 -3
  43. teradataml/data/docs/uaf/docs_17_20/ACF.py +1 -1
  44. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +2 -2
  45. teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +2 -2
  46. teradataml/data/docs/uaf/docs_17_20/DFFT.py +1 -1
  47. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +1 -1
  48. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +1 -1
  49. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +1 -1
  50. teradataml/data/docs/uaf/docs_17_20/DWT2D.py +4 -1
  51. teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +4 -4
  52. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +2 -2
  53. teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +2 -2
  54. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +6 -6
  55. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +1 -1
  56. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +1 -1
  57. teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +4 -4
  58. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +1 -1
  59. teradataml/data/docs/uaf/docs_17_20/PACF.py +1 -1
  60. teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +2 -2
  61. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +3 -3
  62. teradataml/data/docs/uaf/docs_17_20/Resample.py +5 -5
  63. teradataml/data/docs/uaf/docs_17_20/SAX.py +3 -3
  64. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +1 -1
  65. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +1 -1
  66. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +3 -3
  67. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +1 -1
  68. teradataml/data/hnsw_alter_data.csv +5 -0
  69. teradataml/data/hnsw_data.csv +10 -0
  70. teradataml/data/jsons/byom/h2opredict.json +1 -1
  71. teradataml/data/jsons/byom/onnxembeddings.json +266 -0
  72. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +6 -6
  73. teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
  74. teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
  75. teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
  76. teradataml/data/jsons/sqle/17.20/TD_Shap.json +0 -1
  77. teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
  78. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +114 -9
  79. teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +328 -0
  80. teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +420 -0
  81. teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +343 -0
  82. teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +328 -0
  83. teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +328 -0
  84. teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +328 -0
  85. teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +328 -0
  86. teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +359 -0
  87. teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +360 -0
  88. teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +343 -0
  89. teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +343 -0
  90. teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
  91. teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
  92. teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
  93. teradataml/data/jsons/sqle/20.00/TD_KMeans.json +2 -2
  94. teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +3 -3
  95. teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +6 -6
  96. teradataml/data/ner_dict.csv +8 -0
  97. teradataml/data/ner_input_eng.csv +7 -0
  98. teradataml/data/ner_rule.csv +5 -0
  99. teradataml/data/pos_input.csv +40 -0
  100. teradataml/data/tdnerextractor_example.json +14 -0
  101. teradataml/data/teradataml_example.json +21 -0
  102. teradataml/data/textmorph_example.json +5 -0
  103. teradataml/data/to_num_data.csv +4 -0
  104. teradataml/data/tochar_data.csv +5 -0
  105. teradataml/data/trans_dense.csv +16 -0
  106. teradataml/data/trans_sparse.csv +55 -0
  107. teradataml/data/vectordistance_example.json +1 -1
  108. teradataml/dataframe/copy_to.py +45 -29
  109. teradataml/dataframe/data_transfer.py +72 -46
  110. teradataml/dataframe/dataframe.py +642 -166
  111. teradataml/dataframe/dataframe_utils.py +167 -22
  112. teradataml/dataframe/functions.py +135 -20
  113. teradataml/dataframe/setop.py +11 -6
  114. teradataml/dataframe/sql.py +330 -78
  115. teradataml/dbutils/dbutils.py +556 -140
  116. teradataml/dbutils/filemgr.py +14 -10
  117. teradataml/hyperparameter_tuner/optimizer.py +12 -1
  118. teradataml/lib/aed_0_1.dll +0 -0
  119. teradataml/opensource/{sklearn/_sklearn_wrapper.py → _base.py} +168 -1013
  120. teradataml/opensource/_class.py +141 -17
  121. teradataml/opensource/{constants.py → _constants.py} +7 -3
  122. teradataml/opensource/_lightgbm.py +52 -53
  123. teradataml/opensource/_sklearn.py +1008 -0
  124. teradataml/opensource/_wrapper_utils.py +5 -5
  125. teradataml/options/__init__.py +47 -15
  126. teradataml/options/configure.py +103 -26
  127. teradataml/options/display.py +13 -2
  128. teradataml/plot/axis.py +47 -8
  129. teradataml/plot/figure.py +33 -0
  130. teradataml/plot/plot.py +63 -13
  131. teradataml/scriptmgmt/UserEnv.py +307 -40
  132. teradataml/scriptmgmt/lls_utils.py +428 -145
  133. teradataml/store/__init__.py +2 -3
  134. teradataml/store/feature_store/feature_store.py +102 -7
  135. teradataml/table_operators/Apply.py +48 -19
  136. teradataml/table_operators/Script.py +23 -2
  137. teradataml/table_operators/TableOperator.py +3 -1
  138. teradataml/table_operators/table_operator_util.py +58 -9
  139. teradataml/utils/dtypes.py +49 -1
  140. teradataml/utils/internal_buffer.py +38 -0
  141. teradataml/utils/validators.py +377 -62
  142. {teradataml-20.0.0.3.dist-info → teradataml-20.0.0.5.dist-info}/METADATA +200 -4
  143. {teradataml-20.0.0.3.dist-info → teradataml-20.0.0.5.dist-info}/RECORD +146 -112
  144. teradataml/data/SQL_Fundamentals.pdf +0 -0
  145. teradataml/libaed_0_1.dylib +0 -0
  146. teradataml/libaed_0_1.so +0 -0
  147. teradataml/opensource/sklearn/__init__.py +0 -0
  148. teradataml/store/vector_store/__init__.py +0 -1586
  149. {teradataml-20.0.0.3.dist-info → teradataml-20.0.0.5.dist-info}/WHEEL +0 -0
  150. {teradataml-20.0.0.3.dist-info → teradataml-20.0.0.5.dist-info}/top_level.txt +0 -0
  151. {teradataml-20.0.0.3.dist-info → teradataml-20.0.0.5.dist-info}/zip-safe +0 -0
@@ -57,7 +57,7 @@ def DFFT(data=None, data_filter_expr=None, zero_padding_ok=True,
57
57
  obtained by sampling at a rate of 10,000 hertz.
58
58
  Note:
59
59
  Applicable only when "freq_style" is set to 'K_HERTZ'.
60
- Types: float
60
+ Types: int OR float
61
61
 
62
62
  algorithm:
63
63
  Optional Argument.
@@ -56,7 +56,7 @@ def DFFT2(data=None, data_filter_expr=None, zero_padding_ok=True,
56
56
  column index.
57
57
  Note:
58
58
  Applicable only when "freq_style" is set to 'K_HERTZ'.
59
- Types: float
59
+ Types: int OR float
60
60
 
61
61
  algorithm:
62
62
  Optional Argument.
@@ -54,7 +54,7 @@ def DFFT2Conv(data=None, data_filter_expr=None, conv=None,
54
54
  were obtained by sampling at a rate of 10,000 hertz.
55
55
  Note:
56
56
  * Applicable only when "freq_style" is set to 'K_HERTZ'.
57
- Types: float
57
+ Types: int OR float
58
58
 
59
59
  output_fmt_content:
60
60
  Optional Argument.
@@ -55,7 +55,7 @@ def DFFTConv(data=None, data_filter_expr=None, conv=None,
55
55
  Value should be greater than 0.
56
56
  Notes:
57
57
  * Applicable only when "freq_style" is set to 'K_HERTZ'.
58
- Types: float
58
+ Types: int OR float
59
59
 
60
60
  output_fmt_content:
61
61
  Optional Argument.
@@ -202,7 +202,10 @@ def DWT2D(data1=None, data1_filter_expr=None, data2=None,
202
202
  data2_filter_expr=data2.id==1,
203
203
  input_fmt_input_mode="MANY2ONE")
204
204
 
205
- # Example 1: Perform discrete wavelet transform (DWT) for two-dimensional data
205
+ # Print the result DataFrame.
206
+ print(uaf_out.result)
207
+
208
+ # Example 2: Perform discrete wavelet transform (DWT) for two-dimensional data
206
209
  # using only one matrix as input and wavelet as 'haar'.
207
210
  uaf_out = DWT2D(data1=data1_matrix_df,
208
211
  wavelet='haar')
@@ -57,27 +57,27 @@ def FilterFactory1d(filter_id=None, filter_type=None,
57
57
  A smaller value produces faster drop off at the cost of more coefficients.
58
58
  Not used when "filter_length" is supplied.
59
59
  Default is bandwidth from "filter_length".
60
- Types: float
60
+ Types: int OR float
61
61
 
62
62
  low_cutoff:
63
63
  Optional Argument.
64
64
  Specifies the lower frequency that change between a passband
65
65
  and stopband occurs. It must be greater
66
66
  than 0. It is not used by default with 'HIGHPASS' filter.
67
- Types: float
67
+ Types: int OR float
68
68
 
69
69
  high_cutoff:
70
70
  Optional Argument.
71
71
  Specifies the higher frequency that change
72
72
  between a passband and stopband occurs. It must be greater
73
73
  than 0 and not used by default with 'LOWPASS' filter.
74
- Types: float
74
+ Types: int OR float
75
75
 
76
76
  sampling_frequency:
77
77
  Required Argument.
78
78
  Specifies the frequency that the data to be filtered was
79
79
  sampled. It must be greater than 0.
80
- Types: float
80
+ Types: int OR float
81
81
 
82
82
  filter_description:
83
83
  Optional Argument.
@@ -40,8 +40,8 @@ def GenseriesSinusoids(data=None, data_filter_expr=None, periodicities=None,
40
40
  Specifies the periodicity as a comma-separated list, which
41
41
  contains one or more floating point values representing
42
42
  periodicities.
43
- Types: float, list of float
44
-
43
+ Types: int, list of int, float, list of float
44
+
45
45
  output_fmt_index_style:
46
46
  Optional Argument.
47
47
  Specifies the index style of the output format.
@@ -53,7 +53,7 @@ def GoldfeldQuandt(data=None, data_filter_expr=None,
53
53
  * not specified, then split-point index is calculate as:
54
54
  start_idx = (N - omit) / 2
55
55
  Where, 'N' is the total number of entries in the data series.
56
- Types: float
56
+ Types: int OR float
57
57
 
58
58
  omit:
59
59
  Required Argument.
@@ -66,7 +66,7 @@ def GoldfeldQuandt(data=None, data_filter_expr=None,
66
66
  Where 'N' is the total number of entries in the data series
67
67
  * greater than 1.0, then "omit" is interpreted as number of
68
68
  central points to omit.
69
- Types: float
69
+ Types: int OR float
70
70
 
71
71
  significance_level:
72
72
  Required Argument.
@@ -37,7 +37,7 @@ def HoltWintersForecaster(data=None, data_filter_expr=None, forecast_periods=Non
37
37
  the forecasting, else the "alpha" value is estimated using
38
38
  goodness-of-fit metrics. Value must be greater than or equal
39
39
  to 0 and less than or equal to 1.
40
- Types: float
40
+ Types: int OR float
41
41
 
42
42
  beta:
43
43
  Optional Argument.
@@ -47,7 +47,7 @@ def HoltWintersForecaster(data=None, data_filter_expr=None, forecast_periods=Non
47
47
  the forecasting, else the "beta" value is estimated using
48
48
  goodness-of-fit metrics. Value must be greater than or equal
49
49
  to 0 and less than or equal to 1.
50
- Types: float
50
+ Types: int OR float
51
51
 
52
52
  gamma:
53
53
  Optional Argument.
@@ -57,7 +57,7 @@ def HoltWintersForecaster(data=None, data_filter_expr=None, forecast_periods=Non
57
57
  the forecasting, else the "gamma" value is estimated using
58
58
  goodness-of-fit metrics. Value must be greater than or equal
59
59
  to 0 and less than or equal to 1.
60
- Types: float
60
+ Types: int OR float
61
61
 
62
62
  seasonal_periods:
63
63
  Optional Argument.
@@ -74,14 +74,14 @@ def HoltWintersForecaster(data=None, data_filter_expr=None, forecast_periods=Non
74
74
  Specifies the initialization value used as part of the fitting
75
75
  and forecasting operations. If not specified, then the initialization
76
76
  value is calculated as an additive level.
77
- Types: float
77
+ Types: int OR float
78
78
 
79
79
  init_trend:
80
80
  Optional Argument.
81
81
  Specifies the initialization value used as part of the fitting
82
82
  and forecasting operations. If not specified, then the initialization
83
83
  value is calculated as an additive trend.
84
- Types: float
84
+ Types: int OR float
85
85
 
86
86
  init_season:
87
87
  Optional Argument.
@@ -89,7 +89,7 @@ def HoltWintersForecaster(data=None, data_filter_expr=None, forecast_periods=Non
89
89
  specified, the initialization value is used as part of the
90
90
  fitting and forecasting operations, else the initialization
91
91
  value is calculated as a multiplicative seasonality.
92
- Types: float, list of float
92
+ Types: int, list of int, float, list of float
93
93
 
94
94
  model:
95
95
  Required Argument.
@@ -68,7 +68,7 @@ def LineSpec(data=None, data_filter_expr=None, freq_style="K_INTEGRAL",
68
68
  A value of 10000.0 indicates that the sample points were obtained
69
69
  by sampling at a rate of 10,000 hertz. This hertz interpretation
70
70
  applies to both the ROW_I and COLUMN_I indices.
71
- Types: float
71
+ Types: int OR float
72
72
 
73
73
  **generic_arguments:
74
74
  Specifies the generic keyword arguments of UAF functions.
@@ -92,7 +92,7 @@ def LinearRegr(data=None, data_filter_expr=None, variables_count=2,
92
92
  Note:
93
93
  Applicable only when "coeff_stats" is set to True.
94
94
  Default Value: 0.9
95
- Types: float
95
+ Types: int OR float
96
96
 
97
97
  model_stats:
98
98
  Optional Argument.
@@ -70,28 +70,28 @@ def Matrix2Image(data=None, data_filter_expr=None, image="PNG", type=None,
70
70
  scaled. By default, the MIN and MAX values of the
71
71
  payload are used as the range. Used when "type" is 'GRAY'
72
72
  or 'COLORMAP'.
73
- Types: float, list of float
73
+ Types: int, list of int, float, list of float
74
74
 
75
75
  red:
76
76
  Optional Argument.
77
77
  Specifies the range of the first payload value. By
78
78
  default, the MIN and MAX values of the payload are
79
79
  used as the range. It is only used when "type" is 'RGB'.
80
- Types: float, list of float
80
+ Types: int, list of int, float, list of float
81
81
 
82
82
  green:
83
83
  Optional Argument.
84
84
  Specifies the range of the second payload value.By
85
85
  default, the MIN and MAX values of the payload are
86
86
  used as the range. It is only used when "type" is 'RGB'.
87
- Types: float, list of float
87
+ Types: int, list of int, float, list of float
88
88
 
89
89
  blue:
90
90
  Optional Argument.
91
91
  Specifies the range of the third payload value. By
92
92
  default, the MIN and MAX values of the payload are
93
93
  used as the range. It is only used when "type" is 'RGB'.
94
- Types: float, list of float
94
+ Types: int, list of int, float, list of float
95
95
 
96
96
  flip_x:
97
97
  Optional Argument.
@@ -71,7 +71,7 @@ def MultivarRegr(data=None, data_filter_expr=None, variables_count=None,
71
71
  Note:
72
72
  Applicable only when "coeff_stats" is set to 1.
73
73
  Default Value: 0.9
74
- Types: float
74
+ Types: int OR float
75
75
 
76
76
  model_stats:
77
77
  Optional Argument.
@@ -64,7 +64,7 @@ def PACF(data=None, data_filter_expr=None,
64
64
  Specifies confidence intervals for the given level. For example, if 0.05 is entered,
65
65
  then 95% confidence intervals are returned for standard deviation computed according
66
66
  to Bartlett’s formula.
67
- Types: float
67
+ Types: int OR float
68
68
 
69
69
  **generic_arguments:
70
70
  Specifies the generic keyword arguments of UAF functions.
@@ -51,7 +51,7 @@ def PowerSpec(data=None, data_filter_expr=None, freq_style=None,
51
51
  points were obtained by sampling at a rate of 10,000 hertz.
52
52
  Note:
53
53
  * Only used with "freq_style" set to 'K_HERTZ'.
54
- Types: float
54
+ Types: int OR float
55
55
 
56
56
  zero_padding_ok:
57
57
  Optional Argument.
@@ -111,7 +111,7 @@ def PowerSpec(data=None, data_filter_expr=None, freq_style=None,
111
111
  hertz.
112
112
  Note:
113
113
  * Use when "window_name" is set to 'TUKEY'.
114
- Types: float
114
+ Types: int OR float
115
115
 
116
116
  **generic_arguments:
117
117
  Specifies the generic keyword arguments of UAF functions.
@@ -43,18 +43,18 @@ def PowerTransform(data=None, data_filter_expr=None, back_transform=False,
43
43
  p:
44
44
  Required Argument.
45
45
  Specifies the power to use in the transform equation.
46
- Types: float
46
+ Types: int OR float
47
47
 
48
48
  b:
49
49
  Required Argument.
50
50
  Specifies the logarithm to be applied for the transform equation.
51
- Types: float
51
+ Types: int OR float
52
52
 
53
53
  lambda1:
54
54
  Required Argument.
55
55
  Specifies the parameter used to decide the preferred
56
56
  power transform operation during the Box-Cox transformation.
57
- Types: float
57
+ Types: int OR float
58
58
 
59
59
  output_fmt_index_style:
60
60
  Optional Argument.
@@ -56,7 +56,7 @@ def Resample(data=None, data_filter_expr=None, timecode_start_value=None,
56
56
  Provide either arguments "timecode_start_value" and
57
57
  "timecode_duration", or arguments "sequence_start_value"
58
58
  and "sequence_duration".
59
- Types: float
59
+ Types: int OR float
60
60
 
61
61
  sequence_duration:
62
62
  Optional Argument.
@@ -65,7 +65,7 @@ def Resample(data=None, data_filter_expr=None, timecode_start_value=None,
65
65
  Provide either arguments "timecode_start_value" and
66
66
  "timecode_duration", or arguments "sequence_start_value"
67
67
  and "sequence_duration".
68
- Types: float
68
+ Types: int OR float
69
69
 
70
70
  interpolate:
71
71
  Required Argument.
@@ -84,7 +84,7 @@ def Resample(data=None, data_filter_expr=None, timecode_start_value=None,
84
84
  Note:
85
85
  * Applicable only when "interpolate" set to 'WEIGHTED'.
86
86
  * The interpolated value is calculated as: Y_t = Y_{t_LEFT} * (1 - WEIGHT) + (Y-{t_RIGHT} * WEIGHT).
87
- Types: float
87
+ Types: int OR float
88
88
 
89
89
  spline_params_method:
90
90
  Optional Argument.
@@ -106,7 +106,7 @@ def Resample(data=None, data_filter_expr=None, timecode_start_value=None,
106
106
  * Used only when "interpolate" set to 'SPLINE'.
107
107
  * Used only when "spline_params_method" set to 'CLAMPED'.
108
108
  Default Value: 0.0
109
- Types: float
109
+ Types: int OR float
110
110
 
111
111
  spline_params_ypn:
112
112
  Optional Argument.
@@ -116,7 +116,7 @@ def Resample(data=None, data_filter_expr=None, timecode_start_value=None,
116
116
  * Used only when "interpolate" set to 'SPLINE'.
117
117
  * Used only when "spline_params_method" set to 'CLAMPED'.
118
118
  Default Value: 0.0
119
- Types: float
119
+ Types: int OR float
120
120
 
121
121
  output_fmt_index_style:
122
122
  Optional Argument.
@@ -49,7 +49,7 @@ def SAX(data=None, data_filter_expr=None, window_type='GLOBAL',
49
49
  the specified value will apply to all payloads.
50
50
  * If "mean" specifies multiple values, each value will be
51
51
  applied to its corresponding payload.
52
- Types: float, list of float
52
+ Types: int, list of int, float, list of float
53
53
 
54
54
  std_dev:
55
55
  Optional Argument.
@@ -62,7 +62,7 @@ def SAX(data=None, data_filter_expr=None, window_type='GLOBAL',
62
62
  the specified value will apply to all payloads.
63
63
  * If "std_dev" specifies multiple values, each value will be
64
64
  applied to its corresponding payload.
65
- Types: float, list of float
65
+ Types: int, list of int, float, list of float
66
66
 
67
67
  window_size:
68
68
  Optional Argument, Required if "window_type" is SLIDING.
@@ -124,7 +124,7 @@ def SAX(data=None, data_filter_expr=None, window_type='GLOBAL',
124
124
  breakpoints:
125
125
  Optional Argument.
126
126
  Specifies the breakpoints to form the SAX code based on "data".
127
- Types: float, list of float
127
+ Types: int, list of int, float, list of float
128
128
 
129
129
  output_fmt_index_style:
130
130
  Optional Argument.
@@ -47,7 +47,7 @@ def SignifPeriodicities(data=None, data_filter_expr=None,
47
47
  Required Argument.
48
48
  Specifies the significant periodicities to perform
49
49
  tests for each period.
50
- Types: float OR list of float
50
+ Types: int, list of int, float, list of float
51
51
 
52
52
  **generic_arguments:
53
53
  Specifies the generic keyword arguments of UAF functions.
@@ -36,7 +36,7 @@ def SimpleExp(data=None, data_filter_expr=None, forecast_periods=None,
36
36
  is not specified, the value of 'alpha' is estimated by using
37
37
  goodness-of-fit metrics. Value must be greater than or equal to
38
38
  0 and less than or equal to 1.
39
- Types: float
39
+ Types: int OR float
40
40
 
41
41
  prediction_intervals:
42
42
  Optional Argument.
@@ -67,7 +67,7 @@ def Smoothma(data=None, data_filter_expr=None, ma=None, window=None,
67
67
  faster.
68
68
  Note:
69
69
  * Applicable only when "ma" is set to 'EXPONENTIAL'.
70
- Types: float
70
+ Types: int OR float
71
71
 
72
72
  weights:
73
73
  Optional Argument.
@@ -80,7 +80,7 @@ def Smoothma(data=None, data_filter_expr=None, ma=None, window=None,
80
80
  value if it is not specified.
81
81
  Note:
82
82
  * Applicable only when "ma" is set to 'MEAN'.
83
- Types: float
83
+ Types: int OR float
84
84
 
85
85
  well_known:
86
86
  Optional Argument.
@@ -109,7 +109,7 @@ def Smoothma(data=None, data_filter_expr=None, ma=None, window=None,
109
109
  For example, pad=4.5 applies a pad value of 4.5 for a series less than "window".
110
110
  Note:
111
111
  * Applicable only when "ma" is set to 'MEAN' or 'MEDIAN'.
112
- Types: float
112
+ Types: int, float
113
113
 
114
114
  output_fmt_index_style:
115
115
  Optional Argument.
@@ -59,7 +59,7 @@ def UNDIFF(data1=None, data1_filter_expr=None, data2=None,
59
59
  initial_values:
60
60
  Optional Argument.
61
61
  Specifies the starting values for the undifferencing operation.
62
- Types: float OR list of float
62
+ Types: int, list of int, float OR list of float
63
63
 
64
64
  input_fmt_input_mode:
65
65
  Optional Argument.
@@ -0,0 +1,5 @@
1
+ id,array_col
2
+ 10,"1,1"
3
+ 11,"2,2"
4
+ 12,"3,3"
5
+ 13,"4,4"
@@ -0,0 +1,10 @@
1
+ id,array_col
2
+ 1,"18,18"
3
+ 2,"19,19"
4
+ 3,"20,20"
5
+ 4,"55,55"
6
+ 5,"56,56"
7
+ 6,"57,57"
8
+ 7,"88,88"
9
+ 8,"89,89"
10
+ 9,"90,90"
@@ -142,7 +142,7 @@
142
142
  "rDescription": " Specifies the model type as 'DAI' or 'OpenSource' for H2O model prediction. ",
143
143
  "description": " Specifies the model type as 'DAI' or 'OpenSource' for H2O model prediction. ",
144
144
  "datatype": "STRING",
145
- "allowsLists": true,
145
+ "allowsLists": false,
146
146
  "rName": "model.type",
147
147
  "useInR": true,
148
148
  "rOrderNum": 6