teradataml 20.0.0.3__py3-none-any.whl → 20.0.0.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (151) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/README.md +193 -1
  3. teradataml/__init__.py +2 -1
  4. teradataml/_version.py +2 -2
  5. teradataml/analytics/analytic_function_executor.py +25 -18
  6. teradataml/analytics/byom/__init__.py +1 -1
  7. teradataml/analytics/json_parser/analytic_functions_argument.py +4 -0
  8. teradataml/analytics/sqle/__init__.py +20 -2
  9. teradataml/analytics/utils.py +15 -1
  10. teradataml/analytics/valib.py +18 -4
  11. teradataml/automl/__init__.py +341 -112
  12. teradataml/automl/autodataprep/__init__.py +471 -0
  13. teradataml/automl/data_preparation.py +84 -42
  14. teradataml/automl/data_transformation.py +69 -33
  15. teradataml/automl/feature_engineering.py +76 -9
  16. teradataml/automl/feature_exploration.py +639 -25
  17. teradataml/automl/model_training.py +35 -14
  18. teradataml/clients/auth_client.py +2 -2
  19. teradataml/common/__init__.py +1 -2
  20. teradataml/common/constants.py +122 -63
  21. teradataml/common/messagecodes.py +14 -3
  22. teradataml/common/messages.py +8 -4
  23. teradataml/common/sqlbundle.py +40 -10
  24. teradataml/common/utils.py +366 -74
  25. teradataml/common/warnings.py +11 -0
  26. teradataml/context/context.py +348 -86
  27. teradataml/data/amazon_reviews_25.csv +26 -0
  28. teradataml/data/apriori_example.json +22 -0
  29. teradataml/data/byom_example.json +11 -0
  30. teradataml/data/docs/byom/docs/DataRobotPredict.py +2 -2
  31. teradataml/data/docs/byom/docs/DataikuPredict.py +40 -1
  32. teradataml/data/docs/byom/docs/H2OPredict.py +2 -2
  33. teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
  34. teradataml/data/docs/byom/docs/ONNXPredict.py +2 -2
  35. teradataml/data/docs/byom/docs/PMMLPredict.py +2 -2
  36. teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
  37. teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
  38. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
  40. teradataml/data/docs/sqle/docs_17_20/Shap.py +28 -6
  41. teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
  42. teradataml/data/docs/sqle/docs_17_20/TextParser.py +54 -3
  43. teradataml/data/docs/uaf/docs_17_20/ACF.py +1 -1
  44. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +2 -2
  45. teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +2 -2
  46. teradataml/data/docs/uaf/docs_17_20/DFFT.py +1 -1
  47. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +1 -1
  48. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +1 -1
  49. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +1 -1
  50. teradataml/data/docs/uaf/docs_17_20/DWT2D.py +4 -1
  51. teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +4 -4
  52. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +2 -2
  53. teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +2 -2
  54. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +6 -6
  55. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +1 -1
  56. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +1 -1
  57. teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +4 -4
  58. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +1 -1
  59. teradataml/data/docs/uaf/docs_17_20/PACF.py +1 -1
  60. teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +2 -2
  61. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +3 -3
  62. teradataml/data/docs/uaf/docs_17_20/Resample.py +5 -5
  63. teradataml/data/docs/uaf/docs_17_20/SAX.py +3 -3
  64. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +1 -1
  65. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +1 -1
  66. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +3 -3
  67. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +1 -1
  68. teradataml/data/hnsw_alter_data.csv +5 -0
  69. teradataml/data/hnsw_data.csv +10 -0
  70. teradataml/data/jsons/byom/h2opredict.json +1 -1
  71. teradataml/data/jsons/byom/onnxembeddings.json +266 -0
  72. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +6 -6
  73. teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
  74. teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
  75. teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
  76. teradataml/data/jsons/sqle/17.20/TD_Shap.json +0 -1
  77. teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
  78. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +114 -9
  79. teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +328 -0
  80. teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +420 -0
  81. teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +343 -0
  82. teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +328 -0
  83. teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +328 -0
  84. teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +328 -0
  85. teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +328 -0
  86. teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +359 -0
  87. teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +360 -0
  88. teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +343 -0
  89. teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +343 -0
  90. teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
  91. teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
  92. teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
  93. teradataml/data/jsons/sqle/20.00/TD_KMeans.json +2 -2
  94. teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +3 -3
  95. teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +6 -6
  96. teradataml/data/ner_dict.csv +8 -0
  97. teradataml/data/ner_input_eng.csv +7 -0
  98. teradataml/data/ner_rule.csv +5 -0
  99. teradataml/data/pos_input.csv +40 -0
  100. teradataml/data/tdnerextractor_example.json +14 -0
  101. teradataml/data/teradataml_example.json +21 -0
  102. teradataml/data/textmorph_example.json +5 -0
  103. teradataml/data/to_num_data.csv +4 -0
  104. teradataml/data/tochar_data.csv +5 -0
  105. teradataml/data/trans_dense.csv +16 -0
  106. teradataml/data/trans_sparse.csv +55 -0
  107. teradataml/data/vectordistance_example.json +1 -1
  108. teradataml/dataframe/copy_to.py +45 -29
  109. teradataml/dataframe/data_transfer.py +72 -46
  110. teradataml/dataframe/dataframe.py +642 -166
  111. teradataml/dataframe/dataframe_utils.py +167 -22
  112. teradataml/dataframe/functions.py +135 -20
  113. teradataml/dataframe/setop.py +11 -6
  114. teradataml/dataframe/sql.py +330 -78
  115. teradataml/dbutils/dbutils.py +556 -140
  116. teradataml/dbutils/filemgr.py +14 -10
  117. teradataml/hyperparameter_tuner/optimizer.py +12 -1
  118. teradataml/lib/aed_0_1.dll +0 -0
  119. teradataml/opensource/{sklearn/_sklearn_wrapper.py → _base.py} +168 -1013
  120. teradataml/opensource/_class.py +141 -17
  121. teradataml/opensource/{constants.py → _constants.py} +7 -3
  122. teradataml/opensource/_lightgbm.py +52 -53
  123. teradataml/opensource/_sklearn.py +1008 -0
  124. teradataml/opensource/_wrapper_utils.py +5 -5
  125. teradataml/options/__init__.py +47 -15
  126. teradataml/options/configure.py +103 -26
  127. teradataml/options/display.py +13 -2
  128. teradataml/plot/axis.py +47 -8
  129. teradataml/plot/figure.py +33 -0
  130. teradataml/plot/plot.py +63 -13
  131. teradataml/scriptmgmt/UserEnv.py +307 -40
  132. teradataml/scriptmgmt/lls_utils.py +428 -145
  133. teradataml/store/__init__.py +2 -3
  134. teradataml/store/feature_store/feature_store.py +102 -7
  135. teradataml/table_operators/Apply.py +48 -19
  136. teradataml/table_operators/Script.py +23 -2
  137. teradataml/table_operators/TableOperator.py +3 -1
  138. teradataml/table_operators/table_operator_util.py +58 -9
  139. teradataml/utils/dtypes.py +49 -1
  140. teradataml/utils/internal_buffer.py +38 -0
  141. teradataml/utils/validators.py +377 -62
  142. {teradataml-20.0.0.3.dist-info → teradataml-20.0.0.5.dist-info}/METADATA +200 -4
  143. {teradataml-20.0.0.3.dist-info → teradataml-20.0.0.5.dist-info}/RECORD +146 -112
  144. teradataml/data/SQL_Fundamentals.pdf +0 -0
  145. teradataml/libaed_0_1.dylib +0 -0
  146. teradataml/libaed_0_1.so +0 -0
  147. teradataml/opensource/sklearn/__init__.py +0 -0
  148. teradataml/store/vector_store/__init__.py +0 -1586
  149. {teradataml-20.0.0.3.dist-info → teradataml-20.0.0.5.dist-info}/WHEEL +0 -0
  150. {teradataml-20.0.0.3.dist-info → teradataml-20.0.0.5.dist-info}/top_level.txt +0 -0
  151. {teradataml-20.0.0.3.dist-info → teradataml-20.0.0.5.dist-info}/zip-safe +0 -0
@@ -1,62 +1,61 @@
1
- teradataml/LICENSE-3RD-PARTY.pdf,sha256=LMHCf0oAp5qfkJ2sLByXp_C7gO1ztBXXc0fLhFymAOE,319845
1
+ teradataml/LICENSE-3RD-PARTY.pdf,sha256=C1_zJNnaiJX5OLwr6krXAY78ngnu3BKneKUPX2R3jb8,350063
2
2
  teradataml/LICENSE.pdf,sha256=h9PSzKiUlTczm4oaa7dy83SO95nZRL11fAR4N1zsOzo,184254
3
- teradataml/README.md,sha256=5n0NVRuMR7tyh85y8vr3zplZyjsNguPZf2U8SJu2nKw,122093
4
- teradataml/__init__.py,sha256=Kf9kqZkiq48LNHkFk9xcY3ixXc6-Ll4leJFGmR6xbZg,2707
5
- teradataml/_version.py,sha256=ud4XhZmc6XmseduxRAFPT0dYSNfbvg4ZW-1wB_TYR7k,364
6
- teradataml/libaed_0_1.dylib,sha256=nKlbPxiSJw-kCw6NktpqMy-UDfq4zYq7gLy6S2N2Ppg,1806401
7
- teradataml/libaed_0_1.so,sha256=xi4gwYQtbbdUlRTXsTEJSf0J0e9jt-cguTzdPQdrsEU,1040824
3
+ teradataml/README.md,sha256=2nE42FIqPB2oi8Fsl3ia5M-xLQ3Yv0_UeMJuJQAtOjg,135875
4
+ teradataml/__init__.py,sha256=OcxcbsK1UzsJxA158gWT_Q3Wz-KUp601dBK3PnxH-rk,2749
5
+ teradataml/_version.py,sha256=v9T0lcYoiCTnwHEG7MI6ycLKgsnFEjCCtu_jRa0xF-I,364
8
6
  teradataml/analytics/Transformations.py,sha256=5Ts7lqCSiO3LCi4xc3bA3D3FksODPJXAhxoyryf66js,149487
9
7
  teradataml/analytics/__init__.py,sha256=DnTOi9QlFJ-P20n2LbL2waKp76uL9KWE6w__6KG8m1I,3046
10
- teradataml/analytics/analytic_function_executor.py,sha256=9n18PxyQocRyDeVLc0OYw_7ak07goue3nMDHX-Kncs4,106505
8
+ teradataml/analytics/analytic_function_executor.py,sha256=2WR6skmGPDGMwWAUErxEs1JqlAfc024q1KjuBD1RD1I,106714
11
9
  teradataml/analytics/analytic_query_generator.py,sha256=Si1lhWEhfa7Q4j3TZaD904lM3MumIsX3F3N9oysCkY0,45915
12
10
  teradataml/analytics/meta_class.py,sha256=YRsFEvwv8S73boaG8W85altpJTOoRz9Wk7YTplm6z9M,8427
13
- teradataml/analytics/utils.py,sha256=aDcopiSu0kvwAVzPspFvtSVg6RT8dxJ-qcuFxgxQAsc,31046
14
- teradataml/analytics/valib.py,sha256=YR3Md9DYrPOMS7-GnOfcmdODuB3fTis-bGVbAfU4978,73587
11
+ teradataml/analytics/utils.py,sha256=Mvp8a_30aHTFHvBhyai0DN8h7qV-tRwD5Sc_U2OfZzY,32215
12
+ teradataml/analytics/valib.py,sha256=4iwJj9usJDkmAGNDNdKqkV1kwtrbvOH4OAXg8hFwIMQ,74380
15
13
  teradataml/analytics/byom/H2OPredict.py,sha256=S69BUkxG8Dr2pgzDAqYVIl2Wupf0eXdmW46i3hHNJp4,25128
16
14
  teradataml/analytics/byom/PMMLPredict.py,sha256=TCxQinbQ50ZHrL-8teN-gRpXf93JnQSekHi33Y618Eo,20269
17
- teradataml/analytics/byom/__init__.py,sha256=qN-S7xa8T54xmDsNk4McCVJu3DePqAuR4y3B9x_i7M8,876
15
+ teradataml/analytics/byom/__init__.py,sha256=3dNopwwaA_b_JUd5Qv2Pehgl_WCLrSaabR9N5oRirj8,894
18
16
  teradataml/analytics/json_parser/__init__.py,sha256=0He6U5ogdUfyOb21DjOosv6QRBc9tu6P-5LJFN1pz5A,4392
19
- teradataml/analytics/json_parser/analytic_functions_argument.py,sha256=vpvUB_Vh5lSohIMTFf8TiQFIEq7YTgJTQbpk-L8tLvw,65703
17
+ teradataml/analytics/json_parser/analytic_functions_argument.py,sha256=d3reu75UnirP6_wcJ47Ce04KvOrNyHKtIUePrEfNcxY,65915
20
18
  teradataml/analytics/json_parser/json_store.py,sha256=snwrJzvXzYBw3Xot6IRMsC7RtxBgxTq4eeXBeD9-Pps,7175
21
19
  teradataml/analytics/json_parser/metadata.py,sha256=09D3SdeYZh8VdJi17Ri_cYmq97puXdq8ACVMYWUUatk,74938
22
20
  teradataml/analytics/json_parser/utils.py,sha256=EdhCRUdWW6_mvLsj-gHxrDuNcQY6kOT5CT2txkbsUsE,33977
23
21
  teradataml/analytics/sqle/DecisionTreePredict.py,sha256=gacMEgCbKPsLcrzpdiegBB5ySa_wsQvYouLEqp7eshk,22289
24
22
  teradataml/analytics/sqle/NaiveBayesPredict.py,sha256=uPw3srh5U_I4lhOZQY1KQnaTcBy0LqH-6nika9M_Y8o,19508
25
- teradataml/analytics/sqle/__init__.py,sha256=xyuXkW1fc3N6yjxj5PMUBD-FsySdSpOIKY6A9IEyxLg,4194
23
+ teradataml/analytics/sqle/__init__.py,sha256=R9WhUuskRqV5Ff9CVw0TQ0xEARpbIVntKC6122l4zvI,4832
26
24
  teradataml/analytics/sqle/json/decisiontreepredict_sqle.json,sha256=rQ9nB-IE7FgWEZH6KY1MxxbhWT9n1kRPuZCqEL5-R5Y,2196
27
25
  teradataml/analytics/sqle/json/naivebayespredict_sqle.json,sha256=ehvbAugEnH73nUxdJqfOfzWL70zIc_oIWfdgEOnpO7Y,1683
28
26
  teradataml/analytics/table_operator/__init__.py,sha256=OBxjuKXWlwhCw2lowtl2VfRGwS729Y4rbZkmRt2Mp8o,545
29
27
  teradataml/analytics/uaf/__init__.py,sha256=Esh1vLn8CUOWPAMlqv0JUHGzNdj3l1I9RDlOI9lNXc8,3028
30
- teradataml/automl/__init__.py,sha256=juaGQuSeWZH0qJdXLMrZ4bx5btaGrMij2rSKu5Ev4MQ,134808
28
+ teradataml/automl/__init__.py,sha256=A7s7XKdgfc4g7yKsdeWKYguC0qx5kR1Cd09oRpyc84c,143313
31
29
  teradataml/automl/custom_json_utils.py,sha256=LRcORPatvV15fGbDcp8tQWcEiIZYnK7SakATy5QUVyM,66780
32
- teradataml/automl/data_preparation.py,sha256=N2BJ8cAYkQGFxZQ-D-fhsG6wx8saPWU3LCPwah-KXOg,41712
33
- teradataml/automl/data_transformation.py,sha256=jFanI9bKUcMWDvCTqfhJYaxbol6ipFDJD2KhP5HbJU8,42784
34
- teradataml/automl/feature_engineering.py,sha256=lATEWrbziHfg-n-NPkUt81Pw6QHlwNy4eZpA5WDFhL8,94803
35
- teradataml/automl/feature_exploration.py,sha256=mlxXUnx0EyePxYChAutKg1KZTNVJgGBM7hwXp64BINc,21986
30
+ teradataml/automl/data_preparation.py,sha256=qbKgvIgrV7oLm669dIe7KPvPyuLncM6j-wrydu8Veg0,44697
31
+ teradataml/automl/data_transformation.py,sha256=Nz3mQOWLKrGJTSKENhIc2mpgJcsrZ6NrdymRUm7llOs,45174
32
+ teradataml/automl/feature_engineering.py,sha256=Z-RGh2UbMliL8QbiEZqHjTVCX9Wf26Wa4Vh2ToroEqA,99088
33
+ teradataml/automl/feature_exploration.py,sha256=m003nP6AACu9zxXTR3W78yO5F7CxpAT3zBdbu8Q0SQg,45543
36
34
  teradataml/automl/model_evaluation.py,sha256=A_j7hiw4DRrsGOAcfUZV5ejjJ0Hs2eYNpxpisTKBhoc,5867
37
- teradataml/automl/model_training.py,sha256=oygbUYZjUr6fqbjDxJUR0qzgN_qeUhjop0hVunGnowc,42108
35
+ teradataml/automl/model_training.py,sha256=yDIbXbeJNUGAW9j4g-5bzn4TGm0lEA5kOwC1DG6qflE,42716
36
+ teradataml/automl/autodataprep/__init__.py,sha256=YPWAMg3YzrTR9Ij6xT6XKEWHdPDwNDclppo6RBRa9oo,18101
38
37
  teradataml/catalog/__init__.py,sha256=JmX5fC634ewbSyYy24rsTIk9mg9gSIMFTc15coJKTWQ,134
39
38
  teradataml/catalog/byom.py,sha256=6sZ-lyOr65XGmDcJo1SHogXmoSvCFooFOKeAIN8JUms,99687
40
39
  teradataml/catalog/function_argument_mapper.py,sha256=fTu0YrTb4ZgbcFmw15H-G7I8iln_QRImy38BhXsph34,40018
41
40
  teradataml/catalog/model_cataloging_utils.py,sha256=g6S6kwkE87c1rd02YAWIQ-u2z9OhduX1RXsLqsmSPsI,20624
42
41
  teradataml/clients/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
43
- teradataml/clients/auth_client.py,sha256=G_abYn8Y4Y6JAW4tEzWQ14OBI3Vi7JdauD9CRrAp4Bo,3981
42
+ teradataml/clients/auth_client.py,sha256=e91cY9Bv9h7L_eZrxS-sDRGwsk6v3H6dTdAiLpib6HI,4033
44
43
  teradataml/clients/pkce_client.py,sha256=m7FYwfMf_xTP7-L4_wFLQdWWpO4sTEEIyZCZSHJVjkA,16604
45
- teradataml/common/__init__.py,sha256=8x9tqa-EYdQtO9JHpAwrtSFApkJVjq29kvH6pRgJWoo,112
44
+ teradataml/common/__init__.py,sha256=KeFSq3wtcYMpZEFepWsgC7e9ocmmsv6WSrDosIviAVY,52
46
45
  teradataml/common/aed_utils.py,sha256=oMxLrtf5M2LVd5Xrm9hLkistQ9QFs5Uxki1omAmW3RA,106195
47
46
  teradataml/common/bulk_exposed_utils.py,sha256=tV5xvysJAXibUIm8AyzV4cE4USQFe7Eubhyl9m4ZiJY,4622
48
- teradataml/common/constants.py,sha256=qZGlF8C9KfjdeG6pvoY0YDXW6wbF8FX44zcBF7HhyQg,61463
47
+ teradataml/common/constants.py,sha256=qTetg2qSyaP4Olls2xegePWB8JInhXsJHy4JA0eTZIk,63408
49
48
  teradataml/common/deprecations.py,sha256=-KkDiJe9_08CIvCR4Xbzg3_WPZlJ5rqyKVlfpMhKrk0,6211
50
49
  teradataml/common/exceptions.py,sha256=U3rze_QiIVMPP-2xr4a3Bnz1UQ_mbODC_uwbdBQ46aA,2775
51
50
  teradataml/common/formula.py,sha256=IBBDwllFru21EerpV4v9zjbYCBqILZJy4M-vQnT1yd8,31089
52
51
  teradataml/common/garbagecollector.py,sha256=ebvLmRn-M4dNPJCrTH1l0gccljmcT_gdIId5xaRf6vo,28428
53
- teradataml/common/messagecodes.py,sha256=aWJ2Vgp485LobYvksJ8KcqMYIAtKxzHsRTX_eTlxA6s,28930
54
- teradataml/common/messages.py,sha256=kqXjvmfjENQtA3ncA_HtKbmCMn7vDElzQewTY51DbVE,17903
52
+ teradataml/common/messagecodes.py,sha256=8fc1Xkn3AS5AGuFDGoKj5w6pyUxZAD8nT5eSUOSGbsA,29838
53
+ teradataml/common/messages.py,sha256=7QhGEvEhjweMmLjU7dEKp2vvNIsSJwZcwYuSSi8PSPk,18270
55
54
  teradataml/common/pylogger.py,sha256=8G36wPGbnCVAaabYeimuSuRazwbnX-NhKyZc-a_deJ0,1752
56
- teradataml/common/sqlbundle.py,sha256=wcA7Kwmv6Hy0tOko-k7zMgRm3qFar8J0EISGQhm6SsM,25217
55
+ teradataml/common/sqlbundle.py,sha256=ViH_-OwvTDUqXWGIvCSqDqP5020humJuGc5Dm3VxyKk,26498
57
56
  teradataml/common/td_coltype_code_to_tdtype.py,sha256=8RzvJAnC9iHXsCHVVDbPXG3e1ESyZFLVtvw00M1Tj3I,1193
58
- teradataml/common/utils.py,sha256=ZsdMOseH2Dzf8o-6U42mnib2vY0FVPUEs8Ae7VfkgJo,96439
59
- teradataml/common/warnings.py,sha256=Dg36oFozNTFFV1yUlWSoJnkRdABGERJVhkmVzlJJdWo,721
57
+ teradataml/common/utils.py,sha256=CT_ES84pz03upvoufQm6fe1CVcgXtOpUMd2u3GPG5dI,109777
58
+ teradataml/common/warnings.py,sha256=PO6nQT9W3pIeT9TLYyLLbwe-f897Zk-j5E8RqyPFs48,1049
60
59
  teradataml/common/wrapper_utils.py,sha256=f2DxS-FqgEqbAJbHpOtKD4wU7GLj2XSX_d3xWNn9VvM,27843
61
60
  teradataml/config/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
62
61
  teradataml/config/dummy_file1.cfg,sha256=mvNQlfiTBP_2-e84fV1BsINKC0wcpeE_oYTuQe3RLaI,35
@@ -66,7 +65,7 @@ teradataml/config/sqlengine_alias_definitions_v1.1,sha256=iHEB832KDSO0DdugW8Mivh
66
65
  teradataml/config/sqlengine_alias_definitions_v1.3,sha256=pCt661hEVA_YM_i4WL69DwwD1wKm_A4uzqHqwzRf0bo,534
67
66
  teradataml/context/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
68
67
  teradataml/context/aed_context.py,sha256=qNCX27R8KxJ3LScU9wXQzos1Gm78Cv0ahVdwSg5iq6Y,7578
69
- teradataml/context/context.py,sha256=Nzc9viYF8v9tY-bcFbkofaobHfz0U8d-kKLvah2trTc,45759
68
+ teradataml/context/context.py,sha256=jqL9jMXEzMJO22IkFqF0fZU8kDXInJkm69laG6jJRus,59400
70
69
  teradataml/data/A_loan.csv,sha256=HFfTfH1cC-xh4yiYGddaoiB0hHG17pWKbmySolOLdoc,584
71
70
  teradataml/data/BINARY_REALS_LEFT.csv,sha256=LW8o1jCKyUv9UFM3E5WbRMDYPQfwkFMZtifDAf9cp30,416
72
71
  teradataml/data/BINARY_REALS_RIGHT.csv,sha256=LW8o1jCKyUv9UFM3E5WbRMDYPQfwkFMZtifDAf9cp30,416
@@ -82,7 +81,6 @@ teradataml/data/DFFTConv_Real_8_8.csv,sha256=IKpOjDob6Hp7j8I5klHvN-GLTirahB4mOEm
82
81
  teradataml/data/Orders1_12mf.csv,sha256=YpBMpVutv0H7uEaagw7zsb-8KRMMbKi2e-TbztNlpfk,312
83
82
  teradataml/data/Pi_loan.csv,sha256=7-kKbP69zD3W0GwpkSE39ZPFCQTbCrxsmDCt5QPdZSY,191
84
83
  teradataml/data/SMOOTHED_DATA.csv,sha256=jYD3ps_XSKCFAWEjVjB6Yv-r_IpTIlpZB_bcaC8OUYE,117
85
- teradataml/data/SQL_Fundamentals.pdf,sha256=N9dplUEwi-Eqd7LNXeC-j4T6CsOR6wxqzjSSOYUBmsA,980617
86
84
  teradataml/data/TestDFFT8.csv,sha256=pdob7s4-lD0WMsO9vk3UGyEpngufGRsqeN_wa5cMUVU,122
87
85
  teradataml/data/TestRiver.csv,sha256=Mv2Np9eAIRd_-ux5kKSprAa0tqFOQS6c3P7sIhDzl6I,1633
88
86
  teradataml/data/Traindata.csv,sha256=Hyv67nz4DvUK6JraIL_XFDl7XyHlOcIpZLdOtRwh79U,3329
@@ -97,11 +95,13 @@ teradataml/data/admissions_train_nulls.csv,sha256=ATKujpSwylRzqwQhuYk5oJQZnocct6
97
95
  teradataml/data/advertising.csv,sha256=E391Wtb9O8ZHEIX3YxovumwEy4rNcer1zJr2g51D_dU,4062
98
96
  teradataml/data/ageandheight.csv,sha256=wZqCAsV7SApRpoa24-p8ws6v7DNsY2_CAIKwZapmLnY,244
99
97
  teradataml/data/ageandpressure.csv,sha256=Ur91-8fz1VjPsFxfgvwWy9yNB3m2aV9qiPRCHkXHXgU,392
98
+ teradataml/data/amazon_reviews_25.csv,sha256=0KKnPkATIUylQocw6wpmvrrGkqv06hbihlRhdL6pa00,12824
100
99
  teradataml/data/antiselect_example.json,sha256=w1V67r47thUYYgE8n0buuPcIQbFnDVPZzcIDGxm46U4,1280
101
100
  teradataml/data/antiselect_input.csv,sha256=bgJVm4qOd2xIpMt2vcfw3Vp4EhFh31MeR0UIMgU29zM,1000
102
101
  teradataml/data/antiselect_input_mixed_case.csv,sha256=6kBAJUTdD_m36JQ4XW_BdUZ_GYb6tVguMZ1Y-eYuZyM,1000
103
102
  teradataml/data/applicant_external.csv,sha256=jaVV1nwxzQjoVZHzdMuaqivRp9erlQFRF8y9CxNSpik,453
104
103
  teradataml/data/applicant_reference.csv,sha256=u5oawSEvTCPsxnZNRCSZo-KiVHhehmVORB3Nudm91Yw,604
104
+ teradataml/data/apriori_example.json,sha256=WC8CuZCWlOFs8JTqB7iUfpfpLPT6v3f5ErqRqZZHc5w,528
105
105
  teradataml/data/arima_example.json,sha256=NQuqX9F1wzHNZTwE9s4UNBXaEDlHLR_zWzvRBYzlux8,226
106
106
  teradataml/data/assortedtext_input.csv,sha256=iWaIWvSB3JBTLDfkBa--uJV7TDFeB_V3fM9Oqvtxskw,947
107
107
  teradataml/data/attribution_example.json,sha256=7cfF6OikimBid3vENprLwEwMezF211iC_-my6dpcR7M,923
@@ -133,7 +133,7 @@ teradataml/data/breast_cancer.csv,sha256=YJjbRrFwf5PWU7Al4NB46Y2yXNyfJMrZ06YDMY-
133
133
  teradataml/data/buoydata_mix.csv,sha256=FhIW7ZyLFFSt2Ju6cYfJJV5_bUWoGMU-fl4RqX85HiA,1630
134
134
  teradataml/data/burst_data.csv,sha256=4ZEOicUtb4iejEC7Qh5VewTACJMG5qdpKEVq3RVO4yo,172
135
135
  teradataml/data/burst_example.json,sha256=ijC2YaBUGL-ZKR2lM3CHgBTPHYXr4LpTrXzhHzXhcB4,434
136
- teradataml/data/byom_example.json,sha256=138RFM1GJZPgw_G3lM7aC3tcXJZQh-R2p4qSMeD5Kq8,394
136
+ teradataml/data/byom_example.json,sha256=wUUvHH0QhQJcoMCNLyyCSiQD9zZV7xKN9LoV1gxd8rg,726
137
137
  teradataml/data/bytes_table.csv,sha256=nztKCmykXMySGFj1PtbkzmUWA9BFD4zxku0VZduH2MU,109
138
138
  teradataml/data/cal_housing_ex_raw.csv,sha256=W_r-AMQBLmTatsni_FXdhmmVHNMxQ1ndGdmhS-_2t0s,9459
139
139
  teradataml/data/callers.csv,sha256=uarzTiXzCuveKX-HtULkFM7BWlAhpp-nI8kmcWT73iM,93
@@ -241,6 +241,8 @@ teradataml/data/hmmdecoder_example.json,sha256=uDvpoFSbgmqelBlYDnrcj7N0lDaWCHCsQ
241
241
  teradataml/data/hmmevaluator_example.json,sha256=SwhSClm_D2vFD1RUqf9hB2Sm5Pdz0fRGF6xhKS1XAF4,569
242
242
  teradataml/data/hmmsupervised_example.json,sha256=ll5LLX65qnoeYrYLz44F7jBxFVeycgw8k_0E1SOdgk4,217
243
243
  teradataml/data/hmmunsupervised_example.json,sha256=wS8dJ-eMVwVDG1jdRQ_xEfV4_EIm8Jhb_8Vj8c30cLM,157
244
+ teradataml/data/hnsw_alter_data.csv,sha256=8XS9iEQY2rdJY-3EKI6IuxbRffxygJouhJHVOnLeyrs,52
245
+ teradataml/data/hnsw_data.csv,sha256=GJDHJSAm92sMkMww6rPLx0KpqKWUQZNpw2HH8pQ5ucE,113
244
246
  teradataml/data/house_values.csv,sha256=RuoWnMnhInKUNPOcAoRjaHl0nSVpxAHRFk4l7ScQ-OA,571
245
247
  teradataml/data/house_values2.csv,sha256=A0DUg1nfULxjJ042H1uCzGNBdaEo0cs5ooWF8zeMP6g,199
246
248
  teradataml/data/housing_cat.csv,sha256=zWcbUJRMt0Rrh5mXjD3LQV7Og3yCzZHonXuibRtrP-o,78
@@ -328,7 +330,10 @@ teradataml/data/namedentityfindertrainer_example.json,sha256=k8V-bdBlV0SpAmz3bf4
328
330
  teradataml/data/nb_iris_input_test.csv,sha256=Pa7US_YC42gUIsurIJvekgwiaLBv1B_EWpa5ZRlQX6o,1002
329
331
  teradataml/data/nb_iris_input_train.csv,sha256=HU8MSrt9H9b-sF4XFkoQ_AXC0YvgcTrVV42zkuPXKSw,3746
330
332
  teradataml/data/nbp_iris_model.csv,sha256=PIhJGQx842zibQVeQWL2kHcHJDnODDjtcE0xa3NZspM,759
333
+ teradataml/data/ner_dict.csv,sha256=E_TqAEwQRhJvwOtNb0IKObdpCzXA4ey-rCQzU8x5amA,168
331
334
  teradataml/data/ner_extractor_text.csv,sha256=2jAgKS5rHifnrlVRuEuBCvXmpppHRvNYrGR-4tCskZ8,168
335
+ teradataml/data/ner_input_eng.csv,sha256=aoJyOwrYu2Uq-VbGQ6CpCA8IVBR5i5VgbfVWLgo6kds,842
336
+ teradataml/data/ner_rule.csv,sha256=DzoIcqG_ThhXqLRDoeq4ZG41StKZOuKW_1Yj35mOdG8,159
332
337
  teradataml/data/ner_sports_test2.csv,sha256=WrjjEq11SBVu6SoRgfs8e2IddMBzQk4atjLo7l8Fyig,2452
333
338
  teradataml/data/ner_sports_train.csv,sha256=uQFnG_Vk7o0c1RH0wMz1L5I15qReEAMKfRDPPFsEeuE,35416
334
339
  teradataml/data/nerevaluator_example.json,sha256=OvjhjbtA9atK8K6thtV2Jwt_q7WT91T_QfQZtYxpezA,117
@@ -366,6 +371,7 @@ teradataml/data/phrases.csv,sha256=CX_QEgAX37IUVKf8ctD6uNkG4bixeH0Tn1LM0nCEco0,1
366
371
  teradataml/data/pivot_example.json,sha256=ZHd3QFtx0yXPZm7fIfss8SsyZU5-mTG40Wv1Qliln5M,165
367
372
  teradataml/data/pivot_input.csv,sha256=1VUxgb3CUuSDzy1aTXgsLurRIZa13Rdoxh_UGqovhnE,763
368
373
  teradataml/data/playerRating.csv,sha256=m9YmSbd4WYiEPxBFqRqnEbCpLcfnYc1yaWCj12IMZcw,504
374
+ teradataml/data/pos_input.csv,sha256=MWA_BaFaX6IEuCJgpsOICQwub89f_jWa51jM-SsmmWc,661
369
375
  teradataml/data/postagger_example.json,sha256=n3WsdqH_oU9lhLHnJqs1plrrwZ_oHRRL2ZRTRA4TiFs,126
370
376
  teradataml/data/posttagger_output.csv,sha256=PESlDu3rVt-_0Yl7fwjEgj-1VnYNhR16LL4XPsd3P_c,945
371
377
  teradataml/data/production_data.csv,sha256=U35ycGMK--e0E7E6eUq6xvzrLoqcvBnfpohaadjPx8o,821
@@ -449,9 +455,10 @@ teradataml/data/svmsparsesummary_example.json,sha256=bOqLVJnyyCJTSY2hdxG6DRAsGRz
449
455
  teradataml/data/target_mobile_data.csv,sha256=FBT4cAV5zHloVOCR9cKZx3JFyv4OC5vlqrJoClQQ-4c,316
450
456
  teradataml/data/target_mobile_data_dense.csv,sha256=HIeUmij5i2pSUA6TaxLl2oNjwWnlshWB0vu0AouTQmw,122
451
457
  teradataml/data/target_udt_data.csv,sha256=BRiHn4P68J1Pyh9MvTmxtKe0eEze-EUuBVYMV228JqY,141
458
+ teradataml/data/tdnerextractor_example.json,sha256=yjRT9NSUb0d4Oi5yqF40sfnEwN-FgIbsjJG7G8aIVwg,275
452
459
  teradataml/data/templatedata.csv,sha256=_NYyMgobQ0-oIjZhIUcv16iOM4EtajZ4mKOrx39cfDY,22391
453
460
  teradataml/data/teradata_icon.ico,sha256=M4qHNiblJAmGmYqsy9bD5xSP83ePf6089KdFuoQhaFM,1150
454
- teradataml/data/teradataml_example.json,sha256=-yi0pDmv41RheeShirk0k1WC624ra4-2SMTzWyqEp4o,41742
461
+ teradataml/data/teradataml_example.json,sha256=WNfsndXCnq9Ot-4PDvMdCP3AMnHxwD9ARSh6uzaythw,42212
455
462
  teradataml/data/test_classification.csv,sha256=BDKuA82t60YWQu23BDxMn3j7X2Ws_HJXfUoFcwa76Og,9523
456
463
  teradataml/data/test_loan_prediction.csv,sha256=RW7R4PPMRGdpHmHxvH-1TssLQFg5bVfd8tteuJ3Ukg0,863
457
464
  teradataml/data/test_pacf_12.csv,sha256=ltIEUeJksRLCcvfXyrFhGcc7GkI89NXhRbQ5gOidvNM,1003
@@ -463,7 +470,7 @@ teradataml/data/textchunker_example.json,sha256=gbivWisZUlfIM0HtNxT7rPaQUKMicwzL
463
470
  teradataml/data/textclassifier_example.json,sha256=e6BeVdgRMqNQEvWEXHEOde9Yf8YcdEpPuiwX2LgeoEQ,125
464
471
  teradataml/data/textclassifier_input.csv,sha256=AzinMnRrexjkM1vLojt7ODyS1TNrssm9DzDlE2YIQR8,1144
465
472
  teradataml/data/textclassifiertrainer_example.json,sha256=3WWCFqxDuSWexNDm3d3PL6J5AQHetNe12PEFp7WT1XA,122
466
- teradataml/data/textmorph_example.json,sha256=s0Vm5QBCj87iSC3fHTIW-iCgPHef_W7cBXmqb6YE7ic,78
473
+ teradataml/data/textmorph_example.json,sha256=zrFQcSQ_HB9iHiRcBh0ojwbpBwOtbK2k8nL3mGhfd94,184
467
474
  teradataml/data/textparser_example.json,sha256=VVe_-lV623BqJI91v2nh60YgjjrHvVidqKtAjHNKrSc,294
468
475
  teradataml/data/texttagger_example.json,sha256=Cdie6HATy7RMAU3QdrR3fHfC45lsSN-xDA7uZr2xpo0,236
469
476
  teradataml/data/texttokenizer_example.json,sha256=15AIwWNtVtA7yqdpqQREKC1stnWiHjTZqhZ3tIFGJGw,120
@@ -479,11 +486,15 @@ teradataml/data/timeseriesdatasetsd4.csv,sha256=bCoFR0ohIN7eVk18FhA1GShiQ9ARVPK6
479
486
  teradataml/data/timestamp_data.csv,sha256=KcV3J8qNfj2-EwQlNaG9uGkCTNjBKE21nSfIAj3Dgd4,281
480
487
  teradataml/data/titanic.csv,sha256=IZvCBiupJPNBQBats7EL8iiZCSBPkpCfCSUQ_BrnHeQ,61192
481
488
  teradataml/data/titanic_dataset_unpivoted.csv,sha256=NsU8OJIn6bmCCgmOx4lTy7-pxTqbncADzXpWgrqEhI8,350
489
+ teradataml/data/to_num_data.csv,sha256=m7IErUPD_LRT31quAvY0k45EMy4P9Gi-ESoK_Z1h9LM,67
490
+ teradataml/data/tochar_data.csv,sha256=4N0OsOCW8bYsrE447DJ4nebTkYRnQTokSONEzzddJtA,247
482
491
  teradataml/data/token_table.csv,sha256=mZTppDLBmQC4j3jqZ9T5czAPUl2xO1sxHqM-DIR-DKs,14812
483
492
  teradataml/data/train_multiclass.csv,sha256=VLz6t2cuAqsOCmD6MZwoy4iWkrcuc4w4mvG7NuR5CD4,9435
484
493
  teradataml/data/train_regression.csv,sha256=uLtcSqAws8rdcXKyyKBNXvmm-4OBosQUqzyAUT6niLk,9662
485
494
  teradataml/data/train_regression_multiple_labels.csv,sha256=ReJ4gRwrn9CQ3w0mH1zgEZMGZIkG5SZ30PffOJgoii0,10044
486
495
  teradataml/data/train_tracking.csv,sha256=IobrRHY9augTggczpN-zLOlIsQS38lY3n3c_qkodvhI,3317
496
+ teradataml/data/trans_dense.csv,sha256=Kfy-SvfKS3fb6GqRnJkCgQrDqW3sFoCVhVf1I_Wbj4w,1178
497
+ teradataml/data/trans_sparse.csv,sha256=iwCBg0SiEaONTJqCG0u1-XEwGlV4kAm4QvV0-fJadvU,3221
487
498
  teradataml/data/transformation_table.csv,sha256=UsqIzYYEw1y-GUY5z6oztSqC0NJAsMOjSIx0k9e8fa4,173
488
499
  teradataml/data/transformation_table_new.csv,sha256=DDCJ5_o_tHndTiAbQT92QmYKWEaKLTR1XJjLuiberBQ,76
489
500
  teradataml/data/tv_spots.csv,sha256=rIJK9AjKGBFiK9qYTGLdgF0whw7Y6nUJAcin00txutE,321
@@ -498,7 +509,7 @@ teradataml/data/us_air_pass.csv,sha256=LdhRm7SOl573NEP8jJYaB4d44lBhfsDO1vXw8SLSt
498
509
  teradataml/data/us_population.csv,sha256=KcNP7DOv-X3qvQ2tg2yz154FYPg5xeVFyQ-nG15aT4M,18420
499
510
  teradataml/data/us_states_shapes.csv,sha256=Uk75jUs3LV9B3Hy_fgQ3N_ql0e1GcrCqjdTEVqSNCIA,86308
500
511
  teradataml/data/varmax_example.json,sha256=g1x_2iIncL6OAE1DVvI65J822swD4HXPAbzZfCZ9WPs,429
501
- teradataml/data/vectordistance_example.json,sha256=1E5xNeC7lQWScf_HP6Nj_DMPH23U-aHHBzhQqhRnomc,665
512
+ teradataml/data/vectordistance_example.json,sha256=MCExWiHYITmVAACPdpRB2L_FGgAl4iQNBTIfH5p7Mm4,663
502
513
  teradataml/data/ville_climatedata.csv,sha256=Fkltl7-Ia9GeI3gPgFgKhQ-hyubf8miJPW2dZex9MX8,7231
503
514
  teradataml/data/ville_tempdata.csv,sha256=7kmSNztvrPx_j4_nX0-r3_d7YF0c7AWFmkmAhpQyWNs,355
504
515
  teradataml/data/ville_tempdata1.csv,sha256=YK3_E1cQh4s3CKq-8lyXSJ58HEsBuCt4WwOzcV-V2lo,335
@@ -520,11 +531,12 @@ teradataml/data/xgboostpredict_example.json,sha256=-XQ7o9eHQjBoAl3zobM6yvuKE6eMq
520
531
  teradataml/data/ztest_example.json,sha256=HvBkbCcSKcSPV1RuEsxe8utaHT8xiXfrt90bgjMzexY,345
521
532
  teradataml/data/docs/__init__.py,sha256=5XVCpXHM3si13drwS1VzLUi3Jq9aAgvCCn8O0qs61as,36
522
533
  teradataml/data/docs/byom/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
523
- teradataml/data/docs/byom/docs/DataRobotPredict.py,sha256=WtpNV7dOf0lJ0J28k88Qs_TmrIFtOiB3QMU-sHIeEL8,8921
524
- teradataml/data/docs/byom/docs/DataikuPredict.py,sha256=prSgPBGIpz82qq1ycgHMAUlKvrpLmH2BAJZESq75pBs,8555
525
- teradataml/data/docs/byom/docs/H2OPredict.py,sha256=roe77-CBruRyjKKkvfhhG9lwIX0CDe1IdjY00h54xrs,16404
526
- teradataml/data/docs/byom/docs/ONNXPredict.py,sha256=ueOOYIULYUw_Xob4kPnjeoBI0r7IC2uA6JLcz4LHx2A,14306
527
- teradataml/data/docs/byom/docs/PMMLPredict.py,sha256=zS3igK0-tf7uPJqRdDqKbxk-m6Maz0uJgWHAHUfffrw,13117
534
+ teradataml/data/docs/byom/docs/DataRobotPredict.py,sha256=z7UUPJkqxNvng7VYKB3-8NqjvyojAy_0_T-9NIBQHRw,8969
535
+ teradataml/data/docs/byom/docs/DataikuPredict.py,sha256=FVcY_XTK-n7j3IEa63_TA4ebIQR0sa5_SNJPJh-5W2E,10459
536
+ teradataml/data/docs/byom/docs/H2OPredict.py,sha256=cljoRRvWzm5ShXaipcPqDPwCFxNh_wixkl8KSi4uACI,16452
537
+ teradataml/data/docs/byom/docs/ONNXEmbeddings.py,sha256=lRAsNLdoANcu4KMd5FXKVZIFfvviEsAx70OdUirSjGE,11858
538
+ teradataml/data/docs/byom/docs/ONNXPredict.py,sha256=qxNMVkw-Xz92yD7OHp0Kp_BOu0t-av8qzHnFN3wgzTA,14354
539
+ teradataml/data/docs/byom/docs/PMMLPredict.py,sha256=lLh7VYxNLA4m8mtMffdkJAoKZM3AQ8IEtKJ1LlrnrYw,13165
528
540
  teradataml/data/docs/byom/docs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
529
541
  teradataml/data/docs/sqle/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
530
542
  teradataml/data/docs/sqle/docs_17_10/Antiselect.py,sha256=XqXfSUwAfQvMohTtJri1ZuXID6HcqGc8f6yJOlvGUqk,3495
@@ -578,6 +590,7 @@ teradataml/data/docs/sqle/docs_17_10/ZTest.py,sha256=rWwAe8bEWYiPySlCJkzmMkCSce6
578
590
  teradataml/data/docs/sqle/docs_17_10/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
579
591
  teradataml/data/docs/sqle/docs_17_20/ANOVA.py,sha256=l96tqbGqoaCfLkjiK1vy6zIOagOpuWWiqnrUQdmIgU0,8035
580
592
  teradataml/data/docs/sqle/docs_17_20/Antiselect.py,sha256=ACzwv_Hm17d5UCbQWPJOGZeWMiRnOPw07_ZUPpd7GJ8,3502
593
+ teradataml/data/docs/sqle/docs_17_20/Apriori.py,sha256=7AjhKhAEJKcLJIWujbzU_tDWN3S6q7uyu4KGSq0TavU,5987
581
594
  teradataml/data/docs/sqle/docs_17_20/Attribution.py,sha256=CWh4QdRfrphC6nZkxdqVVZjW7JMzcyRFy7WqSJRYNIU,9131
582
595
  teradataml/data/docs/sqle/docs_17_20/BincodeFit.py,sha256=NDLIl3SfNIHDpTK9cQgrGsjcyyMokDJLItzUby4ZepE,7381
583
596
  teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py,sha256=6cbjBT0J9yMhQGoZw6eOnCw7pLnOna7UguJAnZx6aFs,6552
@@ -606,7 +619,8 @@ teradataml/data/docs/sqle/docs_17_20/KMeans.py,sha256=EDv-GI6i1V58ScOvU8PWAQS1hp
606
619
  teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py,sha256=tgVCNf8iqFZ86URQ7zCulwJhMqaT1qHvjQc73fcdfuo,6115
607
620
  teradataml/data/docs/sqle/docs_17_20/KNN.py,sha256=qsTD6BbQ7UFTS5WtnV_-ZBBvLVqMdDQZmJlb4ujzapk,9540
608
621
  teradataml/data/docs/sqle/docs_17_20/MovingAverage.py,sha256=DSbxNLB1OpnYgS_6v_MVAJDxtS49UtGIcOrOzUVhbus,5738
609
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py,sha256=bgJbAsi36ymoqWmAlxaZAz0aLM7KnGubriSxgIhrW2U,9358
622
+ teradataml/data/docs/sqle/docs_17_20/NERExtractor.py,sha256=2JnXUaPpmNGQ0uf8-Q0CuOMr7JI_e_tg-v8afHafSmU,5372
623
+ teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py,sha256=PEZ0pkJdmTcgKmSjvHKi2nquy30qXUErW1ogYuIMqys,9430
610
624
  teradataml/data/docs/sqle/docs_17_20/NPath.py,sha256=CBof2pQwE0tXJRLYxPruimIyOd6nEnwj6f8r1SpTys8,13931
611
625
  teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py,sha256=_O_MUZX1qmaZTpAehrdiy5dre3OLoQ0o0yZYFLU8yKA,7665
612
626
  teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py,sha256=9P9iLhGmB3bPvrNZzh2gtWRjZRP8s66NHhzvqLKJuRs,5379
@@ -636,6 +650,7 @@ teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py,sha256=HuQHFN3qGalcE
636
650
  teradataml/data/docs/sqle/docs_17_20/RoundColumns.py,sha256=57NVyAecTwnbY9pZnCQfjvaOklrH4g2Q_8OKyzDNC4o,4956
637
651
  teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py,sha256=wdbFuCdeJslfSq-fD3OU20JHEjdOC2WXF0ljukymuNU,5348
638
652
  teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py,sha256=9Ja5ev4neABpv_jJagr34AAXyXve0b1gI-r8VyNOBw8,4994
653
+ teradataml/data/docs/sqle/docs_17_20/SMOTE.py,sha256=VvsdLtNJwFiR0aG_0j1JaZhXtroPluJrLi805engYE4,9184
639
654
  teradataml/data/docs/sqle/docs_17_20/SVM.py,sha256=txuwmP54us3xk5UzTYKrPj40bZYMGWzNhE3glmvo6_U,18482
640
655
  teradataml/data/docs/sqle/docs_17_20/SVMPredict.py,sha256=XR9sK9CxSNdK62c4TqFa9Jq15aAfonZ2S2tRUe4orYY,9245
641
656
  teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py,sha256=aKczZjm_QTN1jVFv3Ty1eMYzG6lrx8Nz1BinyItNhjQ,7102
@@ -643,7 +658,7 @@ teradataml/data/docs/sqle/docs_17_20/ScaleFit.py,sha256=y67VVIICmcpHfDzftwLnrBCb
643
658
  teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py,sha256=YAUkjAcvU_Dd8l8vKPabFM72yS0Oz8_D8NhK6Qds6qs,9189
644
659
  teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py,sha256=2Q3kKkkKtHUA7BTl_pUtQnWW-Ij6lNpsEQ2FgUekPwQ,10065
645
660
  teradataml/data/docs/sqle/docs_17_20/Sessionize.py,sha256=g9W05OfIYtvHsn5-IPzurT26-MhC8WzxJtRmN6AABes,4895
646
- teradataml/data/docs/sqle/docs_17_20/Shap.py,sha256=zUr0JXV1hMhHzm2o7ihHiK9g2qeHC3mI2pW7tMI7o9A,8902
661
+ teradataml/data/docs/sqle/docs_17_20/Shap.py,sha256=_h_Pgypu-mfxqyvbWXRKoDrqYV6HiVHBj4OR8SpXVSA,9992
647
662
  teradataml/data/docs/sqle/docs_17_20/Silhouette.py,sha256=odUI2pvYF7dk9gBIhHdquAI_Wy6XzVynveDF33RDTkM,7243
648
663
  teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py,sha256=1eHyE7RLjdLY_vSHaaDrt0Ou9b8LYWHDlXHdVRBv-kI,4881
649
664
  teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py,sha256=ZlUVxA_teZnsheh2blnGnq97tKCo-9vie0HLZb3dz7s,4631
@@ -655,7 +670,8 @@ teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py,sha256=E68CcMdaXarPS
655
670
  teradataml/data/docs/sqle/docs_17_20/TFIDF.py,sha256=Kjvggu2W2EV3PjA8In1ksyYo4ByA4c-x2hSbVIOj_wU,5797
656
671
  teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py,sha256=K_BOaUNA9Zi2XaHC32vMpLbTfA51AieaUR0LMimWflQ,12698
657
672
  teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py,sha256=ga8DeTlJUmszVPBJj_kfASst6aK7Oc1yb46lPSwuoog,6510
658
- teradataml/data/docs/sqle/docs_17_20/TextParser.py,sha256=I419XK5ZhiXQD8vd1GL4v0PJCoKwxABIQALPFQO9VvE,7562
673
+ teradataml/data/docs/sqle/docs_17_20/TextMorph.py,sha256=y6jIiTv9473TLqm-v6ZYBw3HM8spRprkWDkqcqH1ij0,5148
674
+ teradataml/data/docs/sqle/docs_17_20/TextParser.py,sha256=HWizryh0QtY2-q8-uN_v9tCLKzPt4P-Tymj7on0dIoE,9673
659
675
  teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py,sha256=WtGPOcE8GdX2BYcaaUQHO_Q15HdUdzzUMeu5ZnEr1Tg,7603
660
676
  teradataml/data/docs/sqle/docs_17_20/Transform.py,sha256=Mm2SYFZpEnJ3nOATDA8ZOxfNz73r7O-N8JsRkeM9c3A,5732
661
677
  teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py,sha256=PUPH8k-CRdL5kM6mJ5i7wIadRyJvsP8B4eww39FLGbU,6001
@@ -683,11 +699,11 @@ teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py,sha256=Kgd6-tAYGKNfD6VL
683
699
  teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py,sha256=fDnIpFl9RidXamu_qCvgViD0fDplbG4BfBuy-ClXGy8,20423
684
700
  teradataml/data/docs/tableoperator/docs_17_20/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
685
701
  teradataml/data/docs/uaf/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
686
- teradataml/data/docs/uaf/docs_17_20/ACF.py,sha256=-s0sm_E-IS9PC3igu9jGIl_ns5lC_kOk4iNWQ9IrbhE,7691
687
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py,sha256=88KujTMVra_Bb9SSyWmecF2QA3xzqUwwYNdFVvhrwFE,16782
702
+ teradataml/data/docs/uaf/docs_17_20/ACF.py,sha256=vlZfKrkQFZqJx1jrSy2u1WJiJpPP9SfA1mKo5jKAya0,7698
703
+ teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py,sha256=B00e9j1nlFe_3l91UpVxgSVco8D_YXuwVXf774nN8YQ,16818
688
704
  teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py,sha256=KPRkOCAeQysFQO6HEjhJpiB2PlfCBf8tqkw3hM4S4Gs,7612
689
705
  teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py,sha256=xwnoDwKQ1oWJ7OSiJmMLO-qLA-ppgl5zSsPJ2_ptvi4,6974
690
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py,sha256=WsGyT_F4USv6ya0ROTl-YN0rq4oGo3XEpIQn-WSRTUY,12426
706
+ teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py,sha256=-k3efDfeVfXlqRCcBW487z04RMcKjakR6Yxg0tW9iKc,12462
691
707
  teradataml/data/docs/uaf/docs_17_20/AutoArima.py,sha256=Jo8DtwfR5XPcKnshD94NRUMA_7z8feGpnk791zLAh4s,13683
692
708
  teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py,sha256=E5tUEdZsYCRl_NbkzNu8nqaG5mr-Ej68evf68IX4GMM,12061
693
709
  teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py,sha256=3eVNlmV4lnUpmy3BxMfCuPR25bhls1X3GWl0Vr-IPBA,12111
@@ -697,51 +713,51 @@ teradataml/data/docs/uaf/docs_17_20/Convolve.py,sha256=BY8a2hbxw3OW_HP84ITTe5yY0
697
713
  teradataml/data/docs/uaf/docs_17_20/Convolve2.py,sha256=ePINkBVSJ65jB5e-UbhHC7pHLhQXDWFKWoZyfappuN4,10348
698
714
  teradataml/data/docs/uaf/docs_17_20/CopyArt.py,sha256=5gbep83z82bJusgpLwIrgax6PqEpCVBsys7IV9uchMI,5728
699
715
  teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py,sha256=Fs0NzzzxMtefpWvXMmdTjHlLu_GtVFh-AkOPXkohMb0,8475
700
- teradataml/data/docs/uaf/docs_17_20/DFFT.py,sha256=eym9uqsRSR9ne_Tjt9UQUn-X79dZBbddmk1YqFcvm5A,9026
701
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py,sha256=x6CvaDd482J0EfM4vCyCEUHbLfd1q3rLubGmY8ZUG6U,9662
702
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py,sha256=AyinWi8Lehd7BgmeEpKKw7QDnXDJMVwQhWlAJDE0aqo,9452
703
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py,sha256=QaU8sNSNew04dVTq_HBHP19EhiCuZALITmd9ZyvFmNg,8182
716
+ teradataml/data/docs/uaf/docs_17_20/DFFT.py,sha256=zczbwjMdiF76m4cKXScKQ1Ql-Swgej4ckYLB0wA7amQ,9033
717
+ teradataml/data/docs/uaf/docs_17_20/DFFT2.py,sha256=qnHfK9M8PZZJLm1pSj5QK3be-wBWjae_y83u4u77HV4,9669
718
+ teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py,sha256=S02XTvsuwOrxh-Rd751B5bCjK9Dvu9IUjD_UDmgj9kI,9459
719
+ teradataml/data/docs/uaf/docs_17_20/DFFTConv.py,sha256=kv6QhvZnF7jvkDxmioiVAyImohxHUMYjBFe3CkHi_dU,8189
704
720
  teradataml/data/docs/uaf/docs_17_20/DIFF.py,sha256=QQLYLVW5bbm2orirYrr7avv4UcQKOSK5sXwC82ykt88,7299
705
721
  teradataml/data/docs/uaf/docs_17_20/DTW.py,sha256=Gvkr55dwBV_gxhk_k6O1JhO3Pcm0N0w8PZMf9lg41OM,7299
706
722
  teradataml/data/docs/uaf/docs_17_20/DWT.py,sha256=luav08ng-JxSEsTCFCAgl89Bm_LBe7g0i8-lvl5Lz78,9728
707
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py,sha256=UwjeV7wcudow6WnX8w3fuj1HPCwJAQjtvLyVZug60Pk,9248
723
+ teradataml/data/docs/uaf/docs_17_20/DWT2D.py,sha256=cNqKwpMlFahz-S1EpdceP_hxqGgxCxqan_I7D7jMFS4,9320
708
724
  teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py,sha256=v0D2wcaOsJ2AxmJqQfdG0d_QQeB9hqav90jyNCLQhUA,5975
709
725
  teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py,sha256=lI07DSn8XeSMoUBqiiHyWcOgw1E3x0YN_UL7c4TsnrE,7874
710
726
  teradataml/data/docs/uaf/docs_17_20/ExtractResults.py,sha256=KZNhDt2jcC6JiGEmSc194guAtVx3uFlY3EL0DHC3578,9314
711
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py,sha256=f9Fxm3Mm9Gy1k7IxgC4wWMNW5cO24rLuNNSv9MieJ9Y,6873
727
+ teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py,sha256=CA9euo9yygMTe4ZOGd_nWZ5wDNQQYW11dHczJVexSlA,6901
712
728
  teradataml/data/docs/uaf/docs_17_20/FitMetrics.py,sha256=sL5VaeCBQFsLdauFjR3fl00duraZ-MhEaAzAkGZeo6I,7292
713
729
  teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py,sha256=vRV44UIDIosCoTrzeuO4TAX7Te_mBQ7SeHD-3VrujRE,9340
714
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py,sha256=yqDiMlYPAeKgQ6aflD-nEuQLwPddqCjzC6VN7t2Ll_8,6036
715
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py,sha256=ANe0_6uaiuLsRgGt2-FRwofirq8nxK2OnNdtJ0NuTCc,8923
716
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py,sha256=7VDJCyPvL4jXaaWeO9iBk_rMCPYoFPLU8zb1m-kcFZ8,11096
730
+ teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py,sha256=RM7pCdOkSPgRkokzkG7ket_qskCxCIw6e9adxjqU4nI,6066
731
+ teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py,sha256=Fmbo1ggffXZZKhSmtnpjfATBF7Saa4xGFCqRF6LzVC8,8937
732
+ teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py,sha256=voc6zz0wsHhaTUC4sGJksyi5Ihrtb059Avok-MnCSHc,11150
717
733
  teradataml/data/docs/uaf/docs_17_20/IDFFT.py,sha256=CFhVY_6NdGF7kzk_RFZqGkaF_-lLC9XK3AyapHLfDoM,7226
718
734
  teradataml/data/docs/uaf/docs_17_20/IDFFT2.py,sha256=d-Syxypd40wtLppuvq6QEW29LOo8nqqcjXMDjWy-sB8,8437
719
735
  teradataml/data/docs/uaf/docs_17_20/IDWT.py,sha256=tQpomLX8hPO0-moPKOZfHYYh6Z0fGu7U5OESnkMvq2s,9846
720
736
  teradataml/data/docs/uaf/docs_17_20/IDWT2D.py,sha256=X1HKTz0B5QTUr7LKC_F_Ai8a2WSEhlImKX-HegW-lI0,9506
721
737
  teradataml/data/docs/uaf/docs_17_20/IQR.py,sha256=TUhYaVU8BTbUQLrUil_cKWsafkNWZgIhm4Fdudd-L5M,5271
722
738
  teradataml/data/docs/uaf/docs_17_20/InputValidator.py,sha256=E0U4H7t9QFicekEBopjnlPva64uJ5wYkiGHe2sqXlf4,5068
723
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py,sha256=54El1YgvQK79jDiNYtl5k1SMiIP5QrsT-8ZpYQfS5dE,6353
724
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py,sha256=Y9w5SeANPADamCE85lbTy2sU_rXxLzZozZ3rFBqCm3M,9444
739
+ teradataml/data/docs/uaf/docs_17_20/LineSpec.py,sha256=2KN-2eUNWHjV2boEF3XpPUWcEzzX6o8KX-M3YJue7jo,6360
740
+ teradataml/data/docs/uaf/docs_17_20/LinearRegr.py,sha256=cm2uVZLkFWpSdfn8i2ePUlnSMYcnykrvZ3DyiKJhI9A,9451
725
741
  teradataml/data/docs/uaf/docs_17_20/MAMean.py,sha256=Kfb11dv1YhAVXBwQ4FwQrIF7QuTBMKKxm5SAMUZXYhk,7123
726
742
  teradataml/data/docs/uaf/docs_17_20/MInfo.py,sha256=5vbnWEp5nHZxBBwBfBhVRlsKEHz6G5F5cuNyiqsYWQQ,5528
727
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py,sha256=6C9efeXQIRjcrnAD3stwvXTsAXQppxroZxctqLFbzsM,12242
743
+ teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py,sha256=U23HykDU2wtMPZ7czMOM6SM97Yb_p444Ar-KossXp8o,12314
728
744
  teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py,sha256=-A5so6qYHsesJkRmcElL-fTgu7FAFJOkASLE0KCVET4,6161
729
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py,sha256=kmW4TdDf4HLIn9RzMk4F0pcHWUKQ7BxHrnoZZkRKsu8,8344
730
- teradataml/data/docs/uaf/docs_17_20/PACF.py,sha256=2ShZR_0uqtTeoR0_fP-eQamuw2fINeXJA0gYUfDTIhw,6626
745
+ teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py,sha256=HtBn-XRd7m1QeG-ILAXE8Ej7ZiwT2e5n-o5ga1kaYLM,8351
746
+ teradataml/data/docs/uaf/docs_17_20/PACF.py,sha256=MyLFOTVrLAwswWs5uvVLsQWLlfIMRrFansbzznbN0A8,6633
731
747
  teradataml/data/docs/uaf/docs_17_20/Portman.py,sha256=LT7FiEIFgF59lBgb6cAwh292b0cX2LzM_TXTPHj85zI,9926
732
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py,sha256=JfZXJqumaS4FiJLuWuxX2hW-0RL1RLLZkPEpwZQ0mSA,8585
733
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py,sha256=6y_6xud9cZXwa_443orsftN4VRf7b8vNqHBNN1rsvR0,6451
734
- teradataml/data/docs/uaf/docs_17_20/Resample.py,sha256=OJ8V2lo9G99VwLZ_SVd8FHv8JzDooSR-E0VinDw5Ddc,9416
735
- teradataml/data/docs/uaf/docs_17_20/SAX.py,sha256=VbxA0cJLpaayJxFAsifEjQgkNwukTia2vbixOEdRg14,9794
748
+ teradataml/data/docs/uaf/docs_17_20/PowerSpec.py,sha256=IlSXb27I41ukmCsuoifOBSJiYjoFUckAOkCCNtjnkNI,8599
749
+ teradataml/data/docs/uaf/docs_17_20/PowerTransform.py,sha256=nBQBNBk8_crsAjGx4AOpdrM7h8_oIEYmTrr2kH7osno,6472
750
+ teradataml/data/docs/uaf/docs_17_20/Resample.py,sha256=2G-edIrTEZyvSFb4SZYKPRqRWmF5WYBLUlwl8cnfsDw,9451
751
+ teradataml/data/docs/uaf/docs_17_20/SAX.py,sha256=Ocm6VyKbuPAhYR8pytULf6ro2yPiO2GK7zuXUq2FdtY,9848
736
752
  teradataml/data/docs/uaf/docs_17_20/SInfo.py,sha256=eeG3Mm7xLTurI-NSvnj2y44thZx5hliacqZEGQPQiu0,4928
737
753
  teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py,sha256=Nx-DmS3U46MFu0Twr_WJimaSa8fXM0yaaJWsSz0WPbo,7275
738
754
  teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py,sha256=Q6NqVl-QfiSRXp3Z-3r-1TUsi7ZUkThGIFJu07E4k-M,7583
739
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py,sha256=NgGEJvjIIctWh_pm7acr00WjD-c9FpfxFi0arY3epJE,7485
755
+ teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py,sha256=C_kVZ_jcm_rWEdKdO3FCxWiN7oIedajb0RrDvYC6I2k,7501
740
756
  teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py,sha256=-_QvdNnKdmIfzc23FQRQkRGNz9uwWjuXrbbam1_KKmE,7475
741
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py,sha256=sKzOAq5ZPq3XvNUFFmKEThT-3MyjAVu9pquz7L6kiqI,7370
742
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py,sha256=qG_D4FTESO0YOWIk1hmwAihCakoxIrT9UG-xF2cBtXE,8920
757
+ teradataml/data/docs/uaf/docs_17_20/SimpleExp.py,sha256=EwIdrQrrJ_6SE42hEoLaBluDTYg__F7enp2thROiIEc,7377
758
+ teradataml/data/docs/uaf/docs_17_20/Smoothma.py,sha256=TD0sSm6y_n043zfX6cPT1BG__g6ZmA5bLM50uin3He8,8939
743
759
  teradataml/data/docs/uaf/docs_17_20/TrackingOp.py,sha256=pmNKBRmxvNK_K2novZbRYpupqGlNTzVRHNEBTnphmI8,6518
744
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py,sha256=KF8WvCzSXavCzvapJS7JdA0Z2gRXiYA6-7jy5OakOus,7114
760
+ teradataml/data/docs/uaf/docs_17_20/UNDIFF.py,sha256=fvxmNcgsTLggzGz-mOOpcmO2-5Nswng9pjyvyS39TAk,7132
745
761
  teradataml/data/docs/uaf/docs_17_20/Unnormalize.py,sha256=dbkm81T_CaQZdQyuVW6PPYSmW_bs2zfROKEOTB3B9e4,8632
746
762
  teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py,sha256=wR4WdoR4zNfza1w4BNeeK7Qdmz_KvgnEYJ_2rfULpm4,7544
747
763
  teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py,sha256=Qcuc2OHmBHXoEHqLByZizE3j2CEd3SsQuCp31Y9QQ6A,15374
@@ -750,7 +766,8 @@ teradataml/data/jsons/anly_function_name.json,sha256=EHJ68E45KgNfECT6AK9-DMQ-yP8
750
766
  teradataml/data/jsons/paired_functions.json,sha256=5EGDbgTwKrR-HcjwMa187tPyOm23aYcmgMrFDDXSXRo,9814
751
767
  teradataml/data/jsons/byom/dataikupredict.json,sha256=szvH79NGcniprg7eborSyKb_1JL8-Zg8lC0KT8efM3c,4752
752
768
  teradataml/data/jsons/byom/datarobotpredict.json,sha256=42VOrJFvlc87ZKgq6mu0FwcUkIFEaY41rzW2PTibVTM,4735
753
- teradataml/data/jsons/byom/h2opredict.json,sha256=wOxM25cnIF3I8gUgoZmxN4lItg7iZ-kW5tAIG7U3HGo,6131
769
+ teradataml/data/jsons/byom/h2opredict.json,sha256=-neUkuTjHSVWAoK7uyIcAv9HfAa0IGiiWXuNES73fgc,6132
770
+ teradataml/data/jsons/byom/onnxembeddings.json,sha256=-_y50FRtV8KQNeHW29tlRss3MsnJs_FBZ1xrK60qfpI,8866
754
771
  teradataml/data/jsons/byom/onnxpredict.json,sha256=pkzmSpmzpx0V7UVKGc2_FkTCISa3U1vkqV5gpae5aBg,6114
755
772
  teradataml/data/jsons/byom/pmmlpredict.json,sha256=Rm2Dt1PXu4wG8xj3a7MaTGYPb9_2cXgeUYy4enevUzw,4686
756
773
  teradataml/data/jsons/sqle/16.20/Antiselect.json,sha256=Zyw4BroIZwI7UeYjeHsWO51MukZmAH38UKS4-8nPuLg,1621
@@ -852,7 +869,7 @@ teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json,sha256=-DFxNNjkWPZCt
852
869
  teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json,sha256=2Ou6QmEwhptX9jdhl8xPnydiXqVZDTb8pVkgVJx1tzs,5774
853
870
  teradataml/data/jsons/sqle/17.20/GLMPredict.json,sha256=pgagDfqyWiEnFV-fzof1zz5StSoeZODbyn9AGmMq5Z0,5376
854
871
  teradataml/data/jsons/sqle/17.20/MovingAverage.json,sha256=q8OpbyhlJeeQPOZNwlBF2SBGpe7k_NNyqXWpPdAghuc,12652
855
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json,sha256=O5paj2xoNL38YQK6j9bQIxgsEZV1XNgyyRLSIDoj09g,11756
872
+ teradataml/data/jsons/sqle/17.20/NGramSplitter.json,sha256=EVW5Np5ObnL48IW1FIkX-_Hqfzs_-igCPhCUrhLZtIM,11895
856
873
  teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json,sha256=lsB-AmLdZ2rztT54Hj8KCbitTvwkCuJYE9dFHMuZXIQ,5044
857
874
  teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json,sha256=Uwl8lHLVFZeqpH848jl-2QqfRKiMecvyu876_Axf5W0,9553
858
875
  teradataml/data/jsons/sqle/17.20/Pack.json,sha256=rGLF10fH5fpsiK9DfNu9YxMuyC9K5zWKcPtcvCNbd3g,5335
@@ -860,6 +877,7 @@ teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json,sha256=sMUK3DVXTHI_bIxlHx
860
877
  teradataml/data/jsons/sqle/17.20/Sessionize.json,sha256=IIA23vN016aUNl5IFeRQj3hxtmqNvjnwL96fjPLUXlo,4469
861
878
  teradataml/data/jsons/sqle/17.20/StringSimilarity.json,sha256=P486-VfDkV06SPPKHR62Q2PpOEyJGbAuR9sGD_aU168,7142
862
879
  teradataml/data/jsons/sqle/17.20/TD_ANOVA.json,sha256=_tONpTLLmul5MP5t5PhLvebgtjoN5mLX61BMZPJD7rY,5268
880
+ teradataml/data/jsons/sqle/17.20/TD_Apriori.json,sha256=7oay9Azl2BuG6eI4yeJn3wr7KFZa3WxMReT92i3u7L0,6280
863
881
  teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json,sha256=SXC2_jSQABC53QGQ3S9gox8j4DTq65WpNBkHwP6F7SE,9292
864
882
  teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json,sha256=SG1Dz-m9B37B5nK-aubz52QulWgzZq_O_nUllVWUaqo,2468
865
883
  teradataml/data/jsons/sqle/17.20/TD_CFilter.json,sha256=GmljbjUsiPrinKRjgU29BFvndoo060T_tA8KSSHI2S0,4200
@@ -886,6 +904,7 @@ teradataml/data/jsons/sqle/17.20/TD_Histogram.json,sha256=maRiTySFqhKcfzcH0VWigc
886
904
  teradataml/data/jsons/sqle/17.20/TD_KMeans.json,sha256=1l_vfCZtGRgzlKMuNDIy-H9gjC0sZNC5thzwEIIc930,8297
887
905
  teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json,sha256=qvKPOK-wOMyd05JWA7RmvkogjObHqiVZr4b5M3XkcBI,2976
888
906
  teradataml/data/jsons/sqle/17.20/TD_KNN.json,sha256=0pF8hgOXtR4i16dkHoK5DxDarkp_OT0vi62sv3VA27k,10439
907
+ teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json,sha256=80UIWn_VsBAWAOU8ZauqNkq-NqN2kv5WCgYRURahHBM,5126
889
908
  teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json,sha256=aKa9bh7TVCavRYfE-uA4j3ckLkoNvNolE3q68ajcU30,6391
890
909
  teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json,sha256=rG9eLlNyWNpIZSWNhj-9e5eltM7JH-sbabwXi564IP8,6938
891
910
  teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json,sha256=2Ri0K7ZpVsQIJCa1f8Rjpy97oKigxrN-v1AAYMb3ofQ,4385
@@ -912,12 +931,13 @@ teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json,sha256=EppbRKRD9hzL
912
931
  teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json,sha256=AgbGYCGOvhl_iUSCjzi1KcNtTQ6hS5MfMnh3joZRJYQ,3546
913
932
  teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json,sha256=ghnwqbuiTPMsKyFivDswALVGLg18AFYYDHVDPv2aZ2s,4211
914
933
  teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json,sha256=JZh2R6fYJcSqqV_QKXdBseajYxwgWt31joUfQpasGbU,2480
934
+ teradataml/data/jsons/sqle/17.20/TD_SMOTE.json,sha256=9V6rvcFYO9n-2o0c_nNkaTnCLto9l9R9HhowITfwaC8,9944
915
935
  teradataml/data/jsons/sqle/17.20/TD_SVM.json,sha256=Ao620whcupTfdOaATFSQRiJtvWLosVJW0yg-pRZTQpg,17763
916
936
  teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json,sha256=aZlJBekP4uxc2XJUwIeV5h1ToDWvswdSBI_qW0ndQpo,5142
917
937
  teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json,sha256=V9N4WysObAauTR0X3wSBJDpRMvPRQxKr8m-ztGLcnXg,13586
918
938
  teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json,sha256=aHX7ccFEfjJ9uP23qj9OiC3rREeuryP_T7kcWrpkbQg,3992
919
939
  teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json,sha256=LVPbPPGi_z6l3f-OjD7XrhjOR_dG3XuZdUgaafVeED4,7045
920
- teradataml/data/jsons/sqle/17.20/TD_Shap.json,sha256=lievgkOWQII4bdQirHXo_OGFuexhTAocmV-SKQj5Rqs,7928
940
+ teradataml/data/jsons/sqle/17.20/TD_Shap.json,sha256=UdbHG9z-J-0oGRloIghUZpTfV-Qw_ahVeLvtdprrRI8,7895
921
941
  teradataml/data/jsons/sqle/17.20/TD_Silhouette.json,sha256=Wt6QlckJUNUGrCWAY4tv2xvi2K6tw9cjpUUK7U0esU8,4840
922
942
  teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json,sha256=zOhzZZDdlBnRv-vZQL3XCO5sHcBiz2e93dfqpkbuWF8,4995
923
943
  teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json,sha256=_6dzIMMYBWCgBEvNYbqFVfkdPt1lWCImayMVem9jAbk,1877
@@ -925,7 +945,8 @@ teradataml/data/jsons/sqle/17.20/TD_StrApply.json,sha256=5DsnIIeb1BJqa12lh74mzHe
925
945
  teradataml/data/jsons/sqle/17.20/TD_TFIDF.json,sha256=IDQ7Dq9jVS8d64s02ero2-2hHvWd0qsCqqJ5sB0cNFM,5744
926
946
  teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json,sha256=SWIiQ5RNcNNkAL-VTUys-ymUf8ftHv4_S4AItnLvf_E,9314
927
947
  teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json,sha256=v26bCdOLPKZR-oNwp6jXSge-Mi3sT9ktUnQF46tiIFg,2765
928
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json,sha256=SadLzx_KuhRFUSkZl3xuNLgbMFKz-MnTjc8OsVSoiVc,5926
948
+ teradataml/data/jsons/sqle/17.20/TD_TextMorph.json,sha256=eL9eVSBBS0_Pouhqqxm1ZUJQWI5W9yzxxKnd0SqBo7Y,4707
949
+ teradataml/data/jsons/sqle/17.20/TD_TextParser.json,sha256=8Y3PSVX3Mag6boWiQFEVyZPpmmkYoLfHnjWqaASE1kU,9344
929
950
  teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json,sha256=-iTh6laaD6gf7WWEyz6lQFoDBGR2kwvaeTsavZsyW9Y,5744
930
951
  teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json,sha256=nMK_V8EAw01qjsuZP5uhyprw_Mh5G9ZimQt8TfPSsYw,4807
931
952
  teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json,sha256=JYjxIZCXHDipqcuSNH9O0o9hoUD674WZ2ke5IL4ZA8w,8680
@@ -938,9 +959,23 @@ teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json,sha256=vePCDT17Ho9H1b1cx
938
959
  teradataml/data/jsons/sqle/17.20/TD_ZTest.json,sha256=vDxIYCnmgPTnxJnfrivB8AkOKNrJXY_s84_moFFjsLE,8202
939
960
  teradataml/data/jsons/sqle/17.20/Unpack.json,sha256=XoTH6HH8cQ-WWMkhx4gIH-hkn0q4G8StVxNMcUIM3SY,13420
940
961
  teradataml/data/jsons/sqle/17.20/nPath.json,sha256=_x0_7ZVAZ23JNd3Xy-xfBFfXD-VWpgDKzhpnUmt5GAs,14122
941
- teradataml/data/jsons/sqle/20.00/TD_KMeans.json,sha256=yknTTt9x6pYsXV_L9C5caqOcfxTCCch5cMqowbAI9hc,8886
942
- teradataml/data/jsons/sqle/20.00/TD_SMOTE.json,sha256=mf3S5Q2ZlvE025yDdPkkWJ7zi94q4diIPs0lQwCWMao,9937
943
- teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json,sha256=HBFTmnlbAATu5xUt9ztByZsB5ka6HP8Z1hQ1PUmlViE,9841
962
+ teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json,sha256=8yVLR2aIQNNVew_MExBE8H7tvEqSG7eTgEUPWRZYanM,11453
963
+ teradataml/data/jsons/sqle/20.00/AI_AskLLM.json,sha256=D84RdVhoWqEiZ52ZPisguBkIFbXKeqU8HOb1UlGRG7g,14542
964
+ teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json,sha256=KX-2B8c_HTN2PLI5nn7TJ41AfZDnBxU10c3cqaaA3BU,12048
965
+ teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json,sha256=5eE8_J1i784ScBQhxtrivOEYPodWlIwd7M2m8c_NqIU,11452
966
+ teradataml/data/jsons/sqle/20.00/AI_MaskPII.json,sha256=k9NNxnzHhAPId1AoxdaJ_dfVSnCghyODuCcYuUd7yFY,11744
967
+ teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json,sha256=ib6UBvEmv-jTGu4j1L5Oi8jKJ7MS0sRGq1mJDcN2Vjo,11644
968
+ teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json,sha256=oMsDxZo5qcnN12TkRPWplKv8i_5zj_cEFdOa7vsquII,11765
969
+ teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json,sha256=7KQY14C_2TqZocRYVQy8srVO1Kz9XXbprtsvV1-QRgA,12475
970
+ teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json,sha256=iQoImkHb3_P9RHpma3pF1G3fDSmUOLpRcg0n3xAoF7g,12341
971
+ teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json,sha256=3u1K9VK9dKGKdnARjgXC5CPuIP0SRVqftFH3__sy15U,12126
972
+ teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json,sha256=66wVJwkjnuNSyqP5Ac6UMbxPQuMnB0RGRg8Jmf3M42s,12110
973
+ teradataml/data/jsons/sqle/20.00/TD_HNSW.json,sha256=yaIasMPo3m0fGkA1IJWWZKeQqMnknGf9i9neaRHrh7A,10031
974
+ teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json,sha256=m7_9216qzwrgnpubaD-0Jnx260KfxBb8Fz6faullUn4,7040
975
+ teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json,sha256=PPYYKEFZpYjNIBpBkA4kyeqVpdlGdl260Qm0lRB8ivw,1229
976
+ teradataml/data/jsons/sqle/20.00/TD_KMeans.json,sha256=ogqYrW0lAbq2mSa0HJURwYohYFd1XA0UDPqUA23oAfM,8882
977
+ teradataml/data/jsons/sqle/20.00/TD_SMOTE.json,sha256=my0rqPxKP6YM4tT5YO2lReAWYr_SY5EPySeCqgXCVrc,9928
978
+ teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json,sha256=F_P5WO-vMnKFLRai5ubyKzk7NHBEifbz55zkBVCavAc,9836
944
979
  teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json,sha256=vp0hpBDk8JmyLE-htYchk-JGZQd3oaNNKegwKYI87C4,2241
945
980
  teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json,sha256=x5bzoY38TzDHaLztMBmf6qMie4gykuQN__rN65NgaKo,7756
946
981
  teradataml/data/jsons/tableoperator/17.00/read_nos.json,sha256=AU0xz-LTu-evaZfWR1TATJN7XKQUSvCCRiagLZYU_Og,25804
@@ -1051,24 +1086,24 @@ teradataml/data/scripts/sklearn/sklearn_score.py,sha256=VtEP3sGJUasWWDHKWZau08vw
1051
1086
  teradataml/data/scripts/sklearn/sklearn_transform.py,sha256=EgrVc5_Uw0AMdhy2GBDhGA0WNMA2A9DkQUC5n2MXsCI,14613
1052
1087
  teradataml/data/templates/open_source_ml.json,sha256=dLbP86NVftkR8eoQRLQr_vFpJYszhnPvWNcSF1LRG78,308
1053
1088
  teradataml/dataframe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1054
- teradataml/dataframe/copy_to.py,sha256=VXbICedzrPsdPdWWCvmmoYzB-VXb4MC7kxbnxJkscsQ,76419
1055
- teradataml/dataframe/data_transfer.py,sha256=-7zk_4knyvLChQbb_Hmrj-eWxbg-REQZ_Bn-V4BqVhk,123719
1056
- teradataml/dataframe/dataframe.py,sha256=gImgGaF3pspGE0bJsVn8Cl_1IC_NrgN2ouXSoEU0hYw,977096
1057
- teradataml/dataframe/dataframe_utils.py,sha256=vbvKogavhqXSVe39zKepFcjGkyJuy6radN2ninHdc3Y,88417
1089
+ teradataml/dataframe/copy_to.py,sha256=wLQB5EIIpQxqKrgrEEBtAvXKHIDQiSiORmPCujiNexI,77295
1090
+ teradataml/dataframe/data_transfer.py,sha256=AgSb7OMzVgBQQ8vvhs-joO0i62JAueLJ5IzwWHG3OHw,125128
1091
+ teradataml/dataframe/dataframe.py,sha256=BvqQh3AfxZF-3e3Wic0TaJTXVZ_io4xZ_V4rxCBx0gY,1000729
1092
+ teradataml/dataframe/dataframe_utils.py,sha256=1QeJQ9PYuVYeF05WshnuRg3yGocQ2LeW_O1HXzRB_8Q,95099
1058
1093
  teradataml/dataframe/fastload.py,sha256=Qyq4xEzS9E5NRDvEUlmv3hoAQy5nhTDEfW1QiVg3e9U,42032
1059
- teradataml/dataframe/functions.py,sha256=PQjoHu56kZ9nWu3x-5pJiRdeV2NliGDdeJCWF5rMGjw,38745
1094
+ teradataml/dataframe/functions.py,sha256=JRfUH2yRbcSp9OejJGO6EZuRPM6m7fTlltdc85YbOZM,43600
1060
1095
  teradataml/dataframe/indexer.py,sha256=xDLYMuUy77VpVo1rO0RHrM-fpexr1Mm3o1hF_I3PsdQ,19787
1061
1096
  teradataml/dataframe/row.py,sha256=zgt4G-05ZE8QOfC0aCJVpK3WwC9_ExIgpMV7ZD3wKu0,4622
1062
- teradataml/dataframe/setop.py,sha256=EBJeUiOYtRMhrCbKUIBelQjtMe7pQ3aePuQSb0_VqPA,56931
1063
- teradataml/dataframe/sql.py,sha256=yvYpMp0axrp4dBz9pB_eK9RFmaM_etVAyMl63-qvQ4o,645455
1097
+ teradataml/dataframe/setop.py,sha256=lgXCXZ8ACAAHIzf0YDws31Ydzdl9b9xcZYLeziSRPu0,57203
1098
+ teradataml/dataframe/sql.py,sha256=pELFHZ7npF1j4wcNkT6o7Fv-6f5Lqo_Q_yw3OukDnMY,669372
1064
1099
  teradataml/dataframe/sql_function_parameters.py,sha256=BVuHGJ78TjxbrwMdytXfUVKrMZb4Ge20taVwcj0E8gU,22241
1065
1100
  teradataml/dataframe/sql_functions.py,sha256=-v5Gx8x_Tr-Ru9YrmjrM-JfIDhguk8HcO2G1xMcg0Wo,29482
1066
1101
  teradataml/dataframe/sql_interfaces.py,sha256=WzM-jq7JyRmEMs7yZTgX6W3nnD7YjxXwdTHauI4BQPA,3812
1067
1102
  teradataml/dataframe/vantage_function_types.py,sha256=4p4EX3ZtbqYBqcdQ7l_Vx0UW8sEIeEVnpRghcGpyFNY,28381
1068
1103
  teradataml/dataframe/window.py,sha256=YkrBcLPrvebZ4Ekylkv3JO8kMedAQ80pnOapMaarJNI,32755
1069
1104
  teradataml/dbutils/__init__.py,sha256=qnquQDBxYoHuaLb3VzM0Mb08Ooc-sDVO6JQCcPhSYlE,221
1070
- teradataml/dbutils/dbutils.py,sha256=cU5T7Zqf3nBRX_TS0egLD5Dq1goAwvKBW_YiCnx5L1U,79361
1071
- teradataml/dbutils/filemgr.py,sha256=vvrKLk_TGJcRnEqNlnf-WG8fSKXeyngobChKwUJysd8,14252
1105
+ teradataml/dbutils/dbutils.py,sha256=kJJldHGiD-SnZz3KZcUHgFYKUsteOscEOvYrvCc9HFc,98471
1106
+ teradataml/dbutils/filemgr.py,sha256=oJmI99H_CEpX_-xwr-ZdtnL_ky-KDfZGSNfxJcxL9lE,14381
1072
1107
  teradataml/gen_ai/__init__.py,sha256=kYGvNpZOR_E2VDcf3-LOfvFGox1YRpPeblwa5mqDvAM,91
1073
1108
  teradataml/gen_ai/convAI.py,sha256=HN_Rm38FY5Nr2Pq5nMmuT9gH9XsTwtE47NaQIaFyiFg,16473
1074
1109
  teradataml/geospatial/__init__.py,sha256=DZZNBHBYN1EDYSXz-7C_Ic_W2ZsVuak69hw_nWTcto8,292
@@ -1076,49 +1111,48 @@ teradataml/geospatial/geodataframe.py,sha256=0PKZeIr7LNA-zQffezYuqYpuxPf_caB3ue9
1076
1111
  teradataml/geospatial/geodataframecolumn.py,sha256=znNHkjpbOoS3a8xrYS2Q0ou4-hhm0rZOjrBXRCU2-ng,16325
1077
1112
  teradataml/geospatial/geometry_types.py,sha256=hUKAUluD8ufvXaLY1-cwnsB3RsFkHR8Wr7eVE4YCtoU,38518
1078
1113
  teradataml/hyperparameter_tuner/__init__.py,sha256=RQvotxJqh80M8Du-5IWdjdJvKYHDiGlepkgm5oyKqpY,80
1079
- teradataml/hyperparameter_tuner/optimizer.py,sha256=IvrbNGtS9B6cVu3xsx9hEmU2LiomLRh8nyQQegA9RlE,197968
1114
+ teradataml/hyperparameter_tuner/optimizer.py,sha256=TOm7bTFuHoLz5yRDxFw5FJvuFpiCdrRxMmcTq-QBzks,198688
1080
1115
  teradataml/hyperparameter_tuner/utils.py,sha256=Bu0A_mP1WPyWtoBGz9NTkNhWOz_nZUkc5gsqcPrYfnk,11727
1081
1116
  teradataml/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1082
- teradataml/lib/aed_0_1.dll,sha256=VKZZxFY8RVQdVN_uBXuiU1dwNcgun0w4cpbsgVKKFc8,3928816
1117
+ teradataml/lib/aed_0_1.dll,sha256=cQqvUotPZhtAwruDaojavGSnhx6JAO4bHNJ9pXviQJQ,3735757
1083
1118
  teradataml/lib/libaed_0_1.dylib,sha256=nKlbPxiSJw-kCw6NktpqMy-UDfq4zYq7gLy6S2N2Ppg,1806401
1084
1119
  teradataml/lib/libaed_0_1.so,sha256=xi4gwYQtbbdUlRTXsTEJSf0J0e9jt-cguTzdPQdrsEU,1040824
1085
1120
  teradataml/opensource/__init__.py,sha256=-EOpCOiaaHWuCFP1vDCOlHkqyPNid4CrnkQnQ0BOzKo,66
1086
- teradataml/opensource/_class.py,sha256=UPf6-DXx_EvQXDFwe902Yw6JjL1-B8ElHAymOxin4R8,13100
1087
- teradataml/opensource/_lightgbm.py,sha256=Su9f4eD2zlFzcWf_1nA1sHPZZxm82LOPuxlm2IpdXz4,48976
1088
- teradataml/opensource/_wrapper_utils.py,sha256=CKlt5hpgJaf06rx8gvu8frgBWDcWAR_a7ViMQEV1C-Y,12122
1089
- teradataml/opensource/constants.py,sha256=10omodLZBTQ8pF70ckHVudJ8ZiaaI5lHsanvajTWbD8,2809
1090
- teradataml/opensource/sklearn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1091
- teradataml/opensource/sklearn/_sklearn_wrapper.py,sha256=y7v2tgwGlLnA67j1uMxLW3MRGvM0V55SasB9mmZX75U,106500
1092
- teradataml/options/__init__.py,sha256=mr8WGSfc0Hb67OLWKENPlPeHSRv1eqHJ4FPQ7bLwgas,5087
1093
- teradataml/options/configure.py,sha256=W3M1V_UlbY847xQ_D0RxUNohd8z2r6Cl49CgIYpRv1A,22015
1094
- teradataml/options/display.py,sha256=sprj5VEp6cBafnICFDdrsssstXNKl5oYvr5JwBPB_3c,7960
1121
+ teradataml/opensource/_base.py,sha256=cleN8Zpu2xWksJ0wKkvdZABW5hNC9eaLGySXhkb765A,64098
1122
+ teradataml/opensource/_class.py,sha256=6Qo0pu2_Y0SK8RN9PistIFRCP1_q3fEsXRL0ZJSYo6I,18463
1123
+ teradataml/opensource/_constants.py,sha256=pAqYmkh6dQD9DXr4pdlZ5FOk78wXLUdyGaupL-oumCE,3083
1124
+ teradataml/opensource/_lightgbm.py,sha256=CkQqy3dkORIFPH_qKP3LiMBvJ9MvUIcDJP_ut-PhRSE,49321
1125
+ teradataml/opensource/_sklearn.py,sha256=UAV3A8xL8aDkiqPP6IMfRN0AmH3i6m1T3xxNShlpS_s,50537
1126
+ teradataml/opensource/_wrapper_utils.py,sha256=7xsCNjy7flVvxpyhp7vMzBUXJdkdPWj5TnpPjtkVXeY,12122
1127
+ teradataml/options/__init__.py,sha256=avSPE90damRcMHIRUxbarQ3CdFO8Vs8Jcon3EG8R32k,6587
1128
+ teradataml/options/configure.py,sha256=kb_M2G1YHnWmvhv9PifnxQGTvpbmEO-Bo1Zqz0i7l4o,25794
1129
+ teradataml/options/display.py,sha256=vLEHfN7ZvqqTUrGuRXnEjy6a7pgtSmU-dcnu5jXMCJc,8482
1095
1130
  teradataml/plot/__init__.py,sha256=pKzD81TdmCSnrHtWsR2Gt_nyDQzXqAdxydepUQvKl6g,126
1096
- teradataml/plot/axis.py,sha256=_JjcP1p8-nL3oa5MDCfyqd0wlZuz18yNeqj7XirXXJo,54272
1131
+ teradataml/plot/axis.py,sha256=atxWOVq1ebSBTHz2QPwh5fqq9EFEJeMl2VR-rXSq_G4,55486
1097
1132
  teradataml/plot/constants.py,sha256=9EJr_lUlTf77tq30tZSnwgAuk8elzjqAQLsgjXLiYdY,275
1098
- teradataml/plot/figure.py,sha256=hyGRMfDgDUMeuZJWz8MpHbHMlzMoeIiYQHpMKA364eE,12358
1099
- teradataml/plot/plot.py,sha256=nSfg0WeCUFn32zMTSW0HwErkodd-Zu6aaBVwO51F2-Y,30826
1133
+ teradataml/plot/figure.py,sha256=aWqABKdtdJ0awymC0i4fa310mrs6dnTG2ofKGLI-E8E,13223
1134
+ teradataml/plot/plot.py,sha256=3gnC6rtrLxhV9wY5Tfejqx-DvxDFzPW3m8_bYTmcFdg,32450
1100
1135
  teradataml/plot/query_generator.py,sha256=so8_w73Qday0b5hGUvJNrx9ELkYgXFpwjTUsbjNZvJg,3552
1101
1136
  teradataml/plot/subplot.py,sha256=c-Npnr5LWb4TUHwfdwzMsZBiti6FunzdFC5EtcuOWjY,10246
1102
- teradataml/scriptmgmt/UserEnv.py,sha256=AdQLWjdux-jz_dNRJUQYLHOw6xOCoRtSUuG44n-rlHY,177029
1137
+ teradataml/scriptmgmt/UserEnv.py,sha256=3VC7kVriMwZU5q1lbbwigDjocMrUSg6DRdJrqpZ7vOE,191989
1103
1138
  teradataml/scriptmgmt/__init__.py,sha256=dG0Yef5V3gLu1KasRhBLd6OgdC2NAFqjzJC8BDhark8,185
1104
- teradataml/scriptmgmt/lls_utils.py,sha256=oUftiz6FdsMhmt1SSxijC42hAW29hmpAmo_4-taQV3I,77431
1139
+ teradataml/scriptmgmt/lls_utils.py,sha256=gyXcjFy3UdKm5mqoo6U7E6cQGbzYDXBLb8w8OEjaYeg,92806
1105
1140
  teradataml/series/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1106
1141
  teradataml/series/series.py,sha256=nJF6tJmF_rsPHH1kboGrWdTvEUZZFu_JunKSoKnN3tI,17724
1107
1142
  teradataml/series/series_utils.py,sha256=ufuY8Z5oVB6K3ro23AXaxg6aAjjjEYg4jbAf1_W8aDU,2681
1108
- teradataml/store/__init__.py,sha256=SkMK4KWtorw2N4egwUVmzg00alRxuX0ylfvM8ZliTpA,458
1143
+ teradataml/store/__init__.py,sha256=ZpAk6_ccnFm6VjBKooLZigHAKVjjNeccyMb52NbWZJA,396
1109
1144
  teradataml/store/feature_store/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1110
1145
  teradataml/store/feature_store/constants.py,sha256=KliwCsQyd65XG1ERW2GIHjy47rGEUC2CA3zBs97wh8s,8918
1111
- teradataml/store/feature_store/feature_store.py,sha256=yQVqYfVqHI1wkDY2jgynDaiAeMkQ_rt_-F32ghHHQes,87548
1146
+ teradataml/store/feature_store/feature_store.py,sha256=XD4kJoVkYTNgk46-jzA344rRJjhdJcMIV182MQC00JQ,91058
1112
1147
  teradataml/store/feature_store/models.py,sha256=c9jXQ9eDrcFREkrmwy_fL5ULVZ7eNEBnwvETH5e2Jh0,57741
1113
- teradataml/store/vector_store/__init__.py,sha256=8-RR61XKhF1mjqMMDQjImxTDzFNqvsHpmb-q5pygMqo,67240
1114
- teradataml/table_operators/Apply.py,sha256=nTZBx0oP1B3i4_hNndlY1gjCif7fJOJiUKolrJfi0ec,43363
1115
- teradataml/table_operators/Script.py,sha256=QeAn5GZWj2uyNe8Y8fK8-X3kZKfJ3L06nFHzfZPqBAs,77179
1116
- teradataml/table_operators/TableOperator.py,sha256=qpHgt-_Sa2uqUSLII51EBK0KTUUkcEbDmTNUcZhuw0w,76904
1148
+ teradataml/table_operators/Apply.py,sha256=ABtXaR42SYymw6sHtAN9YvwxLpn5kudxIkAeNfH_piM,44487
1149
+ teradataml/table_operators/Script.py,sha256=Quh9_GngNHbNnIEd3xrw5R8hR1EBSWddbxZBU4FIhm0,78495
1150
+ teradataml/table_operators/TableOperator.py,sha256=yKn0XLtQwhjs1cdDG0IM4ZLEZBO9sRn_vBE_RTIIoKg,77099
1117
1151
  teradataml/table_operators/__init__.py,sha256=MTuTiCyGt7Le4MQ5XEfTyp_9Za-vAIreZhfz9GEAzrU,106
1118
1152
  teradataml/table_operators/apply_query_generator.py,sha256=41ah294SyyG0tl88h8og7AXOWDzT1Lb1J1GjO0M1swA,12207
1119
1153
  teradataml/table_operators/query_generator.py,sha256=984JEgcnrz63ala-Mm8y5NqGAlqltfMpUn-OhPEoeLQ,23201
1120
1154
  teradataml/table_operators/table_operator_query_generator.py,sha256=luATy6uVS8-ixvObaxmPvNro76BNCiVwytYIHOnAnK8,22456
1121
- teradataml/table_operators/table_operator_util.py,sha256=9z6tEIsO_e8nnGS2bpmrlyZ04HmlkEIcpdnZ0EnfJ6M,31961
1155
+ teradataml/table_operators/table_operator_util.py,sha256=jR5fYekNG7Bjo-eLLMUaDIETolWYack0MqSKJ2l7lks,33870
1122
1156
  teradataml/table_operators/templates/dataframe_apply.template,sha256=3FiK_nivSf343xlYHfCJA2pn0dycvX_pB0daKBXg64M,8054
1123
1157
  teradataml/table_operators/templates/dataframe_map.template,sha256=KrTTYj0HFco0Z_mV6FcLvkw-kzngCDw-zhmmTSX0J7k,7683
1124
1158
  teradataml/table_operators/templates/dataframe_register.template,sha256=VfBq8Pay_GZuaAY566vVNsk2LVPywJZ_pM3RGb3UJTw,2836
@@ -1127,13 +1161,13 @@ teradataml/table_operators/templates/script_executor.template,sha256=dLqU8z2WXi1
1127
1161
  teradataml/telemetry_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1128
1162
  teradataml/telemetry_utils/queryband.py,sha256=yMq-hY81elmNoFpHNsMBxOMv--jMB81d9QFxDUppV4g,2354
1129
1163
  teradataml/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1130
- teradataml/utils/dtypes.py,sha256=RZEXBHyR7fDlC0V2fXKqbc5Av7NeP_aWKhGRg8DlTr8,26454
1131
- teradataml/utils/internal_buffer.py,sha256=ftVgEv_9LUf3CffBNYyJyLPcBtjAPQGbPv5RczFjPGY,2085
1164
+ teradataml/utils/dtypes.py,sha256=7LFHyjpywxwgKMgMpy-4AmXDhr5IuDRsXij4gJ0Ymw4,27975
1165
+ teradataml/utils/internal_buffer.py,sha256=Amjji6Dmosc0zWjIHBMUxLVj3eO-UbknohYkIOreLPQ,3042
1132
1166
  teradataml/utils/print_versions.py,sha256=m-ByrRZEQkiCmDyaBNknwpE8UhYY1bPPlW3YYHDTrlc,6535
1133
1167
  teradataml/utils/utils.py,sha256=RDSUXNHNyG4bkgFSa6nGaGRc3W0mHjqX_mx_2vGvizw,17254
1134
- teradataml/utils/validators.py,sha256=RFBrdWSbuuOX9cIMw327c-P8qPXp8qVNKCWXtFIx6PU,93462
1135
- teradataml-20.0.0.3.dist-info/METADATA,sha256=qfTI6EpLaovYWlpA66cAg7BOUELBe2L62wqS8UiwLJQ,120899
1136
- teradataml-20.0.0.3.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
1137
- teradataml-20.0.0.3.dist-info/top_level.txt,sha256=j0jkK8Hmxb5acGSNrbbEePXSgqTQEItdFZXhyJT7qUM,11
1138
- teradataml-20.0.0.3.dist-info/zip-safe,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
1139
- teradataml-20.0.0.3.dist-info/RECORD,,
1168
+ teradataml/utils/validators.py,sha256=0PoqjhdLsd8C5E5rS8yMjkVfxGf6ZWjsmHGgatWG0ts,108816
1169
+ teradataml-20.0.0.5.dist-info/METADATA,sha256=eX-ojIs7NHCQ_cMJBGCrhpi0vAJYGNxem81hK3IdNv0,134630
1170
+ teradataml-20.0.0.5.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
1171
+ teradataml-20.0.0.5.dist-info/top_level.txt,sha256=j0jkK8Hmxb5acGSNrbbEePXSgqTQEItdFZXhyJT7qUM,11
1172
+ teradataml-20.0.0.5.dist-info/zip-safe,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
1173
+ teradataml-20.0.0.5.dist-info/RECORD,,
Binary file
Binary file