teradataml 20.0.0.2__py3-none-any.whl → 20.0.0.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (126) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/README.md +315 -2
  3. teradataml/__init__.py +4 -0
  4. teradataml/_version.py +1 -1
  5. teradataml/analytics/analytic_function_executor.py +95 -8
  6. teradataml/analytics/byom/__init__.py +1 -1
  7. teradataml/analytics/json_parser/metadata.py +12 -3
  8. teradataml/analytics/json_parser/utils.py +7 -2
  9. teradataml/analytics/sqle/__init__.py +5 -1
  10. teradataml/analytics/table_operator/__init__.py +1 -1
  11. teradataml/analytics/uaf/__init__.py +1 -1
  12. teradataml/analytics/utils.py +4 -0
  13. teradataml/analytics/valib.py +18 -4
  14. teradataml/automl/__init__.py +51 -6
  15. teradataml/automl/data_preparation.py +59 -35
  16. teradataml/automl/data_transformation.py +58 -33
  17. teradataml/automl/feature_engineering.py +27 -12
  18. teradataml/automl/model_training.py +73 -46
  19. teradataml/common/constants.py +88 -29
  20. teradataml/common/garbagecollector.py +2 -1
  21. teradataml/common/messagecodes.py +19 -3
  22. teradataml/common/messages.py +6 -1
  23. teradataml/common/sqlbundle.py +64 -12
  24. teradataml/common/utils.py +246 -47
  25. teradataml/common/warnings.py +11 -0
  26. teradataml/context/context.py +161 -27
  27. teradataml/data/amazon_reviews_25.csv +26 -0
  28. teradataml/data/byom_example.json +11 -0
  29. teradataml/data/dataframe_example.json +18 -2
  30. teradataml/data/docs/byom/docs/DataRobotPredict.py +2 -2
  31. teradataml/data/docs/byom/docs/DataikuPredict.py +40 -1
  32. teradataml/data/docs/byom/docs/H2OPredict.py +2 -2
  33. teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
  34. teradataml/data/docs/byom/docs/ONNXPredict.py +2 -2
  35. teradataml/data/docs/byom/docs/PMMLPredict.py +2 -2
  36. teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +1 -1
  37. teradataml/data/docs/sqle/docs_17_20/Shap.py +34 -6
  38. teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +4 -4
  39. teradataml/data/docs/sqle/docs_17_20/TextParser.py +3 -3
  40. teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
  41. teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
  42. teradataml/data/docs/uaf/docs_17_20/DWT2D.py +4 -1
  43. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +18 -21
  44. teradataml/data/hnsw_alter_data.csv +5 -0
  45. teradataml/data/hnsw_data.csv +10 -0
  46. teradataml/data/jsons/byom/h2opredict.json +1 -1
  47. teradataml/data/jsons/byom/onnxembeddings.json +266 -0
  48. teradataml/data/jsons/sqle/17.20/TD_Shap.json +0 -1
  49. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +1 -1
  50. teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
  51. teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
  52. teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
  53. teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
  54. teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
  55. teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
  56. teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
  57. teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
  58. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +10 -19
  59. teradataml/data/jsons/uaf/17.20/TD_SAX.json +3 -1
  60. teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +15 -5
  61. teradataml/data/medical_readings.csv +101 -0
  62. teradataml/data/patient_profile.csv +101 -0
  63. teradataml/data/scripts/lightgbm/dataset.template +157 -0
  64. teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +247 -0
  65. teradataml/data/scripts/lightgbm/lightgbm_function.template +216 -0
  66. teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +159 -0
  67. teradataml/data/scripts/sklearn/sklearn_fit.py +194 -167
  68. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +136 -115
  69. teradataml/data/scripts/sklearn/sklearn_function.template +14 -19
  70. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +155 -137
  71. teradataml/data/scripts/sklearn/sklearn_transform.py +129 -42
  72. teradataml/data/target_udt_data.csv +8 -0
  73. teradataml/data/templates/open_source_ml.json +3 -2
  74. teradataml/data/teradataml_example.json +8 -0
  75. teradataml/data/vectordistance_example.json +4 -0
  76. teradataml/dataframe/copy_to.py +8 -3
  77. teradataml/dataframe/data_transfer.py +11 -1
  78. teradataml/dataframe/dataframe.py +1049 -285
  79. teradataml/dataframe/dataframe_utils.py +152 -20
  80. teradataml/dataframe/functions.py +578 -35
  81. teradataml/dataframe/setop.py +11 -6
  82. teradataml/dataframe/sql.py +185 -16
  83. teradataml/dbutils/dbutils.py +1049 -115
  84. teradataml/dbutils/filemgr.py +48 -1
  85. teradataml/hyperparameter_tuner/optimizer.py +12 -1
  86. teradataml/lib/aed_0_1.dll +0 -0
  87. teradataml/opensource/__init__.py +1 -1
  88. teradataml/opensource/_base.py +1466 -0
  89. teradataml/opensource/_class.py +464 -0
  90. teradataml/opensource/{sklearn/constants.py → _constants.py} +21 -14
  91. teradataml/opensource/_lightgbm.py +949 -0
  92. teradataml/opensource/_sklearn.py +1008 -0
  93. teradataml/opensource/{sklearn/_wrapper_utils.py → _wrapper_utils.py} +5 -6
  94. teradataml/options/__init__.py +54 -38
  95. teradataml/options/configure.py +131 -27
  96. teradataml/options/display.py +13 -2
  97. teradataml/plot/axis.py +47 -8
  98. teradataml/plot/figure.py +33 -0
  99. teradataml/plot/plot.py +63 -13
  100. teradataml/scriptmgmt/UserEnv.py +5 -5
  101. teradataml/scriptmgmt/lls_utils.py +130 -40
  102. teradataml/store/__init__.py +12 -0
  103. teradataml/store/feature_store/__init__.py +0 -0
  104. teradataml/store/feature_store/constants.py +291 -0
  105. teradataml/store/feature_store/feature_store.py +2318 -0
  106. teradataml/store/feature_store/models.py +1505 -0
  107. teradataml/table_operators/Apply.py +32 -18
  108. teradataml/table_operators/Script.py +3 -1
  109. teradataml/table_operators/TableOperator.py +3 -1
  110. teradataml/table_operators/query_generator.py +3 -0
  111. teradataml/table_operators/table_operator_query_generator.py +3 -1
  112. teradataml/table_operators/table_operator_util.py +37 -38
  113. teradataml/table_operators/templates/dataframe_register.template +69 -0
  114. teradataml/utils/dtypes.py +51 -2
  115. teradataml/utils/internal_buffer.py +18 -0
  116. teradataml/utils/validators.py +99 -8
  117. {teradataml-20.0.0.2.dist-info → teradataml-20.0.0.4.dist-info}/METADATA +321 -5
  118. {teradataml-20.0.0.2.dist-info → teradataml-20.0.0.4.dist-info}/RECORD +121 -94
  119. teradataml/libaed_0_1.dylib +0 -0
  120. teradataml/libaed_0_1.so +0 -0
  121. teradataml/opensource/sklearn/__init__.py +0 -1
  122. teradataml/opensource/sklearn/_class.py +0 -255
  123. teradataml/opensource/sklearn/_sklearn_wrapper.py +0 -1800
  124. {teradataml-20.0.0.2.dist-info → teradataml-20.0.0.4.dist-info}/WHEEL +0 -0
  125. {teradataml-20.0.0.2.dist-info → teradataml-20.0.0.4.dist-info}/top_level.txt +0 -0
  126. {teradataml-20.0.0.2.dist-info → teradataml-20.0.0.4.dist-info}/zip-safe +0 -0
@@ -0,0 +1,296 @@
1
+ {
2
+ "json_schema_major_version": "1",
3
+ "json_schema_minor_version": "1",
4
+ "json_content_version": "1",
5
+ "function_name": "TD_HNSW",
6
+ "function_version": "1.0",
7
+ "function_type": "fastpath",
8
+ "function_category": "Model Training",
9
+ "function_alias_name": "TD_HNSW",
10
+ "function_r_name": "td.hnsw",
11
+ "short_description": "The TD_HNSW function generates the HNSW model using the input data points which is then used by TD_HNSWPredict function for determining the approximate nearest neighbors for any given input data point.",
12
+ "long_description": "The TD_HNSW function generates the HNSW model using the input data points which is then used by TD_HNSWPredict function for determining the approximate nearest neighbors for any given input data point.",
13
+ "input_tables": [
14
+ {
15
+ "requiredInputKind": [
16
+ "PartitionByAny",
17
+ "Dimension"
18
+ ],
19
+ "isOrdered": false,
20
+ "partitionByOne": false,
21
+ "name": "InputTable",
22
+ "alternateNames": [],
23
+ "isRequired": true,
24
+ "rDescription": "The table that contains the input dataset for HNSW model training/update/delete operation.",
25
+ "description": "The table that contains the input dataset for HNSW model training/update/delete operation.",
26
+ "datatype": "TABLE_ALIAS",
27
+ "allowsLists": false,
28
+ "rName": "data",
29
+ "useInR": true,
30
+ "rOrderNum": 1
31
+ },
32
+ {
33
+ "requiredInputKind": [
34
+ "PartitionByAny"
35
+ ],
36
+ "isOrdered": false,
37
+ "partitionByOne": false,
38
+ "name": "InputModelTable",
39
+ "alternateNames": [],
40
+ "isRequired": false,
41
+ "rDescription": "The table that contains the HNSW model for update/delete operation.",
42
+ "description": "The table that contains the HNSW model for update/delete operation.",
43
+ "datatype": "TABLE_ALIAS",
44
+ "allowsLists": false,
45
+ "rName": "object",
46
+ "useInR": true,
47
+ "rOrderNum": 2
48
+ }
49
+ ],
50
+ "output_tables": [
51
+ {
52
+ "isOutputTable": true,
53
+ "omitPossible": false,
54
+ "name": "ModelTable",
55
+ "alternateNames": [],
56
+ "isRequired": true,
57
+ "rDescription": "Specifies the name of the table in which the generated HNSW model can be stored.",
58
+ "description": "Specifies the name of the table in which the generated HNSW model can be stored.",
59
+ "datatype": "TABLE_NAME",
60
+ "allowsLists": false,
61
+ "rName": "model.table",
62
+ "useInR": true,
63
+ "rOrderNum": 3
64
+ }
65
+ ],
66
+ "argument_clauses": [
67
+ {
68
+ "targetTable": [
69
+ "InputTable"
70
+ ],
71
+ "checkDuplicate": true,
72
+ "allowedTypes": [],
73
+ "allowedTypeGroups": [
74
+ "INTEGER"
75
+ ],
76
+ "requiredLength": 1,
77
+ "matchLengthOfArgument": "",
78
+ "allowPadding": false,
79
+ "name": "IdColumn",
80
+ "alternateNames": [],
81
+ "isRequired": true,
82
+ "rDescription": "Specify the column name containing unique identifier of input rows.",
83
+ "description": "Specify the column name containing unique identifier of input rows.",
84
+ "datatype": "COLUMN_NAMES",
85
+ "allowsLists": false,
86
+ "rName": "id.column",
87
+ "useInR": true,
88
+ "rOrderNum": 4
89
+ },
90
+ {
91
+ "targetTable": [
92
+ "InputTable"
93
+ ],
94
+ "checkDuplicate": true,
95
+ "allowedTypes": [],
96
+ "allowedTypeGroups": [
97
+ "VECTOR","BYTE","VARBYTE"
98
+ ],
99
+ "requiredLength": 1,
100
+ "matchLengthOfArgument": "",
101
+ "allowPadding": false,
102
+ "name": "VectorColumn",
103
+ "alternateNames": [],
104
+ "isRequired": true,
105
+ "rDescription": "Specifies the column from the input table to be used for training the HNSW model.",
106
+ "description": "Specifies the column from the input table to be used for training the HNSW model.",
107
+ "datatype": "COLUMN_NAMES",
108
+ "allowsLists": false,
109
+ "rName": "vector.column",
110
+ "useInR": true,
111
+ "rOrderNum": 5
112
+ },
113
+ {
114
+ "lowerBound": 1,
115
+ "upperBound": 1024,
116
+ "lowerBoundType": "INCLUSIVE",
117
+ "upperBoundType": "INCLUSIVE",
118
+ "allowNaN": false,
119
+ "name": "NumLayer",
120
+ "alternateNames": [],
121
+ "isRequired": false,
122
+ "rDescription": "Specify the maximum number of layers for the HNSW model.",
123
+ "description": "Specify the maximum number of layers for the HNSW model.",
124
+ "datatype": "INTEGER",
125
+ "allowsLists": false,
126
+ "rName": "num.layer",
127
+ "useInR": true,
128
+ "rOrderNum": 6
129
+ },
130
+ {
131
+ "lowerBound": 0,
132
+ "upperBound": 2147483647,
133
+ "lowerBoundType": "INCLUSIVE",
134
+ "upperBoundType": "INCLUSIVE",
135
+ "allowNaN": false,
136
+ "name": "Seed",
137
+ "alternateNames": [],
138
+ "isRequired": false,
139
+ "rDescription": "Specify the random seed value for repeatable results.",
140
+ "description": "Specify the random seed value for repeatable results.",
141
+ "datatype": "INTEGER",
142
+ "allowsLists": false,
143
+ "rName": "seed",
144
+ "useInR": true,
145
+ "rOrderNum": 7
146
+ },
147
+ {
148
+ "defaultValue": 32,
149
+ "lowerBound": 1,
150
+ "upperBound": 1024,
151
+ "lowerBoundType": "INCLUSIVE",
152
+ "upperBoundType": "INCLUSIVE",
153
+ "allowNaN": false,
154
+ "name": "EfConstruction",
155
+ "alternateNames": [],
156
+ "isRequired": false,
157
+ "rDescription": "Specify the number of neighbors to search during training of HNSW model.",
158
+ "description": "Specify the number of neighbors to search during training of HNSW model.",
159
+ "datatype": "INTEGER",
160
+ "allowsLists": false,
161
+ "rName": "ef.construction",
162
+ "useInR": true,
163
+ "rOrderNum": 8
164
+ },
165
+ {
166
+ "defaultValue": 32,
167
+ "lowerBound": 1,
168
+ "upperBound": 1024,
169
+ "lowerBoundType": "INCLUSIVE",
170
+ "upperBoundType": "INCLUSIVE",
171
+ "allowNaN": false,
172
+ "name": "NumConnPerNode",
173
+ "alternateNames": [],
174
+ "isRequired": false,
175
+ "rDescription": "Specify number of connections for a node during training of HNSW model.",
176
+ "description": "Specify number of connections for a node during training of HNSW model.",
177
+ "datatype": "INTEGER",
178
+ "allowsLists": false,
179
+ "rName": "numconn.pernode",
180
+ "useInR": true,
181
+ "rOrderNum": 9
182
+ },
183
+ {
184
+ "defaultValue": 32,
185
+ "lowerBound": 1,
186
+ "upperBound": 1024,
187
+ "lowerBoundType": "INCLUSIVE",
188
+ "upperBoundType": "INCLUSIVE",
189
+ "allowNaN": false,
190
+ "name": "MaxNumConnPerNode",
191
+ "alternateNames": [],
192
+ "isRequired": false,
193
+ "rDescription": "Specify maximum number of connections allowed for a node during training of HNSW model.",
194
+ "description": "Specify maximum number of connections allowed for a node during training of HNSW model.",
195
+ "datatype": "INTEGER",
196
+ "allowsLists": false,
197
+ "rName": "maxnumconn.pernode",
198
+ "useInR": true,
199
+ "rOrderNum": 10
200
+ },
201
+ {
202
+ "permittedValues": [
203
+ "EUCLIDEAN",
204
+ "COSINE",
205
+ "DOTPRODUCT"
206
+ ],
207
+ "defaultValue": "EUCLIDEAN",
208
+ "isOutputColumn": false,
209
+ "matchLengthOfArgument": "",
210
+ "allowPadding": false,
211
+ "name": "DistanceMeasure",
212
+ "alternateNames": [],
213
+ "isRequired": false,
214
+ "rDescription": "Specify the distance measure to be used for distance computation.",
215
+ "description": "Specify the distance measure to be used for distance computation.",
216
+ "datatype": "STRING",
217
+ "allowsLists": false,
218
+ "rName": "distance.measure",
219
+ "useInR": true,
220
+ "rOrderNum": 11
221
+ },
222
+ {
223
+ "lowerBound": 1,
224
+ "upperBound": 4096,
225
+ "lowerBoundType": "INCLUSIVE",
226
+ "upperBoundType": "INCLUSIVE",
227
+ "allowNaN": false,
228
+ "name": "EmbeddingSize",
229
+ "alternateNames": [],
230
+ "isRequired": false,
231
+ "rDescription": "Specify the embedding size of the vectors.",
232
+ "description": "Specify the embedding size of the vectors.",
233
+ "datatype": "INTEGER",
234
+ "allowsLists": false,
235
+ "rName": "embedding.size",
236
+ "useInR": true,
237
+ "rOrderNum": 12
238
+ },
239
+ {
240
+ "permittedValues": [],
241
+ "isOutputColumn": false,
242
+ "matchLengthOfArgument": "",
243
+ "allowPadding": false,
244
+ "defaultValue": false,
245
+ "name": "ApplyHeuristics",
246
+ "alternateNames": [],
247
+ "isRequired": false,
248
+ "rDescription": "Specify whether to apply heuristics optimizations during training of HNSW model.",
249
+ "description": "Specify whether to apply heuristics optimizations during training of HNSW model.",
250
+ "datatype": "BOOLEAN",
251
+ "allowsLists": false,
252
+ "rName": "apply.heuristics",
253
+ "useInR": true,
254
+ "rOrderNum": 13
255
+ },
256
+ {
257
+ "permittedValues": [
258
+ "UPDATE",
259
+ "DELETE"
260
+ ],
261
+ "isOutputColumn": false,
262
+ "matchLengthOfArgument": "",
263
+ "allowPadding": false,
264
+ "name": "AlterOperation",
265
+ "alternateNames": [],
266
+ "isRequired": false,
267
+ "rDescription": "Specify the alter operation for HNSW model. This argument is required when InputModelTable is provided.",
268
+ "description": "Specify the alter operation for HNSW model. This argument is required when InputModelTable is provided.",
269
+ "datatype": "STRING",
270
+ "allowsLists": true,
271
+ "rName": "alter.operation",
272
+ "useInR": true,
273
+ "rOrderNum": 14
274
+ },
275
+ {
276
+ "permittedValues": [
277
+ "RECONSTRUCTION",
278
+ "DELETENODE"
279
+ ],
280
+ "defaultValue": "RECONSTRUCTION",
281
+ "isOutputColumn": false,
282
+ "matchLengthOfArgument": "",
283
+ "allowPadding": false,
284
+ "name": "DeleteMethod",
285
+ "alternateNames": [],
286
+ "isRequired": false,
287
+ "rDescription": "Specify the method for delete operation.",
288
+ "description": "Specify the method for delete operation.",
289
+ "datatype": "STRING",
290
+ "allowsLists": true,
291
+ "rName": "delete.method",
292
+ "useInR": true,
293
+ "rOrderNum": 15
294
+ }
295
+ ]
296
+ }
@@ -0,0 +1,206 @@
1
+ {
2
+ "json_schema_major_version": "1",
3
+ "json_schema_minor_version": "1",
4
+ "json_content_version": "1",
5
+ "function_name": "TD_HNSWPredict",
6
+ "function_version": "1.0",
7
+ "function_type": "fastpath",
8
+ "function_category": "Model Scoring",
9
+ "function_alias_name": "TD_HNSWPredict",
10
+ "function_r_name": "td.hnswpredict",
11
+ "short_description": "The TD_HNSWPredict function takes the InputTable and finds the approximate nearest neighbors for the input data points using the HNSW model generated from TD_HNSW function.",
12
+ "long_description": "The TD_HNSWPredict function takes the InputTable and finds the approximate nearest neighbors for the input data points using the HNSW model generated from TD_HNSW function.",
13
+ "input_tables": [
14
+ {
15
+ "requiredInputKind": [
16
+ "Dimension"
17
+ ],
18
+ "isOrdered": false,
19
+ "partitionByOne": false,
20
+ "name": "InputTable",
21
+ "alternateNames": [],
22
+ "isRequired": true,
23
+ "rDescription": "The table that contains the input dataset for HNSW model scoring.",
24
+ "description": "The table that contains the input dataset for HNSW model scoring.",
25
+ "datatype": "TABLE_ALIAS",
26
+ "allowsLists": false,
27
+ "rName": "data",
28
+ "useInR": true,
29
+ "rOrderNum": 2
30
+ },
31
+ {
32
+ "requiredInputKind": [
33
+ "PartitionByAny"
34
+ ],
35
+ "isOrdered": false,
36
+ "partitionByOne": false,
37
+ "name": "ModelTable",
38
+ "alternateNames": [],
39
+ "isRequired": true,
40
+ "rDescription": "The table that contains the HNSW model for scoring.",
41
+ "description": "The table that contains the HNSW model for scoring.",
42
+ "datatype": "TABLE_ALIAS",
43
+ "allowsLists": false,
44
+ "rName": "object",
45
+ "useInR": true,
46
+ "rOrderNum": 1
47
+ }
48
+ ],
49
+ "argument_clauses": [
50
+ {
51
+ "targetTable": [
52
+ "InputTable"
53
+ ],
54
+ "checkDuplicate": true,
55
+ "allowedTypes": [],
56
+ "allowedTypeGroups": [
57
+ "INTEGER"
58
+ ],
59
+ "requiredLength": 1,
60
+ "matchLengthOfArgument": "",
61
+ "allowPadding": false,
62
+ "name": "IdColumn",
63
+ "alternateNames": [],
64
+ "isRequired": true,
65
+ "rDescription": "Specify the column name containing unique identifier of input rows.",
66
+ "description": "Specify the column name containing unique identifier of input rows.",
67
+ "datatype": "COLUMN_NAMES",
68
+ "allowsLists": false,
69
+ "rName": "id.column",
70
+ "useInR": true,
71
+ "rOrderNum": 3
72
+ },
73
+ {
74
+ "targetTable": [
75
+ "InputTable"
76
+ ],
77
+ "checkDuplicate": true,
78
+ "allowedTypes": [],
79
+ "allowedTypeGroups": [
80
+ "VECTOR","BYTE","VARBYTE"
81
+ ],
82
+ "requiredLength": 1,
83
+ "matchLengthOfArgument": "",
84
+ "allowPadding": false,
85
+ "name": "VectorColumn",
86
+ "alternateNames": [],
87
+ "isRequired": true,
88
+ "rDescription": "Specifies the column from the input table to be used for training the HNSW model.",
89
+ "description": "Specifies the column from the input table to be used for training the HNSW model.",
90
+ "datatype": "COLUMN_NAMES",
91
+ "allowsLists": false,
92
+ "rName": "vector.column",
93
+ "useInR": true,
94
+ "rOrderNum": 4
95
+ },
96
+ {
97
+ "defaultValue": 10,
98
+ "lowerBound": 1,
99
+ "upperBound": 1024,
100
+ "lowerBoundType": "INCLUSIVE",
101
+ "upperBoundType": "INCLUSIVE",
102
+ "allowNaN": false,
103
+ "name": "TopK",
104
+ "alternateNames": [],
105
+ "isRequired": false,
106
+ "rDescription": "Specify number of top nearest neighbors to generate in the output.",
107
+ "description": "Specify number of top nearest neighbors to generate in the output.",
108
+ "datatype": "INTEGER",
109
+ "allowsLists": false,
110
+ "rName": "top_k",
111
+ "useInR": true,
112
+ "rOrderNum": 5
113
+ },
114
+ {
115
+ "defaultValue": 32,
116
+ "lowerBound": 1,
117
+ "upperBound": 1024,
118
+ "lowerBoundType": "INCLUSIVE",
119
+ "upperBoundType": "INCLUSIVE",
120
+ "allowNaN": false,
121
+ "name": "EfSearch",
122
+ "alternateNames": [],
123
+ "isRequired": false,
124
+ "rDescription": "Specify the number of neighbors to search during search in HNSW model.",
125
+ "description": "Specify the number of neighbors to search during search in HNSW model.",
126
+ "datatype": "INTEGER",
127
+ "allowsLists": false,
128
+ "rName": "ef.search",
129
+ "useInR": true,
130
+ "rOrderNum": 6
131
+ },
132
+ {
133
+ "permittedValues": [],
134
+ "isOutputColumn": false,
135
+ "matchLengthOfArgument": "",
136
+ "allowPadding": false,
137
+ "defaultValue": false,
138
+ "name": "OutputNearestVector",
139
+ "alternateNames": [],
140
+ "isRequired": false,
141
+ "rDescription": "Specify whether to output the vector for the nearest neighbor.",
142
+ "description": "Specify whether to output the vector for the nearest neighbor.",
143
+ "datatype": "BOOLEAN",
144
+ "allowsLists": false,
145
+ "rName": "output.nearestvector",
146
+ "useInR": true,
147
+ "rOrderNum": 7
148
+ },
149
+ {
150
+ "permittedValues": [],
151
+ "isOutputColumn": false,
152
+ "matchLengthOfArgument": "",
153
+ "allowPadding": false,
154
+ "defaultValue": false,
155
+ "name": "OutputSimilarity",
156
+ "alternateNames": [],
157
+ "isRequired": false,
158
+ "rDescription": "Specify whether to output similarity of input datapoint to the nearest vector. If it is set to false, then the function outputs distance instead of similarity.",
159
+ "description": "Specify whether to output similarity of input datapoint to the nearest vector. If it is set to false, then the function outputs distance instead of similarity.",
160
+ "datatype": "BOOLEAN",
161
+ "allowsLists": false,
162
+ "rName": "output.similarity",
163
+ "useInR": true,
164
+ "rOrderNum": 8
165
+ },
166
+ {
167
+ "targetTable": [
168
+ "InputTable"
169
+ ],
170
+ "checkDuplicate": true,
171
+ "allowedTypes": [],
172
+ "allowedTypeGroups": [
173
+ "ALL"
174
+ ],
175
+ "matchLengthOfArgument": "",
176
+ "allowPadding": false,
177
+ "name": "Accumulate",
178
+ "alternateNames": [],
179
+ "isRequired": false,
180
+ "rDescription": "Specifies the input table columns to copy to the output table.",
181
+ "description": "Specifies the input table columns to copy to the output table.",
182
+ "datatype": "COLUMNS",
183
+ "allowsLists": true,
184
+ "rName": "accumulate",
185
+ "useInR": true,
186
+ "rOrderNum": 9
187
+ },
188
+ {
189
+ "permittedValues": [],
190
+ "isOutputColumn": false,
191
+ "matchLengthOfArgument": "",
192
+ "allowPadding": false,
193
+ "defaultValue": false,
194
+ "name": "SingleInputRow",
195
+ "alternateNames": [],
196
+ "isRequired": false,
197
+ "rDescription": "Specify whether input data contains only a single row.",
198
+ "description": "Specify whether input data contains only a single row.",
199
+ "datatype": "BOOLEAN",
200
+ "allowsLists": false,
201
+ "rName": "single.inputrow",
202
+ "useInR": true,
203
+ "rOrderNum": 10
204
+ }
205
+ ]
206
+ }
@@ -0,0 +1,32 @@
1
+ {
2
+ "json_schema_major_version": "1",
3
+ "json_schema_minor_version": "1",
4
+ "json_content_version": "1",
5
+ "function_name": "TD_HNSWSummary",
6
+ "function_version": "1.0",
7
+ "function_type": "fastpath",
8
+ "function_category": "Model Exploration",
9
+ "function_alias_name": "TD_HNSWSummary",
10
+ "function_r_name": "td.hnswsummary",
11
+ "short_description": "The TD_HNSWSummary function takes the ModelTable generated from TD_HNSW function as input and converts the ModelTable data into readable format.",
12
+ "long_description": "The TD_HNSWSummary function takes the ModelTable generated from TD_HNSW function as input and converts the ModelTable data into readable format.",
13
+ "input_tables": [
14
+ {
15
+ "requiredInputKind": [
16
+ "PartitionByAny"
17
+ ],
18
+ "isOrdered": false,
19
+ "partitionByOne": false,
20
+ "name": "ModelTable",
21
+ "alternateNames": [],
22
+ "isRequired": true,
23
+ "rDescription": "The table that contains the HNSW model for exploration.",
24
+ "description": "The table that contains the HNSW model for exploration.",
25
+ "datatype": "TABLE_ALIAS",
26
+ "allowsLists": false,
27
+ "rName": "object",
28
+ "useInR": true,
29
+ "rOrderNum": 1
30
+ }
31
+ ]
32
+ }