teradataml 20.0.0.2__py3-none-any.whl → 20.0.0.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (126) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/README.md +315 -2
  3. teradataml/__init__.py +4 -0
  4. teradataml/_version.py +1 -1
  5. teradataml/analytics/analytic_function_executor.py +95 -8
  6. teradataml/analytics/byom/__init__.py +1 -1
  7. teradataml/analytics/json_parser/metadata.py +12 -3
  8. teradataml/analytics/json_parser/utils.py +7 -2
  9. teradataml/analytics/sqle/__init__.py +5 -1
  10. teradataml/analytics/table_operator/__init__.py +1 -1
  11. teradataml/analytics/uaf/__init__.py +1 -1
  12. teradataml/analytics/utils.py +4 -0
  13. teradataml/analytics/valib.py +18 -4
  14. teradataml/automl/__init__.py +51 -6
  15. teradataml/automl/data_preparation.py +59 -35
  16. teradataml/automl/data_transformation.py +58 -33
  17. teradataml/automl/feature_engineering.py +27 -12
  18. teradataml/automl/model_training.py +73 -46
  19. teradataml/common/constants.py +88 -29
  20. teradataml/common/garbagecollector.py +2 -1
  21. teradataml/common/messagecodes.py +19 -3
  22. teradataml/common/messages.py +6 -1
  23. teradataml/common/sqlbundle.py +64 -12
  24. teradataml/common/utils.py +246 -47
  25. teradataml/common/warnings.py +11 -0
  26. teradataml/context/context.py +161 -27
  27. teradataml/data/amazon_reviews_25.csv +26 -0
  28. teradataml/data/byom_example.json +11 -0
  29. teradataml/data/dataframe_example.json +18 -2
  30. teradataml/data/docs/byom/docs/DataRobotPredict.py +2 -2
  31. teradataml/data/docs/byom/docs/DataikuPredict.py +40 -1
  32. teradataml/data/docs/byom/docs/H2OPredict.py +2 -2
  33. teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
  34. teradataml/data/docs/byom/docs/ONNXPredict.py +2 -2
  35. teradataml/data/docs/byom/docs/PMMLPredict.py +2 -2
  36. teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +1 -1
  37. teradataml/data/docs/sqle/docs_17_20/Shap.py +34 -6
  38. teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +4 -4
  39. teradataml/data/docs/sqle/docs_17_20/TextParser.py +3 -3
  40. teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
  41. teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
  42. teradataml/data/docs/uaf/docs_17_20/DWT2D.py +4 -1
  43. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +18 -21
  44. teradataml/data/hnsw_alter_data.csv +5 -0
  45. teradataml/data/hnsw_data.csv +10 -0
  46. teradataml/data/jsons/byom/h2opredict.json +1 -1
  47. teradataml/data/jsons/byom/onnxembeddings.json +266 -0
  48. teradataml/data/jsons/sqle/17.20/TD_Shap.json +0 -1
  49. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +1 -1
  50. teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
  51. teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
  52. teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
  53. teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
  54. teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
  55. teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
  56. teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
  57. teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
  58. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +10 -19
  59. teradataml/data/jsons/uaf/17.20/TD_SAX.json +3 -1
  60. teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +15 -5
  61. teradataml/data/medical_readings.csv +101 -0
  62. teradataml/data/patient_profile.csv +101 -0
  63. teradataml/data/scripts/lightgbm/dataset.template +157 -0
  64. teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +247 -0
  65. teradataml/data/scripts/lightgbm/lightgbm_function.template +216 -0
  66. teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +159 -0
  67. teradataml/data/scripts/sklearn/sklearn_fit.py +194 -167
  68. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +136 -115
  69. teradataml/data/scripts/sklearn/sklearn_function.template +14 -19
  70. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +155 -137
  71. teradataml/data/scripts/sklearn/sklearn_transform.py +129 -42
  72. teradataml/data/target_udt_data.csv +8 -0
  73. teradataml/data/templates/open_source_ml.json +3 -2
  74. teradataml/data/teradataml_example.json +8 -0
  75. teradataml/data/vectordistance_example.json +4 -0
  76. teradataml/dataframe/copy_to.py +8 -3
  77. teradataml/dataframe/data_transfer.py +11 -1
  78. teradataml/dataframe/dataframe.py +1049 -285
  79. teradataml/dataframe/dataframe_utils.py +152 -20
  80. teradataml/dataframe/functions.py +578 -35
  81. teradataml/dataframe/setop.py +11 -6
  82. teradataml/dataframe/sql.py +185 -16
  83. teradataml/dbutils/dbutils.py +1049 -115
  84. teradataml/dbutils/filemgr.py +48 -1
  85. teradataml/hyperparameter_tuner/optimizer.py +12 -1
  86. teradataml/lib/aed_0_1.dll +0 -0
  87. teradataml/opensource/__init__.py +1 -1
  88. teradataml/opensource/_base.py +1466 -0
  89. teradataml/opensource/_class.py +464 -0
  90. teradataml/opensource/{sklearn/constants.py → _constants.py} +21 -14
  91. teradataml/opensource/_lightgbm.py +949 -0
  92. teradataml/opensource/_sklearn.py +1008 -0
  93. teradataml/opensource/{sklearn/_wrapper_utils.py → _wrapper_utils.py} +5 -6
  94. teradataml/options/__init__.py +54 -38
  95. teradataml/options/configure.py +131 -27
  96. teradataml/options/display.py +13 -2
  97. teradataml/plot/axis.py +47 -8
  98. teradataml/plot/figure.py +33 -0
  99. teradataml/plot/plot.py +63 -13
  100. teradataml/scriptmgmt/UserEnv.py +5 -5
  101. teradataml/scriptmgmt/lls_utils.py +130 -40
  102. teradataml/store/__init__.py +12 -0
  103. teradataml/store/feature_store/__init__.py +0 -0
  104. teradataml/store/feature_store/constants.py +291 -0
  105. teradataml/store/feature_store/feature_store.py +2318 -0
  106. teradataml/store/feature_store/models.py +1505 -0
  107. teradataml/table_operators/Apply.py +32 -18
  108. teradataml/table_operators/Script.py +3 -1
  109. teradataml/table_operators/TableOperator.py +3 -1
  110. teradataml/table_operators/query_generator.py +3 -0
  111. teradataml/table_operators/table_operator_query_generator.py +3 -1
  112. teradataml/table_operators/table_operator_util.py +37 -38
  113. teradataml/table_operators/templates/dataframe_register.template +69 -0
  114. teradataml/utils/dtypes.py +51 -2
  115. teradataml/utils/internal_buffer.py +18 -0
  116. teradataml/utils/validators.py +99 -8
  117. {teradataml-20.0.0.2.dist-info → teradataml-20.0.0.4.dist-info}/METADATA +321 -5
  118. {teradataml-20.0.0.2.dist-info → teradataml-20.0.0.4.dist-info}/RECORD +121 -94
  119. teradataml/libaed_0_1.dylib +0 -0
  120. teradataml/libaed_0_1.so +0 -0
  121. teradataml/opensource/sklearn/__init__.py +0 -1
  122. teradataml/opensource/sklearn/_class.py +0 -255
  123. teradataml/opensource/sklearn/_sklearn_wrapper.py +0 -1800
  124. {teradataml-20.0.0.2.dist-info → teradataml-20.0.0.4.dist-info}/WHEEL +0 -0
  125. {teradataml-20.0.0.2.dist-info → teradataml-20.0.0.4.dist-info}/top_level.txt +0 -0
  126. {teradataml-20.0.0.2.dist-info → teradataml-20.0.0.4.dist-info}/zip-safe +0 -0
@@ -1,40 +1,38 @@
1
- teradataml/LICENSE-3RD-PARTY.pdf,sha256=ZrYd86rv7qc83E7xa9HC7VegF6OXJVwi6MBTEiB32kk,310854
1
+ teradataml/LICENSE-3RD-PARTY.pdf,sha256=S_ZbiH6gd6WFIbgTWQ0WnHeune5sXf5P4Bc7VE_eZkA,317583
2
2
  teradataml/LICENSE.pdf,sha256=h9PSzKiUlTczm4oaa7dy83SO95nZRL11fAR4N1zsOzo,184254
3
- teradataml/README.md,sha256=1NuzbWZ9MHJ1_DyMH9_BIxMX5oW0eZ00wRa91ZTPNN4,112181
4
- teradataml/__init__.py,sha256=HsXN5xaEH4P--Crk_dgtwo55qYY5EXoySjCbLSEiwPc,2632
5
- teradataml/_version.py,sha256=ZFq5pHkj5kWUor01Hz7Xd_FEpIzt9XX1NetOr7Idj2M,364
6
- teradataml/libaed_0_1.dylib,sha256=nKlbPxiSJw-kCw6NktpqMy-UDfq4zYq7gLy6S2N2Ppg,1806401
7
- teradataml/libaed_0_1.so,sha256=xi4gwYQtbbdUlRTXsTEJSf0J0e9jt-cguTzdPQdrsEU,1040824
3
+ teradataml/README.md,sha256=Z1sTfwWvTyNzshSXyyRT2BpPS2hxqWyMv76gGRRBlbE,131103
4
+ teradataml/__init__.py,sha256=Kf9kqZkiq48LNHkFk9xcY3ixXc6-Ll4leJFGmR6xbZg,2707
5
+ teradataml/_version.py,sha256=mSa1EoEAUSwGrge8moM1l_yHxKsZemXWRSERGkmGQOg,364
8
6
  teradataml/analytics/Transformations.py,sha256=5Ts7lqCSiO3LCi4xc3bA3D3FksODPJXAhxoyryf66js,149487
9
7
  teradataml/analytics/__init__.py,sha256=DnTOi9QlFJ-P20n2LbL2waKp76uL9KWE6w__6KG8m1I,3046
10
- teradataml/analytics/analytic_function_executor.py,sha256=rIlvKzI2eFlWLqnv-_-DAyOzrvwRyQ0UNbjRenNgsVA,102419
8
+ teradataml/analytics/analytic_function_executor.py,sha256=kDvLwsAFYeGMvMrwdNtCNgBE2U3M8FN5xAiBjmqE5m8,107400
11
9
  teradataml/analytics/analytic_query_generator.py,sha256=Si1lhWEhfa7Q4j3TZaD904lM3MumIsX3F3N9oysCkY0,45915
12
10
  teradataml/analytics/meta_class.py,sha256=YRsFEvwv8S73boaG8W85altpJTOoRz9Wk7YTplm6z9M,8427
13
- teradataml/analytics/utils.py,sha256=yjfWYtj08kJ99bAL1WNsU5J7riioZrwH6YaNiSfywXU,30731
14
- teradataml/analytics/valib.py,sha256=YR3Md9DYrPOMS7-GnOfcmdODuB3fTis-bGVbAfU4978,73587
11
+ teradataml/analytics/utils.py,sha256=aDcopiSu0kvwAVzPspFvtSVg6RT8dxJ-qcuFxgxQAsc,31046
12
+ teradataml/analytics/valib.py,sha256=4iwJj9usJDkmAGNDNdKqkV1kwtrbvOH4OAXg8hFwIMQ,74380
15
13
  teradataml/analytics/byom/H2OPredict.py,sha256=S69BUkxG8Dr2pgzDAqYVIl2Wupf0eXdmW46i3hHNJp4,25128
16
14
  teradataml/analytics/byom/PMMLPredict.py,sha256=TCxQinbQ50ZHrL-8teN-gRpXf93JnQSekHi33Y618Eo,20269
17
- teradataml/analytics/byom/__init__.py,sha256=qN-S7xa8T54xmDsNk4McCVJu3DePqAuR4y3B9x_i7M8,876
15
+ teradataml/analytics/byom/__init__.py,sha256=3dNopwwaA_b_JUd5Qv2Pehgl_WCLrSaabR9N5oRirj8,894
18
16
  teradataml/analytics/json_parser/__init__.py,sha256=0He6U5ogdUfyOb21DjOosv6QRBc9tu6P-5LJFN1pz5A,4392
19
17
  teradataml/analytics/json_parser/analytic_functions_argument.py,sha256=vpvUB_Vh5lSohIMTFf8TiQFIEq7YTgJTQbpk-L8tLvw,65703
20
18
  teradataml/analytics/json_parser/json_store.py,sha256=snwrJzvXzYBw3Xot6IRMsC7RtxBgxTq4eeXBeD9-Pps,7175
21
- teradataml/analytics/json_parser/metadata.py,sha256=LsbmSkOo6ubKVs60B9cwrZHouOkvejTWd3dbDgHWOXA,74371
22
- teradataml/analytics/json_parser/utils.py,sha256=3Uy5LccVzWdlGkTKuSmvfh6aB0Mm-DX6xAMEUYwwtiI,33450
19
+ teradataml/analytics/json_parser/metadata.py,sha256=09D3SdeYZh8VdJi17Ri_cYmq97puXdq8ACVMYWUUatk,74938
20
+ teradataml/analytics/json_parser/utils.py,sha256=EdhCRUdWW6_mvLsj-gHxrDuNcQY6kOT5CT2txkbsUsE,33977
23
21
  teradataml/analytics/sqle/DecisionTreePredict.py,sha256=gacMEgCbKPsLcrzpdiegBB5ySa_wsQvYouLEqp7eshk,22289
24
22
  teradataml/analytics/sqle/NaiveBayesPredict.py,sha256=uPw3srh5U_I4lhOZQY1KQnaTcBy0LqH-6nika9M_Y8o,19508
25
- teradataml/analytics/sqle/__init__.py,sha256=qNbIurro1KkEljSI_jFDq3tp9HaPYb385XhyQdzwdiI,4166
23
+ teradataml/analytics/sqle/__init__.py,sha256=iY_xPIp7rk9MWseGQzDuLEXffPFBlPRVuqiztI4rqg0,4290
26
24
  teradataml/analytics/sqle/json/decisiontreepredict_sqle.json,sha256=rQ9nB-IE7FgWEZH6KY1MxxbhWT9n1kRPuZCqEL5-R5Y,2196
27
25
  teradataml/analytics/sqle/json/naivebayespredict_sqle.json,sha256=ehvbAugEnH73nUxdJqfOfzWL70zIc_oIWfdgEOnpO7Y,1683
28
- teradataml/analytics/table_operator/__init__.py,sha256=KqQAvD_soft-xTDe_EBraPppWfwB4X0CNvPuq3Qwc0U,529
29
- teradataml/analytics/uaf/__init__.py,sha256=M3wSKuyn5M5TmUfv0nOX28j4d5K5PrldH-FoYPbf20o,3017
30
- teradataml/automl/__init__.py,sha256=juaGQuSeWZH0qJdXLMrZ4bx5btaGrMij2rSKu5Ev4MQ,134808
26
+ teradataml/analytics/table_operator/__init__.py,sha256=OBxjuKXWlwhCw2lowtl2VfRGwS729Y4rbZkmRt2Mp8o,545
27
+ teradataml/analytics/uaf/__init__.py,sha256=Esh1vLn8CUOWPAMlqv0JUHGzNdj3l1I9RDlOI9lNXc8,3028
28
+ teradataml/automl/__init__.py,sha256=KFRMfRklWAuZp68VL4XqHbTgJI3tnaA-_rA1-hjukIk,136703
31
29
  teradataml/automl/custom_json_utils.py,sha256=LRcORPatvV15fGbDcp8tQWcEiIZYnK7SakATy5QUVyM,66780
32
- teradataml/automl/data_preparation.py,sha256=2vqxsC-88OWenbmO8oU3KblK6X40fuRvRbLPI68H3Zw,41697
33
- teradataml/automl/data_transformation.py,sha256=jFanI9bKUcMWDvCTqfhJYaxbol6ipFDJD2KhP5HbJU8,42784
34
- teradataml/automl/feature_engineering.py,sha256=_zh_NZA-c9AMtaZOEnFRNJX6wJtzv-E5ypID_UO5p5A,94526
30
+ teradataml/automl/data_preparation.py,sha256=tDx5uFPfti-UVuCrkdtcYD1FQEKujklB065hAd7B254,43252
31
+ teradataml/automl/data_transformation.py,sha256=j7sHFoF-J9rDunJ-NrFOoozS_oeeeB6fqrW-_pnQqTo,44569
32
+ teradataml/automl/feature_engineering.py,sha256=jd7u7QNgitPhdsSP00a5wkCk7tk5lXaPNbXREJ44FQw,95327
35
33
  teradataml/automl/feature_exploration.py,sha256=mlxXUnx0EyePxYChAutKg1KZTNVJgGBM7hwXp64BINc,21986
36
34
  teradataml/automl/model_evaluation.py,sha256=A_j7hiw4DRrsGOAcfUZV5ejjJ0Hs2eYNpxpisTKBhoc,5867
37
- teradataml/automl/model_training.py,sha256=vfHK03Eujw3J3XTadKx1-MGkyZH7MvS_9_hwKdstTpM,41791
35
+ teradataml/automl/model_training.py,sha256=yZAgH2Z1aslLmgrZS8KsagEmc2o7hqqXizWVQkDWPx4,42722
38
36
  teradataml/catalog/__init__.py,sha256=JmX5fC634ewbSyYy24rsTIk9mg9gSIMFTc15coJKTWQ,134
39
37
  teradataml/catalog/byom.py,sha256=6sZ-lyOr65XGmDcJo1SHogXmoSvCFooFOKeAIN8JUms,99687
40
38
  teradataml/catalog/function_argument_mapper.py,sha256=fTu0YrTb4ZgbcFmw15H-G7I8iln_QRImy38BhXsph34,40018
@@ -45,18 +43,18 @@ teradataml/clients/pkce_client.py,sha256=m7FYwfMf_xTP7-L4_wFLQdWWpO4sTEEIyZCZSHJ
45
43
  teradataml/common/__init__.py,sha256=KeFSq3wtcYMpZEFepWsgC7e9ocmmsv6WSrDosIviAVY,52
46
44
  teradataml/common/aed_utils.py,sha256=oMxLrtf5M2LVd5Xrm9hLkistQ9QFs5Uxki1omAmW3RA,106195
47
45
  teradataml/common/bulk_exposed_utils.py,sha256=tV5xvysJAXibUIm8AyzV4cE4USQFe7Eubhyl9m4ZiJY,4622
48
- teradataml/common/constants.py,sha256=P0UoGBaDnVJ_qDLLQ58rDohIXSkY5WQ0Z66pRHzyW78,59611
46
+ teradataml/common/constants.py,sha256=KAzJrpEweV4nNXd9xivtyVoRp1aQobWE2pQPh3lCFQQ,62464
49
47
  teradataml/common/deprecations.py,sha256=-KkDiJe9_08CIvCR4Xbzg3_WPZlJ5rqyKVlfpMhKrk0,6211
50
48
  teradataml/common/exceptions.py,sha256=U3rze_QiIVMPP-2xr4a3Bnz1UQ_mbODC_uwbdBQ46aA,2775
51
49
  teradataml/common/formula.py,sha256=IBBDwllFru21EerpV4v9zjbYCBqILZJy4M-vQnT1yd8,31089
52
- teradataml/common/garbagecollector.py,sha256=DIZjMsDgh57VIbJ6UrSmDSc0cE1manb2_sXplWloljg,28264
53
- teradataml/common/messagecodes.py,sha256=kHzLAUROzdyXojkn9pWsqgL3XeAZ4u_xZ9FboiqGTvo,28583
54
- teradataml/common/messages.py,sha256=NJ4biPRlX59quDj1wYNleZZz_lKwa4127DvJmBRj1vw,17728
50
+ teradataml/common/garbagecollector.py,sha256=ebvLmRn-M4dNPJCrTH1l0gccljmcT_gdIId5xaRf6vo,28428
51
+ teradataml/common/messagecodes.py,sha256=xqMg0lOD4qNugdgopZ80w7MganDtb6LXpi5AdJnBD-s,29729
52
+ teradataml/common/messages.py,sha256=1ztNM9kQHnn3Fa9YfC300mTtIW4YcLn-2ZyzlOu-eFU,18172
55
53
  teradataml/common/pylogger.py,sha256=8G36wPGbnCVAaabYeimuSuRazwbnX-NhKyZc-a_deJ0,1752
56
- teradataml/common/sqlbundle.py,sha256=z8WohDcoKvknTjDtLVsM16sPHlNdspMDH2WgH7D-gtY,23657
54
+ teradataml/common/sqlbundle.py,sha256=ViH_-OwvTDUqXWGIvCSqDqP5020humJuGc5Dm3VxyKk,26498
57
55
  teradataml/common/td_coltype_code_to_tdtype.py,sha256=8RzvJAnC9iHXsCHVVDbPXG3e1ESyZFLVtvw00M1Tj3I,1193
58
- teradataml/common/utils.py,sha256=VOlEYLz_v7cxHthv-5bEeAM_DEJhe9ww3zW7a0InhHE,92376
59
- teradataml/common/warnings.py,sha256=Dg36oFozNTFFV1yUlWSoJnkRdABGERJVhkmVzlJJdWo,721
56
+ teradataml/common/utils.py,sha256=BT84Xu8leBoQR9i9l1R7DtMm-nw4cbvfEBcyhoWU6Jg,98953
57
+ teradataml/common/warnings.py,sha256=PO6nQT9W3pIeT9TLYyLLbwe-f897Zk-j5E8RqyPFs48,1049
60
58
  teradataml/common/wrapper_utils.py,sha256=f2DxS-FqgEqbAJbHpOtKD4wU7GLj2XSX_d3xWNn9VvM,27843
61
59
  teradataml/config/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
62
60
  teradataml/config/dummy_file1.cfg,sha256=mvNQlfiTBP_2-e84fV1BsINKC0wcpeE_oYTuQe3RLaI,35
@@ -66,7 +64,7 @@ teradataml/config/sqlengine_alias_definitions_v1.1,sha256=iHEB832KDSO0DdugW8Mivh
66
64
  teradataml/config/sqlengine_alias_definitions_v1.3,sha256=pCt661hEVA_YM_i4WL69DwwD1wKm_A4uzqHqwzRf0bo,534
67
65
  teradataml/context/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
68
66
  teradataml/context/aed_context.py,sha256=qNCX27R8KxJ3LScU9wXQzos1Gm78Cv0ahVdwSg5iq6Y,7578
69
- teradataml/context/context.py,sha256=MqaQLkKnbkquUatAfgNyWeuTSPTfuslyeZJmLOKv1Xw,45345
67
+ teradataml/context/context.py,sha256=uj3JOmNs6B25Z0HtiKsGWlPvGjWDjs0DvEC1pRfxr0c,51804
70
68
  teradataml/data/A_loan.csv,sha256=HFfTfH1cC-xh4yiYGddaoiB0hHG17pWKbmySolOLdoc,584
71
69
  teradataml/data/BINARY_REALS_LEFT.csv,sha256=LW8o1jCKyUv9UFM3E5WbRMDYPQfwkFMZtifDAf9cp30,416
72
70
  teradataml/data/BINARY_REALS_RIGHT.csv,sha256=LW8o1jCKyUv9UFM3E5WbRMDYPQfwkFMZtifDAf9cp30,416
@@ -96,6 +94,7 @@ teradataml/data/admissions_train_nulls.csv,sha256=ATKujpSwylRzqwQhuYk5oJQZnocct6
96
94
  teradataml/data/advertising.csv,sha256=E391Wtb9O8ZHEIX3YxovumwEy4rNcer1zJr2g51D_dU,4062
97
95
  teradataml/data/ageandheight.csv,sha256=wZqCAsV7SApRpoa24-p8ws6v7DNsY2_CAIKwZapmLnY,244
98
96
  teradataml/data/ageandpressure.csv,sha256=Ur91-8fz1VjPsFxfgvwWy9yNB3m2aV9qiPRCHkXHXgU,392
97
+ teradataml/data/amazon_reviews_25.csv,sha256=0KKnPkATIUylQocw6wpmvrrGkqv06hbihlRhdL6pa00,12824
99
98
  teradataml/data/antiselect_example.json,sha256=w1V67r47thUYYgE8n0buuPcIQbFnDVPZzcIDGxm46U4,1280
100
99
  teradataml/data/antiselect_input.csv,sha256=bgJVm4qOd2xIpMt2vcfw3Vp4EhFh31MeR0UIMgU29zM,1000
101
100
  teradataml/data/antiselect_input_mixed_case.csv,sha256=6kBAJUTdD_m36JQ4XW_BdUZ_GYb6tVguMZ1Y-eYuZyM,1000
@@ -132,7 +131,7 @@ teradataml/data/breast_cancer.csv,sha256=YJjbRrFwf5PWU7Al4NB46Y2yXNyfJMrZ06YDMY-
132
131
  teradataml/data/buoydata_mix.csv,sha256=FhIW7ZyLFFSt2Ju6cYfJJV5_bUWoGMU-fl4RqX85HiA,1630
133
132
  teradataml/data/burst_data.csv,sha256=4ZEOicUtb4iejEC7Qh5VewTACJMG5qdpKEVq3RVO4yo,172
134
133
  teradataml/data/burst_example.json,sha256=ijC2YaBUGL-ZKR2lM3CHgBTPHYXr4LpTrXzhHzXhcB4,434
135
- teradataml/data/byom_example.json,sha256=138RFM1GJZPgw_G3lM7aC3tcXJZQh-R2p4qSMeD5Kq8,394
134
+ teradataml/data/byom_example.json,sha256=wUUvHH0QhQJcoMCNLyyCSiQD9zZV7xKN9LoV1gxd8rg,726
136
135
  teradataml/data/bytes_table.csv,sha256=nztKCmykXMySGFj1PtbkzmUWA9BFD4zxku0VZduH2MU,109
137
136
  teradataml/data/cal_housing_ex_raw.csv,sha256=W_r-AMQBLmTatsni_FXdhmmVHNMxQ1ndGdmhS-_2t0s,9459
138
137
  teradataml/data/callers.csv,sha256=uarzTiXzCuveKX-HtULkFM7BWlAhpp-nI8kmcWT73iM,93
@@ -184,7 +183,7 @@ teradataml/data/customer_loyalty.csv,sha256=Z5YW-Apil6Xz6MgTS12kxJYptQXo5dLH84vf
184
183
  teradataml/data/customer_loyalty_newseq.csv,sha256=ufn_bjCqWoLaZ5l0ZSVAdWfboinduvc4L5jwiGxZAFc,805
185
184
  teradataml/data/customer_segmentation_test.csv,sha256=8iaPDIFgn249mytmwxOi8cU_FnzRo0EtaRV_SXrxmP4,125982
186
185
  teradataml/data/customer_segmentation_train.csv,sha256=U4aGWbqHv2vOfPVMT1ga4FjMj--Mdlp2CZAyLMUERsE,403494
187
- teradataml/data/dataframe_example.json,sha256=gEPGGnR6qpx-b25-L0qwFl8Vjn1ldXDSc_SvVpTRMeE,4244
186
+ teradataml/data/dataframe_example.json,sha256=JqOAAv-v-GDu4Z0MTxK4dJG51pECvJtS0Gt51x6jVWw,4707
188
187
  teradataml/data/decisionforest_example.json,sha256=USwkJRLKXN-OFixZto9gkmh8RVlnD7Pug_XkwxiSgPQ,1188
189
188
  teradataml/data/decisionforestpredict_example.json,sha256=uuvBRtE4Ftc2UbMCfJtTbXXyjd16PqbX2J4SfqC7INA,1364
190
189
  teradataml/data/decisiontree_example.json,sha256=6DLmN9BeqnR1-4GlZJz1DlBGW4wwsBNASLno9j22fzs,560
@@ -240,6 +239,8 @@ teradataml/data/hmmdecoder_example.json,sha256=uDvpoFSbgmqelBlYDnrcj7N0lDaWCHCsQ
240
239
  teradataml/data/hmmevaluator_example.json,sha256=SwhSClm_D2vFD1RUqf9hB2Sm5Pdz0fRGF6xhKS1XAF4,569
241
240
  teradataml/data/hmmsupervised_example.json,sha256=ll5LLX65qnoeYrYLz44F7jBxFVeycgw8k_0E1SOdgk4,217
242
241
  teradataml/data/hmmunsupervised_example.json,sha256=wS8dJ-eMVwVDG1jdRQ_xEfV4_EIm8Jhb_8Vj8c30cLM,157
242
+ teradataml/data/hnsw_alter_data.csv,sha256=8XS9iEQY2rdJY-3EKI6IuxbRffxygJouhJHVOnLeyrs,52
243
+ teradataml/data/hnsw_data.csv,sha256=GJDHJSAm92sMkMww6rPLx0KpqKWUQZNpw2HH8pQ5ucE,113
243
244
  teradataml/data/house_values.csv,sha256=RuoWnMnhInKUNPOcAoRjaHl0nSVpxAHRFk4l7ScQ-OA,571
244
245
  teradataml/data/house_values2.csv,sha256=A0DUg1nfULxjJ042H1uCzGNBdaEo0cs5ooWF8zeMP6g,199
245
246
  teradataml/data/housing_cat.csv,sha256=zWcbUJRMt0Rrh5mXjD3LQV7Og3yCzZHonXuibRtrP-o,78
@@ -299,6 +300,7 @@ teradataml/data/load_example_data.py,sha256=6fEDd5l87SfzAy6clQTwBM7PkNYhjaiY8-2X
299
300
  teradataml/data/loan_prediction.csv,sha256=lEXZzLSKXaZbdpaQgYVBwcMa3-r5S8OemwMsQoD89rc,4591
300
301
  teradataml/data/lungcancer.csv,sha256=ek_VkMKU2EbttSTjXzcwzGs47jcW-o_QHhjJbKhqFfY,5873
301
302
  teradataml/data/mappingdata.csv,sha256=hYsq_JLXcCjyEHx577POhxdvScQ_ynKUlcnTJiAjPeg,84
303
+ teradataml/data/medical_readings.csv,sha256=VuKNn9bvFM4uYZ_h8RvUYIsV2lYa6FZhHkOnwlTrCnc,4219
302
304
  teradataml/data/milk_timeseries.csv,sha256=U0woD3Bs4myyFbYdUtlKNcomLAo45iSIJ0D44JyR74w,3498
303
305
  teradataml/data/min_max_titanic.csv,sha256=wu7CXqLRfp3SBKT4foFjFHqZLm6nO-C13Le6gWmQlXU,88
304
306
  teradataml/data/minhash_example.json,sha256=KKjXit6ed08c38FQ4oisD9_gW5xPzt_QHD_b6NPbuVE,87
@@ -358,6 +360,7 @@ teradataml/data/pagerank_example.json,sha256=1DhseHJJhzxjyE6hukmBVyXkEN6EVNO3K1w
358
360
  teradataml/data/paragraphs_input.csv,sha256=_9owa9OoNgqLR1QhGnAIcCu6txVUwdzZSMj-EujTvNk,3000
359
361
  teradataml/data/pathanalyzer_example.json,sha256=AiiJxKnvF4Q536y1-6kdr6ZcfxtQqMERTHiEn1nxebM,138
360
362
  teradataml/data/pathgenerator_example.json,sha256=AiiJxKnvF4Q536y1-6kdr6ZcfxtQqMERTHiEn1nxebM,138
363
+ teradataml/data/patient_profile.csv,sha256=TwZzE3TII362SjT_1yMfscZnkJ6gK6hvy7k3KyUfigg,3729
361
364
  teradataml/data/peppers.png,sha256=imrSYKQni781u4YSajHlrS9qVM7NRMtkB6buXYb_PjU,732014
362
365
  teradataml/data/phrases.csv,sha256=CX_QEgAX37IUVKf8ctD6uNkG4bixeH0Tn1LM0nCEco0,110
363
366
  teradataml/data/pivot_example.json,sha256=ZHd3QFtx0yXPZm7fIfss8SsyZU5-mTG40Wv1Qliln5M,165
@@ -445,9 +448,10 @@ teradataml/data/svmsparsepredict_example.json,sha256=4ZI9vcMSC4gdL8pyeB29wm3WOZU
445
448
  teradataml/data/svmsparsesummary_example.json,sha256=bOqLVJnyyCJTSY2hdxG6DRAsGRzBCOjMBHmv6_TLGCw,156
446
449
  teradataml/data/target_mobile_data.csv,sha256=FBT4cAV5zHloVOCR9cKZx3JFyv4OC5vlqrJoClQQ-4c,316
447
450
  teradataml/data/target_mobile_data_dense.csv,sha256=HIeUmij5i2pSUA6TaxLl2oNjwWnlshWB0vu0AouTQmw,122
451
+ teradataml/data/target_udt_data.csv,sha256=BRiHn4P68J1Pyh9MvTmxtKe0eEze-EUuBVYMV228JqY,141
448
452
  teradataml/data/templatedata.csv,sha256=_NYyMgobQ0-oIjZhIUcv16iOM4EtajZ4mKOrx39cfDY,22391
449
453
  teradataml/data/teradata_icon.ico,sha256=M4qHNiblJAmGmYqsy9bD5xSP83ePf6089KdFuoQhaFM,1150
450
- teradataml/data/teradataml_example.json,sha256=-yi0pDmv41RheeShirk0k1WC624ra4-2SMTzWyqEp4o,41742
454
+ teradataml/data/teradataml_example.json,sha256=kr0fl1j09pNSCKKvbHv-gqP9etjcf7h9zb0Ce6r0Lww,41894
451
455
  teradataml/data/test_classification.csv,sha256=BDKuA82t60YWQu23BDxMn3j7X2Ws_HJXfUoFcwa76Og,9523
452
456
  teradataml/data/test_loan_prediction.csv,sha256=RW7R4PPMRGdpHmHxvH-1TssLQFg5bVfd8tteuJ3Ukg0,863
453
457
  teradataml/data/test_pacf_12.csv,sha256=ltIEUeJksRLCcvfXyrFhGcc7GkI89NXhRbQ5gOidvNM,1003
@@ -494,7 +498,7 @@ teradataml/data/us_air_pass.csv,sha256=LdhRm7SOl573NEP8jJYaB4d44lBhfsDO1vXw8SLSt
494
498
  teradataml/data/us_population.csv,sha256=KcNP7DOv-X3qvQ2tg2yz154FYPg5xeVFyQ-nG15aT4M,18420
495
499
  teradataml/data/us_states_shapes.csv,sha256=Uk75jUs3LV9B3Hy_fgQ3N_ql0e1GcrCqjdTEVqSNCIA,86308
496
500
  teradataml/data/varmax_example.json,sha256=g1x_2iIncL6OAE1DVvI65J822swD4HXPAbzZfCZ9WPs,429
497
- teradataml/data/vectordistance_example.json,sha256=tG87HwgTSyUXOLdNOfWJExrSMIhtpm6c4T39X_Od_mw,585
501
+ teradataml/data/vectordistance_example.json,sha256=MCExWiHYITmVAACPdpRB2L_FGgAl4iQNBTIfH5p7Mm4,663
498
502
  teradataml/data/ville_climatedata.csv,sha256=Fkltl7-Ia9GeI3gPgFgKhQ-hyubf8miJPW2dZex9MX8,7231
499
503
  teradataml/data/ville_tempdata.csv,sha256=7kmSNztvrPx_j4_nX0-r3_d7YF0c7AWFmkmAhpQyWNs,355
500
504
  teradataml/data/ville_tempdata1.csv,sha256=YK3_E1cQh4s3CKq-8lyXSJ58HEsBuCt4WwOzcV-V2lo,335
@@ -516,11 +520,12 @@ teradataml/data/xgboostpredict_example.json,sha256=-XQ7o9eHQjBoAl3zobM6yvuKE6eMq
516
520
  teradataml/data/ztest_example.json,sha256=HvBkbCcSKcSPV1RuEsxe8utaHT8xiXfrt90bgjMzexY,345
517
521
  teradataml/data/docs/__init__.py,sha256=5XVCpXHM3si13drwS1VzLUi3Jq9aAgvCCn8O0qs61as,36
518
522
  teradataml/data/docs/byom/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
519
- teradataml/data/docs/byom/docs/DataRobotPredict.py,sha256=WtpNV7dOf0lJ0J28k88Qs_TmrIFtOiB3QMU-sHIeEL8,8921
520
- teradataml/data/docs/byom/docs/DataikuPredict.py,sha256=prSgPBGIpz82qq1ycgHMAUlKvrpLmH2BAJZESq75pBs,8555
521
- teradataml/data/docs/byom/docs/H2OPredict.py,sha256=roe77-CBruRyjKKkvfhhG9lwIX0CDe1IdjY00h54xrs,16404
522
- teradataml/data/docs/byom/docs/ONNXPredict.py,sha256=ueOOYIULYUw_Xob4kPnjeoBI0r7IC2uA6JLcz4LHx2A,14306
523
- teradataml/data/docs/byom/docs/PMMLPredict.py,sha256=zS3igK0-tf7uPJqRdDqKbxk-m6Maz0uJgWHAHUfffrw,13117
523
+ teradataml/data/docs/byom/docs/DataRobotPredict.py,sha256=z7UUPJkqxNvng7VYKB3-8NqjvyojAy_0_T-9NIBQHRw,8969
524
+ teradataml/data/docs/byom/docs/DataikuPredict.py,sha256=FVcY_XTK-n7j3IEa63_TA4ebIQR0sa5_SNJPJh-5W2E,10459
525
+ teradataml/data/docs/byom/docs/H2OPredict.py,sha256=cljoRRvWzm5ShXaipcPqDPwCFxNh_wixkl8KSi4uACI,16452
526
+ teradataml/data/docs/byom/docs/ONNXEmbeddings.py,sha256=lRAsNLdoANcu4KMd5FXKVZIFfvviEsAx70OdUirSjGE,11858
527
+ teradataml/data/docs/byom/docs/ONNXPredict.py,sha256=qxNMVkw-Xz92yD7OHp0Kp_BOu0t-av8qzHnFN3wgzTA,14354
528
+ teradataml/data/docs/byom/docs/PMMLPredict.py,sha256=lLh7VYxNLA4m8mtMffdkJAoKZM3AQ8IEtKJ1LlrnrYw,13165
524
529
  teradataml/data/docs/byom/docs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
525
530
  teradataml/data/docs/sqle/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
526
531
  teradataml/data/docs/sqle/docs_17_10/Antiselect.py,sha256=XqXfSUwAfQvMohTtJri1ZuXID6HcqGc8f6yJOlvGUqk,3495
@@ -604,7 +609,7 @@ teradataml/data/docs/sqle/docs_17_20/KNN.py,sha256=qsTD6BbQ7UFTS5WtnV_-ZBBvLVqMd
604
609
  teradataml/data/docs/sqle/docs_17_20/MovingAverage.py,sha256=DSbxNLB1OpnYgS_6v_MVAJDxtS49UtGIcOrOzUVhbus,5738
605
610
  teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py,sha256=bgJbAsi36ymoqWmAlxaZAz0aLM7KnGubriSxgIhrW2U,9358
606
611
  teradataml/data/docs/sqle/docs_17_20/NPath.py,sha256=CBof2pQwE0tXJRLYxPruimIyOd6nEnwj6f8r1SpTys8,13931
607
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py,sha256=TS-sJeSR3cWwXWhSwTaPBNF-QSDEtPTQ_hbIGGsqWOA,7653
612
+ teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py,sha256=_O_MUZX1qmaZTpAehrdiy5dre3OLoQ0o0yZYFLU8yKA,7665
608
613
  teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py,sha256=9P9iLhGmB3bPvrNZzh2gtWRjZRP8s66NHhzvqLKJuRs,5379
609
614
  teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py,sha256=POgE-rQseF6eUxBisxDJfsrVvWWXWNxZ9Zb10aSCrsA,8157
610
615
  teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py,sha256=cNW60bF1i_rk-KHgR0p8RmqZqoFujtuCjFv2huZmJGU,5724
@@ -639,7 +644,7 @@ teradataml/data/docs/sqle/docs_17_20/ScaleFit.py,sha256=y67VVIICmcpHfDzftwLnrBCb
639
644
  teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py,sha256=YAUkjAcvU_Dd8l8vKPabFM72yS0Oz8_D8NhK6Qds6qs,9189
640
645
  teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py,sha256=2Q3kKkkKtHUA7BTl_pUtQnWW-Ij6lNpsEQ2FgUekPwQ,10065
641
646
  teradataml/data/docs/sqle/docs_17_20/Sessionize.py,sha256=g9W05OfIYtvHsn5-IPzurT26-MhC8WzxJtRmN6AABes,4895
642
- teradataml/data/docs/sqle/docs_17_20/Shap.py,sha256=u90DmJCuCSOG4nwIRGF1XzL8JApeNlEqOY1Owoa83OQ,8686
647
+ teradataml/data/docs/sqle/docs_17_20/Shap.py,sha256=_h_Pgypu-mfxqyvbWXRKoDrqYV6HiVHBj4OR8SpXVSA,9992
643
648
  teradataml/data/docs/sqle/docs_17_20/Silhouette.py,sha256=odUI2pvYF7dk9gBIhHdquAI_Wy6XzVynveDF33RDTkM,7243
644
649
  teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py,sha256=1eHyE7RLjdLY_vSHaaDrt0Ou9b8LYWHDlXHdVRBv-kI,4881
645
650
  teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py,sha256=ZlUVxA_teZnsheh2blnGnq97tKCo-9vie0HLZb3dz7s,4631
@@ -647,11 +652,11 @@ teradataml/data/docs/sqle/docs_17_20/StrApply.py,sha256=ZbYLGiyLJIIqqPCwZ79jHjPS
647
652
  teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py,sha256=J-m4qiPM7BhFP4b3ZaEf-uvwaHzQor-mhp6PSU1C4yk,7576
648
653
  teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py,sha256=Chb-269nY2d94wY8tw-7uJ3CnV1uoXwzQidBZhncebk,10207
649
654
  teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py,sha256=OH-hnCDBD0vSCJoPiktwNqfenPt_9RHZxH4BOVOEuv0,15433
650
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py,sha256=PTVf_P88on9r_l92fTpsna3PXrJocSnTEesKf8Ep6pE,9370
655
+ teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py,sha256=E68CcMdaXarPSJ7UAHVJORzGS3P--9LoDcOs9pd9Yf8,9402
651
656
  teradataml/data/docs/sqle/docs_17_20/TFIDF.py,sha256=Kjvggu2W2EV3PjA8In1ksyYo4ByA4c-x2hSbVIOj_wU,5797
652
657
  teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py,sha256=K_BOaUNA9Zi2XaHC32vMpLbTfA51AieaUR0LMimWflQ,12698
653
658
  teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py,sha256=ga8DeTlJUmszVPBJj_kfASst6aK7Oc1yb46lPSwuoog,6510
654
- teradataml/data/docs/sqle/docs_17_20/TextParser.py,sha256=FwCdeIrYKkeOUYV3m0e8Z-2z_Zd2b5OsIoALE65DSs8,7559
659
+ teradataml/data/docs/sqle/docs_17_20/TextParser.py,sha256=I419XK5ZhiXQD8vd1GL4v0PJCoKwxABIQALPFQO9VvE,7562
655
660
  teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py,sha256=WtGPOcE8GdX2BYcaaUQHO_Q15HdUdzzUMeu5ZnEr1Tg,7603
656
661
  teradataml/data/docs/sqle/docs_17_20/Transform.py,sha256=Mm2SYFZpEnJ3nOATDA8ZOxfNz73r7O-N8JsRkeM9c3A,5732
657
662
  teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py,sha256=PUPH8k-CRdL5kM6mJ5i7wIadRyJvsP8B4eww39FLGbU,6001
@@ -674,6 +679,7 @@ teradataml/data/docs/tableoperator/docs_17_05/__init__.py,sha256=47DEQpj8HBSa-_T
674
679
  teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py,sha256=K4BZEoQKBrA0sXlN1gBok_l9DllROzXV6bal71zOZkE,23570
675
680
  teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py,sha256=uwP3j9tRO38Bc83D4ZFtD-B49gX3xP9yxi4XZNjtgFM,18554
676
681
  teradataml/data/docs/tableoperator/docs_17_10/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
682
+ teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py,sha256=mGzV0LYuWIaOk_Iq-QbgTxGphZZFX2b_ekepan_rvPs,4956
677
683
  teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py,sha256=Kgd6-tAYGKNfD6VLbDDkvsN3ocOOgmnQmAMdUuhYpv8,25369
678
684
  teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py,sha256=fDnIpFl9RidXamu_qCvgViD0fDplbG4BfBuy-ClXGy8,20423
679
685
  teradataml/data/docs/tableoperator/docs_17_20/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -690,6 +696,7 @@ teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py,sha256=xrQZwpNB4RzxujJ4UTu
690
696
  teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py,sha256=DF2uVAREW13rSOd2NScIKb1a30LISeFv9CSO_oBk0Xc,7605
691
697
  teradataml/data/docs/uaf/docs_17_20/Convolve.py,sha256=BY8a2hbxw3OW_HP84ITTe5yY0-HlJC3-0Op6p4WTtGs,11093
692
698
  teradataml/data/docs/uaf/docs_17_20/Convolve2.py,sha256=ePINkBVSJ65jB5e-UbhHC7pHLhQXDWFKWoZyfappuN4,10348
699
+ teradataml/data/docs/uaf/docs_17_20/CopyArt.py,sha256=5gbep83z82bJusgpLwIrgax6PqEpCVBsys7IV9uchMI,5728
693
700
  teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py,sha256=Fs0NzzzxMtefpWvXMmdTjHlLu_GtVFh-AkOPXkohMb0,8475
694
701
  teradataml/data/docs/uaf/docs_17_20/DFFT.py,sha256=eym9uqsRSR9ne_Tjt9UQUn-X79dZBbddmk1YqFcvm5A,9026
695
702
  teradataml/data/docs/uaf/docs_17_20/DFFT2.py,sha256=x6CvaDd482J0EfM4vCyCEUHbLfd1q3rLubGmY8ZUG6U,9662
@@ -698,8 +705,8 @@ teradataml/data/docs/uaf/docs_17_20/DFFTConv.py,sha256=QaU8sNSNew04dVTq_HBHP19Eh
698
705
  teradataml/data/docs/uaf/docs_17_20/DIFF.py,sha256=QQLYLVW5bbm2orirYrr7avv4UcQKOSK5sXwC82ykt88,7299
699
706
  teradataml/data/docs/uaf/docs_17_20/DTW.py,sha256=Gvkr55dwBV_gxhk_k6O1JhO3Pcm0N0w8PZMf9lg41OM,7299
700
707
  teradataml/data/docs/uaf/docs_17_20/DWT.py,sha256=luav08ng-JxSEsTCFCAgl89Bm_LBe7g0i8-lvl5Lz78,9728
701
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py,sha256=UwjeV7wcudow6WnX8w3fuj1HPCwJAQjtvLyVZug60Pk,9248
702
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py,sha256=fHNNRwhDVUh7ZszoXK4NH0-ckRJzVO1fqnSEFuvYRGQ,5872
708
+ teradataml/data/docs/uaf/docs_17_20/DWT2D.py,sha256=cNqKwpMlFahz-S1EpdceP_hxqGgxCxqan_I7D7jMFS4,9320
709
+ teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py,sha256=v0D2wcaOsJ2AxmJqQfdG0d_QQeB9hqav90jyNCLQhUA,5975
703
710
  teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py,sha256=lI07DSn8XeSMoUBqiiHyWcOgw1E3x0YN_UL7c4TsnrE,7874
704
711
  teradataml/data/docs/uaf/docs_17_20/ExtractResults.py,sha256=KZNhDt2jcC6JiGEmSc194guAtVx3uFlY3EL0DHC3578,9314
705
712
  teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py,sha256=f9Fxm3Mm9Gy1k7IxgC4wWMNW5cO24rLuNNSv9MieJ9Y,6873
@@ -744,7 +751,8 @@ teradataml/data/jsons/anly_function_name.json,sha256=EHJ68E45KgNfECT6AK9-DMQ-yP8
744
751
  teradataml/data/jsons/paired_functions.json,sha256=5EGDbgTwKrR-HcjwMa187tPyOm23aYcmgMrFDDXSXRo,9814
745
752
  teradataml/data/jsons/byom/dataikupredict.json,sha256=szvH79NGcniprg7eborSyKb_1JL8-Zg8lC0KT8efM3c,4752
746
753
  teradataml/data/jsons/byom/datarobotpredict.json,sha256=42VOrJFvlc87ZKgq6mu0FwcUkIFEaY41rzW2PTibVTM,4735
747
- teradataml/data/jsons/byom/h2opredict.json,sha256=wOxM25cnIF3I8gUgoZmxN4lItg7iZ-kW5tAIG7U3HGo,6131
754
+ teradataml/data/jsons/byom/h2opredict.json,sha256=-neUkuTjHSVWAoK7uyIcAv9HfAa0IGiiWXuNES73fgc,6132
755
+ teradataml/data/jsons/byom/onnxembeddings.json,sha256=-_y50FRtV8KQNeHW29tlRss3MsnJs_FBZ1xrK60qfpI,8866
748
756
  teradataml/data/jsons/byom/onnxpredict.json,sha256=pkzmSpmzpx0V7UVKGc2_FkTCISa3U1vkqV5gpae5aBg,6114
749
757
  teradataml/data/jsons/byom/pmmlpredict.json,sha256=Rm2Dt1PXu4wG8xj3a7MaTGYPb9_2cXgeUYy4enevUzw,4686
750
758
  teradataml/data/jsons/sqle/16.20/Antiselect.json,sha256=Zyw4BroIZwI7UeYjeHsWO51MukZmAH38UKS4-8nPuLg,1621
@@ -911,7 +919,7 @@ teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json,sha256=aZlJBekP4uxc2XJUwIeV5
911
919
  teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json,sha256=V9N4WysObAauTR0X3wSBJDpRMvPRQxKr8m-ztGLcnXg,13586
912
920
  teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json,sha256=aHX7ccFEfjJ9uP23qj9OiC3rREeuryP_T7kcWrpkbQg,3992
913
921
  teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json,sha256=LVPbPPGi_z6l3f-OjD7XrhjOR_dG3XuZdUgaafVeED4,7045
914
- teradataml/data/jsons/sqle/17.20/TD_Shap.json,sha256=lievgkOWQII4bdQirHXo_OGFuexhTAocmV-SKQj5Rqs,7928
922
+ teradataml/data/jsons/sqle/17.20/TD_Shap.json,sha256=UdbHG9z-J-0oGRloIghUZpTfV-Qw_ahVeLvtdprrRI8,7895
915
923
  teradataml/data/jsons/sqle/17.20/TD_Silhouette.json,sha256=Wt6QlckJUNUGrCWAY4tv2xvi2K6tw9cjpUUK7U0esU8,4840
916
924
  teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json,sha256=zOhzZZDdlBnRv-vZQL3XCO5sHcBiz2e93dfqpkbuWF8,4995
917
925
  teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json,sha256=_6dzIMMYBWCgBEvNYbqFVfkdPt1lWCImayMVem9jAbk,1877
@@ -919,7 +927,7 @@ teradataml/data/jsons/sqle/17.20/TD_StrApply.json,sha256=5DsnIIeb1BJqa12lh74mzHe
919
927
  teradataml/data/jsons/sqle/17.20/TD_TFIDF.json,sha256=IDQ7Dq9jVS8d64s02ero2-2hHvWd0qsCqqJ5sB0cNFM,5744
920
928
  teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json,sha256=SWIiQ5RNcNNkAL-VTUys-ymUf8ftHv4_S4AItnLvf_E,9314
921
929
  teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json,sha256=v26bCdOLPKZR-oNwp6jXSge-Mi3sT9ktUnQF46tiIFg,2765
922
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json,sha256=uBK2ftzgYog6d3jGIP3JQXnbF-7EakupvjTl6xlvZEM,5925
930
+ teradataml/data/jsons/sqle/17.20/TD_TextParser.json,sha256=SadLzx_KuhRFUSkZl3xuNLgbMFKz-MnTjc8OsVSoiVc,5926
923
931
  teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json,sha256=-iTh6laaD6gf7WWEyz6lQFoDBGR2kwvaeTsavZsyW9Y,5744
924
932
  teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json,sha256=nMK_V8EAw01qjsuZP5uhyprw_Mh5G9ZimQt8TfPSsYw,4807
925
933
  teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json,sha256=JYjxIZCXHDipqcuSNH9O0o9hoUD674WZ2ke5IL4ZA8w,8680
@@ -932,12 +940,20 @@ teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json,sha256=vePCDT17Ho9H1b1cx
932
940
  teradataml/data/jsons/sqle/17.20/TD_ZTest.json,sha256=vDxIYCnmgPTnxJnfrivB8AkOKNrJXY_s84_moFFjsLE,8202
933
941
  teradataml/data/jsons/sqle/17.20/Unpack.json,sha256=XoTH6HH8cQ-WWMkhx4gIH-hkn0q4G8StVxNMcUIM3SY,13420
934
942
  teradataml/data/jsons/sqle/17.20/nPath.json,sha256=_x0_7ZVAZ23JNd3Xy-xfBFfXD-VWpgDKzhpnUmt5GAs,14122
943
+ teradataml/data/jsons/sqle/20.00/TD_HNSW.json,sha256=yaIasMPo3m0fGkA1IJWWZKeQqMnknGf9i9neaRHrh7A,10031
944
+ teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json,sha256=m7_9216qzwrgnpubaD-0Jnx260KfxBb8Fz6faullUn4,7040
945
+ teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json,sha256=PPYYKEFZpYjNIBpBkA4kyeqVpdlGdl260Qm0lRB8ivw,1229
946
+ teradataml/data/jsons/sqle/20.00/TD_KMeans.json,sha256=ogqYrW0lAbq2mSa0HJURwYohYFd1XA0UDPqUA23oAfM,8882
947
+ teradataml/data/jsons/sqle/20.00/TD_SMOTE.json,sha256=RYIIzOT2W-CEJWahKnMXtSn9RQC93xb3KManph_QIpo,9927
948
+ teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json,sha256=V0PDu905-_CN7t8uY8Di85Vebxvz5PH4nfNckZkDOfI,9835
949
+ teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json,sha256=vp0hpBDk8JmyLE-htYchk-JGZQd3oaNNKegwKYI87C4,2241
935
950
  teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json,sha256=x5bzoY38TzDHaLztMBmf6qMie4gykuQN__rN65NgaKo,7756
936
951
  teradataml/data/jsons/tableoperator/17.00/read_nos.json,sha256=AU0xz-LTu-evaZfWR1TATJN7XKQUSvCCRiagLZYU_Og,25804
937
952
  teradataml/data/jsons/tableoperator/17.05/read_nos.json,sha256=AU0xz-LTu-evaZfWR1TATJN7XKQUSvCCRiagLZYU_Og,25804
938
953
  teradataml/data/jsons/tableoperator/17.05/write_nos.json,sha256=RxlbMg0c2MAv_SweZL6rB7Ew34zSdcJxF4lgxf2N4L4,15256
939
954
  teradataml/data/jsons/tableoperator/17.10/read_nos.json,sha256=DJu_Ux7VQV9EXIcuCSkc3B5m3690VdK7Pl6epHDgE30,27897
940
955
  teradataml/data/jsons/tableoperator/17.10/write_nos.json,sha256=dofQigRkF9jKyYRO9dOQL5jKBwd9i4h02rs4UYBJkzM,18115
956
+ teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json,sha256=5tooGwxALY4n13sIVcUD-JG4vJqjcNeAkmhxQk1yMsU,2224
941
957
  teradataml/data/jsons/tableoperator/17.20/read_nos.json,sha256=dXmnLi7pXayTjeZEIeBRCK8ysdmdLiXy8iHZx_LXdCM,23674
942
958
  teradataml/data/jsons/tableoperator/17.20/write_nos.json,sha256=I-526Zymf3LdRZw1ojfD3MAZSqxkXD9JW0rs7BvOjRg,19158
943
959
  teradataml/data/jsons/uaf/17.20/TD_ACF.json,sha256=sdCp6-xPkCTHyCN96bAVR6xivoAx3OC3oWPYHUBLq60,5952
@@ -957,7 +973,7 @@ teradataml/data/jsons/uaf/17.20/TD_DFFT.json,sha256=_kpih5WRCU5UwZrYqI8lZM0ra4TQ
957
973
  teradataml/data/jsons/uaf/17.20/TD_DFFT2.json,sha256=foL65oFgS3b8ERqXA5K_oMBusoVMT1jUd77dZ3XN73o,9129
958
974
  teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json,sha256=c7Bd_1anlfw-ZNbgc_L7KJWcUS8VQYGv-iL2cZ-T6mI,7797
959
975
  teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json,sha256=s1RrzJ_vdzoEip0DP9fr643D3KYt8rPc4kLnKLN-vtw,7689
960
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json,sha256=WlrAJpViFPK0f4qeQSRfQ1_D1IaHARJN48S-SGh9FJ0,5225
976
+ teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json,sha256=qMPAYUUeJMfeVUwyd1SsO1OkHZgrwwLtWzGYiZUh8ig,4422
961
977
  teradataml/data/jsons/uaf/17.20/TD_DIFF.json,sha256=HRBGm5GdjG0OYiYEuFKZEfm1t6DKrHn3Pv6BqD_9GGY,5371
962
978
  teradataml/data/jsons/uaf/17.20/TD_DTW.json,sha256=IqkbCHGZDOEdG6sno00CvdgdjccWEnsvnH1r4qnITjQ,7234
963
979
  teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json,sha256=vkB6WUS_J0M2XQMoMGuQEmJ2kl6WeDeDpApWYhXodGg,5779
@@ -987,7 +1003,7 @@ teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json,sha256=Y2BejE5qpRqrjvqg6wM9-rHQt
987
1003
  teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json,sha256=l3FV5T28DvSUvkoMtvsuiBxlswPi5NcduecoTgB2DbM,10531
988
1004
  teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json,sha256=aJ-3gSBvL5ZP-X2_PbosnSbQUHAJhkbr8nq35xsD8us,5080
989
1005
  teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json,sha256=R_oJNYdC28fRSdIhNMLRc2yGalBZRxQFrGluqmJ-Yyw,11684
990
- teradataml/data/jsons/uaf/17.20/TD_SAX.json,sha256=MtKvfUCZVy-gt0EpFXtUYMMq48Z2F8dalVvBlp5_9iU,7856
1006
+ teradataml/data/jsons/uaf/17.20/TD_SAX.json,sha256=osZ-Q1fzRdR-hDZDzUEp-4UavAbvA4FkOacMAx_PrZ8,7903
991
1007
  teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json,sha256=U7r9HaGMYzOIhrMeC8tkXZLOLIZ4dD9IhzTk2avLfpk,8428
992
1008
  teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json,sha256=L0Cms4EvbgdMiUctSKl8iPTYL1UDt8AwImCTuPI3hEU,5600
993
1009
  teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json,sha256=HsrXUJttjDR6vsbzIjxcD_3QaOokL9Jo-Vlna4KIvSk,5259
@@ -999,7 +1015,7 @@ teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json,sha256=rdohAD71rUtlQQvGHoLNUQ
999
1015
  teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json,sha256=pNZUHXVb9BjV_-_tVRiuG0mMxG0PIxT956YRqo_Fu18,6836
1000
1016
  teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json,sha256=XsbOEduKsTkumHXh-DJvP0jbJ56Zydq_JFkhfNBTJcI,4753
1001
1017
  teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json,sha256=gaiixvAjMIms_hVJG9_WmBjK10f1wz8tCR6Y161SHZI,4800
1002
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json,sha256=TdcAkYbTvnRRfN2jJ7JmwUp19-CGXRDAbhazed8Rj70,23405
1018
+ teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json,sha256=iDLbonW4lEhFiy2HJGWTxI6_8szAwyognHRGuZLszIg,23831
1003
1019
  teradataml/data/models/License_file.txt,sha256=SnWU9MK5E-B6ZUwR1TB19iSUyCcQaTxJ9Zar_WVQ7_g,14
1004
1020
  teradataml/data/models/License_file_empty.txt,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1005
1021
  teradataml/data/models/dataiku_iris_data_ann_thin,sha256=9cfSt9MHz_ouXXMzfoByrX-yD-iVINFr8Txn3e7VukA,20894
@@ -1026,34 +1042,38 @@ teradataml/data/scripts/deploy_script.py,sha256=ap99Pp0DWA32E7s7cedL84VIQEvvb4bA
1026
1042
  teradataml/data/scripts/mapper.R,sha256=wsa90rHfJDOCzpPAiHy6EzpiNskC7d2K4QnJCuXrLqI,613
1027
1043
  teradataml/data/scripts/mapper.py,sha256=8l0tJl96icteNBFRG4cROuho1iWUJtU81l7R7Jz6SmY,547
1028
1044
  teradataml/data/scripts/mapper_replace.py,sha256=qBcXNMb19LccZ3KhMtZBgrpib33KWZjrJ5MoW5l6G98,552
1045
+ teradataml/data/scripts/lightgbm/dataset.template,sha256=PDgd5_4FWpHUKbttjjSfdXFYA2n_crgJs0BuH3ns5_0,5915
1046
+ teradataml/data/scripts/lightgbm/lightgbm_class_functions.template,sha256=KW75Y7lp-bmLr1SZzs-qT0RUyJ-Vuv2ZmwNJ0oOUXGA,9875
1047
+ teradataml/data/scripts/lightgbm/lightgbm_function.template,sha256=MRQWuk7UiqyMWaLKUtUOdhzOcH56qEx_D3vCWoPTNg8,10286
1048
+ teradataml/data/scripts/lightgbm/lightgbm_sklearn.template,sha256=BNbeEN4UnHJwzY1mPaDLEebt4Prm25p3ovg5URyASvI,6121
1029
1049
  teradataml/data/scripts/sklearn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1030
- teradataml/data/scripts/sklearn/sklearn_fit.py,sha256=ZIe9WIOroGT5iCCedS8iNY5AZaMyL6j7SwaLo0zPak4,6650
1031
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py,sha256=QOBt6fFS9qdkOYM_qYqWSpDDKuBxnnRJ_3uPHjlxjCY,4946
1032
- teradataml/data/scripts/sklearn/sklearn_function.template,sha256=d8xS7KSGHirsA3ogeQgoQayFinMBHJoYeZAYX9PodqI,5426
1033
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py,sha256=0oyIv7oKZ_Vde-y3CY_sw9Qv8f48DGQGlapOGrSLba0,5979
1050
+ teradataml/data/scripts/sklearn/sklearn_fit.py,sha256=eP2vQl6OFyFOxzFNGAS9nxqbMQWOjue6BDIv3gmbGYo,8400
1051
+ teradataml/data/scripts/sklearn/sklearn_fit_predict.py,sha256=zOICrgKeWeJsdiE6s2r87l4eMug2PH2_Bsi0pnlSfcg,6035
1052
+ teradataml/data/scripts/sklearn/sklearn_function.template,sha256=M0GsFvj4Y0vtC1-Zol5US7ZT9yAbvdzcpXE9dtcV1LQ,4815
1053
+ teradataml/data/scripts/sklearn/sklearn_model_selection_split.py,sha256=SKdueW62_GhXR0Jn74XOnxV5xz1kjBgl2I8VRH0e6Kg,7005
1034
1054
  teradataml/data/scripts/sklearn/sklearn_neighbors.py,sha256=Uqyn6blWs2epKUlZtdhpCWpWT_vMa5ZRkMaT6g-u9Z0,5938
1035
1055
  teradataml/data/scripts/sklearn/sklearn_score.py,sha256=VtEP3sGJUasWWDHKWZau08vwShECy15vQ9OFINt9N4A,4754
1036
- teradataml/data/scripts/sklearn/sklearn_transform.py,sha256=Cjz35WuC_IRmRWnMph6YpdngmA4ciadq0kDng9QzEiU,10107
1037
- teradataml/data/templates/open_source_ml.json,sha256=V5eH98283NQcNahpfAvXNJgCP3M9fwU7asNrT2zXYYg,255
1056
+ teradataml/data/scripts/sklearn/sklearn_transform.py,sha256=EgrVc5_Uw0AMdhy2GBDhGA0WNMA2A9DkQUC5n2MXsCI,14613
1057
+ teradataml/data/templates/open_source_ml.json,sha256=dLbP86NVftkR8eoQRLQr_vFpJYszhnPvWNcSF1LRG78,308
1038
1058
  teradataml/dataframe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1039
- teradataml/dataframe/copy_to.py,sha256=VXbICedzrPsdPdWWCvmmoYzB-VXb4MC7kxbnxJkscsQ,76419
1040
- teradataml/dataframe/data_transfer.py,sha256=-7zk_4knyvLChQbb_Hmrj-eWxbg-REQZ_Bn-V4BqVhk,123719
1041
- teradataml/dataframe/dataframe.py,sha256=0C4QVUaHSk3xnUweedLLZgFHvv7h_UquxQAn9TG_l1s,956262
1042
- teradataml/dataframe/dataframe_utils.py,sha256=vbvKogavhqXSVe39zKepFcjGkyJuy6radN2ninHdc3Y,88417
1059
+ teradataml/dataframe/copy_to.py,sha256=-8LTxPc-3uRcrSAghp55B8GK6rUTXc_-l5UZw27wwGA,76785
1060
+ teradataml/dataframe/data_transfer.py,sha256=dZW0NmzZJ5QDSGY3BcDoQtuTINwjFf1jK_ZMDowSh8Y,124413
1061
+ teradataml/dataframe/dataframe.py,sha256=A7zQjszbHZmhGrWRAmPNjlK_Wp1tqhCnGCuZgRV89Xw,995741
1062
+ teradataml/dataframe/dataframe_utils.py,sha256=-L7Hq35Fd1WHJTe1wvEIPhC0eu1v2ZiOwnlNqIr-yXo,94226
1043
1063
  teradataml/dataframe/fastload.py,sha256=Qyq4xEzS9E5NRDvEUlmv3hoAQy5nhTDEfW1QiVg3e9U,42032
1044
- teradataml/dataframe/functions.py,sha256=sos_ERl17m6xdDHir8bp8qfSdX8r2Oto5muAWjo0oac,17550
1064
+ teradataml/dataframe/functions.py,sha256=t-ua7_PNe_X2jNo2p2FGMvbp2DlC4CLuV_PQPq4N04Q,39954
1045
1065
  teradataml/dataframe/indexer.py,sha256=xDLYMuUy77VpVo1rO0RHrM-fpexr1Mm3o1hF_I3PsdQ,19787
1046
1066
  teradataml/dataframe/row.py,sha256=zgt4G-05ZE8QOfC0aCJVpK3WwC9_ExIgpMV7ZD3wKu0,4622
1047
- teradataml/dataframe/setop.py,sha256=EBJeUiOYtRMhrCbKUIBelQjtMe7pQ3aePuQSb0_VqPA,56931
1048
- teradataml/dataframe/sql.py,sha256=D8kvMqxP7C7G4Dvrlfcd4CRLSDpyeby-ioVjue7QNI4,638329
1067
+ teradataml/dataframe/setop.py,sha256=lgXCXZ8ACAAHIzf0YDws31Ydzdl9b9xcZYLeziSRPu0,57203
1068
+ teradataml/dataframe/sql.py,sha256=1a6KNHJ8K8JSnWpN5Xb8VhOyGaj7ZDUF3aFYEDPUfYQ,645455
1049
1069
  teradataml/dataframe/sql_function_parameters.py,sha256=BVuHGJ78TjxbrwMdytXfUVKrMZb4Ge20taVwcj0E8gU,22241
1050
1070
  teradataml/dataframe/sql_functions.py,sha256=-v5Gx8x_Tr-Ru9YrmjrM-JfIDhguk8HcO2G1xMcg0Wo,29482
1051
1071
  teradataml/dataframe/sql_interfaces.py,sha256=WzM-jq7JyRmEMs7yZTgX6W3nnD7YjxXwdTHauI4BQPA,3812
1052
1072
  teradataml/dataframe/vantage_function_types.py,sha256=4p4EX3ZtbqYBqcdQ7l_Vx0UW8sEIeEVnpRghcGpyFNY,28381
1053
1073
  teradataml/dataframe/window.py,sha256=YkrBcLPrvebZ4Ekylkv3JO8kMedAQ80pnOapMaarJNI,32755
1054
1074
  teradataml/dbutils/__init__.py,sha256=qnquQDBxYoHuaLb3VzM0Mb08Ooc-sDVO6JQCcPhSYlE,221
1055
- teradataml/dbutils/dbutils.py,sha256=hdMrt_hnVleyRNHD1ymBoyd7OpvXppvNtEa3Iqr_WJ8,62139
1056
- teradataml/dbutils/filemgr.py,sha256=6VdGuiHtpNPXRcdxa2lH-jHAFOyb2AM4XXIJQ3bVPig,12337
1075
+ teradataml/dbutils/dbutils.py,sha256=yG1pdoKV33vklTBICElPuHmnwCxDqnnu4IVh-q8bgzQ,97027
1076
+ teradataml/dbutils/filemgr.py,sha256=vvrKLk_TGJcRnEqNlnf-WG8fSKXeyngobChKwUJysd8,14252
1057
1077
  teradataml/gen_ai/__init__.py,sha256=kYGvNpZOR_E2VDcf3-LOfvFGox1YRpPeblwa5mqDvAM,91
1058
1078
  teradataml/gen_ai/convAI.py,sha256=HN_Rm38FY5Nr2Pq5nMmuT9gH9XsTwtE47NaQIaFyiFg,16473
1059
1079
  teradataml/geospatial/__init__.py,sha256=DZZNBHBYN1EDYSXz-7C_Ic_W2ZsVuak69hw_nWTcto8,292
@@ -1061,56 +1081,63 @@ teradataml/geospatial/geodataframe.py,sha256=0PKZeIr7LNA-zQffezYuqYpuxPf_caB3ue9
1061
1081
  teradataml/geospatial/geodataframecolumn.py,sha256=znNHkjpbOoS3a8xrYS2Q0ou4-hhm0rZOjrBXRCU2-ng,16325
1062
1082
  teradataml/geospatial/geometry_types.py,sha256=hUKAUluD8ufvXaLY1-cwnsB3RsFkHR8Wr7eVE4YCtoU,38518
1063
1083
  teradataml/hyperparameter_tuner/__init__.py,sha256=RQvotxJqh80M8Du-5IWdjdJvKYHDiGlepkgm5oyKqpY,80
1064
- teradataml/hyperparameter_tuner/optimizer.py,sha256=IvrbNGtS9B6cVu3xsx9hEmU2LiomLRh8nyQQegA9RlE,197968
1084
+ teradataml/hyperparameter_tuner/optimizer.py,sha256=TOm7bTFuHoLz5yRDxFw5FJvuFpiCdrRxMmcTq-QBzks,198688
1065
1085
  teradataml/hyperparameter_tuner/utils.py,sha256=Bu0A_mP1WPyWtoBGz9NTkNhWOz_nZUkc5gsqcPrYfnk,11727
1066
1086
  teradataml/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1067
- teradataml/lib/aed_0_1.dll,sha256=MydYBEPKmrydDFQdL2_ZiQ0QgOw2TOqjRIix_eMMNOQ,3928816
1087
+ teradataml/lib/aed_0_1.dll,sha256=VKZZxFY8RVQdVN_uBXuiU1dwNcgun0w4cpbsgVKKFc8,3928816
1068
1088
  teradataml/lib/libaed_0_1.dylib,sha256=nKlbPxiSJw-kCw6NktpqMy-UDfq4zYq7gLy6S2N2Ppg,1806401
1069
1089
  teradataml/lib/libaed_0_1.so,sha256=xi4gwYQtbbdUlRTXsTEJSf0J0e9jt-cguTzdPQdrsEU,1040824
1070
- teradataml/opensource/__init__.py,sha256=ysO_7mcfAHpQkE6qmcoxBOgtRWS97z_XDXkNk1I1VzY,54
1071
- teradataml/opensource/sklearn/__init__.py,sha256=N9goinLnrCyYQvicxKOpJ24bVlos8SJrjaGtNS3jV9E,32
1072
- teradataml/opensource/sklearn/_class.py,sha256=69hRN5Fu6rIGvJ0azmulcRKBBCjEF-c2yo1wz7-rBCo,9572
1073
- teradataml/opensource/sklearn/_sklearn_wrapper.py,sha256=CtZDle-0XrvJskaXYyr8-jVQuRcMkea7ntecGucFc6Y,87646
1074
- teradataml/opensource/sklearn/_wrapper_utils.py,sha256=T8ojlibH_EW0MU7CsgCEwmZiGQ9CrABJHZRzeqc9Kz4,12199
1075
- teradataml/opensource/sklearn/constants.py,sha256=D-XbA8e3VIx2v817aKm9ARsiu49lKBUnofm-3axFU2M,2598
1076
- teradataml/options/__init__.py,sha256=RaEdmCe-MnvdvnbezFBPj8pIbjoxpiZ3WWgZLiVYKRo,5872
1077
- teradataml/options/configure.py,sha256=kUQc7shsbT2WXnuVPT82Q1jAXWetJxgcK-QUdvW_Idc,20518
1078
- teradataml/options/display.py,sha256=sprj5VEp6cBafnICFDdrsssstXNKl5oYvr5JwBPB_3c,7960
1090
+ teradataml/opensource/__init__.py,sha256=-EOpCOiaaHWuCFP1vDCOlHkqyPNid4CrnkQnQ0BOzKo,66
1091
+ teradataml/opensource/_base.py,sha256=G1HKMrqAl7hMRJFLm675nartG6g9V7u-zKtbYRx4yfE,71935
1092
+ teradataml/opensource/_class.py,sha256=6Qo0pu2_Y0SK8RN9PistIFRCP1_q3fEsXRL0ZJSYo6I,18463
1093
+ teradataml/opensource/_constants.py,sha256=pAqYmkh6dQD9DXr4pdlZ5FOk78wXLUdyGaupL-oumCE,3083
1094
+ teradataml/opensource/_lightgbm.py,sha256=CkQqy3dkORIFPH_qKP3LiMBvJ9MvUIcDJP_ut-PhRSE,49321
1095
+ teradataml/opensource/_sklearn.py,sha256=UAV3A8xL8aDkiqPP6IMfRN0AmH3i6m1T3xxNShlpS_s,50537
1096
+ teradataml/opensource/_wrapper_utils.py,sha256=7xsCNjy7flVvxpyhp7vMzBUXJdkdPWj5TnpPjtkVXeY,12122
1097
+ teradataml/options/__init__.py,sha256=avSPE90damRcMHIRUxbarQ3CdFO8Vs8Jcon3EG8R32k,6587
1098
+ teradataml/options/configure.py,sha256=F-QeLJxeImUCZEkRw1WQN38S5Yh2a5aim4w7bx52ggE,25782
1099
+ teradataml/options/display.py,sha256=vLEHfN7ZvqqTUrGuRXnEjy6a7pgtSmU-dcnu5jXMCJc,8482
1079
1100
  teradataml/plot/__init__.py,sha256=pKzD81TdmCSnrHtWsR2Gt_nyDQzXqAdxydepUQvKl6g,126
1080
- teradataml/plot/axis.py,sha256=_JjcP1p8-nL3oa5MDCfyqd0wlZuz18yNeqj7XirXXJo,54272
1101
+ teradataml/plot/axis.py,sha256=atxWOVq1ebSBTHz2QPwh5fqq9EFEJeMl2VR-rXSq_G4,55486
1081
1102
  teradataml/plot/constants.py,sha256=9EJr_lUlTf77tq30tZSnwgAuk8elzjqAQLsgjXLiYdY,275
1082
- teradataml/plot/figure.py,sha256=hyGRMfDgDUMeuZJWz8MpHbHMlzMoeIiYQHpMKA364eE,12358
1083
- teradataml/plot/plot.py,sha256=nSfg0WeCUFn32zMTSW0HwErkodd-Zu6aaBVwO51F2-Y,30826
1103
+ teradataml/plot/figure.py,sha256=aWqABKdtdJ0awymC0i4fa310mrs6dnTG2ofKGLI-E8E,13223
1104
+ teradataml/plot/plot.py,sha256=3gnC6rtrLxhV9wY5Tfejqx-DvxDFzPW3m8_bYTmcFdg,32450
1084
1105
  teradataml/plot/query_generator.py,sha256=so8_w73Qday0b5hGUvJNrx9ELkYgXFpwjTUsbjNZvJg,3552
1085
1106
  teradataml/plot/subplot.py,sha256=c-Npnr5LWb4TUHwfdwzMsZBiti6FunzdFC5EtcuOWjY,10246
1086
- teradataml/scriptmgmt/UserEnv.py,sha256=gK4p1HEPV8l6mwfl9PDBdydY7OVNBk3hTsfeGGA3Sb4,176976
1107
+ teradataml/scriptmgmt/UserEnv.py,sha256=DqUI_YwjucCMV-OkzOkBJ85XpbvW5nBw29f0UFcnmGo,177051
1087
1108
  teradataml/scriptmgmt/__init__.py,sha256=dG0Yef5V3gLu1KasRhBLd6OgdC2NAFqjzJC8BDhark8,185
1088
- teradataml/scriptmgmt/lls_utils.py,sha256=Dzx__GwFlKc8AiiTs1k5TQnT6uZveckwARWTy3xWP0U,74623
1109
+ teradataml/scriptmgmt/lls_utils.py,sha256=m5RMdUblfzLJK6wKNXCce0S-r2o8Lfzal8xlK37KKo4,79557
1089
1110
  teradataml/series/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1090
1111
  teradataml/series/series.py,sha256=nJF6tJmF_rsPHH1kboGrWdTvEUZZFu_JunKSoKnN3tI,17724
1091
1112
  teradataml/series/series_utils.py,sha256=ufuY8Z5oVB6K3ro23AXaxg6aAjjjEYg4jbAf1_W8aDU,2681
1092
- teradataml/table_operators/Apply.py,sha256=nTZBx0oP1B3i4_hNndlY1gjCif7fJOJiUKolrJfi0ec,43363
1093
- teradataml/table_operators/Script.py,sha256=QeAn5GZWj2uyNe8Y8fK8-X3kZKfJ3L06nFHzfZPqBAs,77179
1094
- teradataml/table_operators/TableOperator.py,sha256=qpHgt-_Sa2uqUSLII51EBK0KTUUkcEbDmTNUcZhuw0w,76904
1113
+ teradataml/store/__init__.py,sha256=S68oRuSjcJz9oWqd12UMGJ0BMd4XkIdHcWPRMWFVwdw,413
1114
+ teradataml/store/feature_store/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1115
+ teradataml/store/feature_store/constants.py,sha256=KliwCsQyd65XG1ERW2GIHjy47rGEUC2CA3zBs97wh8s,8918
1116
+ teradataml/store/feature_store/feature_store.py,sha256=XD4kJoVkYTNgk46-jzA344rRJjhdJcMIV182MQC00JQ,91058
1117
+ teradataml/store/feature_store/models.py,sha256=c9jXQ9eDrcFREkrmwy_fL5ULVZ7eNEBnwvETH5e2Jh0,57741
1118
+ teradataml/table_operators/Apply.py,sha256=F_QxGwbU2flfc--UdjQVDeOHDUm0SCVh5p_XzhOMnrw,43520
1119
+ teradataml/table_operators/Script.py,sha256=D74DFLq7wgQ-156oMMrO2oKS8N0tjzIMQQTCdk0MdsI,77374
1120
+ teradataml/table_operators/TableOperator.py,sha256=yKn0XLtQwhjs1cdDG0IM4ZLEZBO9sRn_vBE_RTIIoKg,77099
1095
1121
  teradataml/table_operators/__init__.py,sha256=MTuTiCyGt7Le4MQ5XEfTyp_9Za-vAIreZhfz9GEAzrU,106
1096
1122
  teradataml/table_operators/apply_query_generator.py,sha256=41ah294SyyG0tl88h8og7AXOWDzT1Lb1J1GjO0M1swA,12207
1097
- teradataml/table_operators/query_generator.py,sha256=zuuD47ec7jsTS-O8iNLvsQZcngFdHz5KPoeg9ag3WTs,23002
1098
- teradataml/table_operators/table_operator_query_generator.py,sha256=0cqOLZRPjW9Q-GpkwJawuIdTFdbw-ui-OKBGgaIIhdg,22340
1099
- teradataml/table_operators/table_operator_util.py,sha256=3Hx13NNb_2wCfKM7mKhqhm__0MpHlPUrXyyxHIvPe3c,31645
1123
+ teradataml/table_operators/query_generator.py,sha256=984JEgcnrz63ala-Mm8y5NqGAlqltfMpUn-OhPEoeLQ,23201
1124
+ teradataml/table_operators/table_operator_query_generator.py,sha256=luATy6uVS8-ixvObaxmPvNro76BNCiVwytYIHOnAnK8,22456
1125
+ teradataml/table_operators/table_operator_util.py,sha256=9z6tEIsO_e8nnGS2bpmrlyZ04HmlkEIcpdnZ0EnfJ6M,31961
1100
1126
  teradataml/table_operators/templates/dataframe_apply.template,sha256=3FiK_nivSf343xlYHfCJA2pn0dycvX_pB0daKBXg64M,8054
1101
1127
  teradataml/table_operators/templates/dataframe_map.template,sha256=KrTTYj0HFco0Z_mV6FcLvkw-kzngCDw-zhmmTSX0J7k,7683
1128
+ teradataml/table_operators/templates/dataframe_register.template,sha256=VfBq8Pay_GZuaAY566vVNsk2LVPywJZ_pM3RGb3UJTw,2836
1102
1129
  teradataml/table_operators/templates/dataframe_udf.template,sha256=kAr5FcafoUrGQs4aRjEj5E9sS69pa8msZ5UnaWMvx7s,2555
1103
1130
  teradataml/table_operators/templates/script_executor.template,sha256=dLqU8z2WXi1BfGppyD3sRdv-oukjrjhO5gr0ClUljI0,6976
1104
1131
  teradataml/telemetry_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1105
1132
  teradataml/telemetry_utils/queryband.py,sha256=yMq-hY81elmNoFpHNsMBxOMv--jMB81d9QFxDUppV4g,2354
1106
1133
  teradataml/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1107
- teradataml/utils/dtypes.py,sha256=Wqzi0LcNjkxoFlNARSzv8KbRc0iaxbV7WIeL8N4qhKs,26279
1108
- teradataml/utils/internal_buffer.py,sha256=ftVgEv_9LUf3CffBNYyJyLPcBtjAPQGbPv5RczFjPGY,2085
1134
+ teradataml/utils/dtypes.py,sha256=KMza-R4l-BO-kwGBkUmpr6mc3ndAYQyxDzFttq1c3mA,27928
1135
+ teradataml/utils/internal_buffer.py,sha256=1_8PT_PDX2UHl_Sv1jKX9uPaAJG_qku65glPqjjhBWI,2490
1109
1136
  teradataml/utils/print_versions.py,sha256=m-ByrRZEQkiCmDyaBNknwpE8UhYY1bPPlW3YYHDTrlc,6535
1110
1137
  teradataml/utils/utils.py,sha256=RDSUXNHNyG4bkgFSa6nGaGRc3W0mHjqX_mx_2vGvizw,17254
1111
- teradataml/utils/validators.py,sha256=tdNTPfGM9VY9tnfFlTe-i62Rg_ejXnPz7jHCgWg1P1Q,92491
1112
- teradataml-20.0.0.2.dist-info/METADATA,sha256=Er74UlewHF_VukCR0108F55rX9lUVMUT5ML4Ee-0D6k,111166
1113
- teradataml-20.0.0.2.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
1114
- teradataml-20.0.0.2.dist-info/top_level.txt,sha256=j0jkK8Hmxb5acGSNrbbEePXSgqTQEItdFZXhyJT7qUM,11
1115
- teradataml-20.0.0.2.dist-info/zip-safe,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
1116
- teradataml-20.0.0.2.dist-info/RECORD,,
1138
+ teradataml/utils/validators.py,sha256=f904i2BGSv28tBbM_npJGBGfkCUrcB9BhyjAmEwcXAU,95769
1139
+ teradataml-20.0.0.4.dist-info/METADATA,sha256=eWOaQPAiVrnU0KoJGqPsVhbsIN7nT2JKesxCmM3kQCs,129861
1140
+ teradataml-20.0.0.4.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
1141
+ teradataml-20.0.0.4.dist-info/top_level.txt,sha256=j0jkK8Hmxb5acGSNrbbEePXSgqTQEItdFZXhyJT7qUM,11
1142
+ teradataml-20.0.0.4.dist-info/zip-safe,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
1143
+ teradataml-20.0.0.4.dist-info/RECORD,,
Binary file
teradataml/libaed_0_1.so DELETED
Binary file
@@ -1 +0,0 @@
1
- from ._class import td_sklearn