teradataml 20.0.0.2__py3-none-any.whl → 20.0.0.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/README.md +315 -2
- teradataml/__init__.py +4 -0
- teradataml/_version.py +1 -1
- teradataml/analytics/analytic_function_executor.py +95 -8
- teradataml/analytics/byom/__init__.py +1 -1
- teradataml/analytics/json_parser/metadata.py +12 -3
- teradataml/analytics/json_parser/utils.py +7 -2
- teradataml/analytics/sqle/__init__.py +5 -1
- teradataml/analytics/table_operator/__init__.py +1 -1
- teradataml/analytics/uaf/__init__.py +1 -1
- teradataml/analytics/utils.py +4 -0
- teradataml/analytics/valib.py +18 -4
- teradataml/automl/__init__.py +51 -6
- teradataml/automl/data_preparation.py +59 -35
- teradataml/automl/data_transformation.py +58 -33
- teradataml/automl/feature_engineering.py +27 -12
- teradataml/automl/model_training.py +73 -46
- teradataml/common/constants.py +88 -29
- teradataml/common/garbagecollector.py +2 -1
- teradataml/common/messagecodes.py +19 -3
- teradataml/common/messages.py +6 -1
- teradataml/common/sqlbundle.py +64 -12
- teradataml/common/utils.py +246 -47
- teradataml/common/warnings.py +11 -0
- teradataml/context/context.py +161 -27
- teradataml/data/amazon_reviews_25.csv +26 -0
- teradataml/data/byom_example.json +11 -0
- teradataml/data/dataframe_example.json +18 -2
- teradataml/data/docs/byom/docs/DataRobotPredict.py +2 -2
- teradataml/data/docs/byom/docs/DataikuPredict.py +40 -1
- teradataml/data/docs/byom/docs/H2OPredict.py +2 -2
- teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
- teradataml/data/docs/byom/docs/ONNXPredict.py +2 -2
- teradataml/data/docs/byom/docs/PMMLPredict.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/Shap.py +34 -6
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +3 -3
- teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
- teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +4 -1
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +18 -21
- teradataml/data/hnsw_alter_data.csv +5 -0
- teradataml/data/hnsw_data.csv +10 -0
- teradataml/data/jsons/byom/h2opredict.json +1 -1
- teradataml/data/jsons/byom/onnxembeddings.json +266 -0
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +0 -1
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +1 -1
- teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
- teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
- teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
- teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
- teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +10 -19
- teradataml/data/jsons/uaf/17.20/TD_SAX.json +3 -1
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +15 -5
- teradataml/data/medical_readings.csv +101 -0
- teradataml/data/patient_profile.csv +101 -0
- teradataml/data/scripts/lightgbm/dataset.template +157 -0
- teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +247 -0
- teradataml/data/scripts/lightgbm/lightgbm_function.template +216 -0
- teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +159 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +194 -167
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +136 -115
- teradataml/data/scripts/sklearn/sklearn_function.template +14 -19
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +155 -137
- teradataml/data/scripts/sklearn/sklearn_transform.py +129 -42
- teradataml/data/target_udt_data.csv +8 -0
- teradataml/data/templates/open_source_ml.json +3 -2
- teradataml/data/teradataml_example.json +8 -0
- teradataml/data/vectordistance_example.json +4 -0
- teradataml/dataframe/copy_to.py +8 -3
- teradataml/dataframe/data_transfer.py +11 -1
- teradataml/dataframe/dataframe.py +1049 -285
- teradataml/dataframe/dataframe_utils.py +152 -20
- teradataml/dataframe/functions.py +578 -35
- teradataml/dataframe/setop.py +11 -6
- teradataml/dataframe/sql.py +185 -16
- teradataml/dbutils/dbutils.py +1049 -115
- teradataml/dbutils/filemgr.py +48 -1
- teradataml/hyperparameter_tuner/optimizer.py +12 -1
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/opensource/__init__.py +1 -1
- teradataml/opensource/_base.py +1466 -0
- teradataml/opensource/_class.py +464 -0
- teradataml/opensource/{sklearn/constants.py → _constants.py} +21 -14
- teradataml/opensource/_lightgbm.py +949 -0
- teradataml/opensource/_sklearn.py +1008 -0
- teradataml/opensource/{sklearn/_wrapper_utils.py → _wrapper_utils.py} +5 -6
- teradataml/options/__init__.py +54 -38
- teradataml/options/configure.py +131 -27
- teradataml/options/display.py +13 -2
- teradataml/plot/axis.py +47 -8
- teradataml/plot/figure.py +33 -0
- teradataml/plot/plot.py +63 -13
- teradataml/scriptmgmt/UserEnv.py +5 -5
- teradataml/scriptmgmt/lls_utils.py +130 -40
- teradataml/store/__init__.py +12 -0
- teradataml/store/feature_store/__init__.py +0 -0
- teradataml/store/feature_store/constants.py +291 -0
- teradataml/store/feature_store/feature_store.py +2318 -0
- teradataml/store/feature_store/models.py +1505 -0
- teradataml/table_operators/Apply.py +32 -18
- teradataml/table_operators/Script.py +3 -1
- teradataml/table_operators/TableOperator.py +3 -1
- teradataml/table_operators/query_generator.py +3 -0
- teradataml/table_operators/table_operator_query_generator.py +3 -1
- teradataml/table_operators/table_operator_util.py +37 -38
- teradataml/table_operators/templates/dataframe_register.template +69 -0
- teradataml/utils/dtypes.py +51 -2
- teradataml/utils/internal_buffer.py +18 -0
- teradataml/utils/validators.py +99 -8
- {teradataml-20.0.0.2.dist-info → teradataml-20.0.0.4.dist-info}/METADATA +321 -5
- {teradataml-20.0.0.2.dist-info → teradataml-20.0.0.4.dist-info}/RECORD +121 -94
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/sklearn/__init__.py +0 -1
- teradataml/opensource/sklearn/_class.py +0 -255
- teradataml/opensource/sklearn/_sklearn_wrapper.py +0 -1800
- {teradataml-20.0.0.2.dist-info → teradataml-20.0.0.4.dist-info}/WHEEL +0 -0
- {teradataml-20.0.0.2.dist-info → teradataml-20.0.0.4.dist-info}/top_level.txt +0 -0
- {teradataml-20.0.0.2.dist-info → teradataml-20.0.0.4.dist-info}/zip-safe +0 -0
|
@@ -0,0 +1,291 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Copyright (c) 2024 by Teradata Corporation. All rights reserved.
|
|
3
|
+
TERADATA CORPORATION CONFIDENTIAL AND TRADE SECRET
|
|
4
|
+
|
|
5
|
+
Primary Owner: pradeep.garre@teradata.com
|
|
6
|
+
Secondary Owner: adithya.avvaru@teradata.com
|
|
7
|
+
|
|
8
|
+
This file implements constants required for Teradata Enterprise Feature Store.
|
|
9
|
+
"""
|
|
10
|
+
|
|
11
|
+
from teradatasqlalchemy.types import *
|
|
12
|
+
from enum import Enum
|
|
13
|
+
|
|
14
|
+
# Template for creating the triggers on
|
|
15
|
+
# corresponding tables.
|
|
16
|
+
_EFS_TRIGGER_TEMPLATE = """
|
|
17
|
+
CREATE TRIGGER {{schema_name}}.{table}_trg
|
|
18
|
+
AFTER DELETE ON {{schema_name}}.{table}
|
|
19
|
+
REFERENCING OLD AS DeletedRow
|
|
20
|
+
FOR EACH ROW
|
|
21
|
+
INSERT INTO {{schema_name}}.{table}_staging
|
|
22
|
+
VALUES ({columns},
|
|
23
|
+
current_timestamp(6)
|
|
24
|
+
)
|
|
25
|
+
"""
|
|
26
|
+
|
|
27
|
+
# Table for storing the features.
|
|
28
|
+
EFS_FEATURES_SPEC = {
|
|
29
|
+
"table_name": "_efs_features",
|
|
30
|
+
"columns": {
|
|
31
|
+
"name": VARCHAR(200),
|
|
32
|
+
"column_name": VARCHAR(200),
|
|
33
|
+
"description": VARCHAR(1024),
|
|
34
|
+
"tags": VARCHAR(2000),
|
|
35
|
+
"data_type": VARCHAR(1024),
|
|
36
|
+
"feature_type": VARCHAR(100),
|
|
37
|
+
"status": VARCHAR(100),
|
|
38
|
+
"creation_time": TIMESTAMP,
|
|
39
|
+
"modified_time": TIMESTAMP
|
|
40
|
+
},
|
|
41
|
+
"primary_index": "name"
|
|
42
|
+
}
|
|
43
|
+
|
|
44
|
+
# Table for storing the features.
|
|
45
|
+
EFS_FEATURES_STAGING_SPEC = {
|
|
46
|
+
"table_name": "{}_staging".format(EFS_FEATURES_SPEC["table_name"]),
|
|
47
|
+
"columns": {
|
|
48
|
+
"name": VARCHAR(200),
|
|
49
|
+
"column_name": VARCHAR(200),
|
|
50
|
+
"description": VARCHAR(1024),
|
|
51
|
+
"tags": VARCHAR(2000),
|
|
52
|
+
"data_type": VARCHAR(1024),
|
|
53
|
+
"feature_type": VARCHAR(100),
|
|
54
|
+
"status": VARCHAR(100),
|
|
55
|
+
"creation_time": TIMESTAMP,
|
|
56
|
+
"modified_time": TIMESTAMP,
|
|
57
|
+
"archived_time": TIMESTAMP
|
|
58
|
+
},
|
|
59
|
+
"primary_index": None
|
|
60
|
+
}
|
|
61
|
+
|
|
62
|
+
EFS_FEATURES_TRG = _EFS_TRIGGER_TEMPLATE.format(
|
|
63
|
+
table=EFS_FEATURES_SPEC["table_name"],
|
|
64
|
+
columns=", ".join(("DeletedRow.{}".format(col) for col in EFS_FEATURES_SPEC["columns"]))
|
|
65
|
+
)
|
|
66
|
+
|
|
67
|
+
# Table for storing the entities. Every Dataset has column(s) that are unique.
|
|
68
|
+
# This table holds all such columns.
|
|
69
|
+
EFS_ENTITY_SPEC = {
|
|
70
|
+
"table_name": "_efs_entity",
|
|
71
|
+
"columns": {
|
|
72
|
+
"name": VARCHAR(200),
|
|
73
|
+
"description": VARCHAR(200),
|
|
74
|
+
"creation_time": TIMESTAMP,
|
|
75
|
+
"modified_time": TIMESTAMP
|
|
76
|
+
},
|
|
77
|
+
"primary_index": ["name"]
|
|
78
|
+
}
|
|
79
|
+
|
|
80
|
+
EFS_ENTITY_STAGING_SPEC = {
|
|
81
|
+
"table_name": "{}_staging".format(EFS_ENTITY_SPEC["table_name"]),
|
|
82
|
+
"columns": {
|
|
83
|
+
"name": VARCHAR(200),
|
|
84
|
+
"description": VARCHAR(200),
|
|
85
|
+
"creation_time": TIMESTAMP,
|
|
86
|
+
"modified_time": TIMESTAMP,
|
|
87
|
+
"archived_time": TIMESTAMP
|
|
88
|
+
},
|
|
89
|
+
"primary_index": None
|
|
90
|
+
}
|
|
91
|
+
|
|
92
|
+
EFS_ENTITY_TRG = _EFS_TRIGGER_TEMPLATE.format(
|
|
93
|
+
table=EFS_ENTITY_SPEC["table_name"],
|
|
94
|
+
columns=", ".join(("DeletedRow.{}".format(col) for col in EFS_ENTITY_SPEC["columns"]))
|
|
95
|
+
)
|
|
96
|
+
|
|
97
|
+
EFS_ENTITY_XREF_SPEC = {
|
|
98
|
+
"table_name": "_efs_entity_xref",
|
|
99
|
+
"columns": {
|
|
100
|
+
"entity_name": VARCHAR(200),
|
|
101
|
+
"entity_column": VARCHAR(200)
|
|
102
|
+
},
|
|
103
|
+
"primary_index": ["entity_name", "entity_column"],
|
|
104
|
+
"foreign_keys": [
|
|
105
|
+
(
|
|
106
|
+
["entity_name"],
|
|
107
|
+
["{}.name".format(EFS_ENTITY_SPEC["table_name"])],
|
|
108
|
+
"entity_xref_fk"
|
|
109
|
+
)
|
|
110
|
+
]
|
|
111
|
+
}
|
|
112
|
+
|
|
113
|
+
EFS_ENTITY_XREF_STAGING_SPEC = {
|
|
114
|
+
"table_name": "{}_staging".format(EFS_ENTITY_XREF_SPEC["table_name"]),
|
|
115
|
+
"columns": {
|
|
116
|
+
"entity_name": VARCHAR(200),
|
|
117
|
+
"entity_column": VARCHAR(200),
|
|
118
|
+
"archived_time": TIMESTAMP
|
|
119
|
+
},
|
|
120
|
+
"primary_index": None
|
|
121
|
+
}
|
|
122
|
+
|
|
123
|
+
EFS_ENTITY_XREF_TRG = _EFS_TRIGGER_TEMPLATE.format(
|
|
124
|
+
table=EFS_ENTITY_XREF_SPEC["table_name"],
|
|
125
|
+
columns=", ".join(("DeletedRow.{}".format(col) for col in EFS_ENTITY_XREF_SPEC["columns"]))
|
|
126
|
+
)
|
|
127
|
+
|
|
128
|
+
# Table for storing the Data sources. Column source stores
|
|
129
|
+
# the corresponding Query.
|
|
130
|
+
EFS_DATA_SOURCE_SPEC = {
|
|
131
|
+
"table_name": "_efs_data_source",
|
|
132
|
+
"columns": {
|
|
133
|
+
"name": VARCHAR(200),
|
|
134
|
+
"description": VARCHAR(1024),
|
|
135
|
+
"timestamp_col_name": VARCHAR(50),
|
|
136
|
+
"source": VARCHAR(5000),
|
|
137
|
+
"creation_time": TIMESTAMP,
|
|
138
|
+
"modified_time": TIMESTAMP
|
|
139
|
+
},
|
|
140
|
+
"primary_index": "name"
|
|
141
|
+
}
|
|
142
|
+
|
|
143
|
+
EFS_DATA_SOURCE_STAGING_SPEC = {
|
|
144
|
+
"table_name": "{}_staging".format(EFS_DATA_SOURCE_SPEC["table_name"]),
|
|
145
|
+
"columns": {
|
|
146
|
+
"name": VARCHAR(200),
|
|
147
|
+
"description": VARCHAR(1024),
|
|
148
|
+
"timestamp_col_name": VARCHAR(50),
|
|
149
|
+
"source": VARCHAR(5000),
|
|
150
|
+
"creation_time": TIMESTAMP,
|
|
151
|
+
"modified_time": TIMESTAMP,
|
|
152
|
+
"archived_time": TIMESTAMP
|
|
153
|
+
},
|
|
154
|
+
"primary_index": None
|
|
155
|
+
}
|
|
156
|
+
|
|
157
|
+
EFS_DATA_SOURCE_TRG = _EFS_TRIGGER_TEMPLATE.format(
|
|
158
|
+
table=EFS_DATA_SOURCE_SPEC["table_name"],
|
|
159
|
+
columns=", ".join(("DeletedRow.{}".format(col) for col in EFS_DATA_SOURCE_SPEC["columns"]))
|
|
160
|
+
)
|
|
161
|
+
|
|
162
|
+
# Table for storing the feature groups. This table holds all the required
|
|
163
|
+
# parameters for creating DataFrame.
|
|
164
|
+
EFS_FEATURE_GROUP_SPEC = {
|
|
165
|
+
"table_name": "_efs_feature_group",
|
|
166
|
+
"columns": {
|
|
167
|
+
"name": VARCHAR(200),
|
|
168
|
+
"description": VARCHAR(200),
|
|
169
|
+
"data_source_name": VARCHAR(200),
|
|
170
|
+
"entity_name": VARCHAR(200),
|
|
171
|
+
"creation_time": TIMESTAMP,
|
|
172
|
+
"modified_time": TIMESTAMP
|
|
173
|
+
},
|
|
174
|
+
"primary_index": "name",
|
|
175
|
+
"foreign_keys": [
|
|
176
|
+
(
|
|
177
|
+
["data_source_name"],
|
|
178
|
+
["{}.name".format(EFS_DATA_SOURCE_SPEC["table_name"])],
|
|
179
|
+
"data_source_name_fk"
|
|
180
|
+
),
|
|
181
|
+
(
|
|
182
|
+
["entity_name"],
|
|
183
|
+
["{}.name".format(EFS_ENTITY_SPEC["table_name"])],
|
|
184
|
+
"entity_fk"
|
|
185
|
+
)
|
|
186
|
+
|
|
187
|
+
]
|
|
188
|
+
}
|
|
189
|
+
|
|
190
|
+
EFS_FEATURE_GROUP_STAGING_SPEC = {
|
|
191
|
+
"table_name": "{}_staging".format(EFS_FEATURE_GROUP_SPEC["table_name"]),
|
|
192
|
+
"columns": {
|
|
193
|
+
"name": VARCHAR(200),
|
|
194
|
+
"description": VARCHAR(200),
|
|
195
|
+
"data_source_name": VARCHAR(200),
|
|
196
|
+
"entity_name": VARCHAR(200),
|
|
197
|
+
"creation_time": TIMESTAMP,
|
|
198
|
+
"modified_time": TIMESTAMP,
|
|
199
|
+
"archived_time": TIMESTAMP
|
|
200
|
+
},
|
|
201
|
+
"primary_index": None
|
|
202
|
+
}
|
|
203
|
+
|
|
204
|
+
EFS_FEATURE_GROUP_TRG = _EFS_TRIGGER_TEMPLATE.format(
|
|
205
|
+
table=EFS_FEATURE_GROUP_SPEC["table_name"],
|
|
206
|
+
columns=", ".join(("DeletedRow.{}".format(col) for col in EFS_FEATURE_GROUP_SPEC["columns"]))
|
|
207
|
+
)
|
|
208
|
+
|
|
209
|
+
|
|
210
|
+
# Table for storing the feature names and associated group names.
|
|
211
|
+
EFS_GROUP_FEATURES_SPEC = {
|
|
212
|
+
"table_name": "_efs_group_features",
|
|
213
|
+
"columns": {
|
|
214
|
+
"feature_name": VARCHAR(200),
|
|
215
|
+
"group_name": VARCHAR(200),
|
|
216
|
+
"creation_time": TIMESTAMP,
|
|
217
|
+
"modified_time": TIMESTAMP
|
|
218
|
+
},
|
|
219
|
+
"primary_index": ["feature_name", "group_name"],
|
|
220
|
+
"foreign_keys": [
|
|
221
|
+
(
|
|
222
|
+
["feature_name"],
|
|
223
|
+
["{}.name".format(EFS_FEATURES_SPEC["table_name"])],
|
|
224
|
+
"feature_name_fk"
|
|
225
|
+
),
|
|
226
|
+
(
|
|
227
|
+
["group_name"],
|
|
228
|
+
["{}.name".format(EFS_FEATURE_GROUP_SPEC["table_name"])],
|
|
229
|
+
"group_name_fk"
|
|
230
|
+
)
|
|
231
|
+
|
|
232
|
+
]
|
|
233
|
+
}
|
|
234
|
+
|
|
235
|
+
EFS_GROUP_FEATURES_STAGING_SPEC = {
|
|
236
|
+
"table_name": "{}_staging".format(EFS_GROUP_FEATURES_SPEC["table_name"]),
|
|
237
|
+
"columns": {
|
|
238
|
+
"feature_name": VARCHAR(200),
|
|
239
|
+
"group_name": VARCHAR(200),
|
|
240
|
+
"creation_time": TIMESTAMP,
|
|
241
|
+
"modified_time": TIMESTAMP,
|
|
242
|
+
"archived_time": TIMESTAMP
|
|
243
|
+
},
|
|
244
|
+
"primary_index": None
|
|
245
|
+
}
|
|
246
|
+
|
|
247
|
+
EFS_GROUP_FEATURES_TRG = _EFS_TRIGGER_TEMPLATE.format(
|
|
248
|
+
table=EFS_GROUP_FEATURES_SPEC["table_name"],
|
|
249
|
+
columns=", ".join(("DeletedRow.{}".format(col) for col in EFS_GROUP_FEATURES_SPEC["columns"]))
|
|
250
|
+
)
|
|
251
|
+
|
|
252
|
+
# Table to store the version of feature store. This is very important.
|
|
253
|
+
# When teradataml incrementally adds functionality for feature store, this
|
|
254
|
+
# version will be deciding factor whether teradataml should automatically
|
|
255
|
+
# update metadata or not.
|
|
256
|
+
EFS_VERSION_SPEC = {
|
|
257
|
+
"table_name": "_efs_version",
|
|
258
|
+
"columns": {
|
|
259
|
+
"version": VARCHAR(20),
|
|
260
|
+
"creation_time": TIMESTAMP
|
|
261
|
+
}
|
|
262
|
+
}
|
|
263
|
+
|
|
264
|
+
EFS_VERSION = "1.0.0"
|
|
265
|
+
|
|
266
|
+
|
|
267
|
+
EFS_TABLES = {
|
|
268
|
+
"feature": EFS_FEATURES_SPEC["table_name"],
|
|
269
|
+
"feature_staging": EFS_FEATURES_STAGING_SPEC["table_name"],
|
|
270
|
+
"feature_group": EFS_FEATURE_GROUP_SPEC["table_name"],
|
|
271
|
+
"feature_group_staging": EFS_FEATURE_GROUP_STAGING_SPEC["table_name"],
|
|
272
|
+
"entity": EFS_ENTITY_SPEC["table_name"],
|
|
273
|
+
"entity_staging": EFS_ENTITY_STAGING_SPEC["table_name"],
|
|
274
|
+
"entity_xref": EFS_ENTITY_XREF_SPEC["table_name"],
|
|
275
|
+
"entity_staging_xref": EFS_ENTITY_XREF_STAGING_SPEC["table_name"],
|
|
276
|
+
"data_source": EFS_DATA_SOURCE_SPEC["table_name"],
|
|
277
|
+
"data_source_staging": EFS_DATA_SOURCE_STAGING_SPEC["table_name"],
|
|
278
|
+
"group_features": EFS_GROUP_FEATURES_SPEC["table_name"],
|
|
279
|
+
"group_features_staging": EFS_GROUP_FEATURES_STAGING_SPEC["table_name"],
|
|
280
|
+
"version": EFS_VERSION_SPEC["table_name"]
|
|
281
|
+
}
|
|
282
|
+
|
|
283
|
+
|
|
284
|
+
class FeatureStatus(Enum):
|
|
285
|
+
ACTIVE = 1
|
|
286
|
+
INACTIVE = 2
|
|
287
|
+
|
|
288
|
+
|
|
289
|
+
class FeatureType(Enum):
|
|
290
|
+
CONTINUOUS = 1
|
|
291
|
+
CATEGORICAL = 2
|