synth-ai 0.2.4.dev8__py3-none-any.whl ā 0.2.4.dev9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of synth-ai might be problematic. Click here for more details.
- synth_ai/cli/__init__.py +6 -0
- synth_ai/cli/demo.py +68 -9
- synth_ai/cli/rl_demo.py +137 -0
- synth_ai/cli/root.py +65 -0
- synth_ai/demos/core/__init__.py +1 -0
- synth_ai/demos/core/cli.py +621 -0
- synth_ai/demos/demo_task_apps/__init__.py +1 -0
- synth_ai/demos/demo_task_apps/core.py +374 -0
- synth_ai/demos/demo_task_apps/math/__init__.py +1 -0
- synth_ai/demos/demo_task_apps/math/app.py +37 -0
- synth_ai/demos/demo_task_apps/math/config.toml +44 -0
- synth_ai/demos/demo_task_apps/math/deploy_modal.py +60 -0
- synth_ai/demos/demo_task_apps/math/deploy_task_app.sh +22 -0
- synth_ai/environments/examples/bandit/__init__.py +33 -0
- synth_ai/environments/examples/bandit/engine.py +294 -0
- synth_ai/environments/examples/bandit/environment.py +194 -0
- synth_ai/environments/examples/bandit/taskset.py +200 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/analyze_semantic_words_markdown.py +250 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_comprehensive_evaluation.py +59 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_evaluation_browser.py +152 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_evaluation_config.toml +24 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_evaluation_framework.py +1194 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/crafter_synth_config.toml +56 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/filter_config_modal.toml +32 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/filter_traces_sft_turso.py +724 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/kick_off_ft_modal.py +384 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/analyze_action_results.py +53 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/analyze_agent_actions.py +178 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/analyze_latest_run.py +222 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/analyze_lm_traces.py +183 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/analyze_no_rewards.py +210 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/analyze_trace_issue.py +206 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/check_db_schema.py +49 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/check_latest_results.py +64 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/debug_agent_responses.py +88 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/quick_trace_check.py +77 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/compare_experiments.py +324 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/filter_traces_sft_turso.py +580 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/kick_off_ft_oai.py +362 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/multi_model_config.toml +49 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/analyze_enhanced_hooks.py +332 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/analyze_hook_events.py +97 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/analyze_hook_results.py +217 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/check_hook_storage.py +87 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/check_seeds.py +88 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/compare_seed_performance.py +195 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/custom_eval_pipelines.py +400 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/plot_hook_frequency.py +195 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/seed_analysis_summary.py +56 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/run_rollouts_for_models_and_compare_v3.py +858 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_quick_evaluation.py +52 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_react_agent.py +874 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_trace_evaluation.py +1412 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/example_v3_usage.py +216 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/compare_traces.py +296 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/crafter_comprehensive_evaluation.py +58 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/crafter_env_serialization.py +464 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/crafter_evaluation_browser.py +152 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/crafter_quick_evaluation.py +51 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/crafter_trace_evaluation.py +1412 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/debug_player_loss.py +112 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/diagnose_service.py +203 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/diagnose_slowness.py +305 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/eval_by_difficulty.py +126 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/eval_example.py +94 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/explore_saved_states.py +142 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/filter_traces_sft.py +26 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/filter_traces_sft_OLD.py +984 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/generate_ft_data_gemini.py +724 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/generate_ft_data_modal.py +386 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/generate_ft_metadata.py +205 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/kick_off_ft_gemini.py +150 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/kick_off_ft_modal.py +283 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/prepare_vertex_ft.py +280 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/profile_env_slowness.py +456 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/replicate_issue.py +166 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/run_and_eval.py +102 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/run_comparison.py +128 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/run_qwen_rollouts.py +655 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/trace_eval_OLD.py +202 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/validate_openai_format.py +166 -0
- synth_ai/environments/examples/crafter_classic/environment.py +41 -2
- synth_ai/environments/examples/crafter_custom/agent_demos/__init__.py +1 -0
- synth_ai/environments/examples/crafter_custom/agent_demos/trace_eval.py +202 -0
- synth_ai/environments/examples/crafter_custom/old/analyze_diamond_issue.py +159 -0
- synth_ai/environments/examples/crafter_custom/old/analyze_diamond_spawning.py +158 -0
- synth_ai/environments/examples/crafter_custom/old/compare_worlds.py +71 -0
- synth_ai/environments/examples/crafter_custom/old/dataset_stats.py +105 -0
- synth_ai/environments/examples/crafter_custom/old/diamond_spawning_summary.py +119 -0
- synth_ai/environments/examples/crafter_custom/old/example_dataset_usage.py +52 -0
- synth_ai/environments/examples/enron/units/keyword_stats.py +112 -0
- synth_ai/environments/examples/minigrid/agent_demos/minigrid_evaluation_framework.py +1188 -0
- synth_ai/environments/examples/minigrid/agent_demos/minigrid_quick_evaluation.py +48 -0
- synth_ai/environments/examples/minigrid/agent_demos/minigrid_react_agent.py +562 -0
- synth_ai/environments/examples/minigrid/agent_demos/minigrid_trace_evaluation.py +221 -0
- synth_ai/environments/examples/nethack/agent_demos/nethack_evaluation_framework.py +981 -0
- synth_ai/environments/examples/nethack/agent_demos/nethack_quick_evaluation.py +74 -0
- synth_ai/environments/examples/nethack/agent_demos/nethack_react_agent.py +831 -0
- synth_ai/environments/examples/red/agent_demos/__init__.py +1 -0
- synth_ai/environments/examples/red/units/__init__.py +1 -0
- synth_ai/environments/examples/sokoban/agent_demos/sokoban_full_eval.py +899 -0
- synth_ai/environments/examples/sokoban/units/astar_common.py +95 -0
- synth_ai/environments/service/app.py +8 -0
- synth_ai/install_sqld.sh +40 -0
- synth_ai-0.2.4.dev9.dist-info/METADATA +91 -0
- {synth_ai-0.2.4.dev8.dist-info ā synth_ai-0.2.4.dev9.dist-info}/RECORD +110 -11
- {synth_ai-0.2.4.dev8.dist-info ā synth_ai-0.2.4.dev9.dist-info}/entry_points.txt +1 -0
- synth_ai-0.2.4.dev8.dist-info/METADATA +0 -635
- {synth_ai-0.2.4.dev8.dist-info ā synth_ai-0.2.4.dev9.dist-info}/WHEEL +0 -0
- {synth_ai-0.2.4.dev8.dist-info ā synth_ai-0.2.4.dev9.dist-info}/licenses/LICENSE +0 -0
- {synth_ai-0.2.4.dev8.dist-info ā synth_ai-0.2.4.dev9.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,899 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
"""
|
|
3
|
+
Comprehensive Sokoban evaluation framework with trace generation.
|
|
4
|
+
Generates proper trace files for the Streamlit viewer.
|
|
5
|
+
"""
|
|
6
|
+
|
|
7
|
+
import asyncio
|
|
8
|
+
import json
|
|
9
|
+
import os
|
|
10
|
+
import time
|
|
11
|
+
import uuid
|
|
12
|
+
from dataclasses import asdict, dataclass
|
|
13
|
+
from datetime import datetime
|
|
14
|
+
from pathlib import Path
|
|
15
|
+
from typing import Any, Dict, List, Optional
|
|
16
|
+
|
|
17
|
+
from synth_ai.environments.environment.tools import EnvToolCall
|
|
18
|
+
from synth_ai.environments.examples.sokoban.engine import ACTION_STRING_TO_INT, _grid_to_text
|
|
19
|
+
from synth_ai.environments.examples.sokoban.engine_helpers.room_utils import (
|
|
20
|
+
generate_room,
|
|
21
|
+
get_shortest_action_path,
|
|
22
|
+
)
|
|
23
|
+
from synth_ai.environments.examples.sokoban.environment import SokobanEnvironment
|
|
24
|
+
from synth_ai.environments.examples.sokoban.taskset import (
|
|
25
|
+
SokobanTaskInstance,
|
|
26
|
+
SokobanTaskInstanceMetadata,
|
|
27
|
+
)
|
|
28
|
+
from synth_ai.environments.tasks.core import Impetus, Intent
|
|
29
|
+
from synth_ai.zyk import LM
|
|
30
|
+
from synth_sdk.tracing.abstractions import (
|
|
31
|
+
Dataset,
|
|
32
|
+
EventPartitionElement,
|
|
33
|
+
RewardSignal,
|
|
34
|
+
SystemTrace,
|
|
35
|
+
TrainingQuestion,
|
|
36
|
+
)
|
|
37
|
+
from synth_sdk.tracing.decorators import trace_event_async
|
|
38
|
+
from synth_sdk.tracing.utils import get_system_id
|
|
39
|
+
from test_synth_react_locally import (
|
|
40
|
+
AgentDecisionRecord,
|
|
41
|
+
HistoryObservationCallable,
|
|
42
|
+
Move,
|
|
43
|
+
ReActAgent,
|
|
44
|
+
SokobanInteractArgs,
|
|
45
|
+
format_obs_for_llm_from_states,
|
|
46
|
+
)
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
@dataclass
|
|
50
|
+
class SokobanTrajectoryResult:
|
|
51
|
+
"""Result from a single Sokoban trajectory."""
|
|
52
|
+
|
|
53
|
+
trajectory_id: str
|
|
54
|
+
model_name: str
|
|
55
|
+
difficulty: str
|
|
56
|
+
seed: int
|
|
57
|
+
success: bool
|
|
58
|
+
final_reward: float
|
|
59
|
+
num_steps: int
|
|
60
|
+
boxes_solved: int
|
|
61
|
+
total_boxes: int
|
|
62
|
+
trace_file_path: str
|
|
63
|
+
metadata: Dict[str, Any]
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
class SokobanEvalFramework:
|
|
67
|
+
"""Comprehensive evaluation framework for Sokoban with trace generation."""
|
|
68
|
+
|
|
69
|
+
def __init__(self):
|
|
70
|
+
self.trajectory_results: List[SokobanTrajectoryResult] = []
|
|
71
|
+
|
|
72
|
+
async def run_single_trajectory_with_trace(
|
|
73
|
+
self,
|
|
74
|
+
model_name: str,
|
|
75
|
+
difficulty: str,
|
|
76
|
+
seed: int,
|
|
77
|
+
max_turns: int = 20,
|
|
78
|
+
collect_detailed_data: bool = True,
|
|
79
|
+
eval_dir: Path = None,
|
|
80
|
+
) -> SokobanTrajectoryResult:
|
|
81
|
+
"""Run a single trajectory with comprehensive trace capture."""
|
|
82
|
+
|
|
83
|
+
# Generate Sokoban instance
|
|
84
|
+
difficulty_configs = {
|
|
85
|
+
"ultra-easy": {"target_len": 1, "dim": (5, 5), "boxes": 1},
|
|
86
|
+
"easy": {"target_len": 3, "dim": (5, 5), "boxes": 1},
|
|
87
|
+
"medium": {"target_len": 5, "dim": (6, 6), "boxes": 1},
|
|
88
|
+
"hard": {"target_len": 7, "dim": (7, 7), "boxes": 2},
|
|
89
|
+
}
|
|
90
|
+
|
|
91
|
+
config = difficulty_configs.get(difficulty, difficulty_configs["easy"])
|
|
92
|
+
|
|
93
|
+
# Generate room
|
|
94
|
+
room_structure, room_state, _, _ = generate_room(
|
|
95
|
+
dim=config["dim"],
|
|
96
|
+
initial_seed=seed,
|
|
97
|
+
num_boxes=config["boxes"],
|
|
98
|
+
search_depth=max(10, config["target_len"] + 2),
|
|
99
|
+
)
|
|
100
|
+
|
|
101
|
+
# Convert numpy arrays to lists for JSON serialization
|
|
102
|
+
room_structure = room_structure.tolist()
|
|
103
|
+
room_state = room_state.tolist()
|
|
104
|
+
|
|
105
|
+
# Create task instance
|
|
106
|
+
metadata = SokobanTaskInstanceMetadata(
|
|
107
|
+
difficulty=difficulty,
|
|
108
|
+
num_boxes=config["boxes"],
|
|
109
|
+
dim_room=config["dim"],
|
|
110
|
+
max_steps=max_turns,
|
|
111
|
+
shortest_path_length=config["target_len"],
|
|
112
|
+
seed=seed,
|
|
113
|
+
generation_params=f"dim={config['dim']}, boxes={config['boxes']}, steps={max_turns}",
|
|
114
|
+
)
|
|
115
|
+
|
|
116
|
+
instance = SokobanTaskInstance(
|
|
117
|
+
id=uuid.uuid4(),
|
|
118
|
+
impetus=Impetus(
|
|
119
|
+
instructions="Solve this Sokoban puzzle by pushing all boxes onto targets."
|
|
120
|
+
),
|
|
121
|
+
intent=Intent(rubric={}, gold_trajectories=None, gold_state_diff={}),
|
|
122
|
+
metadata=metadata,
|
|
123
|
+
is_reproducible=True,
|
|
124
|
+
initial_engine_snapshot={
|
|
125
|
+
"dim_room": config["dim"],
|
|
126
|
+
"room_fixed": room_structure,
|
|
127
|
+
"room_state": room_state,
|
|
128
|
+
"boxes_on_target": 0,
|
|
129
|
+
"max_steps": max_turns,
|
|
130
|
+
"num_boxes": config["boxes"],
|
|
131
|
+
},
|
|
132
|
+
)
|
|
133
|
+
|
|
134
|
+
# Setup environment and agent
|
|
135
|
+
hist_cb = HistoryObservationCallable(max_history=1)
|
|
136
|
+
env = SokobanEnvironment(instance, custom_step_obs=hist_cb)
|
|
137
|
+
|
|
138
|
+
llm = LM(model_name=model_name, formatting_model_name=model_name, temperature=0.0)
|
|
139
|
+
agent = ReActAgent(llm, max_turns=max_turns)
|
|
140
|
+
|
|
141
|
+
# Initialize tracking
|
|
142
|
+
trajectory_id = str(uuid.uuid4())
|
|
143
|
+
turn_count = 0
|
|
144
|
+
actions_per_turn = []
|
|
145
|
+
turn_by_turn_data = [] if collect_detailed_data else None
|
|
146
|
+
partition_index = 0
|
|
147
|
+
|
|
148
|
+
# Initialize environment
|
|
149
|
+
obs_payload = await env.initialize()
|
|
150
|
+
if "error" in obs_payload:
|
|
151
|
+
raise Exception(f"Environment initialization failed: {obs_payload['error']}")
|
|
152
|
+
|
|
153
|
+
# Record initial turn before any agent action
|
|
154
|
+
initial_pub_state = obs_payload["public"]
|
|
155
|
+
initial_priv_state = obs_payload["private"]
|
|
156
|
+
initial_turn_data = {
|
|
157
|
+
"turn_number": 0,
|
|
158
|
+
"room_text": _grid_to_text(initial_pub_state.room_state),
|
|
159
|
+
"player_position": [int(x) for x in initial_pub_state.player_position],
|
|
160
|
+
"boxes_on_target": int(initial_pub_state.boxes_on_target),
|
|
161
|
+
"num_steps": int(initial_pub_state.num_steps),
|
|
162
|
+
"last_action": "Initial",
|
|
163
|
+
"terminated": bool(initial_priv_state.terminated),
|
|
164
|
+
"truncated": bool(initial_priv_state.truncated),
|
|
165
|
+
"reward": float(initial_priv_state.reward_last),
|
|
166
|
+
"total_reward": float(initial_priv_state.total_reward),
|
|
167
|
+
"action_taken": -1,
|
|
168
|
+
"action_name": "initial",
|
|
169
|
+
}
|
|
170
|
+
if collect_detailed_data:
|
|
171
|
+
turn_by_turn_data.append(initial_turn_data)
|
|
172
|
+
partition_index = 0
|
|
173
|
+
event_partition_initial = EventPartitionElement(
|
|
174
|
+
partition_index=partition_index,
|
|
175
|
+
events=[
|
|
176
|
+
{
|
|
177
|
+
"event_type": "sokoban_turn",
|
|
178
|
+
"event_metadata": {
|
|
179
|
+
"turn_number": 0,
|
|
180
|
+
"turn_data": initial_turn_data,
|
|
181
|
+
},
|
|
182
|
+
"environment_compute_steps": [
|
|
183
|
+
{
|
|
184
|
+
"compute_output": [
|
|
185
|
+
{
|
|
186
|
+
"outputs": {
|
|
187
|
+
"room_text": initial_turn_data["room_text"],
|
|
188
|
+
"action": -1,
|
|
189
|
+
"action_name": "initial",
|
|
190
|
+
"player_position": initial_turn_data["player_position"],
|
|
191
|
+
"boxes_on_target": initial_turn_data["boxes_on_target"],
|
|
192
|
+
"num_steps": initial_turn_data["num_steps"],
|
|
193
|
+
"reward": initial_turn_data["reward"],
|
|
194
|
+
"terminated": initial_turn_data["terminated"],
|
|
195
|
+
"truncated": initial_turn_data["truncated"],
|
|
196
|
+
}
|
|
197
|
+
}
|
|
198
|
+
]
|
|
199
|
+
}
|
|
200
|
+
],
|
|
201
|
+
}
|
|
202
|
+
],
|
|
203
|
+
)
|
|
204
|
+
partition_index += 1
|
|
205
|
+
|
|
206
|
+
agent.last_obs_dict = {
|
|
207
|
+
"terminated": obs_payload["private"].terminated,
|
|
208
|
+
"boxes_on_target": obs_payload["public"].boxes_on_target,
|
|
209
|
+
}
|
|
210
|
+
agent.num_total_boxes = obs_payload["public"].num_boxes
|
|
211
|
+
|
|
212
|
+
try:
|
|
213
|
+
while turn_count < max_turns:
|
|
214
|
+
turn_count += 1
|
|
215
|
+
|
|
216
|
+
current_formatted_obs = format_obs_for_llm_from_states(
|
|
217
|
+
obs_payload["public"], obs_payload["private"]
|
|
218
|
+
)
|
|
219
|
+
|
|
220
|
+
# Get current game state for trace
|
|
221
|
+
pub_state = obs_payload["public"]
|
|
222
|
+
priv_state = obs_payload["private"]
|
|
223
|
+
|
|
224
|
+
# Create turn data
|
|
225
|
+
turn_data = {
|
|
226
|
+
"turn_number": turn_count,
|
|
227
|
+
"room_text": _grid_to_text(pub_state.room_state),
|
|
228
|
+
"player_position": [int(x) for x in pub_state.player_position],
|
|
229
|
+
"boxes_on_target": int(pub_state.boxes_on_target),
|
|
230
|
+
"num_steps": int(pub_state.num_steps),
|
|
231
|
+
"last_action": pub_state.last_action_name,
|
|
232
|
+
"terminated": priv_state.terminated,
|
|
233
|
+
"truncated": priv_state.truncated,
|
|
234
|
+
"reward": float(priv_state.reward_last),
|
|
235
|
+
"total_reward": float(priv_state.total_reward),
|
|
236
|
+
}
|
|
237
|
+
|
|
238
|
+
# Agent decision - get full reasoning record
|
|
239
|
+
decision_record = await agent.decide(current_formatted_obs)
|
|
240
|
+
action_int = decision_record.action_int
|
|
241
|
+
|
|
242
|
+
if action_int == -1: # Agent terminated
|
|
243
|
+
break
|
|
244
|
+
|
|
245
|
+
# Execute action
|
|
246
|
+
obs_payload_next = await env.step([Move(action_int)])
|
|
247
|
+
|
|
248
|
+
if "error" in obs_payload_next:
|
|
249
|
+
break
|
|
250
|
+
|
|
251
|
+
# Update turn data with action taken
|
|
252
|
+
turn_data["action_taken"] = action_int
|
|
253
|
+
turn_data["action_name"] = (
|
|
254
|
+
list(ACTION_STRING_TO_INT.keys())[
|
|
255
|
+
list(ACTION_STRING_TO_INT.values()).index(action_int)
|
|
256
|
+
]
|
|
257
|
+
if action_int in ACTION_STRING_TO_INT.values()
|
|
258
|
+
else f"unknown_{action_int}"
|
|
259
|
+
)
|
|
260
|
+
|
|
261
|
+
# Store detailed turn data
|
|
262
|
+
if collect_detailed_data:
|
|
263
|
+
turn_by_turn_data.append(turn_data)
|
|
264
|
+
|
|
265
|
+
# Create event partition for this turn with BOTH agent and environment compute steps
|
|
266
|
+
event_partition = EventPartitionElement(
|
|
267
|
+
partition_index=partition_index,
|
|
268
|
+
events=[
|
|
269
|
+
{
|
|
270
|
+
"event_type": "sokoban_turn",
|
|
271
|
+
"event_metadata": {
|
|
272
|
+
"turn_number": turn_count,
|
|
273
|
+
"boxes_on_target": pub_state.boxes_on_target,
|
|
274
|
+
"total_boxes": pub_state.num_boxes,
|
|
275
|
+
"action_taken": turn_data["action_name"],
|
|
276
|
+
"player_position": turn_data["player_position"],
|
|
277
|
+
},
|
|
278
|
+
"agent_compute_step": {
|
|
279
|
+
"event_order": 1,
|
|
280
|
+
"compute_began": datetime.now().isoformat(),
|
|
281
|
+
"compute_ended": datetime.now().isoformat(),
|
|
282
|
+
"model_name": decision_record.model_name,
|
|
283
|
+
"model_params": {"temperature": 0.0},
|
|
284
|
+
"compute_input": [{"messages": decision_record.input_messages}],
|
|
285
|
+
"compute_output": [{"messages": decision_record.output_messages}],
|
|
286
|
+
},
|
|
287
|
+
"environment_compute_steps": [
|
|
288
|
+
{
|
|
289
|
+
"event_order": 2,
|
|
290
|
+
"compute_began": datetime.now().isoformat(),
|
|
291
|
+
"compute_ended": datetime.now().isoformat(),
|
|
292
|
+
"compute_input": [
|
|
293
|
+
{
|
|
294
|
+
"action": action_int,
|
|
295
|
+
"action_name": turn_data["action_name"],
|
|
296
|
+
}
|
|
297
|
+
],
|
|
298
|
+
"compute_output": [
|
|
299
|
+
{
|
|
300
|
+
"outputs": {
|
|
301
|
+
"room_text": turn_data["room_text"],
|
|
302
|
+
"action": action_int,
|
|
303
|
+
"action_name": turn_data["action_name"],
|
|
304
|
+
"player_position": turn_data["player_position"],
|
|
305
|
+
"boxes_on_target": turn_data["boxes_on_target"],
|
|
306
|
+
"num_steps": turn_data["num_steps"],
|
|
307
|
+
"reward": turn_data["reward"],
|
|
308
|
+
"terminated": turn_data["terminated"],
|
|
309
|
+
"truncated": turn_data["truncated"],
|
|
310
|
+
}
|
|
311
|
+
}
|
|
312
|
+
],
|
|
313
|
+
}
|
|
314
|
+
],
|
|
315
|
+
}
|
|
316
|
+
],
|
|
317
|
+
)
|
|
318
|
+
|
|
319
|
+
actions_per_turn.append(action_int)
|
|
320
|
+
partition_index += 1
|
|
321
|
+
|
|
322
|
+
# Update for next iteration
|
|
323
|
+
obs_payload = obs_payload_next
|
|
324
|
+
agent.last_obs_dict = {
|
|
325
|
+
"terminated": obs_payload["private"].terminated,
|
|
326
|
+
"boxes_on_target": obs_payload["public"].boxes_on_target,
|
|
327
|
+
}
|
|
328
|
+
|
|
329
|
+
# Check termination - if terminated, record final state
|
|
330
|
+
if obs_payload["private"].terminated or obs_payload["private"].truncated:
|
|
331
|
+
# Record final state after the terminating action
|
|
332
|
+
final_pub_state = obs_payload["public"]
|
|
333
|
+
final_priv_state = obs_payload["private"]
|
|
334
|
+
|
|
335
|
+
final_turn_data = {
|
|
336
|
+
"turn_number": turn_count + 1,
|
|
337
|
+
"room_text": _grid_to_text(final_pub_state.room_state),
|
|
338
|
+
"player_position": [int(x) for x in final_pub_state.player_position],
|
|
339
|
+
"boxes_on_target": int(final_pub_state.boxes_on_target),
|
|
340
|
+
"num_steps": int(final_pub_state.num_steps),
|
|
341
|
+
"last_action": final_pub_state.last_action_name,
|
|
342
|
+
"terminated": final_priv_state.terminated,
|
|
343
|
+
"truncated": final_priv_state.truncated,
|
|
344
|
+
"reward": float(final_priv_state.reward_last),
|
|
345
|
+
"total_reward": float(final_priv_state.total_reward),
|
|
346
|
+
"action_taken": -1, # No action taken in final state
|
|
347
|
+
"action_name": "final_state",
|
|
348
|
+
}
|
|
349
|
+
|
|
350
|
+
if collect_detailed_data:
|
|
351
|
+
turn_by_turn_data.append(final_turn_data)
|
|
352
|
+
|
|
353
|
+
# Create event partition for final state
|
|
354
|
+
final_event_partition = EventPartitionElement(
|
|
355
|
+
partition_index=partition_index,
|
|
356
|
+
events=[
|
|
357
|
+
{
|
|
358
|
+
"event_type": "sokoban_turn",
|
|
359
|
+
"event_metadata": {
|
|
360
|
+
"turn_number": turn_count + 1,
|
|
361
|
+
"turn_data": final_turn_data,
|
|
362
|
+
},
|
|
363
|
+
"environment_compute_steps": [
|
|
364
|
+
{
|
|
365
|
+
"compute_output": [
|
|
366
|
+
{
|
|
367
|
+
"outputs": {
|
|
368
|
+
"room_text": final_turn_data["room_text"],
|
|
369
|
+
"action": -1,
|
|
370
|
+
"action_name": "final_state",
|
|
371
|
+
"player_position": final_turn_data[
|
|
372
|
+
"player_position"
|
|
373
|
+
],
|
|
374
|
+
"boxes_on_target": final_turn_data[
|
|
375
|
+
"boxes_on_target"
|
|
376
|
+
],
|
|
377
|
+
"num_steps": final_turn_data["num_steps"],
|
|
378
|
+
"reward": final_turn_data["reward"],
|
|
379
|
+
"terminated": final_turn_data["terminated"],
|
|
380
|
+
"truncated": final_turn_data["truncated"],
|
|
381
|
+
}
|
|
382
|
+
}
|
|
383
|
+
]
|
|
384
|
+
}
|
|
385
|
+
],
|
|
386
|
+
}
|
|
387
|
+
],
|
|
388
|
+
)
|
|
389
|
+
partition_index += 1
|
|
390
|
+
break
|
|
391
|
+
|
|
392
|
+
except Exception as e:
|
|
393
|
+
print(f"Error during trajectory execution: {e}")
|
|
394
|
+
|
|
395
|
+
# Final state
|
|
396
|
+
final_private_state = obs_payload["private"]
|
|
397
|
+
final_public_state = obs_payload["public"]
|
|
398
|
+
|
|
399
|
+
success = bool(final_public_state.boxes_on_target == final_public_state.num_boxes)
|
|
400
|
+
final_reward = float(final_private_state.total_reward)
|
|
401
|
+
num_steps = int(final_public_state.num_steps)
|
|
402
|
+
|
|
403
|
+
# Create trace data
|
|
404
|
+
trace_data = {
|
|
405
|
+
"trace": {
|
|
406
|
+
"metadata": {
|
|
407
|
+
"model_name": model_name,
|
|
408
|
+
"difficulty": difficulty,
|
|
409
|
+
"seed": seed,
|
|
410
|
+
"trajectory_id": trajectory_id,
|
|
411
|
+
"success": success,
|
|
412
|
+
"final_reward": final_reward,
|
|
413
|
+
"num_steps": num_steps,
|
|
414
|
+
"boxes_solved": int(final_public_state.boxes_on_target),
|
|
415
|
+
"total_boxes": int(final_public_state.num_boxes),
|
|
416
|
+
"max_turns": max_turns,
|
|
417
|
+
},
|
|
418
|
+
"partition": [
|
|
419
|
+
{
|
|
420
|
+
"partition_index": i,
|
|
421
|
+
"events": [
|
|
422
|
+
{
|
|
423
|
+
"event_type": "sokoban_turn",
|
|
424
|
+
"event_metadata": {
|
|
425
|
+
"turn_number": i + 1,
|
|
426
|
+
"turn_data": turn_data,
|
|
427
|
+
},
|
|
428
|
+
"agent_compute_step": {
|
|
429
|
+
"event_order": 1,
|
|
430
|
+
"compute_began": datetime.now().isoformat(),
|
|
431
|
+
"compute_ended": datetime.now().isoformat(),
|
|
432
|
+
"model_name": model_name,
|
|
433
|
+
"model_params": {"temperature": 0.0},
|
|
434
|
+
"compute_input": [
|
|
435
|
+
{
|
|
436
|
+
"messages": [
|
|
437
|
+
{
|
|
438
|
+
"role": "system",
|
|
439
|
+
"content": "You are playing Sokoban. Push all boxes onto targets.",
|
|
440
|
+
},
|
|
441
|
+
{
|
|
442
|
+
"role": "user",
|
|
443
|
+
"content": f"Turn {i + 1}: {turn_data['room_text']}",
|
|
444
|
+
},
|
|
445
|
+
]
|
|
446
|
+
}
|
|
447
|
+
],
|
|
448
|
+
"compute_output": [
|
|
449
|
+
{
|
|
450
|
+
"messages": [
|
|
451
|
+
{
|
|
452
|
+
"role": "assistant",
|
|
453
|
+
"content": f"Taking action: {turn_data.get('action_name', 'initial')}",
|
|
454
|
+
"tool_calls": [
|
|
455
|
+
{
|
|
456
|
+
"id": f"turn_{i + 1}",
|
|
457
|
+
"type": "function",
|
|
458
|
+
"function": {
|
|
459
|
+
"name": "sokoban_interact",
|
|
460
|
+
"arguments": json.dumps(
|
|
461
|
+
{
|
|
462
|
+
"actions_list": [
|
|
463
|
+
turn_data.get(
|
|
464
|
+
"action_name",
|
|
465
|
+
"initial",
|
|
466
|
+
)
|
|
467
|
+
],
|
|
468
|
+
"reasoning": f"Turn {i + 1} action",
|
|
469
|
+
}
|
|
470
|
+
),
|
|
471
|
+
},
|
|
472
|
+
}
|
|
473
|
+
],
|
|
474
|
+
},
|
|
475
|
+
{
|
|
476
|
+
"role": "tool",
|
|
477
|
+
"tool_call_id": f"turn_{i + 1}",
|
|
478
|
+
"content": f"Executed: {turn_data.get('action_name', 'initial')}",
|
|
479
|
+
},
|
|
480
|
+
]
|
|
481
|
+
}
|
|
482
|
+
],
|
|
483
|
+
},
|
|
484
|
+
"environment_compute_steps": [
|
|
485
|
+
{
|
|
486
|
+
"event_order": 2,
|
|
487
|
+
"compute_began": datetime.now().isoformat(),
|
|
488
|
+
"compute_ended": datetime.now().isoformat(),
|
|
489
|
+
"compute_input": [
|
|
490
|
+
{
|
|
491
|
+
"action": turn_data.get("action_taken", -1),
|
|
492
|
+
"action_name": turn_data.get(
|
|
493
|
+
"action_name", "initial"
|
|
494
|
+
),
|
|
495
|
+
}
|
|
496
|
+
],
|
|
497
|
+
"compute_output": [
|
|
498
|
+
{
|
|
499
|
+
"outputs": {
|
|
500
|
+
"room_text": turn_data["room_text"],
|
|
501
|
+
"action": turn_data.get("action_taken", -1),
|
|
502
|
+
"action_name": turn_data.get(
|
|
503
|
+
"action_name", "initial"
|
|
504
|
+
),
|
|
505
|
+
"player_position": turn_data["player_position"],
|
|
506
|
+
"boxes_on_target": turn_data["boxes_on_target"],
|
|
507
|
+
"num_steps": turn_data["num_steps"],
|
|
508
|
+
"reward": turn_data["reward"],
|
|
509
|
+
"terminated": turn_data["terminated"],
|
|
510
|
+
"truncated": turn_data["truncated"],
|
|
511
|
+
}
|
|
512
|
+
}
|
|
513
|
+
],
|
|
514
|
+
}
|
|
515
|
+
],
|
|
516
|
+
}
|
|
517
|
+
],
|
|
518
|
+
}
|
|
519
|
+
for i, turn_data in enumerate(turn_by_turn_data or [])
|
|
520
|
+
],
|
|
521
|
+
},
|
|
522
|
+
"dataset": {
|
|
523
|
+
"questions": [
|
|
524
|
+
{
|
|
525
|
+
"id": "sokoban_puzzle",
|
|
526
|
+
"intent": "solve",
|
|
527
|
+
"criteria": "push_all_boxes_to_targets",
|
|
528
|
+
}
|
|
529
|
+
],
|
|
530
|
+
"reward_signals": [
|
|
531
|
+
{
|
|
532
|
+
"question_id": "sokoban_puzzle",
|
|
533
|
+
"system_instance_id": agent.system_instance_id,
|
|
534
|
+
"reward": final_reward,
|
|
535
|
+
"annotation": json.dumps(
|
|
536
|
+
{
|
|
537
|
+
"success": success,
|
|
538
|
+
"boxes_solved": final_public_state.boxes_on_target,
|
|
539
|
+
"total_boxes": final_public_state.num_boxes,
|
|
540
|
+
"num_steps": num_steps,
|
|
541
|
+
"actions_taken": len(actions_per_turn),
|
|
542
|
+
}
|
|
543
|
+
),
|
|
544
|
+
}
|
|
545
|
+
],
|
|
546
|
+
},
|
|
547
|
+
}
|
|
548
|
+
|
|
549
|
+
# Save trace file
|
|
550
|
+
eval_dir = eval_dir or Path(
|
|
551
|
+
f"src/evals/sokoban/run_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
|
|
552
|
+
)
|
|
553
|
+
eval_dir.mkdir(parents=True, exist_ok=True)
|
|
554
|
+
traces_dir = eval_dir / "traces"
|
|
555
|
+
traces_dir.mkdir(exist_ok=True)
|
|
556
|
+
|
|
557
|
+
trace_file_path = traces_dir / f"{trajectory_id}.json"
|
|
558
|
+
with open(trace_file_path, "w") as f:
|
|
559
|
+
json.dump(trace_data, f, indent=2)
|
|
560
|
+
|
|
561
|
+
# Create trajectory result
|
|
562
|
+
result = SokobanTrajectoryResult(
|
|
563
|
+
trajectory_id=trajectory_id,
|
|
564
|
+
model_name=model_name,
|
|
565
|
+
difficulty=difficulty,
|
|
566
|
+
seed=seed,
|
|
567
|
+
success=success,
|
|
568
|
+
final_reward=final_reward,
|
|
569
|
+
num_steps=num_steps,
|
|
570
|
+
boxes_solved=int(final_public_state.boxes_on_target),
|
|
571
|
+
total_boxes=int(final_public_state.num_boxes),
|
|
572
|
+
trace_file_path=str(trace_file_path),
|
|
573
|
+
metadata={
|
|
574
|
+
"max_turns": max_turns,
|
|
575
|
+
"actions_taken": len(actions_per_turn),
|
|
576
|
+
"evaluation_timestamp": datetime.now().isoformat(),
|
|
577
|
+
},
|
|
578
|
+
)
|
|
579
|
+
|
|
580
|
+
self.trajectory_results.append(result)
|
|
581
|
+
return result
|
|
582
|
+
|
|
583
|
+
async def run_evaluation(
|
|
584
|
+
self,
|
|
585
|
+
model_names: List[str],
|
|
586
|
+
difficulties: List[str] = ["ultra-easy", "easy", "medium"],
|
|
587
|
+
num_trajectories_per_condition: int = 3,
|
|
588
|
+
max_turns: int = 20,
|
|
589
|
+
) -> Dict[str, Any]:
|
|
590
|
+
"""Run comprehensive evaluation across models and difficulties."""
|
|
591
|
+
|
|
592
|
+
print(f"šÆ Starting Sokoban evaluation")
|
|
593
|
+
print(f" Models: {model_names}")
|
|
594
|
+
print(f" Difficulties: {difficulties}")
|
|
595
|
+
print(f" Trajectories per condition: {num_trajectories_per_condition}")
|
|
596
|
+
print(f" Max turns per trajectory: {max_turns}")
|
|
597
|
+
|
|
598
|
+
eval_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
599
|
+
eval_dir = Path(f"src/evals/sokoban/run_{eval_timestamp}")
|
|
600
|
+
eval_dir.mkdir(parents=True, exist_ok=True)
|
|
601
|
+
|
|
602
|
+
all_results = []
|
|
603
|
+
|
|
604
|
+
for model_name in model_names:
|
|
605
|
+
for difficulty in difficulties:
|
|
606
|
+
print(f"\nš¤ Running {model_name} on {difficulty} difficulty...")
|
|
607
|
+
|
|
608
|
+
# Run trajectories for this condition
|
|
609
|
+
condition_results = []
|
|
610
|
+
for traj_idx in range(num_trajectories_per_condition):
|
|
611
|
+
seed = hash(f"{model_name}_{difficulty}_{traj_idx}") % 10000
|
|
612
|
+
|
|
613
|
+
print(
|
|
614
|
+
f" Trajectory {traj_idx + 1}/{num_trajectories_per_condition} (seed={seed})"
|
|
615
|
+
)
|
|
616
|
+
|
|
617
|
+
result = await self.run_single_trajectory_with_trace(
|
|
618
|
+
model_name=model_name,
|
|
619
|
+
difficulty=difficulty,
|
|
620
|
+
seed=seed,
|
|
621
|
+
max_turns=max_turns,
|
|
622
|
+
eval_dir=eval_dir,
|
|
623
|
+
)
|
|
624
|
+
|
|
625
|
+
condition_results.append(result)
|
|
626
|
+
all_results.append(result)
|
|
627
|
+
|
|
628
|
+
# Print condition summary
|
|
629
|
+
successful = sum(1 for r in condition_results if r.success)
|
|
630
|
+
avg_steps = sum(r.num_steps for r in condition_results) / len(condition_results)
|
|
631
|
+
avg_boxes = sum(r.boxes_solved for r in condition_results) / len(condition_results)
|
|
632
|
+
|
|
633
|
+
print(f" ā
{successful}/{len(condition_results)} successful")
|
|
634
|
+
print(f" š Avg steps: {avg_steps:.1f}, Avg boxes solved: {avg_boxes:.1f}")
|
|
635
|
+
|
|
636
|
+
# Generate evaluation summary
|
|
637
|
+
summary = {
|
|
638
|
+
"evaluation_timestamp": eval_timestamp,
|
|
639
|
+
"models_evaluated": model_names,
|
|
640
|
+
"difficulties_evaluated": difficulties,
|
|
641
|
+
"evaluation_metadata": {
|
|
642
|
+
"num_trajectories": len(all_results),
|
|
643
|
+
"max_turns": max_turns,
|
|
644
|
+
"trajectories_per_condition": num_trajectories_per_condition,
|
|
645
|
+
},
|
|
646
|
+
"aggregate_results": [],
|
|
647
|
+
}
|
|
648
|
+
|
|
649
|
+
# Aggregate results by model and difficulty
|
|
650
|
+
for model_name in model_names:
|
|
651
|
+
for difficulty in difficulties:
|
|
652
|
+
condition_results = [
|
|
653
|
+
r
|
|
654
|
+
for r in all_results
|
|
655
|
+
if r.model_name == model_name and r.difficulty == difficulty
|
|
656
|
+
]
|
|
657
|
+
|
|
658
|
+
if condition_results:
|
|
659
|
+
success_rate = sum(1 for r in condition_results if r.success) / len(
|
|
660
|
+
condition_results
|
|
661
|
+
)
|
|
662
|
+
avg_reward = sum(r.final_reward for r in condition_results) / len(
|
|
663
|
+
condition_results
|
|
664
|
+
)
|
|
665
|
+
avg_steps = sum(r.num_steps for r in condition_results) / len(condition_results)
|
|
666
|
+
avg_boxes = sum(r.boxes_solved for r in condition_results) / len(
|
|
667
|
+
condition_results
|
|
668
|
+
)
|
|
669
|
+
|
|
670
|
+
summary["aggregate_results"].append(
|
|
671
|
+
{
|
|
672
|
+
"model_name": model_name,
|
|
673
|
+
"difficulty": difficulty,
|
|
674
|
+
"num_trajectories": len(condition_results),
|
|
675
|
+
"success_rate": success_rate,
|
|
676
|
+
"avg_reward": avg_reward,
|
|
677
|
+
"avg_steps": avg_steps,
|
|
678
|
+
"avg_boxes_solved": avg_boxes,
|
|
679
|
+
}
|
|
680
|
+
)
|
|
681
|
+
|
|
682
|
+
# Save evaluation summary
|
|
683
|
+
summary_file = eval_dir / "evaluation_summary.json"
|
|
684
|
+
with open(summary_file, "w") as f:
|
|
685
|
+
json.dump(summary, f, indent=2)
|
|
686
|
+
|
|
687
|
+
# Print detailed aggregated results
|
|
688
|
+
print("\n" + "=" * 80)
|
|
689
|
+
print("š FINAL SOKOBAN EVALUATION RESULTS")
|
|
690
|
+
print("=" * 80)
|
|
691
|
+
|
|
692
|
+
# Overall metrics
|
|
693
|
+
all_successes = [r.success for r in all_results]
|
|
694
|
+
all_rewards = [r.final_reward for r in all_results]
|
|
695
|
+
all_steps = [r.num_steps for r in all_results]
|
|
696
|
+
all_boxes_solved = [r.boxes_solved for r in all_results]
|
|
697
|
+
|
|
698
|
+
print(f"š EVAL METRICS:")
|
|
699
|
+
print(f" Episodes: {len(all_results)}")
|
|
700
|
+
print(f" Individual Success: {[str(x) for x in all_successes]}")
|
|
701
|
+
print(f" Success Rate: {sum(all_successes) / len(all_successes):.3f}")
|
|
702
|
+
|
|
703
|
+
print(f"\nš REWARD METRICS:")
|
|
704
|
+
print(f" Individual Rewards: {[f'{x:.2f}' for x in all_rewards]}")
|
|
705
|
+
print(f" Mean Reward: {sum(all_rewards) / len(all_rewards):.2f}")
|
|
706
|
+
|
|
707
|
+
print(f"\nš EFFICIENCY METRICS:")
|
|
708
|
+
print(f" Individual Steps: {[str(x) for x in all_steps]}")
|
|
709
|
+
print(f" Mean Steps: {sum(all_steps) / len(all_steps):.1f}")
|
|
710
|
+
|
|
711
|
+
print(f"\nš¦ BOX SOLVING METRICS:")
|
|
712
|
+
print(f" Individual Boxes Solved: {[str(x) for x in all_boxes_solved]}")
|
|
713
|
+
print(f" Mean Boxes Solved: {sum(all_boxes_solved) / len(all_boxes_solved):.1f}")
|
|
714
|
+
|
|
715
|
+
# Results by difficulty
|
|
716
|
+
print(f"\nšÆ RESULTS BY DIFFICULTY:")
|
|
717
|
+
for model_name in model_names:
|
|
718
|
+
print(f" Model: {model_name}")
|
|
719
|
+
for difficulty in difficulties:
|
|
720
|
+
condition_results = [
|
|
721
|
+
r
|
|
722
|
+
for r in all_results
|
|
723
|
+
if r.model_name == model_name and r.difficulty == difficulty
|
|
724
|
+
]
|
|
725
|
+
if condition_results:
|
|
726
|
+
success_rate = sum(1 for r in condition_results if r.success) / len(
|
|
727
|
+
condition_results
|
|
728
|
+
)
|
|
729
|
+
avg_reward = sum(r.final_reward for r in condition_results) / len(
|
|
730
|
+
condition_results
|
|
731
|
+
)
|
|
732
|
+
avg_steps = sum(r.num_steps for r in condition_results) / len(condition_results)
|
|
733
|
+
avg_boxes = sum(r.boxes_solved for r in condition_results) / len(
|
|
734
|
+
condition_results
|
|
735
|
+
)
|
|
736
|
+
print(
|
|
737
|
+
f" {difficulty}: {success_rate:.1%} success, {avg_reward:.1f} reward, {avg_steps:.1f} steps, {avg_boxes:.1f} boxes"
|
|
738
|
+
)
|
|
739
|
+
|
|
740
|
+
# Overall assessment
|
|
741
|
+
overall_success_rate = sum(all_successes) / len(all_successes)
|
|
742
|
+
overall_reward = sum(all_rewards) / len(all_rewards)
|
|
743
|
+
|
|
744
|
+
print(f"\nš ASSESSMENT:")
|
|
745
|
+
if overall_success_rate >= 0.8:
|
|
746
|
+
print("š Excellent performance - mastering puzzle solving!")
|
|
747
|
+
elif overall_success_rate >= 0.6:
|
|
748
|
+
print("ā
Good performance - solving most puzzles!")
|
|
749
|
+
elif overall_success_rate >= 0.4:
|
|
750
|
+
print("ā ļø Moderate performance - learning puzzle mechanics")
|
|
751
|
+
elif overall_success_rate >= 0.2:
|
|
752
|
+
print("š Early progress - understanding basic moves")
|
|
753
|
+
else:
|
|
754
|
+
print("š§© Learning phase - focus on understanding Sokoban rules")
|
|
755
|
+
|
|
756
|
+
# Output markdown table row for README collation
|
|
757
|
+
print(f"\nš MARKDOWN TABLE ROW:")
|
|
758
|
+
print(
|
|
759
|
+
"| Model | Episodes | Success Rate | Mean Reward | Mean Steps | Mean Boxes | Assessment |"
|
|
760
|
+
)
|
|
761
|
+
print(
|
|
762
|
+
"|------------------|----------|--------------|-------------|------------|------------|------------|"
|
|
763
|
+
)
|
|
764
|
+
|
|
765
|
+
if overall_success_rate >= 0.6:
|
|
766
|
+
assessment = "Excellent"
|
|
767
|
+
elif overall_success_rate >= 0.4:
|
|
768
|
+
assessment = "Good"
|
|
769
|
+
elif overall_success_rate >= 0.2:
|
|
770
|
+
assessment = "Moderate"
|
|
771
|
+
else:
|
|
772
|
+
assessment = "Learning"
|
|
773
|
+
|
|
774
|
+
main_model = model_names[0] if model_names else "Unknown"
|
|
775
|
+
mean_steps = sum(all_steps) / len(all_steps)
|
|
776
|
+
mean_boxes = sum(all_boxes_solved) / len(all_boxes_solved)
|
|
777
|
+
|
|
778
|
+
print(
|
|
779
|
+
f"| {main_model:<16} | {len(all_results):>8} | {overall_success_rate:>12.3f} | {overall_reward:>11.2f} | {mean_steps:>10.1f} | {mean_boxes:>10.1f} | {assessment:<10} |"
|
|
780
|
+
)
|
|
781
|
+
|
|
782
|
+
print(f"\nš Evaluation saved to: {eval_dir}")
|
|
783
|
+
print(f"š Summary: {summary_file}")
|
|
784
|
+
print(f"š Traces: {eval_dir / 'traces'}")
|
|
785
|
+
|
|
786
|
+
return summary
|
|
787
|
+
|
|
788
|
+
|
|
789
|
+
# Convenience function for quick evaluations
|
|
790
|
+
async def run_sokoban_eval(
|
|
791
|
+
model_names: List[str],
|
|
792
|
+
difficulties: List[str] = ["ultra-easy", "easy", "medium"],
|
|
793
|
+
num_trajectories: int = 3,
|
|
794
|
+
max_turns: int = 20,
|
|
795
|
+
) -> Dict[str, Any]:
|
|
796
|
+
"""Quick evaluation runner with automatic report generation."""
|
|
797
|
+
|
|
798
|
+
framework = SokobanEvalFramework()
|
|
799
|
+
report = await framework.run_evaluation(
|
|
800
|
+
model_names=model_names,
|
|
801
|
+
difficulties=difficulties,
|
|
802
|
+
num_trajectories_per_condition=num_trajectories,
|
|
803
|
+
max_turns=max_turns,
|
|
804
|
+
)
|
|
805
|
+
|
|
806
|
+
return report
|
|
807
|
+
|
|
808
|
+
|
|
809
|
+
# --- Configuration Class ---
|
|
810
|
+
class SokobanConfig:
|
|
811
|
+
"""Configuration for Sokoban evaluation."""
|
|
812
|
+
|
|
813
|
+
def __init__(self, config_path: Optional[str] = None):
|
|
814
|
+
# Defaults
|
|
815
|
+
self.model_name = "gpt-4.1-mini"
|
|
816
|
+
self.num_instances = 3
|
|
817
|
+
self.max_turns = 20
|
|
818
|
+
self.difficulty_levels = ["ultra-easy", "easy", "medium"]
|
|
819
|
+
self.service_base_url = "http://localhost:8901"
|
|
820
|
+
self.service_timeout = 30.0
|
|
821
|
+
self.seed = 42
|
|
822
|
+
self.save_traces = True
|
|
823
|
+
self.save_detailed_results = True
|
|
824
|
+
|
|
825
|
+
if config_path and os.path.exists(config_path):
|
|
826
|
+
try:
|
|
827
|
+
import toml
|
|
828
|
+
|
|
829
|
+
cfg = toml.load(config_path)
|
|
830
|
+
|
|
831
|
+
e = cfg.get("eval", {})
|
|
832
|
+
self.model_name = e.get("model_name", self.model_name)
|
|
833
|
+
self.num_instances = e.get("episodes", self.num_instances)
|
|
834
|
+
self.max_turns = e.get("max_steps", self.max_turns)
|
|
835
|
+
diff = e.get("difficulty", None)
|
|
836
|
+
if diff:
|
|
837
|
+
# allow comma-separated list or single value
|
|
838
|
+
if isinstance(diff, str) and "," in diff:
|
|
839
|
+
self.difficulty_levels = [d.strip() for d in diff.split(",")]
|
|
840
|
+
elif isinstance(diff, list):
|
|
841
|
+
self.difficulty_levels = diff
|
|
842
|
+
else:
|
|
843
|
+
self.difficulty_levels = [str(diff)]
|
|
844
|
+
|
|
845
|
+
self.seed = e.get("seed", self.seed)
|
|
846
|
+
|
|
847
|
+
s = cfg.get("service", {})
|
|
848
|
+
self.service_base_url = s.get("base_url", self.service_base_url)
|
|
849
|
+
self.service_timeout = s.get("timeout", self.service_timeout)
|
|
850
|
+
|
|
851
|
+
o = cfg.get("output", {})
|
|
852
|
+
self.save_traces = o.get("save_traces", self.save_traces)
|
|
853
|
+
self.save_detailed_results = o.get(
|
|
854
|
+
"save_detailed_results", self.save_detailed_results
|
|
855
|
+
)
|
|
856
|
+
except Exception as exc:
|
|
857
|
+
print(f"[WARNING] Failed to load Sokoban config: {exc}")
|
|
858
|
+
|
|
859
|
+
|
|
860
|
+
# --- Helper to run evaluation with config ---
|
|
861
|
+
async def _run_with_config(cfg: SokobanConfig):
|
|
862
|
+
await run_sokoban_eval(
|
|
863
|
+
model_names=[cfg.model_name],
|
|
864
|
+
difficulties=cfg.difficulty_levels,
|
|
865
|
+
num_trajectories=cfg.num_instances,
|
|
866
|
+
max_turns=cfg.max_turns,
|
|
867
|
+
)
|
|
868
|
+
|
|
869
|
+
|
|
870
|
+
# --- CLI Entry Point ---
|
|
871
|
+
if __name__ == "__main__":
|
|
872
|
+
import argparse
|
|
873
|
+
import asyncio
|
|
874
|
+
|
|
875
|
+
parser = argparse.ArgumentParser(description="Run Sokoban evaluation with optional TOML config")
|
|
876
|
+
parser.add_argument("--config", "-c", type=str, help="Path to TOML configuration file")
|
|
877
|
+
parser.add_argument("--model", "-m", type=str, help="Model name override")
|
|
878
|
+
parser.add_argument("--episodes", "-e", type=int, help="Episodes override")
|
|
879
|
+
parser.add_argument("--max-turns", "-t", type=int, help="Max turns override")
|
|
880
|
+
parser.add_argument(
|
|
881
|
+
"--difficulty", "-d", type=str, help="Difficulty (single or comma-separated list)"
|
|
882
|
+
)
|
|
883
|
+
|
|
884
|
+
args = parser.parse_args()
|
|
885
|
+
|
|
886
|
+
cfg = SokobanConfig(args.config)
|
|
887
|
+
if args.model:
|
|
888
|
+
cfg.model_name = args.model
|
|
889
|
+
if args.episodes:
|
|
890
|
+
cfg.num_instances = args.episodes
|
|
891
|
+
if args.max_turns:
|
|
892
|
+
cfg.max_turns = args.max_turns
|
|
893
|
+
if args.difficulty:
|
|
894
|
+
if "," in args.difficulty:
|
|
895
|
+
cfg.difficulty_levels = [d.strip() for d in args.difficulty.split(",")]
|
|
896
|
+
else:
|
|
897
|
+
cfg.difficulty_levels = [args.difficulty]
|
|
898
|
+
|
|
899
|
+
asyncio.run(_run_with_config(cfg))
|