synth-ai 0.2.4.dev8__py3-none-any.whl → 0.2.4.dev9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of synth-ai might be problematic. Click here for more details.

Files changed (111) hide show
  1. synth_ai/cli/__init__.py +6 -0
  2. synth_ai/cli/demo.py +68 -9
  3. synth_ai/cli/rl_demo.py +137 -0
  4. synth_ai/cli/root.py +65 -0
  5. synth_ai/demos/core/__init__.py +1 -0
  6. synth_ai/demos/core/cli.py +621 -0
  7. synth_ai/demos/demo_task_apps/__init__.py +1 -0
  8. synth_ai/demos/demo_task_apps/core.py +374 -0
  9. synth_ai/demos/demo_task_apps/math/__init__.py +1 -0
  10. synth_ai/demos/demo_task_apps/math/app.py +37 -0
  11. synth_ai/demos/demo_task_apps/math/config.toml +44 -0
  12. synth_ai/demos/demo_task_apps/math/deploy_modal.py +60 -0
  13. synth_ai/demos/demo_task_apps/math/deploy_task_app.sh +22 -0
  14. synth_ai/environments/examples/bandit/__init__.py +33 -0
  15. synth_ai/environments/examples/bandit/engine.py +294 -0
  16. synth_ai/environments/examples/bandit/environment.py +194 -0
  17. synth_ai/environments/examples/bandit/taskset.py +200 -0
  18. synth_ai/environments/examples/crafter_classic/agent_demos/analyze_semantic_words_markdown.py +250 -0
  19. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_comprehensive_evaluation.py +59 -0
  20. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_evaluation_browser.py +152 -0
  21. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_evaluation_config.toml +24 -0
  22. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_evaluation_framework.py +1194 -0
  23. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/crafter_synth_config.toml +56 -0
  24. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/filter_config_modal.toml +32 -0
  25. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/filter_traces_sft_turso.py +724 -0
  26. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/kick_off_ft_modal.py +384 -0
  27. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/analyze_action_results.py +53 -0
  28. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/analyze_agent_actions.py +178 -0
  29. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/analyze_latest_run.py +222 -0
  30. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/analyze_lm_traces.py +183 -0
  31. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/analyze_no_rewards.py +210 -0
  32. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/analyze_trace_issue.py +206 -0
  33. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/check_db_schema.py +49 -0
  34. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/check_latest_results.py +64 -0
  35. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/debug_agent_responses.py +88 -0
  36. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/quick_trace_check.py +77 -0
  37. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/compare_experiments.py +324 -0
  38. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/filter_traces_sft_turso.py +580 -0
  39. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/kick_off_ft_oai.py +362 -0
  40. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/multi_model_config.toml +49 -0
  41. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/analyze_enhanced_hooks.py +332 -0
  42. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/analyze_hook_events.py +97 -0
  43. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/analyze_hook_results.py +217 -0
  44. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/check_hook_storage.py +87 -0
  45. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/check_seeds.py +88 -0
  46. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/compare_seed_performance.py +195 -0
  47. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/custom_eval_pipelines.py +400 -0
  48. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/plot_hook_frequency.py +195 -0
  49. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/seed_analysis_summary.py +56 -0
  50. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/run_rollouts_for_models_and_compare_v3.py +858 -0
  51. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_quick_evaluation.py +52 -0
  52. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_react_agent.py +874 -0
  53. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_trace_evaluation.py +1412 -0
  54. synth_ai/environments/examples/crafter_classic/agent_demos/example_v3_usage.py +216 -0
  55. synth_ai/environments/examples/crafter_classic/agent_demos/old/compare_traces.py +296 -0
  56. synth_ai/environments/examples/crafter_classic/agent_demos/old/crafter_comprehensive_evaluation.py +58 -0
  57. synth_ai/environments/examples/crafter_classic/agent_demos/old/crafter_env_serialization.py +464 -0
  58. synth_ai/environments/examples/crafter_classic/agent_demos/old/crafter_evaluation_browser.py +152 -0
  59. synth_ai/environments/examples/crafter_classic/agent_demos/old/crafter_quick_evaluation.py +51 -0
  60. synth_ai/environments/examples/crafter_classic/agent_demos/old/crafter_trace_evaluation.py +1412 -0
  61. synth_ai/environments/examples/crafter_classic/agent_demos/old/debug_player_loss.py +112 -0
  62. synth_ai/environments/examples/crafter_classic/agent_demos/old/diagnose_service.py +203 -0
  63. synth_ai/environments/examples/crafter_classic/agent_demos/old/diagnose_slowness.py +305 -0
  64. synth_ai/environments/examples/crafter_classic/agent_demos/old/eval_by_difficulty.py +126 -0
  65. synth_ai/environments/examples/crafter_classic/agent_demos/old/eval_example.py +94 -0
  66. synth_ai/environments/examples/crafter_classic/agent_demos/old/explore_saved_states.py +142 -0
  67. synth_ai/environments/examples/crafter_classic/agent_demos/old/filter_traces_sft.py +26 -0
  68. synth_ai/environments/examples/crafter_classic/agent_demos/old/filter_traces_sft_OLD.py +984 -0
  69. synth_ai/environments/examples/crafter_classic/agent_demos/old/generate_ft_data_gemini.py +724 -0
  70. synth_ai/environments/examples/crafter_classic/agent_demos/old/generate_ft_data_modal.py +386 -0
  71. synth_ai/environments/examples/crafter_classic/agent_demos/old/generate_ft_metadata.py +205 -0
  72. synth_ai/environments/examples/crafter_classic/agent_demos/old/kick_off_ft_gemini.py +150 -0
  73. synth_ai/environments/examples/crafter_classic/agent_demos/old/kick_off_ft_modal.py +283 -0
  74. synth_ai/environments/examples/crafter_classic/agent_demos/old/prepare_vertex_ft.py +280 -0
  75. synth_ai/environments/examples/crafter_classic/agent_demos/old/profile_env_slowness.py +456 -0
  76. synth_ai/environments/examples/crafter_classic/agent_demos/old/replicate_issue.py +166 -0
  77. synth_ai/environments/examples/crafter_classic/agent_demos/old/run_and_eval.py +102 -0
  78. synth_ai/environments/examples/crafter_classic/agent_demos/old/run_comparison.py +128 -0
  79. synth_ai/environments/examples/crafter_classic/agent_demos/old/run_qwen_rollouts.py +655 -0
  80. synth_ai/environments/examples/crafter_classic/agent_demos/old/trace_eval_OLD.py +202 -0
  81. synth_ai/environments/examples/crafter_classic/agent_demos/old/validate_openai_format.py +166 -0
  82. synth_ai/environments/examples/crafter_classic/environment.py +41 -2
  83. synth_ai/environments/examples/crafter_custom/agent_demos/__init__.py +1 -0
  84. synth_ai/environments/examples/crafter_custom/agent_demos/trace_eval.py +202 -0
  85. synth_ai/environments/examples/crafter_custom/old/analyze_diamond_issue.py +159 -0
  86. synth_ai/environments/examples/crafter_custom/old/analyze_diamond_spawning.py +158 -0
  87. synth_ai/environments/examples/crafter_custom/old/compare_worlds.py +71 -0
  88. synth_ai/environments/examples/crafter_custom/old/dataset_stats.py +105 -0
  89. synth_ai/environments/examples/crafter_custom/old/diamond_spawning_summary.py +119 -0
  90. synth_ai/environments/examples/crafter_custom/old/example_dataset_usage.py +52 -0
  91. synth_ai/environments/examples/enron/units/keyword_stats.py +112 -0
  92. synth_ai/environments/examples/minigrid/agent_demos/minigrid_evaluation_framework.py +1188 -0
  93. synth_ai/environments/examples/minigrid/agent_demos/minigrid_quick_evaluation.py +48 -0
  94. synth_ai/environments/examples/minigrid/agent_demos/minigrid_react_agent.py +562 -0
  95. synth_ai/environments/examples/minigrid/agent_demos/minigrid_trace_evaluation.py +221 -0
  96. synth_ai/environments/examples/nethack/agent_demos/nethack_evaluation_framework.py +981 -0
  97. synth_ai/environments/examples/nethack/agent_demos/nethack_quick_evaluation.py +74 -0
  98. synth_ai/environments/examples/nethack/agent_demos/nethack_react_agent.py +831 -0
  99. synth_ai/environments/examples/red/agent_demos/__init__.py +1 -0
  100. synth_ai/environments/examples/red/units/__init__.py +1 -0
  101. synth_ai/environments/examples/sokoban/agent_demos/sokoban_full_eval.py +899 -0
  102. synth_ai/environments/examples/sokoban/units/astar_common.py +95 -0
  103. synth_ai/environments/service/app.py +8 -0
  104. synth_ai/install_sqld.sh +40 -0
  105. synth_ai-0.2.4.dev9.dist-info/METADATA +91 -0
  106. {synth_ai-0.2.4.dev8.dist-info → synth_ai-0.2.4.dev9.dist-info}/RECORD +110 -11
  107. {synth_ai-0.2.4.dev8.dist-info → synth_ai-0.2.4.dev9.dist-info}/entry_points.txt +1 -0
  108. synth_ai-0.2.4.dev8.dist-info/METADATA +0 -635
  109. {synth_ai-0.2.4.dev8.dist-info → synth_ai-0.2.4.dev9.dist-info}/WHEEL +0 -0
  110. {synth_ai-0.2.4.dev8.dist-info → synth_ai-0.2.4.dev9.dist-info}/licenses/LICENSE +0 -0
  111. {synth_ai-0.2.4.dev8.dist-info → synth_ai-0.2.4.dev9.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,294 @@
1
+ from __future__ import annotations
2
+
3
+ from dataclasses import dataclass
4
+ from typing import Any
5
+
6
+ import numpy as np
7
+
8
+ from synth_ai.environments.environment.shared_engine import (
9
+ GetObservationCallable,
10
+ InternalObservation,
11
+ )
12
+ from synth_ai.environments.reproducibility.core import IReproducibleEngine
13
+ from synth_ai.environments.stateful.engine import StatefulEngine, StatefulEngineSnapshot
14
+ from synth_ai.environments.tasks.core import TaskInstance
15
+
16
+
17
+ @dataclass
18
+ class BanditPublicState:
19
+ arm_count: int
20
+ step_count: int
21
+ max_steps: int
22
+ last_arm: int | None
23
+ last_reward: float | None
24
+ cumulative_reward: float
25
+ reward_history: list[float]
26
+ arm_pull_counts: list[int]
27
+ terminated: bool
28
+ status: str
29
+
30
+ @property
31
+ def steps_remaining(self) -> int:
32
+ return max(0, self.max_steps - self.step_count)
33
+
34
+ @property
35
+ def average_reward(self) -> float:
36
+ return self.cumulative_reward / self.step_count if self.step_count else 0.0
37
+
38
+
39
+ @dataclass
40
+ class BanditPrivateState:
41
+ reward_last: float
42
+ total_reward: float
43
+ terminated: bool
44
+ truncated: bool
45
+ true_expected_rewards: list[float]
46
+ step_count: int
47
+
48
+
49
+ @dataclass
50
+ class BanditEngineSnapshot(StatefulEngineSnapshot):
51
+ task_instance_dict: dict[str, Any]
52
+ engine_snapshot: dict[str, Any]
53
+
54
+
55
+ class BanditEngine(StatefulEngine, IReproducibleEngine):
56
+ def __init__(self, task_instance: TaskInstance):
57
+ self.task_instance = task_instance
58
+
59
+ metadata = getattr(task_instance, "metadata", None)
60
+ self.bandit_type: str = getattr(metadata, "bandit_type", "bernoulli")
61
+ self.max_steps: int = int(getattr(metadata, "max_steps", 100))
62
+ self.seed: int | None = getattr(metadata, "seed", None)
63
+
64
+ self.arm_probabilities: list[float] | None = None
65
+ self.arm_means: list[float] | None = None
66
+ self.arm_stds: list[float] | None = None
67
+
68
+ if self.bandit_type.lower() == "bernoulli":
69
+ probs = list(getattr(metadata, "arm_probabilities", []) or [])
70
+ if not probs:
71
+ probs = [0.1, 0.5, 0.9]
72
+ self.arm_probabilities = [float(p) for p in probs]
73
+ self.true_expected_rewards = self.arm_probabilities.copy()
74
+ elif self.bandit_type.lower() == "gaussian":
75
+ means = list(getattr(metadata, "arm_means", []) or [])
76
+ if not means:
77
+ means = [0.0, 0.5, 1.0]
78
+ stds = getattr(metadata, "arm_stds", None)
79
+ if stds is None:
80
+ stds_list = [0.1] * len(means)
81
+ elif isinstance(stds, int | float):
82
+ stds_list = [float(stds)] * len(means)
83
+ else:
84
+ stds_list = [float(s) for s in stds]
85
+ if len(stds_list) != len(means):
86
+ raise ValueError("arm_stds must match arm_means length")
87
+ self.arm_means = [float(m) for m in means]
88
+ self.arm_stds = stds_list
89
+ self.true_expected_rewards = self.arm_means.copy()
90
+ else:
91
+ raise ValueError(f"Unsupported bandit_type: {self.bandit_type}")
92
+
93
+ self.arm_count = len(self.true_expected_rewards)
94
+ if self.arm_count == 0:
95
+ raise ValueError("Bandit must have at least one arm")
96
+
97
+ self._rng = np.random.default_rng(self.seed)
98
+
99
+ # Runtime state
100
+ self.step_count: int = 0
101
+ self.total_reward: float = 0.0
102
+ self.last_reward: float = 0.0
103
+ self.last_arm: int | None = None
104
+ self.reward_history: list[float] = []
105
+ self.arm_history: list[int] = []
106
+ self.arm_pull_counts: list[int] = [0 for _ in range(self.arm_count)]
107
+ self.terminated: bool = False
108
+ self.status: str = "in_progress"
109
+
110
+ async def _reset_engine(self) -> tuple[BanditPrivateState, BanditPublicState]:
111
+ if self.seed is not None:
112
+ self._rng = np.random.default_rng(self.seed)
113
+ else:
114
+ self._rng = np.random.default_rng()
115
+
116
+ self.step_count = 0
117
+ self.total_reward = 0.0
118
+ self.last_reward = 0.0
119
+ self.last_arm = None
120
+ self.reward_history = []
121
+ self.arm_history = []
122
+ self.arm_pull_counts = [0 for _ in range(self.arm_count)]
123
+ self.terminated = False
124
+ self.status = "in_progress"
125
+
126
+ private_state = self._build_private_state(reward=0.0)
127
+ public_state = self._build_public_state(reward=None)
128
+ return private_state, public_state
129
+
130
+ async def _step_engine(self, arm_index: int) -> tuple[BanditPrivateState, BanditPublicState]:
131
+ if self.terminated:
132
+ raise RuntimeError("Bandit episode already terminated")
133
+
134
+ if not isinstance(arm_index, int):
135
+ raise TypeError("arm_index must be an integer")
136
+ if arm_index < 0 or arm_index >= self.arm_count:
137
+ raise ValueError(f"arm_index {arm_index} out of range 0..{self.arm_count - 1}")
138
+
139
+ reward = float(self._sample_reward(arm_index))
140
+
141
+ self.step_count += 1
142
+ self.total_reward += reward
143
+ self.last_reward = reward
144
+ self.last_arm = arm_index
145
+ self.reward_history.append(reward)
146
+ self.arm_history.append(arm_index)
147
+ self.arm_pull_counts[arm_index] += 1
148
+
149
+ if self.step_count >= self.max_steps:
150
+ self.terminated = True
151
+ self.status = "completed"
152
+
153
+ private_state = self._build_private_state(reward=reward)
154
+ public_state = self._build_public_state(reward=reward)
155
+ return private_state, public_state
156
+
157
+ def _sample_reward(self, arm_index: int) -> float:
158
+ if self.bandit_type.lower() == "bernoulli":
159
+ assert self.arm_probabilities is not None
160
+ success_prob = self.arm_probabilities[arm_index]
161
+ return 1.0 if self._rng.random() < success_prob else 0.0
162
+
163
+ if self.bandit_type.lower() == "gaussian":
164
+ assert self.arm_means is not None and self.arm_stds is not None
165
+ mean = self.arm_means[arm_index]
166
+ std = self.arm_stds[arm_index]
167
+ return float(self._rng.normal(loc=mean, scale=std))
168
+
169
+ raise RuntimeError(f"Unknown bandit_type during sampling: {self.bandit_type}")
170
+
171
+ def get_current_states_for_observation(
172
+ self,
173
+ ) -> tuple[BanditPrivateState, BanditPublicState]:
174
+ private_state = self._build_private_state(reward=self.last_reward)
175
+ public_state = self._build_public_state(reward=self.last_reward)
176
+ return private_state, public_state
177
+
178
+ def _build_private_state(self, reward: float) -> BanditPrivateState:
179
+ return BanditPrivateState(
180
+ reward_last=float(reward),
181
+ total_reward=float(self.total_reward),
182
+ terminated=self.terminated,
183
+ truncated=False,
184
+ true_expected_rewards=self.true_expected_rewards.copy(),
185
+ step_count=self.step_count,
186
+ )
187
+
188
+ def _build_public_state(self, reward: float | None) -> BanditPublicState:
189
+ return BanditPublicState(
190
+ arm_count=self.arm_count,
191
+ step_count=self.step_count,
192
+ max_steps=self.max_steps,
193
+ last_arm=self.last_arm,
194
+ last_reward=float(reward) if reward is not None else (self.last_reward if self.step_count else None),
195
+ cumulative_reward=float(self.total_reward),
196
+ reward_history=self.reward_history.copy(),
197
+ arm_pull_counts=self.arm_pull_counts.copy(),
198
+ terminated=self.terminated,
199
+ status=self.status,
200
+ )
201
+
202
+ async def _serialize_engine(self) -> BanditEngineSnapshot:
203
+ snapshot = {
204
+ "bandit_type": self.bandit_type,
205
+ "arm_probabilities": self.arm_probabilities,
206
+ "arm_means": self.arm_means,
207
+ "arm_stds": self.arm_stds,
208
+ "max_steps": self.max_steps,
209
+ "seed": self.seed,
210
+ "step_count": self.step_count,
211
+ "total_reward": self.total_reward,
212
+ "last_reward": self.last_reward,
213
+ "last_arm": self.last_arm,
214
+ "reward_history": self.reward_history,
215
+ "arm_history": self.arm_history,
216
+ "arm_pull_counts": self.arm_pull_counts,
217
+ "terminated": self.terminated,
218
+ "status": self.status,
219
+ "true_expected_rewards": self.true_expected_rewards,
220
+ "rng_state": self._rng.bit_generator.state,
221
+ }
222
+ return BanditEngineSnapshot(
223
+ task_instance_dict=await self.task_instance.serialize(),
224
+ engine_snapshot=snapshot,
225
+ )
226
+
227
+ @classmethod
228
+ async def _deserialize_engine(cls, snapshot: BanditEngineSnapshot) -> BanditEngine:
229
+ from .taskset import BanditTaskInstance
230
+
231
+ task_instance = await BanditTaskInstance.deserialize(snapshot.task_instance_dict)
232
+ engine = cls(task_instance)
233
+
234
+ data = snapshot.engine_snapshot
235
+ engine.bandit_type = data.get("bandit_type", engine.bandit_type)
236
+ engine.max_steps = int(data.get("max_steps", engine.max_steps))
237
+ engine.seed = data.get("seed", engine.seed)
238
+ engine.arm_probabilities = data.get("arm_probabilities", engine.arm_probabilities)
239
+ engine.arm_means = data.get("arm_means", engine.arm_means)
240
+ engine.arm_stds = data.get("arm_stds", engine.arm_stds)
241
+ engine.true_expected_rewards = list(data.get("true_expected_rewards", engine.true_expected_rewards))
242
+ engine.arm_count = len(engine.true_expected_rewards)
243
+
244
+ engine.step_count = int(data.get("step_count", 0))
245
+ engine.total_reward = float(data.get("total_reward", 0.0))
246
+ engine.last_reward = float(data.get("last_reward", 0.0))
247
+ engine.last_arm = data.get("last_arm")
248
+ engine.reward_history = list(data.get("reward_history", []))
249
+ engine.arm_history = list(data.get("arm_history", []))
250
+ engine.arm_pull_counts = list(data.get("arm_pull_counts", [0 for _ in range(engine.arm_count)]))
251
+ engine.terminated = bool(data.get("terminated", False))
252
+ engine.status = data.get("status", "in_progress")
253
+
254
+ engine._rng = np.random.default_rng()
255
+ rng_state = data.get("rng_state")
256
+ if rng_state is not None:
257
+ engine._rng.bit_generator.state = rng_state
258
+
259
+ return engine
260
+
261
+
262
+ class SynthBanditObservationCallable(GetObservationCallable):
263
+ async def get_observation(
264
+ self, pub: BanditPublicState, priv: BanditPrivateState
265
+ ) -> InternalObservation:
266
+ observation: InternalObservation = {
267
+ "arm_count": pub.arm_count,
268
+ "steps_taken": pub.step_count,
269
+ "steps_remaining": pub.steps_remaining,
270
+ "last_arm": pub.last_arm,
271
+ "last_reward": pub.last_reward,
272
+ "cumulative_reward": priv.total_reward,
273
+ "average_reward": pub.average_reward,
274
+ "arm_pull_counts": pub.arm_pull_counts,
275
+ "reward_history": pub.reward_history,
276
+ "terminated": pub.terminated,
277
+ "status": pub.status,
278
+ }
279
+ return observation
280
+
281
+
282
+ class SynthBanditCheckpointObservationCallable(GetObservationCallable):
283
+ async def get_observation(
284
+ self, pub: BanditPublicState, priv: BanditPrivateState
285
+ ) -> InternalObservation:
286
+ observation: InternalObservation = {
287
+ "arm_count": pub.arm_count,
288
+ "total_reward": priv.total_reward,
289
+ "steps_taken": pub.step_count,
290
+ "best_expected_reward": max(priv.true_expected_rewards) if priv.true_expected_rewards else None,
291
+ "terminated": pub.terminated,
292
+ "status": pub.status,
293
+ }
294
+ return observation
@@ -0,0 +1,194 @@
1
+ from __future__ import annotations
2
+
3
+ from typing import Any
4
+
5
+ from pydantic import BaseModel, Field, ValidationError
6
+
7
+ from synth_ai.environments.environment.shared_engine import (
8
+ GetObservationCallable,
9
+ InternalObservation,
10
+ )
11
+ from synth_ai.environments.environment.tools import (
12
+ AbstractTool,
13
+ EnvToolCall,
14
+ ToolResult,
15
+ )
16
+ from synth_ai.environments.reproducibility.core import ReproducibleEnvironment
17
+ from synth_ai.environments.stateful.core import StatefulEnvironment
18
+ from synth_ai.environments.tasks.core import TaskInstance
19
+
20
+ from .engine import (
21
+ BanditEngine,
22
+ BanditEngineSnapshot,
23
+ SynthBanditCheckpointObservationCallable,
24
+ SynthBanditObservationCallable,
25
+ )
26
+
27
+
28
+ class BanditActionInput(BaseModel):
29
+ arm: int = Field(..., ge=0, description="Index of the arm to pull (0-based)")
30
+
31
+
32
+ class BanditInteractTool(AbstractTool):
33
+ name = "pull_arm"
34
+ description = "Pull a specific bandit arm to receive a stochastic reward."
35
+ call_schema = BanditActionInput
36
+ result_schema = ToolResult
37
+
38
+ def __init__(self, engine: BanditEngine):
39
+ self.engine = engine
40
+
41
+ async def __call__(self, call: EnvToolCall) -> ToolResult:
42
+ try:
43
+ parsed = self.call_schema(**call.args)
44
+ except ValidationError as exc:
45
+ return ToolResult(ok=False, error=str(exc))
46
+
47
+ try:
48
+ private_state, public_state = await self.engine._step_engine(parsed.arm)
49
+ except Exception as exc: # noqa: BLE001 - propagate as tool error
50
+ priv, pub = self.engine.get_current_states_for_observation()
51
+ return ToolResult(
52
+ ok=False,
53
+ error=str(exc),
54
+ payload={"private_state": priv, "public_state": pub},
55
+ )
56
+
57
+ return ToolResult(
58
+ ok=True,
59
+ payload={"private_state": private_state, "public_state": public_state},
60
+ )
61
+
62
+
63
+ class BanditEnvironment(StatefulEnvironment, ReproducibleEnvironment[BanditEngine]):
64
+ def __init__(
65
+ self,
66
+ task_instance: TaskInstance,
67
+ custom_step_obs: GetObservationCallable | None = None,
68
+ custom_ckpt_obs: GetObservationCallable | None = None,
69
+ ) -> None:
70
+ self.name = "Bandit"
71
+ self.task_instance = task_instance
72
+ self.custom_step_observation_callable = custom_step_obs or SynthBanditObservationCallable()
73
+ self.custom_checkpoint_observation_callable = (
74
+ custom_ckpt_obs or SynthBanditCheckpointObservationCallable()
75
+ )
76
+ self.engine = BanditEngine(task_instance)
77
+ self._interact_tool = BanditInteractTool(self.engine)
78
+
79
+ async def initialize(self) -> InternalObservation:
80
+ priv, pub = await self.engine._reset_engine()
81
+ return await self._to_observation(priv, pub, self.custom_step_observation_callable)
82
+
83
+ async def step(self, tool_calls: list[EnvToolCall] | EnvToolCall | Any) -> InternalObservation:
84
+ validated_call = self.validate_tool_calls(tool_calls)
85
+ result = await self._interact_tool(validated_call)
86
+
87
+ if result.ok and result.payload:
88
+ priv = result.payload["private_state"]
89
+ pub = result.payload["public_state"]
90
+ return await self._to_observation(priv, pub, self.custom_step_observation_callable)
91
+
92
+ priv, pub = self.engine.get_current_states_for_observation()
93
+ return await self._to_observation(
94
+ priv,
95
+ pub,
96
+ self.custom_step_observation_callable,
97
+ extra_obs={"error": result.error} if result.error else None,
98
+ )
99
+
100
+ async def checkpoint(self) -> InternalObservation:
101
+ priv, pub = self.engine.get_current_states_for_observation()
102
+ return await self._to_observation(priv, pub, self.custom_checkpoint_observation_callable)
103
+
104
+ async def terminate(self) -> InternalObservation:
105
+ priv, pub = self.engine.get_current_states_for_observation()
106
+ self.engine.terminated = True
107
+ pub.terminated = True
108
+ priv.terminated = True
109
+ if pub.status != "completed":
110
+ pub.status = "terminated"
111
+ return await self._to_observation(priv, pub, self.custom_checkpoint_observation_callable)
112
+
113
+ def validate_tool_calls(self, tool_calls: Any) -> EnvToolCall:
114
+ if isinstance(tool_calls, EnvToolCall):
115
+ candidate = tool_calls
116
+ elif isinstance(tool_calls, dict):
117
+ if "tool" in tool_calls:
118
+ candidate = EnvToolCall(tool=tool_calls["tool"], args=tool_calls.get("args", {}))
119
+ elif "name" in tool_calls:
120
+ candidate = EnvToolCall(
121
+ tool=tool_calls["name"], args=tool_calls.get("parameters", {})
122
+ )
123
+ elif "function" in tool_calls:
124
+ func_spec = tool_calls["function"]
125
+ candidate = EnvToolCall(
126
+ tool=func_spec.get("name", "pull_arm"),
127
+ args=func_spec.get("arguments", {}),
128
+ )
129
+ else:
130
+ candidate = EnvToolCall(tool="pull_arm", args=tool_calls)
131
+ elif isinstance(tool_calls, list):
132
+ if not tool_calls:
133
+ raise ValueError("Empty tool calls list")
134
+ return self.validate_tool_calls(tool_calls[0])
135
+ else:
136
+ if isinstance(tool_calls, int):
137
+ return EnvToolCall(tool="pull_arm", args={"arm": tool_calls})
138
+ try:
139
+ return EnvToolCall(tool="pull_arm", args={"arm": int(tool_calls)})
140
+ except (TypeError, ValueError) as exc:
141
+ raise TypeError("Unsupported tool_calls format for bandit environment") from exc
142
+
143
+ tool_name = candidate.tool
144
+ if tool_name not in {"pull_arm", "interact"}:
145
+ raise ValueError(f"Unknown tool: {tool_name}")
146
+
147
+ args = dict(candidate.args or {})
148
+ if "arm" not in args:
149
+ for alias in ("action", "index", "arm_index", "armId", "choice"):
150
+ if alias in args:
151
+ args["arm"] = args[alias]
152
+ break
153
+ if "arm" not in args:
154
+ raise ValueError("Missing required 'arm' argument")
155
+
156
+ try:
157
+ arm_idx = int(args["arm"])
158
+ except (TypeError, ValueError) as exc:
159
+ raise ValueError("'arm' argument must be an integer") from exc
160
+
161
+ if arm_idx < 0:
162
+ raise ValueError("'arm' argument must be non-negative")
163
+
164
+ return EnvToolCall(tool="pull_arm", args={"arm": arm_idx})
165
+
166
+ async def _to_observation(
167
+ self,
168
+ priv,
169
+ pub,
170
+ obs_cb: GetObservationCallable | None,
171
+ extra_obs: dict[str, Any] | None = None,
172
+ ) -> InternalObservation:
173
+ observation: InternalObservation
174
+ if obs_cb:
175
+ observation = await obs_cb.get_observation(pub, priv)
176
+ else:
177
+ observation = {}
178
+ if extra_obs and isinstance(observation, dict):
179
+ observation.update(extra_obs)
180
+ return observation
181
+
182
+ async def _serialize_engine(self) -> BanditEngineSnapshot:
183
+ return await self.engine._serialize_engine()
184
+
185
+ @classmethod
186
+ async def _deserialize_engine(
187
+ cls,
188
+ snapshot: BanditEngineSnapshot,
189
+ task_instance: TaskInstance,
190
+ ) -> BanditEnvironment:
191
+ env = cls(task_instance)
192
+ env.engine = await BanditEngine._deserialize_engine(snapshot)
193
+ env._interact_tool = BanditInteractTool(env.engine)
194
+ return env
@@ -0,0 +1,200 @@
1
+ from __future__ import annotations
2
+
3
+ from collections.abc import Iterable
4
+ from dataclasses import dataclass
5
+ from typing import Any
6
+ from uuid import UUID, uuid4
7
+
8
+ from synth_ai.environments.tasks.core import (
9
+ Impetus,
10
+ Intent,
11
+ SplitInfo,
12
+ TaskInstance,
13
+ TaskInstanceMetadata,
14
+ TaskInstanceSet,
15
+ )
16
+
17
+
18
+ @dataclass
19
+ class BanditTaskInstanceMetadata(TaskInstanceMetadata):
20
+ name: str
21
+ bandit_type: str
22
+ arm_probabilities: list[float] | None
23
+ arm_means: list[float] | None
24
+ arm_stds: list[float] | None
25
+ max_steps: int
26
+ seed: int | None = None
27
+
28
+
29
+ @dataclass
30
+ class BanditTaskInstance(TaskInstance):
31
+ async def serialize(self) -> dict[str, Any]:
32
+ return {
33
+ "id": str(self.id),
34
+ "impetus": {"instructions": self.impetus.instructions},
35
+ "intent": {
36
+ "rubric": self.intent.rubric,
37
+ "gold_trajectories": self.intent.gold_trajectories,
38
+ "gold_state_diff": self.intent.gold_state_diff,
39
+ },
40
+ "metadata": {
41
+ "name": self.metadata.name,
42
+ "bandit_type": self.metadata.bandit_type,
43
+ "arm_probabilities": self.metadata.arm_probabilities,
44
+ "arm_means": self.metadata.arm_means,
45
+ "arm_stds": self.metadata.arm_stds,
46
+ "max_steps": self.metadata.max_steps,
47
+ "seed": self.metadata.seed,
48
+ },
49
+ "is_reproducible": self.is_reproducible,
50
+ "initial_engine_snapshot": self.initial_engine_snapshot,
51
+ }
52
+
53
+ @classmethod
54
+ async def deserialize(cls, data: dict[str, Any]) -> BanditTaskInstance:
55
+ metadata = BanditTaskInstanceMetadata(
56
+ name=data["metadata"].get("name", "bandit"),
57
+ bandit_type=data["metadata"].get("bandit_type", "bernoulli"),
58
+ arm_probabilities=data["metadata"].get("arm_probabilities"),
59
+ arm_means=data["metadata"].get("arm_means"),
60
+ arm_stds=data["metadata"].get("arm_stds"),
61
+ max_steps=int(data["metadata"].get("max_steps", 100)),
62
+ seed=data["metadata"].get("seed"),
63
+ )
64
+ return cls(
65
+ id=UUID(data["id"]),
66
+ impetus=Impetus(instructions=data["impetus"]["instructions"]),
67
+ intent=Intent(
68
+ rubric=data["intent"].get("rubric", {}),
69
+ gold_trajectories=data["intent"].get("gold_trajectories"),
70
+ gold_state_diff=data["intent"].get("gold_state_diff", {}),
71
+ ),
72
+ metadata=metadata,
73
+ is_reproducible=bool(data.get("is_reproducible", True)),
74
+ initial_engine_snapshot=data.get("initial_engine_snapshot"),
75
+ )
76
+
77
+
78
+ def _expected_rewards(metadata: BanditTaskInstanceMetadata) -> list[float]:
79
+ if metadata.bandit_type.lower() == "bernoulli" and metadata.arm_probabilities:
80
+ return [float(p) for p in metadata.arm_probabilities]
81
+ if metadata.bandit_type.lower() == "gaussian" and metadata.arm_means:
82
+ return [float(m) for m in metadata.arm_means]
83
+ return []
84
+
85
+
86
+ def _default_bandit_configs() -> list[dict[str, Any]]:
87
+ return [
88
+ {
89
+ "name": "bernoulli-easy",
90
+ "bandit_type": "bernoulli",
91
+ "arm_probabilities": [0.1, 0.4, 0.8],
92
+ "max_steps": 50,
93
+ "seed": 7,
94
+ },
95
+ {
96
+ "name": "bernoulli-close",
97
+ "bandit_type": "bernoulli",
98
+ "arm_probabilities": [0.45, 0.5, 0.55],
99
+ "max_steps": 75,
100
+ "seed": 21,
101
+ },
102
+ {
103
+ "name": "gaussian-wide",
104
+ "bandit_type": "gaussian",
105
+ "arm_means": [0.0, 0.3, 1.0],
106
+ "arm_stds": [0.2, 0.2, 0.4],
107
+ "max_steps": 60,
108
+ "seed": 14,
109
+ },
110
+ ]
111
+
112
+
113
+ def _build_impetus(metadata: BanditTaskInstanceMetadata, arm_count: int) -> Impetus:
114
+ bandit_desc = metadata.bandit_type.capitalize()
115
+ return Impetus(
116
+ instructions=(
117
+ f"You are interacting with a {bandit_desc} multi-armed bandit task. "
118
+ f"There are {arm_count} arms, indexed from 0 to {arm_count - 1}. "
119
+ f"You may pull up to {metadata.max_steps} arms. "
120
+ "Your objective is to maximize the cumulative reward by learning which arm has the highest expected payoff."
121
+ )
122
+ )
123
+
124
+
125
+ def _build_intent(expected_rewards: Iterable[float]) -> Intent:
126
+ rewards = list(expected_rewards)
127
+ best_arm = max(range(len(rewards)), key=rewards.__getitem__) if rewards else 0
128
+ return Intent(
129
+ rubric={
130
+ "goal": "Maximize cumulative reward over the episode",
131
+ "measurement": "Higher total reward indicates better performance",
132
+ },
133
+ gold_trajectories=None,
134
+ gold_state_diff={
135
+ "best_arm_index": best_arm,
136
+ "expected_rewards": rewards,
137
+ },
138
+ )
139
+
140
+
141
+ async def create_bandit_taskset(
142
+ configs: list[dict[str, Any]] | None = None,
143
+ ) -> TaskInstanceSet:
144
+ configs = configs or _default_bandit_configs()
145
+
146
+ instances: list[BanditTaskInstance] = []
147
+ for config in configs:
148
+ metadata = BanditTaskInstanceMetadata(
149
+ name=config.get("name", "bandit"),
150
+ bandit_type=config.get("bandit_type", "bernoulli"),
151
+ arm_probabilities=config.get("arm_probabilities"),
152
+ arm_means=config.get("arm_means"),
153
+ arm_stds=config.get("arm_stds"),
154
+ max_steps=int(config.get("max_steps", 100)),
155
+ seed=config.get("seed"),
156
+ )
157
+
158
+ expected = _expected_rewards(metadata)
159
+ arm_count = len(expected) if expected else (
160
+ len(metadata.arm_probabilities or [])
161
+ or len(metadata.arm_means or [])
162
+ or 0
163
+ )
164
+ if arm_count == 0:
165
+ arm_count = 1
166
+
167
+ impetus = _build_impetus(metadata, arm_count)
168
+ intent = _build_intent(expected)
169
+
170
+ instance = BanditTaskInstance(
171
+ id=uuid4(),
172
+ impetus=impetus,
173
+ intent=intent,
174
+ metadata=metadata,
175
+ is_reproducible=True,
176
+ initial_engine_snapshot=None,
177
+ )
178
+ instances.append(instance)
179
+
180
+ # Simple deterministic splits by index
181
+ val_ids = {instances[i].id for i in range(0, len(instances), 3)}
182
+ test_ids = {instances[i].id for i in range(1, len(instances), 3)}
183
+
184
+ split_info = SplitInfo(
185
+ val_instance_ids=val_ids,
186
+ test_instance_ids=test_ids,
187
+ _is_split_defined=bool(instances),
188
+ )
189
+
190
+ return TaskInstanceSet(
191
+ name="Bandit Example TaskSet",
192
+ description="Lightweight Bernoulli and Gaussian bandit tasks inspired by OpenAI Gym bandits.",
193
+ instances=instances,
194
+ split_info=split_info,
195
+ )
196
+
197
+
198
+ # Alias for convenience
199
+
200
+ taskset = create_bandit_taskset