stouputils 1.14.0__py3-none-any.whl → 1.14.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- stouputils/__init__.pyi +15 -0
- stouputils/_deprecated.pyi +12 -0
- stouputils/all_doctests.pyi +46 -0
- stouputils/applications/__init__.pyi +2 -0
- stouputils/applications/automatic_docs.py +3 -0
- stouputils/applications/automatic_docs.pyi +106 -0
- stouputils/applications/upscaler/__init__.pyi +3 -0
- stouputils/applications/upscaler/config.pyi +18 -0
- stouputils/applications/upscaler/image.pyi +109 -0
- stouputils/applications/upscaler/video.pyi +60 -0
- stouputils/archive.pyi +67 -0
- stouputils/backup.pyi +109 -0
- stouputils/collections.pyi +86 -0
- stouputils/continuous_delivery/__init__.pyi +5 -0
- stouputils/continuous_delivery/cd_utils.pyi +129 -0
- stouputils/continuous_delivery/github.pyi +162 -0
- stouputils/continuous_delivery/pypi.pyi +52 -0
- stouputils/continuous_delivery/pyproject.pyi +67 -0
- stouputils/continuous_delivery/stubs.pyi +39 -0
- stouputils/ctx.pyi +211 -0
- stouputils/data_science/config/get.py +51 -51
- stouputils/data_science/data_processing/image/__init__.py +66 -66
- stouputils/data_science/data_processing/image/auto_contrast.py +79 -79
- stouputils/data_science/data_processing/image/axis_flip.py +58 -58
- stouputils/data_science/data_processing/image/bias_field_correction.py +74 -74
- stouputils/data_science/data_processing/image/binary_threshold.py +73 -73
- stouputils/data_science/data_processing/image/blur.py +59 -59
- stouputils/data_science/data_processing/image/brightness.py +54 -54
- stouputils/data_science/data_processing/image/canny.py +110 -110
- stouputils/data_science/data_processing/image/clahe.py +92 -92
- stouputils/data_science/data_processing/image/common.py +30 -30
- stouputils/data_science/data_processing/image/contrast.py +53 -53
- stouputils/data_science/data_processing/image/curvature_flow_filter.py +74 -74
- stouputils/data_science/data_processing/image/denoise.py +378 -378
- stouputils/data_science/data_processing/image/histogram_equalization.py +123 -123
- stouputils/data_science/data_processing/image/invert.py +64 -64
- stouputils/data_science/data_processing/image/laplacian.py +60 -60
- stouputils/data_science/data_processing/image/median_blur.py +52 -52
- stouputils/data_science/data_processing/image/noise.py +59 -59
- stouputils/data_science/data_processing/image/normalize.py +65 -65
- stouputils/data_science/data_processing/image/random_erase.py +66 -66
- stouputils/data_science/data_processing/image/resize.py +69 -69
- stouputils/data_science/data_processing/image/rotation.py +80 -80
- stouputils/data_science/data_processing/image/salt_pepper.py +68 -68
- stouputils/data_science/data_processing/image/sharpening.py +55 -55
- stouputils/data_science/data_processing/image/shearing.py +64 -64
- stouputils/data_science/data_processing/image/threshold.py +64 -64
- stouputils/data_science/data_processing/image/translation.py +71 -71
- stouputils/data_science/data_processing/image/zoom.py +83 -83
- stouputils/data_science/data_processing/image_augmentation.py +118 -118
- stouputils/data_science/data_processing/image_preprocess.py +183 -183
- stouputils/data_science/data_processing/prosthesis_detection.py +359 -359
- stouputils/data_science/data_processing/technique.py +481 -481
- stouputils/data_science/dataset/__init__.py +45 -45
- stouputils/data_science/dataset/dataset.py +292 -292
- stouputils/data_science/dataset/dataset_loader.py +135 -135
- stouputils/data_science/dataset/grouping_strategy.py +296 -296
- stouputils/data_science/dataset/image_loader.py +100 -100
- stouputils/data_science/dataset/xy_tuple.py +696 -696
- stouputils/data_science/metric_dictionnary.py +106 -106
- stouputils/data_science/mlflow_utils.py +206 -206
- stouputils/data_science/models/abstract_model.py +149 -149
- stouputils/data_science/models/all.py +85 -85
- stouputils/data_science/models/keras/all.py +38 -38
- stouputils/data_science/models/keras/convnext.py +62 -62
- stouputils/data_science/models/keras/densenet.py +50 -50
- stouputils/data_science/models/keras/efficientnet.py +60 -60
- stouputils/data_science/models/keras/mobilenet.py +56 -56
- stouputils/data_science/models/keras/resnet.py +52 -52
- stouputils/data_science/models/keras/squeezenet.py +233 -233
- stouputils/data_science/models/keras/vgg.py +42 -42
- stouputils/data_science/models/keras/xception.py +38 -38
- stouputils/data_science/models/keras_utils/callbacks/__init__.py +20 -20
- stouputils/data_science/models/keras_utils/callbacks/colored_progress_bar.py +219 -219
- stouputils/data_science/models/keras_utils/callbacks/learning_rate_finder.py +148 -148
- stouputils/data_science/models/keras_utils/callbacks/model_checkpoint_v2.py +31 -31
- stouputils/data_science/models/keras_utils/callbacks/progressive_unfreezing.py +249 -249
- stouputils/data_science/models/keras_utils/callbacks/warmup_scheduler.py +66 -66
- stouputils/data_science/models/keras_utils/losses/__init__.py +12 -12
- stouputils/data_science/models/keras_utils/losses/next_generation_loss.py +56 -56
- stouputils/data_science/models/keras_utils/visualizations.py +416 -416
- stouputils/data_science/models/sandbox.py +116 -116
- stouputils/data_science/range_tuple.py +234 -234
- stouputils/data_science/utils.py +285 -285
- stouputils/decorators.pyi +242 -0
- stouputils/image.pyi +172 -0
- stouputils/installer/__init__.py +18 -18
- stouputils/installer/__init__.pyi +5 -0
- stouputils/installer/common.pyi +39 -0
- stouputils/installer/downloader.pyi +24 -0
- stouputils/installer/linux.py +144 -144
- stouputils/installer/linux.pyi +39 -0
- stouputils/installer/main.py +223 -223
- stouputils/installer/main.pyi +57 -0
- stouputils/installer/windows.py +136 -136
- stouputils/installer/windows.pyi +31 -0
- stouputils/io.pyi +213 -0
- stouputils/parallel.py +12 -10
- stouputils/parallel.pyi +211 -0
- stouputils/print.pyi +136 -0
- stouputils/py.typed +1 -1
- stouputils/stouputils/parallel.pyi +4 -4
- stouputils/version_pkg.pyi +15 -0
- {stouputils-1.14.0.dist-info → stouputils-1.14.2.dist-info}/METADATA +1 -1
- stouputils-1.14.2.dist-info/RECORD +171 -0
- stouputils-1.14.0.dist-info/RECORD +0 -140
- {stouputils-1.14.0.dist-info → stouputils-1.14.2.dist-info}/WHEEL +0 -0
- {stouputils-1.14.0.dist-info → stouputils-1.14.2.dist-info}/entry_points.txt +0 -0
stouputils/parallel.pyi
ADDED
|
@@ -0,0 +1,211 @@
|
|
|
1
|
+
from .ctx import SetMPStartMethod as SetMPStartMethod
|
|
2
|
+
from .print import BAR_FORMAT as BAR_FORMAT, MAGENTA as MAGENTA
|
|
3
|
+
from collections.abc import Callable, Iterable
|
|
4
|
+
from typing import Any, TypeVar
|
|
5
|
+
|
|
6
|
+
def doctest_square(x: int) -> int: ...
|
|
7
|
+
def doctest_slow(x: int) -> int: ...
|
|
8
|
+
|
|
9
|
+
CPU_COUNT: int
|
|
10
|
+
T = TypeVar('T')
|
|
11
|
+
R = TypeVar('R')
|
|
12
|
+
|
|
13
|
+
def multiprocessing[T, R](func: Callable[..., R] | list[Callable[..., R]], args: Iterable[T], use_starmap: bool = False, chunksize: int = 1, desc: str = '', max_workers: int | float = ..., delay_first_calls: float = 0, color: str = ..., bar_format: str = ..., ascii: bool = False) -> list[R]:
|
|
14
|
+
''' Method to execute a function in parallel using multiprocessing
|
|
15
|
+
|
|
16
|
+
\t- For CPU-bound operations where the GIL (Global Interpreter Lock) is a bottleneck.
|
|
17
|
+
\t- When the task can be divided into smaller, independent sub-tasks that can be executed concurrently.
|
|
18
|
+
\t- For computationally intensive tasks like scientific simulations, data analysis, or machine learning workloads.
|
|
19
|
+
|
|
20
|
+
\tArgs:
|
|
21
|
+
\t\tfunc\t\t\t\t(Callable | list[Callable]):\tFunction to execute, or list of functions (one per argument)
|
|
22
|
+
\t\targs\t\t\t\t(Iterable):\t\t\tIterable of arguments to pass to the function(s)
|
|
23
|
+
\t\tuse_starmap\t\t\t(bool):\t\t\t\tWhether to use starmap or not (Defaults to False):
|
|
24
|
+
\t\t\tTrue means the function will be called like func(\\*args[i]) instead of func(args[i])
|
|
25
|
+
\t\tchunksize\t\t\t(int):\t\t\t\tNumber of arguments to process at a time
|
|
26
|
+
\t\t\t(Defaults to 1 for proper progress bar display)
|
|
27
|
+
\t\tdesc\t\t\t\t(str):\t\t\t\tDescription displayed in the progress bar
|
|
28
|
+
\t\t\t(if not provided no progress bar will be displayed)
|
|
29
|
+
\t\tmax_workers\t\t\t(int | float):\t\tNumber of workers to use (Defaults to CPU_COUNT), -1 means CPU_COUNT.
|
|
30
|
+
\t\t\tIf float between 0 and 1, it\'s treated as a percentage of CPU_COUNT.
|
|
31
|
+
\t\t\tIf negative float between -1 and 0, it\'s treated as a percentage of len(args).
|
|
32
|
+
\t\tdelay_first_calls\t(float):\t\t\tApply i*delay_first_calls seconds delay to the first "max_workers" calls.
|
|
33
|
+
\t\t\tFor instance, the first process will be delayed by 0 seconds, the second by 1 second, etc.
|
|
34
|
+
\t\t\t(Defaults to 0): This can be useful to avoid functions being called in the same second.
|
|
35
|
+
\t\tcolor\t\t\t\t(str):\t\t\t\tColor of the progress bar (Defaults to MAGENTA)
|
|
36
|
+
\t\tbar_format\t\t\t(str):\t\t\t\tFormat of the progress bar (Defaults to BAR_FORMAT)
|
|
37
|
+
\t\tascii\t\t\t\t(bool):\t\t\t\tWhether to use ASCII or Unicode characters for the progress bar
|
|
38
|
+
|
|
39
|
+
\tReturns:
|
|
40
|
+
\t\tlist[object]:\tResults of the function execution
|
|
41
|
+
|
|
42
|
+
\tExamples:
|
|
43
|
+
\t\t.. code-block:: python
|
|
44
|
+
|
|
45
|
+
\t\t\t> multiprocessing(doctest_square, args=[1, 2, 3])
|
|
46
|
+
\t\t\t[1, 4, 9]
|
|
47
|
+
|
|
48
|
+
\t\t\t> multiprocessing(int.__mul__, [(1,2), (3,4), (5,6)], use_starmap=True)
|
|
49
|
+
\t\t\t[2, 12, 30]
|
|
50
|
+
|
|
51
|
+
\t\t\t> # Using a list of functions (one per argument)
|
|
52
|
+
\t\t\t> multiprocessing([doctest_square, doctest_square, doctest_square], [1, 2, 3])
|
|
53
|
+
\t\t\t[1, 4, 9]
|
|
54
|
+
|
|
55
|
+
\t\t\t> # Will process in parallel with progress bar
|
|
56
|
+
\t\t\t> multiprocessing(doctest_slow, range(10), desc="Processing")
|
|
57
|
+
\t\t\t[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
|
|
58
|
+
|
|
59
|
+
\t\t\t> # Will process in parallel with progress bar and delay the first threads
|
|
60
|
+
\t\t\t> multiprocessing(
|
|
61
|
+
\t\t\t. doctest_slow,
|
|
62
|
+
\t\t\t. range(10),
|
|
63
|
+
\t\t\t. desc="Processing with delay",
|
|
64
|
+
\t\t\t. max_workers=2,
|
|
65
|
+
\t\t\t. delay_first_calls=0.6
|
|
66
|
+
\t\t\t. )
|
|
67
|
+
\t\t\t[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
|
|
68
|
+
\t'''
|
|
69
|
+
def multithreading[T, R](func: Callable[..., R] | list[Callable[..., R]], args: Iterable[T], use_starmap: bool = False, desc: str = '', max_workers: int | float = ..., delay_first_calls: float = 0, color: str = ..., bar_format: str = ..., ascii: bool = False) -> list[R]:
|
|
70
|
+
''' Method to execute a function in parallel using multithreading, you should use it:
|
|
71
|
+
|
|
72
|
+
\t- For I/O-bound operations where the GIL is not a bottleneck, such as network requests or disk operations.
|
|
73
|
+
\t- When the task involves waiting for external resources, such as network responses or user input.
|
|
74
|
+
\t- For operations that involve a lot of waiting, such as GUI event handling or handling user input.
|
|
75
|
+
|
|
76
|
+
\tArgs:
|
|
77
|
+
\t\tfunc\t\t\t\t(Callable | list[Callable]):\tFunction to execute, or list of functions (one per argument)
|
|
78
|
+
\t\targs\t\t\t\t(Iterable):\t\t\tIterable of arguments to pass to the function(s)
|
|
79
|
+
\t\tuse_starmap\t\t\t(bool):\t\t\t\tWhether to use starmap or not (Defaults to False):
|
|
80
|
+
\t\t\tTrue means the function will be called like func(\\*args[i]) instead of func(args[i])
|
|
81
|
+
\t\tdesc\t\t\t\t(str):\t\t\t\tDescription displayed in the progress bar
|
|
82
|
+
\t\t\t(if not provided no progress bar will be displayed)
|
|
83
|
+
\t\tmax_workers\t\t\t(int | float):\t\tNumber of workers to use (Defaults to CPU_COUNT), -1 means CPU_COUNT.
|
|
84
|
+
\t\t\tIf float between 0 and 1, it\'s treated as a percentage of CPU_COUNT.
|
|
85
|
+
\t\t\tIf negative float between -1 and 0, it\'s treated as a percentage of len(args).
|
|
86
|
+
\t\tdelay_first_calls\t(float):\t\t\tApply i*delay_first_calls seconds delay to the first "max_workers" calls.
|
|
87
|
+
\t\t\tFor instance with value to 1, the first thread will be delayed by 0 seconds, the second by 1 second, etc.
|
|
88
|
+
\t\t\t(Defaults to 0): This can be useful to avoid functions being called in the same second.
|
|
89
|
+
\t\tcolor\t\t\t\t(str):\t\t\t\tColor of the progress bar (Defaults to MAGENTA)
|
|
90
|
+
\t\tbar_format\t\t\t(str):\t\t\t\tFormat of the progress bar (Defaults to BAR_FORMAT)
|
|
91
|
+
\t\tascii\t\t\t\t(bool):\t\t\t\tWhether to use ASCII or Unicode characters for the progress bar
|
|
92
|
+
|
|
93
|
+
\tReturns:
|
|
94
|
+
\t\tlist[object]:\tResults of the function execution
|
|
95
|
+
|
|
96
|
+
\tExamples:
|
|
97
|
+
\t\t.. code-block:: python
|
|
98
|
+
|
|
99
|
+
\t\t\t> multithreading(doctest_square, args=[1, 2, 3])
|
|
100
|
+
\t\t\t[1, 4, 9]
|
|
101
|
+
|
|
102
|
+
\t\t\t> multithreading(int.__mul__, [(1,2), (3,4), (5,6)], use_starmap=True)
|
|
103
|
+
\t\t\t[2, 12, 30]
|
|
104
|
+
|
|
105
|
+
\t\t\t> # Using a list of functions (one per argument)
|
|
106
|
+
\t\t\t> multithreading([doctest_square, doctest_square, doctest_square], [1, 2, 3])
|
|
107
|
+
\t\t\t[1, 4, 9]
|
|
108
|
+
|
|
109
|
+
\t\t\t> # Will process in parallel with progress bar
|
|
110
|
+
\t\t\t> multithreading(doctest_slow, range(10), desc="Threading")
|
|
111
|
+
\t\t\t[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
|
|
112
|
+
|
|
113
|
+
\t\t\t> # Will process in parallel with progress bar and delay the first threads
|
|
114
|
+
\t\t\t> multithreading(
|
|
115
|
+
\t\t\t. doctest_slow,
|
|
116
|
+
\t\t\t. range(10),
|
|
117
|
+
\t\t\t. desc="Threading with delay",
|
|
118
|
+
\t\t\t. max_workers=2,
|
|
119
|
+
\t\t\t. delay_first_calls=0.6
|
|
120
|
+
\t\t\t. )
|
|
121
|
+
\t\t\t[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
|
|
122
|
+
\t'''
|
|
123
|
+
def run_in_subprocess[R](func: Callable[..., R], *args: Any, timeout: float | None = None, **kwargs: Any) -> R:
|
|
124
|
+
''' Execute a function in a subprocess with positional and keyword arguments.
|
|
125
|
+
|
|
126
|
+
\tThis is useful when you need to run a function in isolation to avoid memory leaks,
|
|
127
|
+
\tresource conflicts, or to ensure a clean execution environment. The subprocess will
|
|
128
|
+
\tbe created, run the function with the provided arguments, and return the result.
|
|
129
|
+
|
|
130
|
+
\tArgs:
|
|
131
|
+
\t\tfunc (Callable): The function to execute in a subprocess.
|
|
132
|
+
\t\t\t(SHOULD BE A TOP-LEVEL FUNCTION TO BE PICKLABLE)
|
|
133
|
+
\t\t*args (Any): Positional arguments to pass to the function.
|
|
134
|
+
\t\ttimeout (float | None): Maximum time in seconds to wait for the subprocess.
|
|
135
|
+
\t\t\tIf None, wait indefinitely. If the subprocess exceeds this time, it will be terminated.
|
|
136
|
+
\t\t**kwargs (Any): Keyword arguments to pass to the function.
|
|
137
|
+
|
|
138
|
+
\tReturns:
|
|
139
|
+
\t\tR: The return value of the function.
|
|
140
|
+
|
|
141
|
+
\tRaises:
|
|
142
|
+
\t\tRuntimeError: If the subprocess exits with a non-zero exit code or times out.
|
|
143
|
+
\t\tTimeoutError: If the subprocess exceeds the specified timeout.
|
|
144
|
+
|
|
145
|
+
\tExamples:
|
|
146
|
+
\t\t.. code-block:: python
|
|
147
|
+
|
|
148
|
+
\t\t\t> # Simple function execution
|
|
149
|
+
\t\t\t> run_in_subprocess(doctest_square, 5)
|
|
150
|
+
\t\t\t25
|
|
151
|
+
|
|
152
|
+
\t\t\t> # Function with multiple arguments
|
|
153
|
+
\t\t\t> def add(a: int, b: int) -> int:
|
|
154
|
+
\t\t\t. return a + b
|
|
155
|
+
\t\t\t> run_in_subprocess(add, 10, 20)
|
|
156
|
+
\t\t\t30
|
|
157
|
+
|
|
158
|
+
\t\t\t> # Function with keyword arguments
|
|
159
|
+
\t\t\t> def greet(name: str, greeting: str = "Hello") -> str:
|
|
160
|
+
\t\t\t. return f"{greeting}, {name}!"
|
|
161
|
+
\t\t\t> run_in_subprocess(greet, "World", greeting="Hi")
|
|
162
|
+
\t\t\t\'Hi, World!\'
|
|
163
|
+
|
|
164
|
+
\t\t\t> # With timeout to prevent hanging
|
|
165
|
+
\t\t\t> run_in_subprocess(some_gpu_func, data, timeout=300.0)
|
|
166
|
+
\t'''
|
|
167
|
+
def _subprocess_wrapper[R](result_queue: Any, func: Callable[..., R], args: tuple[Any, ...], kwargs: dict[str, Any]) -> None:
|
|
168
|
+
""" Wrapper function to execute the target function and store the result in the queue.
|
|
169
|
+
|
|
170
|
+
\tMust be at module level to be pickable on Windows (spawn context).
|
|
171
|
+
|
|
172
|
+
\tArgs:
|
|
173
|
+
\t\tresult_queue (multiprocessing.Queue): Queue to store the result or exception.
|
|
174
|
+
\t\tfunc (Callable): The target function to execute.
|
|
175
|
+
\t\targs (tuple): Positional arguments for the function.
|
|
176
|
+
\t\tkwargs (dict): Keyword arguments for the function.
|
|
177
|
+
\t"""
|
|
178
|
+
def _starmap[T, R](args: tuple[Callable[[T], R], list[T]]) -> R:
|
|
179
|
+
""" Private function to use starmap using args[0](\\*args[1])
|
|
180
|
+
|
|
181
|
+
\tArgs:
|
|
182
|
+
\t\targs (tuple): Tuple containing the function and the arguments list to pass to the function
|
|
183
|
+
\tReturns:
|
|
184
|
+
\t\tobject: Result of the function execution
|
|
185
|
+
\t"""
|
|
186
|
+
def _delayed_call[T, R](args: tuple[Callable[[T], R], float, T]) -> R:
|
|
187
|
+
""" Private function to apply delay before calling the target function
|
|
188
|
+
|
|
189
|
+
\tArgs:
|
|
190
|
+
\t\targs (tuple): Tuple containing the function, delay in seconds, and the argument to pass to the function
|
|
191
|
+
\tReturns:
|
|
192
|
+
\t\tobject: Result of the function execution
|
|
193
|
+
\t"""
|
|
194
|
+
def _handle_parameters[T, R](func: Callable[[T], R] | list[Callable[[T], R]], args: list[T], use_starmap: bool, delay_first_calls: float, max_workers: int, desc: str, color: str) -> tuple[str, Callable[[T], R], list[T]]:
|
|
195
|
+
''' Private function to handle the parameters for multiprocessing or multithreading functions
|
|
196
|
+
|
|
197
|
+
\tArgs:
|
|
198
|
+
\t\tfunc\t\t\t\t(Callable | list[Callable]):\tFunction to execute, or list of functions (one per argument)
|
|
199
|
+
\t\targs\t\t\t\t(list):\t\t\t\tList of arguments to pass to the function(s)
|
|
200
|
+
\t\tuse_starmap\t\t\t(bool):\t\t\t\tWhether to use starmap or not (Defaults to False):
|
|
201
|
+
\t\t\tTrue means the function will be called like func(\\*args[i]) instead of func(args[i])
|
|
202
|
+
\t\tdelay_first_calls\t(int):\t\t\t\tApply i*delay_first_calls seconds delay to the first "max_workers" calls.
|
|
203
|
+
\t\t\tFor instance, the first process will be delayed by 0 seconds, the second by 1 second, etc. (Defaults to 0):
|
|
204
|
+
\t\t\tThis can be useful to avoid functions being called in the same second.
|
|
205
|
+
\t\tmax_workers\t\t\t(int):\t\t\t\tNumber of workers to use (Defaults to CPU_COUNT)
|
|
206
|
+
\t\tdesc\t\t\t\t(str):\t\t\t\tDescription of the function execution displayed in the progress bar
|
|
207
|
+
\t\tcolor\t\t\t\t(str):\t\t\t\tColor of the progress bar
|
|
208
|
+
|
|
209
|
+
\tReturns:
|
|
210
|
+
\t\ttuple[str, Callable[[T], R], list[T]]:\tTuple containing the description, function, and arguments
|
|
211
|
+
\t'''
|
stouputils/print.pyi
ADDED
|
@@ -0,0 +1,136 @@
|
|
|
1
|
+
from collections.abc import Callable as Callable, Iterable, Iterator
|
|
2
|
+
from typing import Any, IO, TextIO, TypeVar
|
|
3
|
+
|
|
4
|
+
RESET: str
|
|
5
|
+
RED: str
|
|
6
|
+
GREEN: str
|
|
7
|
+
YELLOW: str
|
|
8
|
+
BLUE: str
|
|
9
|
+
MAGENTA: str
|
|
10
|
+
CYAN: str
|
|
11
|
+
LINE_UP: str
|
|
12
|
+
BAR_FORMAT: str
|
|
13
|
+
T = TypeVar('T')
|
|
14
|
+
previous_args_kwards: tuple[Any, Any]
|
|
15
|
+
nb_values: int
|
|
16
|
+
import_time: float
|
|
17
|
+
|
|
18
|
+
def colored_for_loop[T](iterable: Iterable[T], desc: str = 'Processing', color: str = ..., bar_format: str = ..., ascii: bool = False, **kwargs: Any) -> Iterator[T]:
|
|
19
|
+
''' Function to iterate over a list with a colored TQDM progress bar like the other functions in this module.
|
|
20
|
+
|
|
21
|
+
\tArgs:
|
|
22
|
+
\t\titerable\t(Iterable):\t\t\tList to iterate over
|
|
23
|
+
\t\tdesc\t\t(str):\t\t\t\tDescription of the function execution displayed in the progress bar
|
|
24
|
+
\t\tcolor\t\t(str):\t\t\t\tColor of the progress bar (Defaults to MAGENTA)
|
|
25
|
+
\t\tbar_format\t(str):\t\t\t\tFormat of the progress bar (Defaults to BAR_FORMAT)
|
|
26
|
+
\t\tascii\t\t(bool):\t\t\t\tWhether to use ASCII or Unicode characters for the progress bar (Defaults to False)
|
|
27
|
+
\t\tverbose\t\t(int):\t\t\t\tLevel of verbosity, decrease by 1 for each depth (Defaults to 1)
|
|
28
|
+
\t\t**kwargs:\t\t\t\t\t\tAdditional arguments to pass to the TQDM progress bar
|
|
29
|
+
|
|
30
|
+
\tYields:
|
|
31
|
+
\t\tT: Each item of the iterable
|
|
32
|
+
|
|
33
|
+
\tExamples:
|
|
34
|
+
\t\t>>> for i in colored_for_loop(range(10), desc="Time sleeping loop"):
|
|
35
|
+
\t\t... time.sleep(0.01)
|
|
36
|
+
\t\t>>> # Time sleeping loop: 100%|██████████████████| 10/10 [ 95.72it/s, 00:00<00:00]
|
|
37
|
+
\t'''
|
|
38
|
+
def info(*values: Any, color: str = ..., text: str = 'INFO ', prefix: str = '', file: TextIO | list[TextIO] | None = None, **print_kwargs: Any) -> None:
|
|
39
|
+
''' Print an information message looking like "[INFO HH:MM:SS] message" in green by default.
|
|
40
|
+
|
|
41
|
+
\tArgs:
|
|
42
|
+
\t\tvalues\t\t\t(Any):\t\t\t\t\tValues to print (like the print function)
|
|
43
|
+
\t\tcolor\t\t\t(str):\t\t\t\t\tColor of the message (default: GREEN)
|
|
44
|
+
\t\ttext\t\t\t(str):\t\t\t\t\tText of the message (default: "INFO ")
|
|
45
|
+
\t\tprefix\t\t\t(str):\t\t\t\t\tPrefix to add to the values
|
|
46
|
+
\t\tfile\t\t\t(TextIO|list[TextIO]):\tFile(s) to write the message to (default: sys.stdout)
|
|
47
|
+
\t\tprint_kwargs\t(dict):\t\t\t\t\tKeyword arguments to pass to the print function
|
|
48
|
+
\t'''
|
|
49
|
+
def debug(*values: Any, **print_kwargs: Any) -> None:
|
|
50
|
+
''' Print a debug message looking like "[DEBUG HH:MM:SS] message" in cyan by default. '''
|
|
51
|
+
def alt_debug(*values: Any, **print_kwargs: Any) -> None:
|
|
52
|
+
''' Print a debug message looking like "[DEBUG HH:MM:SS] message" in blue by default. '''
|
|
53
|
+
def suggestion(*values: Any, **print_kwargs: Any) -> None:
|
|
54
|
+
''' Print a suggestion message looking like "[SUGGESTION HH:MM:SS] message" in cyan by default. '''
|
|
55
|
+
def progress(*values: Any, **print_kwargs: Any) -> None:
|
|
56
|
+
''' Print a progress message looking like "[PROGRESS HH:MM:SS] message" in magenta by default. '''
|
|
57
|
+
def warning(*values: Any, **print_kwargs: Any) -> None:
|
|
58
|
+
''' Print a warning message looking like "[WARNING HH:MM:SS] message" in yellow by default and in sys.stderr. '''
|
|
59
|
+
def error(*values: Any, exit: bool = False, **print_kwargs: Any) -> None:
|
|
60
|
+
""" Print an error message (in sys.stderr and in red by default)
|
|
61
|
+
\tand optionally ask the user to continue or stop the program.
|
|
62
|
+
|
|
63
|
+
\tArgs:
|
|
64
|
+
\t\tvalues\t\t\t(Any):\t\tValues to print (like the print function)
|
|
65
|
+
\t\texit\t\t\t(bool):\t\tWhether to ask the user to continue or stop the program,
|
|
66
|
+
\t\t\tfalse to ignore the error automatically and continue
|
|
67
|
+
\t\tprint_kwargs\t(dict):\t\tKeyword arguments to pass to the print function
|
|
68
|
+
\t"""
|
|
69
|
+
def whatisit(*values: Any, print_function: Callable[..., None] = ..., max_length: int = 250, color: str = ..., **print_kwargs: Any) -> None:
|
|
70
|
+
''' Print the type of each value and the value itself, with its id and length/shape.
|
|
71
|
+
|
|
72
|
+
\tThe output format is: "type, <id id_number>:\t(length/shape) value"
|
|
73
|
+
|
|
74
|
+
\tArgs:
|
|
75
|
+
\t\tvalues\t\t\t(Any):\t\tValues to print
|
|
76
|
+
\t\tprint_function\t(Callable):\tFunction to use to print the values (default: debug())
|
|
77
|
+
\t\tmax_length\t\t(int):\t\tMaximum length of the value string to print (default: 250)
|
|
78
|
+
\t\tcolor\t\t\t(str):\t\tColor of the message (default: CYAN)
|
|
79
|
+
\t\tprint_kwargs\t(dict):\t\tKeyword arguments to pass to the print function
|
|
80
|
+
\t'''
|
|
81
|
+
def breakpoint(*values: Any, print_function: Callable[..., None] = ..., **print_kwargs: Any) -> None:
|
|
82
|
+
""" Breakpoint function, pause the program and print the values.
|
|
83
|
+
|
|
84
|
+
\tArgs:
|
|
85
|
+
\t\tvalues\t\t\t(Any):\t\tValues to print
|
|
86
|
+
\t\tprint_function\t(Callable):\tFunction to use to print the values (default: warning())
|
|
87
|
+
\t\tprint_kwargs\t(dict):\t\tKeyword arguments to pass to the print function
|
|
88
|
+
\t"""
|
|
89
|
+
|
|
90
|
+
class TeeMultiOutput:
|
|
91
|
+
''' File-like object that duplicates output to multiple file-like objects.
|
|
92
|
+
|
|
93
|
+
\tArgs:
|
|
94
|
+
\t\t*files (IO[Any]): One or more file-like objects that have write and flush methods
|
|
95
|
+
\t\tstrip_colors (bool): Strip ANSI color codes from output sent to non-stdout/stderr files
|
|
96
|
+
\t\tascii_only (bool): Replace non-ASCII characters with their ASCII equivalents for non-stdout/stderr files
|
|
97
|
+
\t\tignore_lineup (bool): Ignore lines containing LINE_UP escape sequence in non-terminal outputs
|
|
98
|
+
|
|
99
|
+
\tExamples:
|
|
100
|
+
\t\t>>> f = open("logfile.txt", "w")
|
|
101
|
+
\t\t>>> sys.stdout = TeeMultiOutput(sys.stdout, f)
|
|
102
|
+
\t\t>>> print("Hello World") # Output goes to both console and file
|
|
103
|
+
\t\tHello World
|
|
104
|
+
\t\t>>> f.close()\t# TeeMultiOutput will handle any future writes to closed files gracefully
|
|
105
|
+
\t'''
|
|
106
|
+
files: tuple[IO[Any], ...]
|
|
107
|
+
strip_colors: bool
|
|
108
|
+
ascii_only: bool
|
|
109
|
+
ignore_lineup: bool
|
|
110
|
+
def __init__(self, *files: IO[Any], strip_colors: bool = True, ascii_only: bool = True, ignore_lineup: bool = True) -> None: ...
|
|
111
|
+
@property
|
|
112
|
+
def encoding(self) -> str:
|
|
113
|
+
''' Get the encoding of the first file, or "utf-8" as fallback.
|
|
114
|
+
|
|
115
|
+
\t\tReturns:
|
|
116
|
+
\t\t\tstr: The encoding, ex: "utf-8", "ascii", "latin1", etc.
|
|
117
|
+
\t\t'''
|
|
118
|
+
def write(self, obj: str) -> int:
|
|
119
|
+
""" Write the object to all files while stripping colors if needed.
|
|
120
|
+
|
|
121
|
+
\t\tArgs:
|
|
122
|
+
\t\t\tobj (str): String to write
|
|
123
|
+
\t\tReturns:
|
|
124
|
+
\t\t\tint: Number of characters written to the first file
|
|
125
|
+
\t\t"""
|
|
126
|
+
def flush(self) -> None:
|
|
127
|
+
""" Flush all files. """
|
|
128
|
+
def fileno(self) -> int:
|
|
129
|
+
""" Return the file descriptor of the first file. """
|
|
130
|
+
|
|
131
|
+
def remove_colors(text: str) -> str:
|
|
132
|
+
""" Remove the colors from a text """
|
|
133
|
+
def is_same_print(*args: Any, **kwargs: Any) -> bool:
|
|
134
|
+
""" Checks if the current print call is the same as the previous one. """
|
|
135
|
+
def current_time() -> str:
|
|
136
|
+
''' Get the current time as "HH:MM:SS" if less than 24 hours since import, else "YYYY-MM-DD HH:MM:SS" '''
|
stouputils/py.typed
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
|
|
1
|
+
|
|
@@ -175,10 +175,10 @@ def _subprocess_wrapper[R](result_queue: Any, func: Callable[..., R], args: tupl
|
|
|
175
175
|
\tMust be at module level to be pickable on Windows (spawn context).
|
|
176
176
|
|
|
177
177
|
\tArgs:
|
|
178
|
-
\t\tresult_queue (multiprocessing.Queue): Queue to store the result or exception.
|
|
179
|
-
\t\tfunc (Callable):
|
|
180
|
-
\t\targs (tuple):
|
|
181
|
-
\t\tkwargs (dict):
|
|
178
|
+
\t\tresult_queue (multiprocessing.Queue | None): Queue to store the result or exception (None if detached).
|
|
179
|
+
\t\tfunc (Callable): The target function to execute.
|
|
180
|
+
\t\targs (tuple): Positional arguments for the function.
|
|
181
|
+
\t\tkwargs (dict): Keyword arguments for the function.
|
|
182
182
|
\t"""
|
|
183
183
|
def _starmap[T, R](args: tuple[Callable[[T], R], list[T]]) -> R:
|
|
184
184
|
""" Private function to use starmap using args[0](\\*args[1])
|
|
@@ -0,0 +1,15 @@
|
|
|
1
|
+
from .print import CYAN as CYAN, GREEN as GREEN, RESET as RESET, YELLOW as YELLOW
|
|
2
|
+
|
|
3
|
+
def show_version(main_package: str = 'stouputils', primary_color: str = ..., secondary_color: str = ..., max_depth: int = 2) -> None:
|
|
4
|
+
''' Print the version of the main package and its dependencies.
|
|
5
|
+
|
|
6
|
+
\tUsed by the "stouputils --version" command.
|
|
7
|
+
|
|
8
|
+
\tArgs:
|
|
9
|
+
\t\tmain_package\t(str):\tName of the main package to show version for
|
|
10
|
+
\t\tprimary_color\t(str):\tColor to use for the primary package name
|
|
11
|
+
\t\tsecondary_color\t(str):\tColor to use for the secondary package names
|
|
12
|
+
\t\tmax_depth\t\t(int):\tMaximum depth for dependency tree (<= 2 for flat, >=3 for tree)
|
|
13
|
+
\t'''
|
|
14
|
+
def show_version_cli() -> None:
|
|
15
|
+
''' Handle the "stouputils --version" CLI command '''
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.3
|
|
2
2
|
Name: stouputils
|
|
3
|
-
Version: 1.14.
|
|
3
|
+
Version: 1.14.2
|
|
4
4
|
Summary: Stouputils is a collection of utility modules designed to simplify and enhance the development process. It includes a range of tools for tasks such as execution of doctests, display utilities, decorators, as well as context managers, and many more.
|
|
5
5
|
Keywords: utilities,tools,helpers,development,python
|
|
6
6
|
Author: Stoupy51
|
|
@@ -0,0 +1,171 @@
|
|
|
1
|
+
stouputils/__init__.py,sha256=KMJoy8FCiiiXJ53QfgU3rz7AY7AJ_j5kP3j24JuznC0,1136
|
|
2
|
+
stouputils/__init__.pyi,sha256=J8LeijIkWrTdGlevNR8dlGlgYg-Dh_MvGjp2EsPZ8UM,351
|
|
3
|
+
stouputils/__main__.py,sha256=sJSncuTWua7jA9pTw4BUoDzNUUExZKeyATbmY4lhl0E,2764
|
|
4
|
+
stouputils/_deprecated.py,sha256=Bcq6YjdM9Rk9Vq-WMhc_tuEbPORX6U8HAJ9Vh-VIWTA,1478
|
|
5
|
+
stouputils/_deprecated.pyi,sha256=6-8YsftJd2fRAdBLsysc6jf-uA8V2wiqkiFAbdfWfJQ,664
|
|
6
|
+
stouputils/all_doctests.py,sha256=1bGGUg80nvLBY3wrPkFrkcuQRjFTWmTpHZtai9X-vnY,5891
|
|
7
|
+
stouputils/all_doctests.pyi,sha256=8JD8qn7neYuR0PolabWxX6id1dNEvQDrvOhMS2aYhTM,1907
|
|
8
|
+
stouputils/applications/__init__.py,sha256=dbjwZt8PZF043KoJSItqCpH32FtRxN5sgV-8Q2b1l10,457
|
|
9
|
+
stouputils/applications/__init__.pyi,sha256=DTYq2Uqq1uLzCMkFByjRqdtREA-9SaQnp4QpgmCEPFg,56
|
|
10
|
+
stouputils/applications/automatic_docs.py,sha256=_6XbCuVi2EiSdkiPZ7XHr5mUGh2ZORev8Vd0tJDb0ug,20561
|
|
11
|
+
stouputils/applications/automatic_docs.pyi,sha256=sfFXpVE5y5Z907HEjKzpZ_9zM34d-jKNDQCdMx7E-9s,6189
|
|
12
|
+
stouputils/applications/upscaler/__init__.py,sha256=8vrca93OYu5GQJrZO1GvnAbptzyhu_L0DnP3M9unlA0,1142
|
|
13
|
+
stouputils/applications/upscaler/__init__.pyi,sha256=VSp6Tq09ATCTdfnjhbDnu7lblaLLGbCNi-E22jYxa88,67
|
|
14
|
+
stouputils/applications/upscaler/config.py,sha256=3WHJv6fznM03nWpdvy72OheuJvNgOZfHH4GEjyRpnZU,5559
|
|
15
|
+
stouputils/applications/upscaler/config.pyi,sha256=lsRHAW3mvvM2inKSJ66VXb511ovmIScLABrUzckmUfk,608
|
|
16
|
+
stouputils/applications/upscaler/image.py,sha256=3oyAp0BwGfP-BoUDBmPJUzT88mbLyvVXp1PTOJVxKpw,9767
|
|
17
|
+
stouputils/applications/upscaler/image.pyi,sha256=AB92XoKt8Q2c_J72ZdDdyVDuCGOEiM7E6v8L-uFmAxI,4786
|
|
18
|
+
stouputils/applications/upscaler/video.py,sha256=2YItk_QJ9sENllOPtwJC1QsvOto7IleIPsb6YNW3OvE,11853
|
|
19
|
+
stouputils/applications/upscaler/video.pyi,sha256=AyRlb7iHqCwdW7lHiW8Dy_czin8CbN-GiK2_xoVJvNU,2918
|
|
20
|
+
stouputils/archive.py,sha256=uDrPFxbY_C8SwUZRH4FWnYSoJKkFWynCx751zP9AHaY,12144
|
|
21
|
+
stouputils/archive.pyi,sha256=Z2BbQAiErRYntv53QC9uf_XPw3tx3Oy73wB0Bbil11c,3246
|
|
22
|
+
stouputils/backup.py,sha256=AE5WKMLiyk0VkRUfhmNfO2EUeUbZY5GTFVIuI5z7axA,20947
|
|
23
|
+
stouputils/backup.pyi,sha256=-SLVykkR5U8479T84zjNPVBNnV193s0zyWjathY2DDA,4923
|
|
24
|
+
stouputils/collections.py,sha256=5u904s_osO03-drmqPXtFZUlcweDatEQmY-dLUrnNX0,8849
|
|
25
|
+
stouputils/collections.pyi,sha256=mKIBV4K7mm-PTvtoYi_cVOAGjW7bo3iIASqosSXFUzE,3519
|
|
26
|
+
stouputils/continuous_delivery/__init__.py,sha256=JqPww29xZ-pp6OJDGhUj2dxyV9rgTTMUz0YDDVr9RaA,731
|
|
27
|
+
stouputils/continuous_delivery/__init__.pyi,sha256=_Sz2D10n1CDEyY8qDFwXNKdr01HVxanY4qdq9aN19cc,117
|
|
28
|
+
stouputils/continuous_delivery/cd_utils.py,sha256=fkaHk2V3j66uFAUsM2c_UddNhXW2KAQcrh7jVsH79pU,8594
|
|
29
|
+
stouputils/continuous_delivery/cd_utils.pyi,sha256=nxTLQydVOSVIix88dRtBXjMrUPpI5ftiQYbLI_nMByQ,4848
|
|
30
|
+
stouputils/continuous_delivery/github.py,sha256=Iva2XNm60Th78P_evnhCJHn0Q9-06udPlOZAxtZB5vw,19464
|
|
31
|
+
stouputils/continuous_delivery/github.pyi,sha256=RHRsSroEsT0I1qeuq-Wg0JLdEEDttLrzgHZPVRtLZ0Q,6641
|
|
32
|
+
stouputils/continuous_delivery/pypi.py,sha256=H62NlWKG_9OQcNpisEJ3DqtNnneVmcnVnv3NItdNvv0,5298
|
|
33
|
+
stouputils/continuous_delivery/pypi.pyi,sha256=qmMeHDzezN_ZW-_jGRFbaccG_rkfELbmW9hUPU6vptY,2325
|
|
34
|
+
stouputils/continuous_delivery/pyproject.py,sha256=olD3QqzLfCLnTBw8IkSKSLBPWyeMv6uS7A0yGdFuIvQ,4802
|
|
35
|
+
stouputils/continuous_delivery/pyproject.pyi,sha256=bMWwqyG0Auo46dt-dWGePQ9yJ8rSrgb7mnJTfbiS3TQ,2053
|
|
36
|
+
stouputils/continuous_delivery/stubs.py,sha256=xUAcP21Y03PLEr7X6LrIBMvPeLI8Rp-EyaTLxocA0C4,3512
|
|
37
|
+
stouputils/continuous_delivery/stubs.pyi,sha256=sLZypdz1oGoymQIRPez50rnH8TQhvEIx6A7xUdGtnys,2390
|
|
38
|
+
stouputils/ctx.py,sha256=KVVDmL3pAPX2WM_QzjsmctbG-YfjJ-4aWBSoI7eU_ws,15586
|
|
39
|
+
stouputils/ctx.pyi,sha256=-7AJwD9bKzKBFsYlgyULPznstq3LvXRXe2r_2at72FI,9799
|
|
40
|
+
stouputils/data_science/config/get.py,sha256=-9Yo5go7sw7eZNDwMfV3V9qOyk6q3Nrrb0V1eg-F1LE,1722
|
|
41
|
+
stouputils/data_science/config/set.py,sha256=PBBnWhgSptWTPkMtq3N1UxmEz_E4ywUcl3daS43wA2M,4175
|
|
42
|
+
stouputils/data_science/data_processing/image/__init__.py,sha256=dJY410JsVxfwloQiH1TPAwxVsRYAI4vhaZ3w1IAkUCk,1823
|
|
43
|
+
stouputils/data_science/data_processing/image/auto_contrast.py,sha256=grKz4cxMEnLWAP6k4o0CuFyzcw8_v51d6Ep3fufb6Ew,2289
|
|
44
|
+
stouputils/data_science/data_processing/image/axis_flip.py,sha256=6OsDeA6SK_jIv3NcbCEe4Q5NzH3KgWIPQf-EWkLzTP0,1663
|
|
45
|
+
stouputils/data_science/data_processing/image/bias_field_correction.py,sha256=2Y6l5fvr1gcp4lE0nQIFwfP_LX6mgDa6U_G_sQ5yr6w,2387
|
|
46
|
+
stouputils/data_science/data_processing/image/binary_threshold.py,sha256=YGeF1_9WGCybq9pG3lF1pWQznhh9pUY7L-lpQwdkJo0,2453
|
|
47
|
+
stouputils/data_science/data_processing/image/blur.py,sha256=Ud410O78KxfDE8DmlwrDDALZ3g48ZhGtomDg0iO3hgI,1693
|
|
48
|
+
stouputils/data_science/data_processing/image/brightness.py,sha256=llOhXGTyMp06Qt3Pp-VJl7ser2r3qG8nBdq6O7Ox6U8,1671
|
|
49
|
+
stouputils/data_science/data_processing/image/canny.py,sha256=hlEJh3V24xMiHzZC23a05_ptdvQGw_oxRWC4GDHL4BQ,3860
|
|
50
|
+
stouputils/data_science/data_processing/image/clahe.py,sha256=eKGUktjZ0bO7DWjEzc4BYQboVVrU9y7n2FF_Yd1fmcU,3042
|
|
51
|
+
stouputils/data_science/data_processing/image/common.py,sha256=VpOyvYqn5Xfok0UpwuSXplHvs0KQH8OK86YJT_bA8dA,724
|
|
52
|
+
stouputils/data_science/data_processing/image/contrast.py,sha256=LhcYFND1j_aEv41aa4p8kUWYBqex-hLTgSKD4U8JQY8,1614
|
|
53
|
+
stouputils/data_science/data_processing/image/curvature_flow_filter.py,sha256=zfz0oBKyUHP3rTxLfnemGPsiRyxo75jnl7A0mLV_J4A,2453
|
|
54
|
+
stouputils/data_science/data_processing/image/denoise.py,sha256=Ipw_KiOJ7uj38XQZnrP9trUwBjgpbAKWYmpNrKeLpq0,12747
|
|
55
|
+
stouputils/data_science/data_processing/image/histogram_equalization.py,sha256=kHoXwjHOGpE6f8jQ0U6HAhJJOqNLDVyMJovlshaiiqs,4570
|
|
56
|
+
stouputils/data_science/data_processing/image/invert.py,sha256=ny0iYj4Pjm3Kcbqeo4fyvD3MtMCk9amN-Wd3jceJn0c,1878
|
|
57
|
+
stouputils/data_science/data_processing/image/laplacian.py,sha256=VzHsQhiQNm1pdpYtl_ll-56XG0K7S5IpkvH4mxWoHko,2026
|
|
58
|
+
stouputils/data_science/data_processing/image/median_blur.py,sha256=XGsGSZU2a6ZbAYC3H0jsv17bCHvEO0V5sw4U-5YCs1M,1500
|
|
59
|
+
stouputils/data_science/data_processing/image/noise.py,sha256=0hMUXNCpTuz6iBSbyrGcuSi9HviVGXAd3K5sl_XnXSA,1877
|
|
60
|
+
stouputils/data_science/data_processing/image/normalize.py,sha256=I1PHrRUWuw0EhDl5lAhGVv_KcRQoRddRGP4dWxyXWBQ,1917
|
|
61
|
+
stouputils/data_science/data_processing/image/random_erase.py,sha256=Ogns0isVYBFZZ0l9EcU3Ry_uUcsPDfHCPjtwX7go63o,2107
|
|
62
|
+
stouputils/data_science/data_processing/image/resize.py,sha256=qm_hQ4CZQaHwTKUEed4jom8YKykINadWGzPVU1zZPbc,2059
|
|
63
|
+
stouputils/data_science/data_processing/image/rotation.py,sha256=dSILkh2CiaDq08pwqmTkKOOpBtCEab7S2GlMPjnV60o,2486
|
|
64
|
+
stouputils/data_science/data_processing/image/salt_pepper.py,sha256=Xxor8wgf0QbLeCx-6r6qJAg7W4r4iqilTjmNvPiF3sk,2087
|
|
65
|
+
stouputils/data_science/data_processing/image/sharpening.py,sha256=74G0HFYtx8jChiEJLao5auA8K0FhwPWWRKXQ_-HjEyM,1580
|
|
66
|
+
stouputils/data_science/data_processing/image/shearing.py,sha256=SxTjFLfA7phmapsTtqVVHYfohJ3gatFJANrgCLonraI,2038
|
|
67
|
+
stouputils/data_science/data_processing/image/threshold.py,sha256=PvtvUmB-D7yNZcFuWYORTYYUyxMvrUY2PzAthdsalMw,2301
|
|
68
|
+
stouputils/data_science/data_processing/image/translation.py,sha256=i_znbYfbRl5fwvxmoQ-pOIH81lyczK7tSHl1HkHoZJs,2460
|
|
69
|
+
stouputils/data_science/data_processing/image/zoom.py,sha256=hIbmz3mgFKn_Z-4Rco50MuLUH20zojLQSura4fQuaQA,2613
|
|
70
|
+
stouputils/data_science/data_processing/image_augmentation.py,sha256=92saGKarKUpf1pr8YRr5V27tW7tAZF6_fnOjU95aCbo,4689
|
|
71
|
+
stouputils/data_science/data_processing/image_preprocess.py,sha256=YI2peax6xOLOWUMLp3WYLbdCtJiwF8vmBweGJJQlON0,6318
|
|
72
|
+
stouputils/data_science/data_processing/prosthesis_detection.py,sha256=g4Hdgkm7MYEvUiAtQ_afqLNYIQzpTGfc7VA4AOqg-xY,13111
|
|
73
|
+
stouputils/data_science/data_processing/technique.py,sha256=pNwA-WCgvnIU5RtolHuMoCgmoRE7vCoaJ7B1KWgEAN0,19655
|
|
74
|
+
stouputils/data_science/dataset/__init__.py,sha256=1ZECQgOI3mlD0ZQiYRakFXBvZiA8Wo2rkFjqkFyXiP0,1559
|
|
75
|
+
stouputils/data_science/dataset/dataset.py,sha256=uREMmOMhcivJRssv_wl3iU1iX60JmimlX31tjKsr7-0,11274
|
|
76
|
+
stouputils/data_science/dataset/dataset_loader.py,sha256=uFFtNPpgx_cb0gbkgCiERSHi5dWERI9Hn7ZaHGCY2Iw,4427
|
|
77
|
+
stouputils/data_science/dataset/grouping_strategy.py,sha256=UultwqG49mJ7MdboSPRbbSsNA_5Q2QnTsEZpyXXqHyY,10650
|
|
78
|
+
stouputils/data_science/dataset/image_loader.py,sha256=jIb3Bnz5ZzC_ZLRuED_okf9E0bPDB9YHK-dZejqdI8g,3900
|
|
79
|
+
stouputils/data_science/dataset/xy_tuple.py,sha256=werLpkA8KmZtgPAqA50h6lfb-6lKwv2Qac1MzAB7fVM,25378
|
|
80
|
+
stouputils/data_science/metric_dictionnary.py,sha256=tdFAGRecuU0HxhS_wDxfbpwOT4ge5PsrsQJXVQ6glG4,3844
|
|
81
|
+
stouputils/data_science/metric_utils.py,sha256=cHO1eS-gUZdfGfx4sMUXczMgrJScPLesciN9NGLQysI,34006
|
|
82
|
+
stouputils/data_science/mlflow_utils.py,sha256=ecO7FGs1_tZo2_GY7LDSoGR6J2Qst-OZHy9xrhM5r9Y,7069
|
|
83
|
+
stouputils/data_science/models/abstract_model.py,sha256=vT59CQqRBQqyL1W4hIWZ5kcX9gmeDOiDOrtJYMW1Mtw,3955
|
|
84
|
+
stouputils/data_science/models/all.py,sha256=RLK1tyzTQpE9F6dWMLKdF3Jgu9Bp2cQ4wvdKJiYiVow,3039
|
|
85
|
+
stouputils/data_science/models/base_keras.py,sha256=bOQ6Uk0dILgcjnCT2KehUdc99btOzf5C7xC3Ljx4FUM,27764
|
|
86
|
+
stouputils/data_science/models/keras/all.py,sha256=Cu4DwOPIYMEhaR4oxZii0wJlDRfdGQ-0bG_mzk6IU6A,1003
|
|
87
|
+
stouputils/data_science/models/keras/convnext.py,sha256=ai6D3cgISG82I6SdG6Xw_0DM94459p6VqV4Bvl8P3CU,2533
|
|
88
|
+
stouputils/data_science/models/keras/densenet.py,sha256=rY93tDMFctzNQ3gZPLVovxI0uomYSQdWRcCAfdn3yy4,1808
|
|
89
|
+
stouputils/data_science/models/keras/efficientnet.py,sha256=sZQdwN-5KX3yC5KpYvMb8gSM7Iq4si6AcCCPjo3kwAk,2442
|
|
90
|
+
stouputils/data_science/models/keras/mobilenet.py,sha256=7xebi3kBw0bt9wQOoHvusz0CFQ5Yc6kgfSj1gR6v12k,2257
|
|
91
|
+
stouputils/data_science/models/keras/resnet.py,sha256=jfICmeuUb0buQCFG-CD3nKitZsnAhAEuKILp_O6ErTc,1789
|
|
92
|
+
stouputils/data_science/models/keras/squeezenet.py,sha256=gtcR5h4sQJ1JXBGbpj6tHLOFpQegkCI1fojhWs6bJbI,8357
|
|
93
|
+
stouputils/data_science/models/keras/vgg.py,sha256=g9c4plPrPU2pBwTcdlh7nTZq4bmHT_iRhGJxQ5OQMcQ,1503
|
|
94
|
+
stouputils/data_science/models/keras/xception.py,sha256=NKv5zTNtPiR3oV7_X-FIFvt5kITNfcgF12RgJFpcLTI,1257
|
|
95
|
+
stouputils/data_science/models/keras_utils/callbacks/__init__.py,sha256=Wvlbv7dAZd6stAJKi1kPevNVwpG6ULme_Pl-ZAFV8nE,853
|
|
96
|
+
stouputils/data_science/models/keras_utils/callbacks/colored_progress_bar.py,sha256=a6zjVzXsheU2l-ecRWhSC0Vkyk55eWbp74C8NQFert4,7641
|
|
97
|
+
stouputils/data_science/models/keras_utils/callbacks/learning_rate_finder.py,sha256=ftimXot3or5ykJwauv1_-JjUScq7ckX4XjMSDnecBcE,5058
|
|
98
|
+
stouputils/data_science/models/keras_utils/callbacks/model_checkpoint_v2.py,sha256=KTsVin5sozwy6XVDt1Vj7J6obrkGH40NV-AfX4mBmq4,935
|
|
99
|
+
stouputils/data_science/models/keras_utils/callbacks/progressive_unfreezing.py,sha256=okoiMpJ0a_DKY9ZE6JIdovbxn--Ao-XbE74xC_baKEk,9605
|
|
100
|
+
stouputils/data_science/models/keras_utils/callbacks/warmup_scheduler.py,sha256=6aErEB8XHfvgqGqG8sFRtmMyZW-VSXbEK2OiIHmCujM,2312
|
|
101
|
+
stouputils/data_science/models/keras_utils/losses/__init__.py,sha256=6HQkqTZd-W3YPrxg_-2956j_iCmLm4PmbeW2uIPv-4I,174
|
|
102
|
+
stouputils/data_science/models/keras_utils/losses/next_generation_loss.py,sha256=SA2HUxsYNadtGQ9wVmrFQY0J218o8hOeJGlqeDpZXUk,1578
|
|
103
|
+
stouputils/data_science/models/keras_utils/visualizations.py,sha256=JWfDqC6MhbQSDY9O3adCMhB3IOri8FRZ4g-30Y4mZQo,15451
|
|
104
|
+
stouputils/data_science/models/model_interface.py,sha256=om1hnEYHTILfLJRcoTDhR7Rj0lbmW_8zIJkTIGuTqOQ,37140
|
|
105
|
+
stouputils/data_science/models/sandbox.py,sha256=hi2RB-BDYrNv69qLTXi37qBMEKd1qHBrzZ435qVVja8,4153
|
|
106
|
+
stouputils/data_science/range_tuple.py,sha256=tSLi9p9S1Bn809BJPGG_xRMBQ_cfspfAEI5siOgD2ls,6674
|
|
107
|
+
stouputils/data_science/scripts/augment_dataset.py,sha256=zGcQ2uSn_DO570NIFEs2DUc_d5uvWxLfY-RavjdO3aU,3469
|
|
108
|
+
stouputils/data_science/scripts/exhaustive_process.py,sha256=Ty2lHBZBweWxH6smpjoUEqpGz6JmMUO_oaNZO7d-gtQ,5483
|
|
109
|
+
stouputils/data_science/scripts/preprocess_dataset.py,sha256=OLC2KjEtSMeyHHPpNOATfNDuq0lZ09utKhsuzBA4MN4,2929
|
|
110
|
+
stouputils/data_science/scripts/routine.py,sha256=FkTLzmcdm_qUp69D-dPAKJm2RfXZZLtPgje6lEopu2I,7662
|
|
111
|
+
stouputils/data_science/utils.py,sha256=MQ5-S21W2uvtKiwUFsyKJdeN9s9y7MxuvjfjRbwKTD8,10799
|
|
112
|
+
stouputils/decorators.py,sha256=bheT64aWNE22yQePB_5-JMQ4Ezm-1VcTg2WRZaJB2r4,21534
|
|
113
|
+
stouputils/decorators.pyi,sha256=k7kAOPM6c2LkhskUatoiv95JmfnMcKIxJRvhZN63axM,10561
|
|
114
|
+
stouputils/image.py,sha256=NtduEVzgbCuZhDRpDZHGTW7-wTs7MqoxUwSQcipvb08,16633
|
|
115
|
+
stouputils/image.pyi,sha256=Dkf64KmXJTAEcbtYDHFZ1kqEHqOf2FgJ2Z2BlJgp4fU,8455
|
|
116
|
+
stouputils/installer/__init__.py,sha256=Ff_al_z6GSaazLHqfsSxsxmooXcIRmE--ffb1gZt0Q0,484
|
|
117
|
+
stouputils/installer/__init__.pyi,sha256=ZB-8frAUOW-0pCEJL-e2AdbFodivv46v3EBYwEXCxRo,117
|
|
118
|
+
stouputils/installer/common.py,sha256=UJr5u02h4LQZQdkmVOkJ3vvW_0-ROGgVMMh0PNoVS1A,2209
|
|
119
|
+
stouputils/installer/common.pyi,sha256=5aG0-58omFkkNYeVHnQ0uHUBsaI7xoMD-WqWVdOgOms,1403
|
|
120
|
+
stouputils/installer/downloader.py,sha256=IIV_zI1lnKCD-9OsnroOoo4nDPOLr2Vn6oOYHnXshj8,3659
|
|
121
|
+
stouputils/installer/downloader.pyi,sha256=8Xp0sXyba4flHAZ0nNqNlFU4VUmfPvllmPUkWalkvRA,1273
|
|
122
|
+
stouputils/installer/linux.py,sha256=5hlG7sh4Idk6rBXbfWP9oU-99TNd6njl9D5FjSnux1o,5368
|
|
123
|
+
stouputils/installer/linux.pyi,sha256=V-EbY7seOFnC6LL844bqWRNvQ7rHmMhDkcFj5r1V7Tk,1943
|
|
124
|
+
stouputils/installer/main.py,sha256=pbcEdKOX1P4VLJlVjzxq-hmdk6zrFt_V3aj6pYYQ8cY,8315
|
|
125
|
+
stouputils/installer/main.pyi,sha256=r3j4GoMBpU06MpOqjSwoDTiSMOmbA3WWUA87970b6KE,3134
|
|
126
|
+
stouputils/installer/windows.py,sha256=WJcsRvEj00uAlJVAWgePhR7Hq0chYE0_n2QUZG9011A,4744
|
|
127
|
+
stouputils/installer/windows.pyi,sha256=tHogIFhPVDQS0I10liLkAxnpaFFAvmFtEVMpPIae5LU,1616
|
|
128
|
+
stouputils/io.py,sha256=yQ4jGWoI81cP-ZWxgYwqXmuD6s_IbpkKkZf5jjqqIAE,16841
|
|
129
|
+
stouputils/io.pyi,sha256=TCBTVEWUkI3dO_jWI9oPMF9SbnT1yLzFChE551JPbSY,9076
|
|
130
|
+
stouputils/parallel.py,sha256=_o96klxFYgDPyxCeqFp5qNOtJhhXHQYmFIfqbJYnxko,19061
|
|
131
|
+
stouputils/parallel.pyi,sha256=cvNMT0FyjOmehaVghurwVKABqvTO3BUbPF8f8ISp8Bw,10855
|
|
132
|
+
stouputils/print.py,sha256=BGPGu8SfIWhIjFRoUI2VaSCVGFhbBumYq9U2g1K-5uQ,16627
|
|
133
|
+
stouputils/print.pyi,sha256=-uYWZ-hlPhkeu8E0gSoQqY0u-4UhkJAtPUioQb3Xujo,6674
|
|
134
|
+
stouputils/py.typed,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
135
|
+
stouputils/stouputils/__init__.pyi,sha256=J8LeijIkWrTdGlevNR8dlGlgYg-Dh_MvGjp2EsPZ8UM,351
|
|
136
|
+
stouputils/stouputils/_deprecated.pyi,sha256=6-8YsftJd2fRAdBLsysc6jf-uA8V2wiqkiFAbdfWfJQ,664
|
|
137
|
+
stouputils/stouputils/all_doctests.pyi,sha256=8JD8qn7neYuR0PolabWxX6id1dNEvQDrvOhMS2aYhTM,1907
|
|
138
|
+
stouputils/stouputils/applications/__init__.pyi,sha256=DTYq2Uqq1uLzCMkFByjRqdtREA-9SaQnp4QpgmCEPFg,56
|
|
139
|
+
stouputils/stouputils/applications/automatic_docs.pyi,sha256=sfFXpVE5y5Z907HEjKzpZ_9zM34d-jKNDQCdMx7E-9s,6189
|
|
140
|
+
stouputils/stouputils/applications/upscaler/__init__.pyi,sha256=VSp6Tq09ATCTdfnjhbDnu7lblaLLGbCNi-E22jYxa88,67
|
|
141
|
+
stouputils/stouputils/applications/upscaler/config.pyi,sha256=lsRHAW3mvvM2inKSJ66VXb511ovmIScLABrUzckmUfk,608
|
|
142
|
+
stouputils/stouputils/applications/upscaler/image.pyi,sha256=AB92XoKt8Q2c_J72ZdDdyVDuCGOEiM7E6v8L-uFmAxI,4786
|
|
143
|
+
stouputils/stouputils/applications/upscaler/video.pyi,sha256=AyRlb7iHqCwdW7lHiW8Dy_czin8CbN-GiK2_xoVJvNU,2918
|
|
144
|
+
stouputils/stouputils/archive.pyi,sha256=Z2BbQAiErRYntv53QC9uf_XPw3tx3Oy73wB0Bbil11c,3246
|
|
145
|
+
stouputils/stouputils/backup.pyi,sha256=-SLVykkR5U8479T84zjNPVBNnV193s0zyWjathY2DDA,4923
|
|
146
|
+
stouputils/stouputils/collections.pyi,sha256=mKIBV4K7mm-PTvtoYi_cVOAGjW7bo3iIASqosSXFUzE,3519
|
|
147
|
+
stouputils/stouputils/continuous_delivery/__init__.pyi,sha256=_Sz2D10n1CDEyY8qDFwXNKdr01HVxanY4qdq9aN19cc,117
|
|
148
|
+
stouputils/stouputils/continuous_delivery/cd_utils.pyi,sha256=nxTLQydVOSVIix88dRtBXjMrUPpI5ftiQYbLI_nMByQ,4848
|
|
149
|
+
stouputils/stouputils/continuous_delivery/github.pyi,sha256=RHRsSroEsT0I1qeuq-Wg0JLdEEDttLrzgHZPVRtLZ0Q,6641
|
|
150
|
+
stouputils/stouputils/continuous_delivery/pypi.pyi,sha256=fRAu8ocLNpEN6dhUTMuFxlmRgt3-LRjKPOJjFlUPrJ4,2463
|
|
151
|
+
stouputils/stouputils/continuous_delivery/pyproject.pyi,sha256=bMWwqyG0Auo46dt-dWGePQ9yJ8rSrgb7mnJTfbiS3TQ,2053
|
|
152
|
+
stouputils/stouputils/continuous_delivery/stubs.pyi,sha256=sLZypdz1oGoymQIRPez50rnH8TQhvEIx6A7xUdGtnys,2390
|
|
153
|
+
stouputils/stouputils/ctx.pyi,sha256=-7AJwD9bKzKBFsYlgyULPznstq3LvXRXe2r_2at72FI,9799
|
|
154
|
+
stouputils/stouputils/decorators.pyi,sha256=_ZPqr84G316gkj_cq_LZGuCMhSyGBWunvlxM5Cq9Hvo,10944
|
|
155
|
+
stouputils/stouputils/image.pyi,sha256=Dkf64KmXJTAEcbtYDHFZ1kqEHqOf2FgJ2Z2BlJgp4fU,8455
|
|
156
|
+
stouputils/stouputils/installer/__init__.pyi,sha256=ZB-8frAUOW-0pCEJL-e2AdbFodivv46v3EBYwEXCxRo,117
|
|
157
|
+
stouputils/stouputils/installer/common.pyi,sha256=5aG0-58omFkkNYeVHnQ0uHUBsaI7xoMD-WqWVdOgOms,1403
|
|
158
|
+
stouputils/stouputils/installer/downloader.pyi,sha256=8Xp0sXyba4flHAZ0nNqNlFU4VUmfPvllmPUkWalkvRA,1273
|
|
159
|
+
stouputils/stouputils/installer/linux.pyi,sha256=V-EbY7seOFnC6LL844bqWRNvQ7rHmMhDkcFj5r1V7Tk,1943
|
|
160
|
+
stouputils/stouputils/installer/main.pyi,sha256=r3j4GoMBpU06MpOqjSwoDTiSMOmbA3WWUA87970b6KE,3134
|
|
161
|
+
stouputils/stouputils/installer/windows.pyi,sha256=tHogIFhPVDQS0I10liLkAxnpaFFAvmFtEVMpPIae5LU,1616
|
|
162
|
+
stouputils/stouputils/io.pyi,sha256=TCBTVEWUkI3dO_jWI9oPMF9SbnT1yLzFChE551JPbSY,9076
|
|
163
|
+
stouputils/stouputils/parallel.pyi,sha256=ug9I-Ni2q9cwwByXERQuxW-UM3rqw3dCiurnJjOWUpI,11576
|
|
164
|
+
stouputils/stouputils/print.pyi,sha256=TtP-OuK22uwsP0Wcruy0FxG_zD3fFwHUpxNp34HgCUU,6745
|
|
165
|
+
stouputils/stouputils/version_pkg.pyi,sha256=QPvqp1U3QA-9C_CC1dT9Vahv1hXEhstbM7x5uzMZSsQ,755
|
|
166
|
+
stouputils/version_pkg.py,sha256=Jsp-s03L14DkiZ94vQgrlQmaxApfn9DC8M_nzT1SJLk,7014
|
|
167
|
+
stouputils/version_pkg.pyi,sha256=QPvqp1U3QA-9C_CC1dT9Vahv1hXEhstbM7x5uzMZSsQ,755
|
|
168
|
+
stouputils-1.14.2.dist-info/WHEEL,sha256=RRVLqVugUmFOqBedBFAmA4bsgFcROUBiSUKlERi0Hcg,79
|
|
169
|
+
stouputils-1.14.2.dist-info/entry_points.txt,sha256=tx0z9VOnE-sfkmbFbA93zaBMzV3XSsKEJa_BWIqUzxw,57
|
|
170
|
+
stouputils-1.14.2.dist-info/METADATA,sha256=-FSEGFl-6SdbXmpDRu6g9EwzqysGeWmG-FaOxSSUWoQ,13615
|
|
171
|
+
stouputils-1.14.2.dist-info/RECORD,,
|