stouputils 1.14.0__py3-none-any.whl → 1.14.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (108) hide show
  1. stouputils/__init__.pyi +15 -0
  2. stouputils/_deprecated.pyi +12 -0
  3. stouputils/all_doctests.pyi +46 -0
  4. stouputils/applications/__init__.pyi +2 -0
  5. stouputils/applications/automatic_docs.py +3 -0
  6. stouputils/applications/automatic_docs.pyi +106 -0
  7. stouputils/applications/upscaler/__init__.pyi +3 -0
  8. stouputils/applications/upscaler/config.pyi +18 -0
  9. stouputils/applications/upscaler/image.pyi +109 -0
  10. stouputils/applications/upscaler/video.pyi +60 -0
  11. stouputils/archive.pyi +67 -0
  12. stouputils/backup.pyi +109 -0
  13. stouputils/collections.pyi +86 -0
  14. stouputils/continuous_delivery/__init__.pyi +5 -0
  15. stouputils/continuous_delivery/cd_utils.pyi +129 -0
  16. stouputils/continuous_delivery/github.pyi +162 -0
  17. stouputils/continuous_delivery/pypi.pyi +52 -0
  18. stouputils/continuous_delivery/pyproject.pyi +67 -0
  19. stouputils/continuous_delivery/stubs.pyi +39 -0
  20. stouputils/ctx.pyi +211 -0
  21. stouputils/data_science/config/get.py +51 -51
  22. stouputils/data_science/data_processing/image/__init__.py +66 -66
  23. stouputils/data_science/data_processing/image/auto_contrast.py +79 -79
  24. stouputils/data_science/data_processing/image/axis_flip.py +58 -58
  25. stouputils/data_science/data_processing/image/bias_field_correction.py +74 -74
  26. stouputils/data_science/data_processing/image/binary_threshold.py +73 -73
  27. stouputils/data_science/data_processing/image/blur.py +59 -59
  28. stouputils/data_science/data_processing/image/brightness.py +54 -54
  29. stouputils/data_science/data_processing/image/canny.py +110 -110
  30. stouputils/data_science/data_processing/image/clahe.py +92 -92
  31. stouputils/data_science/data_processing/image/common.py +30 -30
  32. stouputils/data_science/data_processing/image/contrast.py +53 -53
  33. stouputils/data_science/data_processing/image/curvature_flow_filter.py +74 -74
  34. stouputils/data_science/data_processing/image/denoise.py +378 -378
  35. stouputils/data_science/data_processing/image/histogram_equalization.py +123 -123
  36. stouputils/data_science/data_processing/image/invert.py +64 -64
  37. stouputils/data_science/data_processing/image/laplacian.py +60 -60
  38. stouputils/data_science/data_processing/image/median_blur.py +52 -52
  39. stouputils/data_science/data_processing/image/noise.py +59 -59
  40. stouputils/data_science/data_processing/image/normalize.py +65 -65
  41. stouputils/data_science/data_processing/image/random_erase.py +66 -66
  42. stouputils/data_science/data_processing/image/resize.py +69 -69
  43. stouputils/data_science/data_processing/image/rotation.py +80 -80
  44. stouputils/data_science/data_processing/image/salt_pepper.py +68 -68
  45. stouputils/data_science/data_processing/image/sharpening.py +55 -55
  46. stouputils/data_science/data_processing/image/shearing.py +64 -64
  47. stouputils/data_science/data_processing/image/threshold.py +64 -64
  48. stouputils/data_science/data_processing/image/translation.py +71 -71
  49. stouputils/data_science/data_processing/image/zoom.py +83 -83
  50. stouputils/data_science/data_processing/image_augmentation.py +118 -118
  51. stouputils/data_science/data_processing/image_preprocess.py +183 -183
  52. stouputils/data_science/data_processing/prosthesis_detection.py +359 -359
  53. stouputils/data_science/data_processing/technique.py +481 -481
  54. stouputils/data_science/dataset/__init__.py +45 -45
  55. stouputils/data_science/dataset/dataset.py +292 -292
  56. stouputils/data_science/dataset/dataset_loader.py +135 -135
  57. stouputils/data_science/dataset/grouping_strategy.py +296 -296
  58. stouputils/data_science/dataset/image_loader.py +100 -100
  59. stouputils/data_science/dataset/xy_tuple.py +696 -696
  60. stouputils/data_science/metric_dictionnary.py +106 -106
  61. stouputils/data_science/mlflow_utils.py +206 -206
  62. stouputils/data_science/models/abstract_model.py +149 -149
  63. stouputils/data_science/models/all.py +85 -85
  64. stouputils/data_science/models/keras/all.py +38 -38
  65. stouputils/data_science/models/keras/convnext.py +62 -62
  66. stouputils/data_science/models/keras/densenet.py +50 -50
  67. stouputils/data_science/models/keras/efficientnet.py +60 -60
  68. stouputils/data_science/models/keras/mobilenet.py +56 -56
  69. stouputils/data_science/models/keras/resnet.py +52 -52
  70. stouputils/data_science/models/keras/squeezenet.py +233 -233
  71. stouputils/data_science/models/keras/vgg.py +42 -42
  72. stouputils/data_science/models/keras/xception.py +38 -38
  73. stouputils/data_science/models/keras_utils/callbacks/__init__.py +20 -20
  74. stouputils/data_science/models/keras_utils/callbacks/colored_progress_bar.py +219 -219
  75. stouputils/data_science/models/keras_utils/callbacks/learning_rate_finder.py +148 -148
  76. stouputils/data_science/models/keras_utils/callbacks/model_checkpoint_v2.py +31 -31
  77. stouputils/data_science/models/keras_utils/callbacks/progressive_unfreezing.py +249 -249
  78. stouputils/data_science/models/keras_utils/callbacks/warmup_scheduler.py +66 -66
  79. stouputils/data_science/models/keras_utils/losses/__init__.py +12 -12
  80. stouputils/data_science/models/keras_utils/losses/next_generation_loss.py +56 -56
  81. stouputils/data_science/models/keras_utils/visualizations.py +416 -416
  82. stouputils/data_science/models/sandbox.py +116 -116
  83. stouputils/data_science/range_tuple.py +234 -234
  84. stouputils/data_science/utils.py +285 -285
  85. stouputils/decorators.pyi +242 -0
  86. stouputils/image.pyi +172 -0
  87. stouputils/installer/__init__.py +18 -18
  88. stouputils/installer/__init__.pyi +5 -0
  89. stouputils/installer/common.pyi +39 -0
  90. stouputils/installer/downloader.pyi +24 -0
  91. stouputils/installer/linux.py +144 -144
  92. stouputils/installer/linux.pyi +39 -0
  93. stouputils/installer/main.py +223 -223
  94. stouputils/installer/main.pyi +57 -0
  95. stouputils/installer/windows.py +136 -136
  96. stouputils/installer/windows.pyi +31 -0
  97. stouputils/io.pyi +213 -0
  98. stouputils/parallel.py +12 -10
  99. stouputils/parallel.pyi +211 -0
  100. stouputils/print.pyi +136 -0
  101. stouputils/py.typed +1 -1
  102. stouputils/stouputils/parallel.pyi +4 -4
  103. stouputils/version_pkg.pyi +15 -0
  104. {stouputils-1.14.0.dist-info → stouputils-1.14.2.dist-info}/METADATA +1 -1
  105. stouputils-1.14.2.dist-info/RECORD +171 -0
  106. stouputils-1.14.0.dist-info/RECORD +0 -140
  107. {stouputils-1.14.0.dist-info → stouputils-1.14.2.dist-info}/WHEEL +0 -0
  108. {stouputils-1.14.0.dist-info → stouputils-1.14.2.dist-info}/entry_points.txt +0 -0
@@ -1,50 +1,50 @@
1
- """ DenseNet models implementation.
2
-
3
- This module provides wrapper classes for the DenseNet family of models from the Keras applications.
4
- DenseNet models utilize dense connections between layers, where each layer obtains additional inputs
5
- from all preceding layers and passes on its feature-maps to all subsequent layers.
6
-
7
- Available models:
8
-
9
- - DenseNet121: Smallest variant with 121 layers
10
- - DenseNet169: Medium-sized variant with 169 layers
11
- - DenseNet201: Largest variant with 201 layers
12
-
13
- All models support transfer learning from ImageNet pre-trained weights.
14
- """
15
- # pyright: reportUnknownVariableType=false
16
- # pyright: reportMissingTypeStubs=false
17
-
18
- # Imports
19
- from __future__ import annotations
20
-
21
- from keras.models import Model
22
- from keras.src.applications.densenet import DenseNet121 as DenseNet121_keras
23
- from keras.src.applications.densenet import DenseNet169 as DenseNet169_keras
24
- from keras.src.applications.densenet import DenseNet201 as DenseNet201_keras
25
-
26
- from ....decorators import simple_cache
27
- from ..base_keras import BaseKeras
28
- from ..model_interface import CLASS_ROUTINE_DOCSTRING, MODEL_DOCSTRING
29
-
30
-
31
- # Classes
32
- class DenseNet121(BaseKeras):
33
- def _get_base_model(self) -> Model:
34
- return DenseNet121_keras(include_top=False, classes=self.num_classes)
35
-
36
- class DenseNet169(BaseKeras):
37
- def _get_base_model(self) -> Model:
38
- return DenseNet169_keras(include_top=False, classes=self.num_classes)
39
-
40
- class DenseNet201(BaseKeras):
41
- def _get_base_model(self) -> Model:
42
- return DenseNet201_keras(include_top=False, classes=self.num_classes)
43
-
44
-
45
- # Docstrings
46
- for model in [DenseNet121, DenseNet169, DenseNet201]:
47
- model.__doc__ = MODEL_DOCSTRING.format(model=model.__name__)
48
- model.class_routine = simple_cache(model.class_routine)
49
- model.class_routine.__doc__ = CLASS_ROUTINE_DOCSTRING.format(model=model.__name__)
50
-
1
+ """ DenseNet models implementation.
2
+
3
+ This module provides wrapper classes for the DenseNet family of models from the Keras applications.
4
+ DenseNet models utilize dense connections between layers, where each layer obtains additional inputs
5
+ from all preceding layers and passes on its feature-maps to all subsequent layers.
6
+
7
+ Available models:
8
+
9
+ - DenseNet121: Smallest variant with 121 layers
10
+ - DenseNet169: Medium-sized variant with 169 layers
11
+ - DenseNet201: Largest variant with 201 layers
12
+
13
+ All models support transfer learning from ImageNet pre-trained weights.
14
+ """
15
+ # pyright: reportUnknownVariableType=false
16
+ # pyright: reportMissingTypeStubs=false
17
+
18
+ # Imports
19
+ from __future__ import annotations
20
+
21
+ from keras.models import Model
22
+ from keras.src.applications.densenet import DenseNet121 as DenseNet121_keras
23
+ from keras.src.applications.densenet import DenseNet169 as DenseNet169_keras
24
+ from keras.src.applications.densenet import DenseNet201 as DenseNet201_keras
25
+
26
+ from ....decorators import simple_cache
27
+ from ..base_keras import BaseKeras
28
+ from ..model_interface import CLASS_ROUTINE_DOCSTRING, MODEL_DOCSTRING
29
+
30
+
31
+ # Classes
32
+ class DenseNet121(BaseKeras):
33
+ def _get_base_model(self) -> Model:
34
+ return DenseNet121_keras(include_top=False, classes=self.num_classes)
35
+
36
+ class DenseNet169(BaseKeras):
37
+ def _get_base_model(self) -> Model:
38
+ return DenseNet169_keras(include_top=False, classes=self.num_classes)
39
+
40
+ class DenseNet201(BaseKeras):
41
+ def _get_base_model(self) -> Model:
42
+ return DenseNet201_keras(include_top=False, classes=self.num_classes)
43
+
44
+
45
+ # Docstrings
46
+ for model in [DenseNet121, DenseNet169, DenseNet201]:
47
+ model.__doc__ = MODEL_DOCSTRING.format(model=model.__name__)
48
+ model.class_routine = simple_cache(model.class_routine)
49
+ model.class_routine.__doc__ = CLASS_ROUTINE_DOCSTRING.format(model=model.__name__)
50
+
@@ -1,60 +1,60 @@
1
- """ EfficientNetV2 models implementation.
2
-
3
- This module provides wrapper classes for the EfficientNetV2 family of models from the Keras applications.
4
- EfficientNetV2 models are a family of convolutional neural networks that achieve better
5
- parameter efficiency and faster training speed compared to prior models.
6
-
7
- Available models:
8
-
9
- - EfficientNetV2M: Medium-sized variant balancing performance and computational cost
10
- - EfficientNetV2L: Large variant with higher capacity for complex tasks
11
-
12
- All models support transfer learning from ImageNet pre-trained weights.
13
- """
14
- # pyright: reportUnknownVariableType=false
15
- # pyright: reportMissingTypeStubs=false
16
-
17
- # Imports
18
- from __future__ import annotations
19
-
20
- from keras.models import Model
21
- from keras.src.applications.efficientnet import EfficientNetB0 as EfficientNetB0_keras
22
- from keras.src.applications.efficientnet_v2 import EfficientNetV2B0 as EfficientNetV2B0_keras
23
- from keras.src.applications.efficientnet_v2 import EfficientNetV2L as EfficientNetV2L_keras
24
- from keras.src.applications.efficientnet_v2 import EfficientNetV2M as EfficientNetV2M_keras
25
- from keras.src.applications.efficientnet_v2 import EfficientNetV2S as EfficientNetV2S_keras
26
-
27
- from ....decorators import simple_cache
28
- from ..base_keras import BaseKeras
29
- from ..model_interface import CLASS_ROUTINE_DOCSTRING, MODEL_DOCSTRING
30
-
31
-
32
- # Classes
33
- class EfficientNetV2M(BaseKeras):
34
- def _get_base_model(self) -> Model:
35
- return EfficientNetV2M_keras(include_top=False, classes=self.num_classes)
36
-
37
- class EfficientNetV2L(BaseKeras):
38
- def _get_base_model(self) -> Model:
39
- return EfficientNetV2L_keras(include_top=False, classes=self.num_classes)
40
-
41
- class EfficientNetV2B0(BaseKeras):
42
- def _get_base_model(self) -> Model:
43
- return EfficientNetV2B0_keras(include_top=False, classes=self.num_classes)
44
-
45
- class EfficientNetV2S(BaseKeras):
46
- def _get_base_model(self) -> Model:
47
- return EfficientNetV2S_keras(include_top=False, classes=self.num_classes)
48
-
49
- # Classes for original EfficientNet models
50
- class EfficientNetB0(BaseKeras):
51
- def _get_base_model(self) -> Model:
52
- return EfficientNetB0_keras(include_top=False, classes=self.num_classes)
53
-
54
-
55
- # Docstrings
56
- for model in [EfficientNetV2M, EfficientNetV2L, EfficientNetV2B0, EfficientNetV2S, EfficientNetB0]:
57
- model.__doc__ = MODEL_DOCSTRING.format(model=model.__name__)
58
- model.class_routine = simple_cache(model.class_routine)
59
- model.class_routine.__doc__ = CLASS_ROUTINE_DOCSTRING.format(model=model.__name__)
60
-
1
+ """ EfficientNetV2 models implementation.
2
+
3
+ This module provides wrapper classes for the EfficientNetV2 family of models from the Keras applications.
4
+ EfficientNetV2 models are a family of convolutional neural networks that achieve better
5
+ parameter efficiency and faster training speed compared to prior models.
6
+
7
+ Available models:
8
+
9
+ - EfficientNetV2M: Medium-sized variant balancing performance and computational cost
10
+ - EfficientNetV2L: Large variant with higher capacity for complex tasks
11
+
12
+ All models support transfer learning from ImageNet pre-trained weights.
13
+ """
14
+ # pyright: reportUnknownVariableType=false
15
+ # pyright: reportMissingTypeStubs=false
16
+
17
+ # Imports
18
+ from __future__ import annotations
19
+
20
+ from keras.models import Model
21
+ from keras.src.applications.efficientnet import EfficientNetB0 as EfficientNetB0_keras
22
+ from keras.src.applications.efficientnet_v2 import EfficientNetV2B0 as EfficientNetV2B0_keras
23
+ from keras.src.applications.efficientnet_v2 import EfficientNetV2L as EfficientNetV2L_keras
24
+ from keras.src.applications.efficientnet_v2 import EfficientNetV2M as EfficientNetV2M_keras
25
+ from keras.src.applications.efficientnet_v2 import EfficientNetV2S as EfficientNetV2S_keras
26
+
27
+ from ....decorators import simple_cache
28
+ from ..base_keras import BaseKeras
29
+ from ..model_interface import CLASS_ROUTINE_DOCSTRING, MODEL_DOCSTRING
30
+
31
+
32
+ # Classes
33
+ class EfficientNetV2M(BaseKeras):
34
+ def _get_base_model(self) -> Model:
35
+ return EfficientNetV2M_keras(include_top=False, classes=self.num_classes)
36
+
37
+ class EfficientNetV2L(BaseKeras):
38
+ def _get_base_model(self) -> Model:
39
+ return EfficientNetV2L_keras(include_top=False, classes=self.num_classes)
40
+
41
+ class EfficientNetV2B0(BaseKeras):
42
+ def _get_base_model(self) -> Model:
43
+ return EfficientNetV2B0_keras(include_top=False, classes=self.num_classes)
44
+
45
+ class EfficientNetV2S(BaseKeras):
46
+ def _get_base_model(self) -> Model:
47
+ return EfficientNetV2S_keras(include_top=False, classes=self.num_classes)
48
+
49
+ # Classes for original EfficientNet models
50
+ class EfficientNetB0(BaseKeras):
51
+ def _get_base_model(self) -> Model:
52
+ return EfficientNetB0_keras(include_top=False, classes=self.num_classes)
53
+
54
+
55
+ # Docstrings
56
+ for model in [EfficientNetV2M, EfficientNetV2L, EfficientNetV2B0, EfficientNetV2S, EfficientNetB0]:
57
+ model.__doc__ = MODEL_DOCSTRING.format(model=model.__name__)
58
+ model.class_routine = simple_cache(model.class_routine)
59
+ model.class_routine.__doc__ = CLASS_ROUTINE_DOCSTRING.format(model=model.__name__)
60
+
@@ -1,56 +1,56 @@
1
- """ MobileNet models implementation.
2
-
3
- This module provides wrapper classes for the MobileNet family of models from the Keras applications.
4
- MobileNet models are designed for mobile and embedded vision applications,
5
- offering efficient architectures that deliver high accuracy with low computational requirements.
6
-
7
- Available models:
8
-
9
- - MobileNet: Original MobileNet architecture using depthwise separable convolutions
10
- - MobileNetV2: Lightweight architecture using inverted residuals and linear bottlenecks
11
- - MobileNetV3Small: Compact variant of MobileNetV3 optimized for mobile devices
12
- - MobileNetV3Large: Larger variant of MobileNetV3 with higher capacity
13
-
14
- All models support transfer learning from ImageNet pre-trained weights.
15
- """
16
- # pyright: reportUnknownVariableType=false
17
- # pyright: reportMissingTypeStubs=false
18
-
19
- # Imports
20
- from __future__ import annotations
21
-
22
- from keras.models import Model
23
- from keras.src.applications.mobilenet import MobileNet as MobileNet_keras
24
- from keras.src.applications.mobilenet_v2 import MobileNetV2 as MobileNetV2_keras
25
- from keras.src.applications.mobilenet_v3 import MobileNetV3Large as MobileNetV3Large_keras
26
- from keras.src.applications.mobilenet_v3 import MobileNetV3Small as MobileNetV3Small_keras
27
-
28
- from ....decorators import simple_cache
29
- from ..base_keras import BaseKeras
30
- from ..model_interface import CLASS_ROUTINE_DOCSTRING, MODEL_DOCSTRING
31
-
32
-
33
- # Classes
34
- class MobileNet(BaseKeras):
35
- def _get_base_model(self) -> Model:
36
- return MobileNet_keras(include_top=False, classes=self.num_classes)
37
-
38
- class MobileNetV2(BaseKeras):
39
- def _get_base_model(self) -> Model:
40
- return MobileNetV2_keras(include_top=False, classes=self.num_classes)
41
-
42
- class MobileNetV3Small(BaseKeras):
43
- def _get_base_model(self) -> Model:
44
- return MobileNetV3Small_keras(include_top=False, classes=self.num_classes)
45
-
46
- class MobileNetV3Large(BaseKeras):
47
- def _get_base_model(self) -> Model:
48
- return MobileNetV3Large_keras(include_top=False, classes=self.num_classes)
49
-
50
-
51
- # Docstrings
52
- for model in [MobileNet, MobileNetV2, MobileNetV3Small, MobileNetV3Large]:
53
- model.__doc__ = MODEL_DOCSTRING.format(model=model.__name__)
54
- model.class_routine = simple_cache(model.class_routine)
55
- model.class_routine.__doc__ = CLASS_ROUTINE_DOCSTRING.format(model=model.__name__)
56
-
1
+ """ MobileNet models implementation.
2
+
3
+ This module provides wrapper classes for the MobileNet family of models from the Keras applications.
4
+ MobileNet models are designed for mobile and embedded vision applications,
5
+ offering efficient architectures that deliver high accuracy with low computational requirements.
6
+
7
+ Available models:
8
+
9
+ - MobileNet: Original MobileNet architecture using depthwise separable convolutions
10
+ - MobileNetV2: Lightweight architecture using inverted residuals and linear bottlenecks
11
+ - MobileNetV3Small: Compact variant of MobileNetV3 optimized for mobile devices
12
+ - MobileNetV3Large: Larger variant of MobileNetV3 with higher capacity
13
+
14
+ All models support transfer learning from ImageNet pre-trained weights.
15
+ """
16
+ # pyright: reportUnknownVariableType=false
17
+ # pyright: reportMissingTypeStubs=false
18
+
19
+ # Imports
20
+ from __future__ import annotations
21
+
22
+ from keras.models import Model
23
+ from keras.src.applications.mobilenet import MobileNet as MobileNet_keras
24
+ from keras.src.applications.mobilenet_v2 import MobileNetV2 as MobileNetV2_keras
25
+ from keras.src.applications.mobilenet_v3 import MobileNetV3Large as MobileNetV3Large_keras
26
+ from keras.src.applications.mobilenet_v3 import MobileNetV3Small as MobileNetV3Small_keras
27
+
28
+ from ....decorators import simple_cache
29
+ from ..base_keras import BaseKeras
30
+ from ..model_interface import CLASS_ROUTINE_DOCSTRING, MODEL_DOCSTRING
31
+
32
+
33
+ # Classes
34
+ class MobileNet(BaseKeras):
35
+ def _get_base_model(self) -> Model:
36
+ return MobileNet_keras(include_top=False, classes=self.num_classes)
37
+
38
+ class MobileNetV2(BaseKeras):
39
+ def _get_base_model(self) -> Model:
40
+ return MobileNetV2_keras(include_top=False, classes=self.num_classes)
41
+
42
+ class MobileNetV3Small(BaseKeras):
43
+ def _get_base_model(self) -> Model:
44
+ return MobileNetV3Small_keras(include_top=False, classes=self.num_classes)
45
+
46
+ class MobileNetV3Large(BaseKeras):
47
+ def _get_base_model(self) -> Model:
48
+ return MobileNetV3Large_keras(include_top=False, classes=self.num_classes)
49
+
50
+
51
+ # Docstrings
52
+ for model in [MobileNet, MobileNetV2, MobileNetV3Small, MobileNetV3Large]:
53
+ model.__doc__ = MODEL_DOCSTRING.format(model=model.__name__)
54
+ model.class_routine = simple_cache(model.class_routine)
55
+ model.class_routine.__doc__ = CLASS_ROUTINE_DOCSTRING.format(model=model.__name__)
56
+
@@ -1,52 +1,52 @@
1
- """ ResNet models implementation.
2
-
3
- This module provides wrapper classes for the ResNet family of models from the Keras applications.
4
- It includes both ResNetV2 models with pre-activation residual blocks and ResNetRS
5
- (ResNet with Revisited Scaling) models that offer improved performance
6
- through various scaling techniques.
7
-
8
- Available models:
9
-
10
- - ResNetV2 family: Improved ResNet architectures with pre-activation blocks
11
- - ResNet50V2
12
- - ResNet101V2
13
- - ResNet152V2
14
-
15
- All models support transfer learning from ImageNet pre-trained weights.
16
- """
17
- # pyright: reportUnknownVariableType=false
18
- # pyright: reportMissingTypeStubs=false
19
-
20
- # Imports
21
- from __future__ import annotations
22
-
23
- from keras.models import Model
24
- from keras.src.applications.resnet_v2 import ResNet50V2 as ResNet50V2_keras
25
- from keras.src.applications.resnet_v2 import ResNet101V2 as ResNet101V2_keras
26
- from keras.src.applications.resnet_v2 import ResNet152V2 as ResNet152V2_keras
27
-
28
- from ....decorators import simple_cache
29
- from ..base_keras import BaseKeras
30
- from ..model_interface import CLASS_ROUTINE_DOCSTRING, MODEL_DOCSTRING
31
-
32
-
33
- # Classes
34
- class ResNet50V2(BaseKeras):
35
- def _get_base_model(self) -> Model:
36
- return ResNet50V2_keras(include_top=False, classes=self.num_classes)
37
-
38
- class ResNet101V2(BaseKeras):
39
- def _get_base_model(self) -> Model:
40
- return ResNet101V2_keras(include_top=False, classes=self.num_classes)
41
-
42
- class ResNet152V2(BaseKeras):
43
- def _get_base_model(self) -> Model:
44
- return ResNet152V2_keras(include_top=False, classes=self.num_classes)
45
-
46
-
47
- # Docstrings
48
- for model in [ResNet50V2, ResNet101V2, ResNet152V2]:
49
- model.__doc__ = MODEL_DOCSTRING.format(model=model.__name__)
50
- model.class_routine = simple_cache(model.class_routine)
51
- model.class_routine.__doc__ = CLASS_ROUTINE_DOCSTRING.format(model=model.__name__)
52
-
1
+ """ ResNet models implementation.
2
+
3
+ This module provides wrapper classes for the ResNet family of models from the Keras applications.
4
+ It includes both ResNetV2 models with pre-activation residual blocks and ResNetRS
5
+ (ResNet with Revisited Scaling) models that offer improved performance
6
+ through various scaling techniques.
7
+
8
+ Available models:
9
+
10
+ - ResNetV2 family: Improved ResNet architectures with pre-activation blocks
11
+ - ResNet50V2
12
+ - ResNet101V2
13
+ - ResNet152V2
14
+
15
+ All models support transfer learning from ImageNet pre-trained weights.
16
+ """
17
+ # pyright: reportUnknownVariableType=false
18
+ # pyright: reportMissingTypeStubs=false
19
+
20
+ # Imports
21
+ from __future__ import annotations
22
+
23
+ from keras.models import Model
24
+ from keras.src.applications.resnet_v2 import ResNet50V2 as ResNet50V2_keras
25
+ from keras.src.applications.resnet_v2 import ResNet101V2 as ResNet101V2_keras
26
+ from keras.src.applications.resnet_v2 import ResNet152V2 as ResNet152V2_keras
27
+
28
+ from ....decorators import simple_cache
29
+ from ..base_keras import BaseKeras
30
+ from ..model_interface import CLASS_ROUTINE_DOCSTRING, MODEL_DOCSTRING
31
+
32
+
33
+ # Classes
34
+ class ResNet50V2(BaseKeras):
35
+ def _get_base_model(self) -> Model:
36
+ return ResNet50V2_keras(include_top=False, classes=self.num_classes)
37
+
38
+ class ResNet101V2(BaseKeras):
39
+ def _get_base_model(self) -> Model:
40
+ return ResNet101V2_keras(include_top=False, classes=self.num_classes)
41
+
42
+ class ResNet152V2(BaseKeras):
43
+ def _get_base_model(self) -> Model:
44
+ return ResNet152V2_keras(include_top=False, classes=self.num_classes)
45
+
46
+
47
+ # Docstrings
48
+ for model in [ResNet50V2, ResNet101V2, ResNet152V2]:
49
+ model.__doc__ = MODEL_DOCSTRING.format(model=model.__name__)
50
+ model.class_routine = simple_cache(model.class_routine)
51
+ model.class_routine.__doc__ = CLASS_ROUTINE_DOCSTRING.format(model=model.__name__)
52
+