stouputils 1.14.0__py3-none-any.whl → 1.14.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- stouputils/__init__.pyi +15 -0
- stouputils/_deprecated.pyi +12 -0
- stouputils/all_doctests.pyi +46 -0
- stouputils/applications/__init__.pyi +2 -0
- stouputils/applications/automatic_docs.py +3 -0
- stouputils/applications/automatic_docs.pyi +106 -0
- stouputils/applications/upscaler/__init__.pyi +3 -0
- stouputils/applications/upscaler/config.pyi +18 -0
- stouputils/applications/upscaler/image.pyi +109 -0
- stouputils/applications/upscaler/video.pyi +60 -0
- stouputils/archive.pyi +67 -0
- stouputils/backup.pyi +109 -0
- stouputils/collections.pyi +86 -0
- stouputils/continuous_delivery/__init__.pyi +5 -0
- stouputils/continuous_delivery/cd_utils.pyi +129 -0
- stouputils/continuous_delivery/github.pyi +162 -0
- stouputils/continuous_delivery/pypi.pyi +52 -0
- stouputils/continuous_delivery/pyproject.pyi +67 -0
- stouputils/continuous_delivery/stubs.pyi +39 -0
- stouputils/ctx.pyi +211 -0
- stouputils/data_science/config/get.py +51 -51
- stouputils/data_science/data_processing/image/__init__.py +66 -66
- stouputils/data_science/data_processing/image/auto_contrast.py +79 -79
- stouputils/data_science/data_processing/image/axis_flip.py +58 -58
- stouputils/data_science/data_processing/image/bias_field_correction.py +74 -74
- stouputils/data_science/data_processing/image/binary_threshold.py +73 -73
- stouputils/data_science/data_processing/image/blur.py +59 -59
- stouputils/data_science/data_processing/image/brightness.py +54 -54
- stouputils/data_science/data_processing/image/canny.py +110 -110
- stouputils/data_science/data_processing/image/clahe.py +92 -92
- stouputils/data_science/data_processing/image/common.py +30 -30
- stouputils/data_science/data_processing/image/contrast.py +53 -53
- stouputils/data_science/data_processing/image/curvature_flow_filter.py +74 -74
- stouputils/data_science/data_processing/image/denoise.py +378 -378
- stouputils/data_science/data_processing/image/histogram_equalization.py +123 -123
- stouputils/data_science/data_processing/image/invert.py +64 -64
- stouputils/data_science/data_processing/image/laplacian.py +60 -60
- stouputils/data_science/data_processing/image/median_blur.py +52 -52
- stouputils/data_science/data_processing/image/noise.py +59 -59
- stouputils/data_science/data_processing/image/normalize.py +65 -65
- stouputils/data_science/data_processing/image/random_erase.py +66 -66
- stouputils/data_science/data_processing/image/resize.py +69 -69
- stouputils/data_science/data_processing/image/rotation.py +80 -80
- stouputils/data_science/data_processing/image/salt_pepper.py +68 -68
- stouputils/data_science/data_processing/image/sharpening.py +55 -55
- stouputils/data_science/data_processing/image/shearing.py +64 -64
- stouputils/data_science/data_processing/image/threshold.py +64 -64
- stouputils/data_science/data_processing/image/translation.py +71 -71
- stouputils/data_science/data_processing/image/zoom.py +83 -83
- stouputils/data_science/data_processing/image_augmentation.py +118 -118
- stouputils/data_science/data_processing/image_preprocess.py +183 -183
- stouputils/data_science/data_processing/prosthesis_detection.py +359 -359
- stouputils/data_science/data_processing/technique.py +481 -481
- stouputils/data_science/dataset/__init__.py +45 -45
- stouputils/data_science/dataset/dataset.py +292 -292
- stouputils/data_science/dataset/dataset_loader.py +135 -135
- stouputils/data_science/dataset/grouping_strategy.py +296 -296
- stouputils/data_science/dataset/image_loader.py +100 -100
- stouputils/data_science/dataset/xy_tuple.py +696 -696
- stouputils/data_science/metric_dictionnary.py +106 -106
- stouputils/data_science/mlflow_utils.py +206 -206
- stouputils/data_science/models/abstract_model.py +149 -149
- stouputils/data_science/models/all.py +85 -85
- stouputils/data_science/models/keras/all.py +38 -38
- stouputils/data_science/models/keras/convnext.py +62 -62
- stouputils/data_science/models/keras/densenet.py +50 -50
- stouputils/data_science/models/keras/efficientnet.py +60 -60
- stouputils/data_science/models/keras/mobilenet.py +56 -56
- stouputils/data_science/models/keras/resnet.py +52 -52
- stouputils/data_science/models/keras/squeezenet.py +233 -233
- stouputils/data_science/models/keras/vgg.py +42 -42
- stouputils/data_science/models/keras/xception.py +38 -38
- stouputils/data_science/models/keras_utils/callbacks/__init__.py +20 -20
- stouputils/data_science/models/keras_utils/callbacks/colored_progress_bar.py +219 -219
- stouputils/data_science/models/keras_utils/callbacks/learning_rate_finder.py +148 -148
- stouputils/data_science/models/keras_utils/callbacks/model_checkpoint_v2.py +31 -31
- stouputils/data_science/models/keras_utils/callbacks/progressive_unfreezing.py +249 -249
- stouputils/data_science/models/keras_utils/callbacks/warmup_scheduler.py +66 -66
- stouputils/data_science/models/keras_utils/losses/__init__.py +12 -12
- stouputils/data_science/models/keras_utils/losses/next_generation_loss.py +56 -56
- stouputils/data_science/models/keras_utils/visualizations.py +416 -416
- stouputils/data_science/models/sandbox.py +116 -116
- stouputils/data_science/range_tuple.py +234 -234
- stouputils/data_science/utils.py +285 -285
- stouputils/decorators.pyi +242 -0
- stouputils/image.pyi +172 -0
- stouputils/installer/__init__.py +18 -18
- stouputils/installer/__init__.pyi +5 -0
- stouputils/installer/common.pyi +39 -0
- stouputils/installer/downloader.pyi +24 -0
- stouputils/installer/linux.py +144 -144
- stouputils/installer/linux.pyi +39 -0
- stouputils/installer/main.py +223 -223
- stouputils/installer/main.pyi +57 -0
- stouputils/installer/windows.py +136 -136
- stouputils/installer/windows.pyi +31 -0
- stouputils/io.pyi +213 -0
- stouputils/parallel.py +12 -10
- stouputils/parallel.pyi +211 -0
- stouputils/print.pyi +136 -0
- stouputils/py.typed +1 -1
- stouputils/stouputils/parallel.pyi +4 -4
- stouputils/version_pkg.pyi +15 -0
- {stouputils-1.14.0.dist-info → stouputils-1.14.2.dist-info}/METADATA +1 -1
- stouputils-1.14.2.dist-info/RECORD +171 -0
- stouputils-1.14.0.dist-info/RECORD +0 -140
- {stouputils-1.14.0.dist-info → stouputils-1.14.2.dist-info}/WHEEL +0 -0
- {stouputils-1.14.0.dist-info → stouputils-1.14.2.dist-info}/entry_points.txt +0 -0
|
@@ -1,56 +1,56 @@
|
|
|
1
|
-
|
|
2
|
-
# pyright: reportUnknownMemberType=false
|
|
3
|
-
# pyright: reportUnknownVariableType=false
|
|
4
|
-
# pyright: reportUnknownArgumentType=false
|
|
5
|
-
# pyright: reportMissingTypeStubs=false
|
|
6
|
-
# pyright: reportAssignmentType=false
|
|
7
|
-
|
|
8
|
-
# Imports
|
|
9
|
-
import tensorflow as tf
|
|
10
|
-
from keras.losses import Loss
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
class NextGenerationLoss(Loss):
|
|
14
|
-
""" Next Generation Loss with alpha = 2.4092.
|
|
15
|
-
|
|
16
|
-
Sources:
|
|
17
|
-
- Code: https://github.com/ZKI-PH-ImageAnalysis/Next-Generation-Loss/blob/main/NGL_torch.py
|
|
18
|
-
- Next Generation Loss Function for Image Classification: https://arxiv.org/pdf/2404.12948
|
|
19
|
-
"""
|
|
20
|
-
|
|
21
|
-
def __init__(self, alpha: float = 2.4092, name: str = "ngl_loss"):
|
|
22
|
-
""" Initialize the Next Generation Loss.
|
|
23
|
-
|
|
24
|
-
Args:
|
|
25
|
-
alpha (float): The alpha parameter.
|
|
26
|
-
name (str): The name of the loss function.
|
|
27
|
-
"""
|
|
28
|
-
super().__init__(name=name)
|
|
29
|
-
self.name: str = name
|
|
30
|
-
""" The name of the loss function. """
|
|
31
|
-
self.alpha: float = alpha
|
|
32
|
-
""" The alpha parameter. """
|
|
33
|
-
|
|
34
|
-
def call(self, y_true: tf.Tensor, y_pred: tf.Tensor) -> tf.Tensor:
|
|
35
|
-
""" Compute the NGL loss.
|
|
36
|
-
|
|
37
|
-
Args:
|
|
38
|
-
y_true (tf.Tensor): The true labels.
|
|
39
|
-
y_pred (tf.Tensor): The predicted labels.
|
|
40
|
-
Returns:
|
|
41
|
-
tf.Tensor: The computed NGL loss.
|
|
42
|
-
"""
|
|
43
|
-
# Cast to float32
|
|
44
|
-
y_pred = tf.cast(y_pred, tf.float32)
|
|
45
|
-
y_true = tf.cast(y_true, tf.float32)
|
|
46
|
-
|
|
47
|
-
# Apply softmax to predictions
|
|
48
|
-
y_pred = tf.nn.softmax(y_pred, axis=-1)
|
|
49
|
-
|
|
50
|
-
# Compute the NGL loss using the alpha parameter (default 2.4092)
|
|
51
|
-
loss: tf.Tensor = tf.reduce_mean(
|
|
52
|
-
tf.math.exp(self.alpha - y_pred - y_pred * y_true) -
|
|
53
|
-
tf.math.cos(tf.math.cos(tf.math.sin(y_pred)))
|
|
54
|
-
)
|
|
55
|
-
return loss
|
|
56
|
-
|
|
1
|
+
|
|
2
|
+
# pyright: reportUnknownMemberType=false
|
|
3
|
+
# pyright: reportUnknownVariableType=false
|
|
4
|
+
# pyright: reportUnknownArgumentType=false
|
|
5
|
+
# pyright: reportMissingTypeStubs=false
|
|
6
|
+
# pyright: reportAssignmentType=false
|
|
7
|
+
|
|
8
|
+
# Imports
|
|
9
|
+
import tensorflow as tf
|
|
10
|
+
from keras.losses import Loss
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class NextGenerationLoss(Loss):
|
|
14
|
+
""" Next Generation Loss with alpha = 2.4092.
|
|
15
|
+
|
|
16
|
+
Sources:
|
|
17
|
+
- Code: https://github.com/ZKI-PH-ImageAnalysis/Next-Generation-Loss/blob/main/NGL_torch.py
|
|
18
|
+
- Next Generation Loss Function for Image Classification: https://arxiv.org/pdf/2404.12948
|
|
19
|
+
"""
|
|
20
|
+
|
|
21
|
+
def __init__(self, alpha: float = 2.4092, name: str = "ngl_loss"):
|
|
22
|
+
""" Initialize the Next Generation Loss.
|
|
23
|
+
|
|
24
|
+
Args:
|
|
25
|
+
alpha (float): The alpha parameter.
|
|
26
|
+
name (str): The name of the loss function.
|
|
27
|
+
"""
|
|
28
|
+
super().__init__(name=name)
|
|
29
|
+
self.name: str = name
|
|
30
|
+
""" The name of the loss function. """
|
|
31
|
+
self.alpha: float = alpha
|
|
32
|
+
""" The alpha parameter. """
|
|
33
|
+
|
|
34
|
+
def call(self, y_true: tf.Tensor, y_pred: tf.Tensor) -> tf.Tensor:
|
|
35
|
+
""" Compute the NGL loss.
|
|
36
|
+
|
|
37
|
+
Args:
|
|
38
|
+
y_true (tf.Tensor): The true labels.
|
|
39
|
+
y_pred (tf.Tensor): The predicted labels.
|
|
40
|
+
Returns:
|
|
41
|
+
tf.Tensor: The computed NGL loss.
|
|
42
|
+
"""
|
|
43
|
+
# Cast to float32
|
|
44
|
+
y_pred = tf.cast(y_pred, tf.float32)
|
|
45
|
+
y_true = tf.cast(y_true, tf.float32)
|
|
46
|
+
|
|
47
|
+
# Apply softmax to predictions
|
|
48
|
+
y_pred = tf.nn.softmax(y_pred, axis=-1)
|
|
49
|
+
|
|
50
|
+
# Compute the NGL loss using the alpha parameter (default 2.4092)
|
|
51
|
+
loss: tf.Tensor = tf.reduce_mean(
|
|
52
|
+
tf.math.exp(self.alpha - y_pred - y_pred * y_true) -
|
|
53
|
+
tf.math.cos(tf.math.cos(tf.math.sin(y_pred)))
|
|
54
|
+
)
|
|
55
|
+
return loss
|
|
56
|
+
|