stouputils 1.14.0__py3-none-any.whl → 1.14.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (108) hide show
  1. stouputils/__init__.pyi +15 -0
  2. stouputils/_deprecated.pyi +12 -0
  3. stouputils/all_doctests.pyi +46 -0
  4. stouputils/applications/__init__.pyi +2 -0
  5. stouputils/applications/automatic_docs.py +3 -0
  6. stouputils/applications/automatic_docs.pyi +106 -0
  7. stouputils/applications/upscaler/__init__.pyi +3 -0
  8. stouputils/applications/upscaler/config.pyi +18 -0
  9. stouputils/applications/upscaler/image.pyi +109 -0
  10. stouputils/applications/upscaler/video.pyi +60 -0
  11. stouputils/archive.pyi +67 -0
  12. stouputils/backup.pyi +109 -0
  13. stouputils/collections.pyi +86 -0
  14. stouputils/continuous_delivery/__init__.pyi +5 -0
  15. stouputils/continuous_delivery/cd_utils.pyi +129 -0
  16. stouputils/continuous_delivery/github.pyi +162 -0
  17. stouputils/continuous_delivery/pypi.pyi +52 -0
  18. stouputils/continuous_delivery/pyproject.pyi +67 -0
  19. stouputils/continuous_delivery/stubs.pyi +39 -0
  20. stouputils/ctx.pyi +211 -0
  21. stouputils/data_science/config/get.py +51 -51
  22. stouputils/data_science/data_processing/image/__init__.py +66 -66
  23. stouputils/data_science/data_processing/image/auto_contrast.py +79 -79
  24. stouputils/data_science/data_processing/image/axis_flip.py +58 -58
  25. stouputils/data_science/data_processing/image/bias_field_correction.py +74 -74
  26. stouputils/data_science/data_processing/image/binary_threshold.py +73 -73
  27. stouputils/data_science/data_processing/image/blur.py +59 -59
  28. stouputils/data_science/data_processing/image/brightness.py +54 -54
  29. stouputils/data_science/data_processing/image/canny.py +110 -110
  30. stouputils/data_science/data_processing/image/clahe.py +92 -92
  31. stouputils/data_science/data_processing/image/common.py +30 -30
  32. stouputils/data_science/data_processing/image/contrast.py +53 -53
  33. stouputils/data_science/data_processing/image/curvature_flow_filter.py +74 -74
  34. stouputils/data_science/data_processing/image/denoise.py +378 -378
  35. stouputils/data_science/data_processing/image/histogram_equalization.py +123 -123
  36. stouputils/data_science/data_processing/image/invert.py +64 -64
  37. stouputils/data_science/data_processing/image/laplacian.py +60 -60
  38. stouputils/data_science/data_processing/image/median_blur.py +52 -52
  39. stouputils/data_science/data_processing/image/noise.py +59 -59
  40. stouputils/data_science/data_processing/image/normalize.py +65 -65
  41. stouputils/data_science/data_processing/image/random_erase.py +66 -66
  42. stouputils/data_science/data_processing/image/resize.py +69 -69
  43. stouputils/data_science/data_processing/image/rotation.py +80 -80
  44. stouputils/data_science/data_processing/image/salt_pepper.py +68 -68
  45. stouputils/data_science/data_processing/image/sharpening.py +55 -55
  46. stouputils/data_science/data_processing/image/shearing.py +64 -64
  47. stouputils/data_science/data_processing/image/threshold.py +64 -64
  48. stouputils/data_science/data_processing/image/translation.py +71 -71
  49. stouputils/data_science/data_processing/image/zoom.py +83 -83
  50. stouputils/data_science/data_processing/image_augmentation.py +118 -118
  51. stouputils/data_science/data_processing/image_preprocess.py +183 -183
  52. stouputils/data_science/data_processing/prosthesis_detection.py +359 -359
  53. stouputils/data_science/data_processing/technique.py +481 -481
  54. stouputils/data_science/dataset/__init__.py +45 -45
  55. stouputils/data_science/dataset/dataset.py +292 -292
  56. stouputils/data_science/dataset/dataset_loader.py +135 -135
  57. stouputils/data_science/dataset/grouping_strategy.py +296 -296
  58. stouputils/data_science/dataset/image_loader.py +100 -100
  59. stouputils/data_science/dataset/xy_tuple.py +696 -696
  60. stouputils/data_science/metric_dictionnary.py +106 -106
  61. stouputils/data_science/mlflow_utils.py +206 -206
  62. stouputils/data_science/models/abstract_model.py +149 -149
  63. stouputils/data_science/models/all.py +85 -85
  64. stouputils/data_science/models/keras/all.py +38 -38
  65. stouputils/data_science/models/keras/convnext.py +62 -62
  66. stouputils/data_science/models/keras/densenet.py +50 -50
  67. stouputils/data_science/models/keras/efficientnet.py +60 -60
  68. stouputils/data_science/models/keras/mobilenet.py +56 -56
  69. stouputils/data_science/models/keras/resnet.py +52 -52
  70. stouputils/data_science/models/keras/squeezenet.py +233 -233
  71. stouputils/data_science/models/keras/vgg.py +42 -42
  72. stouputils/data_science/models/keras/xception.py +38 -38
  73. stouputils/data_science/models/keras_utils/callbacks/__init__.py +20 -20
  74. stouputils/data_science/models/keras_utils/callbacks/colored_progress_bar.py +219 -219
  75. stouputils/data_science/models/keras_utils/callbacks/learning_rate_finder.py +148 -148
  76. stouputils/data_science/models/keras_utils/callbacks/model_checkpoint_v2.py +31 -31
  77. stouputils/data_science/models/keras_utils/callbacks/progressive_unfreezing.py +249 -249
  78. stouputils/data_science/models/keras_utils/callbacks/warmup_scheduler.py +66 -66
  79. stouputils/data_science/models/keras_utils/losses/__init__.py +12 -12
  80. stouputils/data_science/models/keras_utils/losses/next_generation_loss.py +56 -56
  81. stouputils/data_science/models/keras_utils/visualizations.py +416 -416
  82. stouputils/data_science/models/sandbox.py +116 -116
  83. stouputils/data_science/range_tuple.py +234 -234
  84. stouputils/data_science/utils.py +285 -285
  85. stouputils/decorators.pyi +242 -0
  86. stouputils/image.pyi +172 -0
  87. stouputils/installer/__init__.py +18 -18
  88. stouputils/installer/__init__.pyi +5 -0
  89. stouputils/installer/common.pyi +39 -0
  90. stouputils/installer/downloader.pyi +24 -0
  91. stouputils/installer/linux.py +144 -144
  92. stouputils/installer/linux.pyi +39 -0
  93. stouputils/installer/main.py +223 -223
  94. stouputils/installer/main.pyi +57 -0
  95. stouputils/installer/windows.py +136 -136
  96. stouputils/installer/windows.pyi +31 -0
  97. stouputils/io.pyi +213 -0
  98. stouputils/parallel.py +12 -10
  99. stouputils/parallel.pyi +211 -0
  100. stouputils/print.pyi +136 -0
  101. stouputils/py.typed +1 -1
  102. stouputils/stouputils/parallel.pyi +4 -4
  103. stouputils/version_pkg.pyi +15 -0
  104. {stouputils-1.14.0.dist-info → stouputils-1.14.2.dist-info}/METADATA +1 -1
  105. stouputils-1.14.2.dist-info/RECORD +171 -0
  106. stouputils-1.14.0.dist-info/RECORD +0 -140
  107. {stouputils-1.14.0.dist-info → stouputils-1.14.2.dist-info}/WHEEL +0 -0
  108. {stouputils-1.14.0.dist-info → stouputils-1.14.2.dist-info}/entry_points.txt +0 -0
@@ -1,56 +1,56 @@
1
-
2
- # pyright: reportUnknownMemberType=false
3
- # pyright: reportUnknownVariableType=false
4
- # pyright: reportUnknownArgumentType=false
5
- # pyright: reportMissingTypeStubs=false
6
- # pyright: reportAssignmentType=false
7
-
8
- # Imports
9
- import tensorflow as tf
10
- from keras.losses import Loss
11
-
12
-
13
- class NextGenerationLoss(Loss):
14
- """ Next Generation Loss with alpha = 2.4092.
15
-
16
- Sources:
17
- - Code: https://github.com/ZKI-PH-ImageAnalysis/Next-Generation-Loss/blob/main/NGL_torch.py
18
- - Next Generation Loss Function for Image Classification: https://arxiv.org/pdf/2404.12948
19
- """
20
-
21
- def __init__(self, alpha: float = 2.4092, name: str = "ngl_loss"):
22
- """ Initialize the Next Generation Loss.
23
-
24
- Args:
25
- alpha (float): The alpha parameter.
26
- name (str): The name of the loss function.
27
- """
28
- super().__init__(name=name)
29
- self.name: str = name
30
- """ The name of the loss function. """
31
- self.alpha: float = alpha
32
- """ The alpha parameter. """
33
-
34
- def call(self, y_true: tf.Tensor, y_pred: tf.Tensor) -> tf.Tensor:
35
- """ Compute the NGL loss.
36
-
37
- Args:
38
- y_true (tf.Tensor): The true labels.
39
- y_pred (tf.Tensor): The predicted labels.
40
- Returns:
41
- tf.Tensor: The computed NGL loss.
42
- """
43
- # Cast to float32
44
- y_pred = tf.cast(y_pred, tf.float32)
45
- y_true = tf.cast(y_true, tf.float32)
46
-
47
- # Apply softmax to predictions
48
- y_pred = tf.nn.softmax(y_pred, axis=-1)
49
-
50
- # Compute the NGL loss using the alpha parameter (default 2.4092)
51
- loss: tf.Tensor = tf.reduce_mean(
52
- tf.math.exp(self.alpha - y_pred - y_pred * y_true) -
53
- tf.math.cos(tf.math.cos(tf.math.sin(y_pred)))
54
- )
55
- return loss
56
-
1
+
2
+ # pyright: reportUnknownMemberType=false
3
+ # pyright: reportUnknownVariableType=false
4
+ # pyright: reportUnknownArgumentType=false
5
+ # pyright: reportMissingTypeStubs=false
6
+ # pyright: reportAssignmentType=false
7
+
8
+ # Imports
9
+ import tensorflow as tf
10
+ from keras.losses import Loss
11
+
12
+
13
+ class NextGenerationLoss(Loss):
14
+ """ Next Generation Loss with alpha = 2.4092.
15
+
16
+ Sources:
17
+ - Code: https://github.com/ZKI-PH-ImageAnalysis/Next-Generation-Loss/blob/main/NGL_torch.py
18
+ - Next Generation Loss Function for Image Classification: https://arxiv.org/pdf/2404.12948
19
+ """
20
+
21
+ def __init__(self, alpha: float = 2.4092, name: str = "ngl_loss"):
22
+ """ Initialize the Next Generation Loss.
23
+
24
+ Args:
25
+ alpha (float): The alpha parameter.
26
+ name (str): The name of the loss function.
27
+ """
28
+ super().__init__(name=name)
29
+ self.name: str = name
30
+ """ The name of the loss function. """
31
+ self.alpha: float = alpha
32
+ """ The alpha parameter. """
33
+
34
+ def call(self, y_true: tf.Tensor, y_pred: tf.Tensor) -> tf.Tensor:
35
+ """ Compute the NGL loss.
36
+
37
+ Args:
38
+ y_true (tf.Tensor): The true labels.
39
+ y_pred (tf.Tensor): The predicted labels.
40
+ Returns:
41
+ tf.Tensor: The computed NGL loss.
42
+ """
43
+ # Cast to float32
44
+ y_pred = tf.cast(y_pred, tf.float32)
45
+ y_true = tf.cast(y_true, tf.float32)
46
+
47
+ # Apply softmax to predictions
48
+ y_pred = tf.nn.softmax(y_pred, axis=-1)
49
+
50
+ # Compute the NGL loss using the alpha parameter (default 2.4092)
51
+ loss: tf.Tensor = tf.reduce_mean(
52
+ tf.math.exp(self.alpha - y_pred - y_pred * y_true) -
53
+ tf.math.cos(tf.math.cos(tf.math.sin(y_pred)))
54
+ )
55
+ return loss
56
+