spark-nlp 5.5.0rc1__py2.py3-none-any.whl → 5.5.2__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of spark-nlp might be problematic. Click here for more details.

@@ -32,7 +32,7 @@ class NLLBTransformer(AnnotatorModel, HasBatchedAnnotate, HasEngine):
32
32
  ... .setOutputCol("generation")
33
33
 
34
34
 
35
- The default model is ``"nllb_418M"``, if no name is provided. For available
35
+ The default model is ``"nllb_distilled_600M_8int"``, if no name is provided. For available
36
36
  pretrained models please see the `Models Hub
37
37
  <https://sparknlp.org/models?q=nllb>`__.
38
38
 
@@ -164,7 +164,7 @@ class NLLBTransformer(AnnotatorModel, HasBatchedAnnotate, HasEngine):
164
164
  >>> documentAssembler = DocumentAssembler() \\
165
165
  ... .setInputCol("text") \\
166
166
  ... .setOutputCol("documents")
167
- >>> nllb = NLLBTransformer.pretrained("nllb_418M") \\
167
+ >>> nllb = NLLBTransformer.pretrained("nllb_distilled_600M_8int") \\
168
168
  ... .setInputCols(["documents"]) \\
169
169
  ... .setMaxOutputLength(50) \\
170
170
  ... .setOutputCol("generation") \\
@@ -398,13 +398,13 @@ class NLLBTransformer(AnnotatorModel, HasBatchedAnnotate, HasEngine):
398
398
  return NLLBTransformer(java_model=jModel)
399
399
 
400
400
  @staticmethod
401
- def pretrained(name="nllb_418M", lang="xx", remote_loc=None):
401
+ def pretrained(name="nllb_distilled_600M_8int", lang="xx", remote_loc=None):
402
402
  """Downloads and loads a pretrained model.
403
403
 
404
404
  Parameters
405
405
  ----------
406
406
  name : str, optional
407
- Name of the pretrained model, by default "nllb_418M"
407
+ Name of the pretrained model, by default "nllb_distilled_600M_8int"
408
408
  lang : str, optional
409
409
  Language of the pretrained model, by default "en"
410
410
  remote_loc : str, optional
@@ -37,7 +37,7 @@ class Phi3Transformer(AnnotatorModel, HasBatchedAnnotate, HasEngine):
37
37
  ... .setOutputCol("generation")
38
38
 
39
39
 
40
- The default model is ``"phi3"``, if no name is provided. For available
40
+ The default model is ``phi_3_mini_128k_instruct``, if no name is provided. For available
41
41
  pretrained models please see the `Models Hub
42
42
  <https://sparknlp.org/models?q=phi3>`__.
43
43
 
@@ -112,7 +112,7 @@ class Phi3Transformer(AnnotatorModel, HasBatchedAnnotate, HasEngine):
112
112
  >>> documentAssembler = DocumentAssembler() \\
113
113
  ... .setInputCol("text") \\
114
114
  ... .setOutputCol("documents")
115
- >>> phi3 = Phi3Transformer.pretrained("phi3") \\
115
+ >>> phi3 = Phi3Transformer.pretrained(phi_3_mini_128k_instruct) \\
116
116
  ... .setInputCols(["documents"]) \\
117
117
  ... .setMaxOutputLength(50) \\
118
118
  ... .setOutputCol("generation")
@@ -308,13 +308,13 @@ class Phi3Transformer(AnnotatorModel, HasBatchedAnnotate, HasEngine):
308
308
  return Phi3Transformer(java_model=jModel)
309
309
 
310
310
  @staticmethod
311
- def pretrained(name="phi3", lang="en", remote_loc=None):
311
+ def pretrained(name="phi_3_mini_128k_instruct", lang="en", remote_loc=None):
312
312
  """Downloads and loads a pretrained model.
313
313
 
314
314
  Parameters
315
315
  ----------
316
316
  name : str, optional
317
- Name of the pretrained model, by default "phi3"
317
+ Name of the pretrained model, by default phi_3_mini_128k_instruct
318
318
  lang : str, optional
319
319
  Language of the pretrained model, by default "en"
320
320
  remote_loc : str, optional
@@ -121,7 +121,7 @@ class QwenTransformer(AnnotatorModel, HasBatchedAnnotate, HasEngine):
121
121
  >>> documentAssembler = DocumentAssembler() \\
122
122
  ... .setInputCol("text") \\
123
123
  ... .setOutputCol("documents")
124
- >>> qwen = QwenTransformer.pretrained("qwen-7b") \\
124
+ >>> qwen = QwenTransformer.pretrained("qwen_7.5b_chat") \\
125
125
  ... .setInputCols(["documents"]) \\
126
126
  ... .setMaxOutputLength(50) \\
127
127
  ... .setOutputCol("generation")
@@ -317,13 +317,13 @@ class QwenTransformer(AnnotatorModel, HasBatchedAnnotate, HasEngine):
317
317
  return QwenTransformer(java_model=jModel)
318
318
 
319
319
  @staticmethod
320
- def pretrained(name="qwen-7b", lang="en", remote_loc=None):
320
+ def pretrained(name="qwen_7.5b_chat", lang="en", remote_loc=None):
321
321
  """Downloads and loads a pretrained model.
322
322
 
323
323
  Parameters
324
324
  ----------
325
325
  name : str, optional
326
- Name of the pretrained model, by default "qwen-7b"
326
+ Name of the pretrained model, by default "qwen_7.5b_chat"
327
327
  lang : str, optional
328
328
  Language of the pretrained model, by default "en"
329
329
  remote_loc : str, optional
sparknlp/base/__init__.py CHANGED
@@ -26,3 +26,4 @@ from sparknlp.base.token_assembler import *
26
26
  from sparknlp.base.image_assembler import *
27
27
  from sparknlp.base.audio_assembler import *
28
28
  from sparknlp.base.table_assembler import *
29
+ from sparknlp.base.prompt_assembler import *
@@ -65,6 +65,7 @@ class ImageAssembler(AnnotatorTransformer):
65
65
  outputAnnotatorType = AnnotatorType.IMAGE
66
66
 
67
67
  inputCol = Param(Params._dummy(), "inputCol", "input column name", typeConverter=TypeConverters.toString)
68
+ textCol = Param(Params._dummy(), "textCol", "text column name", typeConverter=TypeConverters.toString)
68
69
  outputCol = Param(Params._dummy(), "outputCol", "output column name", typeConverter=TypeConverters.toString)
69
70
  name = 'ImageAssembler'
70
71
 
@@ -101,3 +102,13 @@ class ImageAssembler(AnnotatorTransformer):
101
102
  def getOutputCol(self):
102
103
  """Gets output column name of annotations."""
103
104
  return self.getOrDefault(self.outputCol)
105
+
106
+ def setTextCol(self, value):
107
+ """Sets an optional text column name.
108
+
109
+ Parameters
110
+ ----------
111
+ value : str
112
+ Name of an optional input text column
113
+ """
114
+ return self._set(inputCol=value)
@@ -277,7 +277,7 @@ class LightPipeline:
277
277
 
278
278
  return result
279
279
 
280
- def fullAnnotateImage(self, path_to_image):
280
+ def fullAnnotateImage(self, path_to_image, text=None):
281
281
  """Annotates the data provided into `Annotation` type results.
282
282
 
283
283
  The data should be either a list or a str.
@@ -287,27 +287,38 @@ class LightPipeline:
287
287
  path_to_image : list or str
288
288
  Source path of image, list of paths to images
289
289
 
290
+ text: list or str, optional
291
+ Optional list or str of texts. If None, defaults to empty list if path_to_image is a list, or empty string if path_to_image is a string.
292
+
290
293
  Returns
291
294
  -------
292
295
  List[AnnotationImage]
293
296
  The result of the annotation
294
297
  """
298
+ if not isinstance(path_to_image, (str, list)):
299
+ raise TypeError("argument for path_to_image must be 'str' or 'list[str]'")
300
+
301
+ if text is None:
302
+ text = "" if isinstance(path_to_image, str) else []
303
+
304
+ if type(path_to_image) != type(text):
305
+ raise ValueError("`path_to_image` and `text` must be of the same type")
306
+
295
307
  stages = self.pipeline_model.stages
296
308
  if not self._skipPipelineValidation(stages):
297
309
  self._validateStagesInputCols(stages)
298
310
 
299
- if type(path_to_image) is str:
311
+ if isinstance(path_to_image, str):
300
312
  path_to_image = [path_to_image]
313
+ text = [text]
301
314
 
302
- if type(path_to_image) is list:
303
- result = []
315
+ result = []
304
316
 
305
- for image_result in self._lightPipeline.fullAnnotateImageJava(path_to_image):
306
- result.append(self.__buildStages(image_result))
317
+ for image_result in self._lightPipeline.fullAnnotateImageJava(path_to_image, text):
318
+ result.append(self.__buildStages(image_result))
319
+
320
+ return result
307
321
 
308
- return result
309
- else:
310
- raise TypeError("argument for annotation may be 'str' or list[str]")
311
322
 
312
323
  def __buildStages(self, annotations_result):
313
324
  stages = {}
@@ -0,0 +1,207 @@
1
+ # Copyright 2017-2024 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Contains classes for the PromptAssembler."""
15
+
16
+ from pyspark import keyword_only
17
+ from pyspark.ml.param import TypeConverters, Params, Param
18
+
19
+ from sparknlp.common import AnnotatorType
20
+ from sparknlp.internal import AnnotatorTransformer
21
+
22
+
23
+ class PromptAssembler(AnnotatorTransformer):
24
+ """Assembles a sequence of messages into a single string using a template. These strings can then
25
+ be used as prompts for large language models.
26
+
27
+ This annotator expects an array of two-tuples as the type of the input column (one array of
28
+ tuples per row). The first element of the tuples should be the role and the second element is
29
+ the text of the message. Possible roles are "system", "user" and "assistant".
30
+
31
+ An assistant header can be added to the end of the generated string by using
32
+ ``setAddAssistant(True)``.
33
+
34
+ At the moment, this annotator uses llama.cpp as a backend to parse and apply the templates.
35
+ llama.cpp uses basic pattern matching to determine the type of the template, then applies a
36
+ basic version of the template to the messages. This means that more advanced templates are not
37
+ supported.
38
+
39
+ For an extended example see the
40
+ `example notebook <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/llama.cpp/PromptAssember_with_AutoGGUFModel.ipynb>`__.
41
+
42
+ ====================== ======================
43
+ Input Annotation types Output Annotation type
44
+ ====================== ======================
45
+ ``NONE`` ``DOCUMENT``
46
+ ====================== ======================
47
+
48
+ Parameters
49
+ ----------
50
+ inputCol
51
+ Input column name
52
+ outputCol
53
+ Output column name
54
+ chatTemplate
55
+ Template used for the chat
56
+ addAssistant
57
+ Whether to add an assistant header to the end of the generated string
58
+
59
+ Examples
60
+ --------
61
+ >>> from sparknlp.base import *
62
+ >>> messages = [
63
+ ... [
64
+ ... ("system", "You are a helpful assistant."),
65
+ ... ("assistant", "Hello there, how can I help you?"),
66
+ ... ("user", "I need help with organizing my room."),
67
+ ... ]
68
+ ... ]
69
+ >>> df = spark.createDataFrame([messages]).toDF("messages")
70
+ >>> template = (
71
+ ... "{{- bos_token }} {%- if custom_tools is defined %} {%- set tools = custom_tools %} {%- "
72
+ ... "endif %} {%- if not tools_in_user_message is defined %} {%- set tools_in_user_message = true %} {%- "
73
+ ... 'endif %} {%- if not date_string is defined %} {%- set date_string = "26 Jul 2024" %} {%- endif %} '
74
+ ... "{%- if not tools is defined %} {%- set tools = none %} {%- endif %} {#- This block extracts the "
75
+ ... "system message, so we can slot it into the right place. #} {%- if messages[0]['role'] == 'system' %}"
76
+ ... " {%- set system_message = messages[0]['content']|trim %} {%- set messages = messages[1:] %} {%- else"
77
+ ... ' %} {%- set system_message = "" %} {%- endif %} {#- System message + builtin tools #} {{- '
78
+ ... '"<|start_header_id|>system<|end_header_id|>\\n\\n" }} {%- if builtin_tools is defined or tools is '
79
+ ... 'not none %} {{- "Environment: ipython\\n" }} {%- endif %} {%- if builtin_tools is defined %} {{- '
80
+ ... '"Tools: " + builtin_tools | reject(\\'equalto\', \\'code_interpreter\\') | join(", ") + "\\n\\n"}} '
81
+ ... '{%- endif %} {{- "Cutting Knowledge Date: December 2023\\n" }} {{- "Today Date: " + date_string '
82
+ ... '+ "\\n\\n" }} {%- if tools is not none and not tools_in_user_message %} {{- "You have access to '
83
+ ... 'the following functions. To call a function, please respond with JSON for a function call." }} {{- '
84
+ ... '\\'Respond in the format {"name": function name, "parameters": dictionary of argument name and its'
85
+ ... ' value}.\\' }} {{- "Do not use variables.\\n\\n" }} {%- for t in tools %} {{- t | tojson(indent=4) '
86
+ ... '}} {{- "\\n\\n" }} {%- endfor %} {%- endif %} {{- system_message }} {{- "<|eot_id|>" }} {#- '
87
+ ... "Custom tools are passed in a user message with some extra guidance #} {%- if tools_in_user_message "
88
+ ... "and not tools is none %} {#- Extract the first user message so we can plug it in here #} {%- if "
89
+ ... "messages | length != 0 %} {%- set first_user_message = messages[0]['content']|trim %} {%- set "
90
+ ... 'messages = messages[1:] %} {%- else %} {{- raise_exception("Cannot put tools in the first user '
91
+ ... "message when there's no first user message!\\") }} {%- endif %} {{- "
92
+ ... "'<|start_header_id|>user<|end_header_id|>\\n\\n' -}} {{- \\"Given the following functions, please "
93
+ ... 'respond with a JSON for a function call " }} {{- "with its proper arguments that best answers the '
94
+ ... 'given prompt.\\n\\n" }} {{- \\'Respond in the format {"name": function name, "parameters": '
95
+ ... 'dictionary of argument name and its value}.\\' }} {{- "Do not use variables.\\n\\n" }} {%- for t in '
96
+ ... 'tools %} {{- t | tojson(indent=4) }} {{- "\\n\\n" }} {%- endfor %} {{- first_user_message + '
97
+ ... "\\"<|eot_id|>\\"}} {%- endif %} {%- for message in messages %} {%- if not (message.role == 'ipython' "
98
+ ... "or message.role == 'tool' or 'tool_calls' in message) %} {{- '<|start_header_id|>' + message['role']"
99
+ ... " + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }} {%- elif 'tool_calls' in "
100
+ ... 'message %} {%- if not message.tool_calls|length == 1 %} {{- raise_exception("This model only '
101
+ ... 'supports single tool-calls at once!") }} {%- endif %} {%- set tool_call = message.tool_calls[0]'
102
+ ... ".function %} {%- if builtin_tools is defined and tool_call.name in builtin_tools %} {{- "
103
+ ... "'<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}} {{- \\"<|python_tag|>\\" + tool_call.name + "
104
+ ... '".call(" }} {%- for arg_name, arg_val in tool_call.arguments | items %} {{- arg_name + \\'="\\' + '
105
+ ... 'arg_val + \\'"\\' }} {%- if not loop.last %} {{- ", " }} {%- endif %} {%- endfor %} {{- ")" }} {%- '
106
+ ... "else %} {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}} {{- '{\\"name\": \\"' + "
107
+ ... 'tool_call.name + \\'", \\' }} {{- \\'"parameters": \\' }} {{- tool_call.arguments | tojson }} {{- "}" '
108
+ ... "}} {%- endif %} {%- if builtin_tools is defined %} {#- This means we're in ipython mode #} {{- "
109
+ ... '"<|eom_id|>" }} {%- else %} {{- "<|eot_id|>" }} {%- endif %} {%- elif message.role == "tool" '
110
+ ... 'or message.role == "ipython" %} {{- "<|start_header_id|>ipython<|end_header_id|>\\n\\n" }} {%- '
111
+ ... "if message.content is mapping or message.content is iterable %} {{- message.content | tojson }} {%- "
112
+ ... 'else %} {{- message.content }} {%- endif %} {{- "<|eot_id|>" }} {%- endif %} {%- endfor %} {%- if '
113
+ ... "add_generation_prompt %} {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }} {%- endif %} "
114
+ ... )
115
+ >>> prompt_assembler = (
116
+ ... PromptAssembler()
117
+ ... .setInputCol("messages")
118
+ ... .setOutputCol("prompt")
119
+ ... .setChatTemplate(template)
120
+ ... )
121
+ >>> prompt_assembler.transform(df).select("prompt.result").show(truncate=False)
122
+ +----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
123
+ |result |
124
+ +----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
125
+ |[<|start_header_id|>system<|end_header_id|>\n\nYou are a helpful assistant.<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\nHello there, how can I help you?<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nI need help with organizing my room.<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n]|
126
+ +----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
127
+ """
128
+
129
+ outputAnnotatorType = AnnotatorType.DOCUMENT
130
+
131
+ inputCol = Param(
132
+ Params._dummy(),
133
+ "inputCol",
134
+ "input column name",
135
+ typeConverter=TypeConverters.toString,
136
+ )
137
+ outputCol = Param(
138
+ Params._dummy(),
139
+ "outputCol",
140
+ "output column name",
141
+ typeConverter=TypeConverters.toString,
142
+ )
143
+ chatTemplate = Param(
144
+ Params._dummy(),
145
+ "chatTemplate",
146
+ "Template used for the chat",
147
+ typeConverter=TypeConverters.toString,
148
+ )
149
+ addAssistant = Param(
150
+ Params._dummy(),
151
+ "addAssistant",
152
+ "Whether to add an assistant header to the end of the generated string",
153
+ typeConverter=TypeConverters.toBoolean,
154
+ )
155
+ name = "PromptAssembler"
156
+
157
+ @keyword_only
158
+ def __init__(self):
159
+ super(PromptAssembler, self).__init__(
160
+ classname="com.johnsnowlabs.nlp.PromptAssembler"
161
+ )
162
+ self._setDefault(outputCol="prompt", addAssistant=True)
163
+
164
+ @keyword_only
165
+ def setParams(self):
166
+ kwargs = self._input_kwargs
167
+ return self._set(**kwargs)
168
+
169
+ def setInputCol(self, value):
170
+ """Sets input column name.
171
+
172
+ Parameters
173
+ ----------
174
+ value : str
175
+ Name of the input column
176
+ """
177
+ return self._set(inputCol=value)
178
+
179
+ def setOutputCol(self, value):
180
+ """Sets output column name.
181
+
182
+ Parameters
183
+ ----------
184
+ value : str
185
+ Name of the Output Column
186
+ """
187
+ return self._set(outputCol=value)
188
+
189
+ def setChatTemplate(self, value):
190
+ """Sets the chat template.
191
+
192
+ Parameters
193
+ ----------
194
+ value : str
195
+ Template used for the chat
196
+ """
197
+ return self._set(chatTemplate=value)
198
+
199
+ def setAddAssistant(self, value):
200
+ """Sets whether to add an assistant header to the end of the generated string.
201
+
202
+ Parameters
203
+ ----------
204
+ value : bool
205
+ Whether to add an assistant header to the end of the generated string
206
+ """
207
+ return self._set(addAssistant=value)
@@ -113,6 +113,13 @@ class _BertQuestionAnsweringLoader(ExtendedJavaWrapper):
113
113
  jspark,
114
114
  )
115
115
 
116
+ class _BertMultipleChoiceLoader(ExtendedJavaWrapper):
117
+ def __init__(self, path, jspark):
118
+ super(_BertMultipleChoiceLoader, self).__init__(
119
+ "com.johnsnowlabs.nlp.annotators.classifier.dl.BertForMultipleChoice.loadSavedModel",
120
+ path,
121
+ jspark,
122
+ )
116
123
 
117
124
  class _DeBERTaLoader(ExtendedJavaWrapper):
118
125
  def __init__(self, path, jspark):
@@ -999,3 +1006,18 @@ class _SnowFlakeEmbeddingsLoader(ExtendedJavaWrapper):
999
1006
  super(_SnowFlakeEmbeddingsLoader, self).__init__(
1000
1007
  "com.johnsnowlabs.nlp.embeddings.SnowFlakeEmbeddings.loadSavedModel", path, jspark
1001
1008
  )
1009
+
1010
+
1011
+ class _AutoGGUFEmbeddingsLoader(ExtendedJavaWrapper):
1012
+ def __init__(self, path, jspark):
1013
+ super(_AutoGGUFEmbeddingsLoader, self).__init__(
1014
+ "com.johnsnowlabs.nlp.embeddings.AutoGGUFEmbeddings.loadSavedModel", path, jspark)
1015
+
1016
+
1017
+ class _BLIPForQuestionAnswering(ExtendedJavaWrapper):
1018
+ def __init__(self, path, jspark):
1019
+ super(_BLIPForQuestionAnswering, self).__init__(
1020
+ "com.johnsnowlabs.nlp.annotators.cv.BLIPForQuestionAnswering.loadSavedModel",
1021
+ path,
1022
+ jspark,
1023
+ )
@@ -0,0 +1,15 @@
1
+ # Copyright 2017-2022 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Module for reading different files types."""
15
+ from sparknlp.reader.sparknlp_reader import *
@@ -0,0 +1,121 @@
1
+ # Copyright 2017-2024 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from sparknlp.internal import ExtendedJavaWrapper
15
+
16
+
17
+ class SparkNLPReader(ExtendedJavaWrapper):
18
+ """Instantiates class to read HTML files.
19
+
20
+ Two types of input paths are supported,
21
+
22
+ htmlPath: this is a path to a directory of HTML files or a path to an HTML file
23
+ E.g. "path/html/files"
24
+
25
+ url: this is the URL or set of URLs of a website . E.g., "https://www.wikipedia.org"
26
+
27
+ Parameters
28
+ ----------
29
+ params : spark
30
+ Spark session
31
+ params : dict, optional
32
+ Parameter with custom configuration
33
+
34
+ Examples
35
+ --------
36
+ >>> from sparknlp.reader import SparkNLPReader
37
+ >>> html_df = SparkNLPReader().html(spark, "https://www.wikipedia.org")
38
+
39
+ You can use SparkNLP for one line of code
40
+ >>> import sparknlp
41
+ >>> html_df = sparknlp.read().html("https://www.wikipedia.org")
42
+ >>> html_df.show(truncate=False)
43
+
44
+ +--------------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
45
+ |url |html |
46
+ +--------------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
47
+ |https://example.com/|[{Title, Example Domain, {pageNumber -> 1}}, {NarrativeText, 0, This domain is for use in illustrative examples in documents. You may use this domain in literature without prior coordination or asking for permission., {pageNumber -> 1}}, {NarrativeText, 0, More information... More information..., {pageNumber -> 1}}] |
48
+ +--------------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
49
+ >>> html_df.printSchema()
50
+
51
+ root
52
+ |-- url: string (nullable = true)
53
+ |-- html: array (nullable = true)
54
+ | |-- element: struct (containsNull = true)
55
+ | | |-- elementType: string (nullable = true)
56
+ | | |-- content: string (nullable = true)
57
+ | | |-- metadata: map (nullable = true)
58
+ | | | |-- key: string
59
+ | | | |-- value: string (valueContainsNull = true)
60
+
61
+
62
+
63
+ Instantiates class to read email files.
64
+
65
+ emailPath: this is a path to a directory of HTML files or a path to an HTML file E.g.
66
+ "path/html/emails"
67
+
68
+ Examples
69
+ --------
70
+ >>> from sparknlp.reader import SparkNLPReader
71
+ >>> email_df = SparkNLPReader().email(spark, "home/user/emails-directory")
72
+
73
+ You can use SparkNLP for one line of code
74
+ >>> import sparknlp
75
+ >>> email_df = sparknlp.read().email("home/user/emails-directory")
76
+ >>> email_df.show(truncate=False)
77
+ +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
78
+ |email |
79
+ +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
80
+ |[{Title, Email Text Attachments, {sent_to -> Danilo Burbano <danilo@johnsnowlabs.com>, sent_from -> Danilo Burbano <danilo@johnsnowlabs.com>}}, {NarrativeText, Email test with two text attachments\r\n\r\nCheers,\r\n\r\n, {sent_to -> Danilo Burbano <danilo@johnsnowlabs.com>, sent_from -> Danilo Burbano <danilo@johnsnowlabs.com>, mimeType -> text/plain}}, {NarrativeText, <html>\r\n<head>\r\n<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">\r\n<style type="text/css" style="display:none;"> P {margin-top:0;margin-bottom:0;} </style>\r\n</head>\r\n<body dir="ltr">\r\n<span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">Email&nbsp; test with two text attachments</span>\r\n<div class="elementToProof" style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">\r\n<br>\r\n</div>\r\n<div class="elementToProof" style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">\r\nCheers,</div>\r\n<div class="elementToProof" style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">\r\n<br>\r\n</div>\r\n</body>\r\n</html>\r\n, {sent_to -> Danilo Burbano <danilo@johnsnowlabs.com>, sent_from -> Danilo Burbano <danilo@johnsnowlabs.com>, mimeType -> text/html}}, {Attachment, filename.txt, {sent_to -> Danilo Burbano <danilo@johnsnowlabs.com>, sent_from -> Danilo Burbano <danilo@johnsnowlabs.com>, contentType -> text/plain; name="filename.txt"}}, {NarrativeText, This is the content of the file.\n, {sent_to -> Danilo Burbano <danilo@johnsnowlabs.com>, sent_from -> Danilo Burbano <danilo@johnsnowlabs.com>, mimeType -> text/plain}}, {Attachment, filename2.txt, {sent_to -> Danilo Burbano <danilo@johnsnowlabs.com>, sent_from -> Danilo Burbano <danilo@johnsnowlabs.com>, contentType -> text/plain; name="filename2.txt"}}, {NarrativeText, This is an additional content file.\n, {sent_to -> Danilo Burbano <danilo@johnsnowlabs.com>, sent_from -> Danilo Burbano <danilo@johnsnowlabs.com>, mimeType -> text/plain}}]|
81
+ +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
82
+ email_df.printSchema()
83
+ root
84
+ |-- path: string (nullable = true)
85
+ |-- content: array (nullable = true)
86
+ |-- email: array (nullable = true)
87
+ | |-- element: struct (containsNull = true)
88
+ | | |-- elementType: string (nullable = true)
89
+ | | |-- content: string (nullable = true)
90
+ | | |-- metadata: map (nullable = true)
91
+ | | | |-- key: string
92
+ | | | |-- value: string (valueContainsNull = true)
93
+
94
+ """
95
+
96
+ def __init__(self, spark, params=None):
97
+ if params is None:
98
+ params = {}
99
+ super(SparkNLPReader, self).__init__("com.johnsnowlabs.reader.SparkNLPReader", params)
100
+ self.spark = spark
101
+
102
+ def html(self, htmlPath):
103
+ if not isinstance(htmlPath, (str, list)) or (isinstance(htmlPath, list) and not all(isinstance(item, str) for item in htmlPath)):
104
+ raise TypeError("htmlPath must be a string or a list of strings")
105
+ jdf = self._java_obj.html(htmlPath)
106
+ dataframe = self.getDataFrame(self.spark, jdf)
107
+ return dataframe
108
+
109
+ def email(self, filePath):
110
+ if not isinstance(filePath, str):
111
+ raise TypeError("filePath must be a string")
112
+ jdf = self._java_obj.email(filePath)
113
+ dataframe = self.getDataFrame(self.spark, jdf)
114
+ return dataframe
115
+
116
+ def doc(self, docPath):
117
+ if not isinstance(docPath, str):
118
+ raise TypeError("docPath must be a string")
119
+ jdf = self._java_obj.doc(docPath)
120
+ dataframe = self.getDataFrame(self.spark, jdf)
121
+ return dataframe