spark-nlp 5.5.0rc1__py2.py3-none-any.whl → 5.5.2__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of spark-nlp might be problematic. Click here for more details.

@@ -0,0 +1,345 @@
1
+ Metadata-Version: 2.1
2
+ Name: spark-nlp
3
+ Version: 5.5.2
4
+ Summary: John Snow Labs Spark NLP is a natural language processing library built on top of Apache Spark ML. It provides simple, performant & accurate NLP annotations for machine learning pipelines, that scale easily in a distributed environment.
5
+ Home-page: https://github.com/JohnSnowLabs/spark-nlp
6
+ Author: John Snow Labs
7
+ Keywords: NLP spark vision speech deep learning transformer tensorflow BERT GPT-2 Wav2Vec2 ViT
8
+ Classifier: Development Status :: 5 - Production/Stable
9
+ Classifier: Intended Audience :: Developers
10
+ Classifier: Intended Audience :: Information Technology
11
+ Classifier: Intended Audience :: Science/Research
12
+ Classifier: License :: OSI Approved :: Apache Software License
13
+ Classifier: Operating System :: OS Independent
14
+ Classifier: Operating System :: POSIX :: Linux
15
+ Classifier: Operating System :: MacOS :: MacOS X
16
+ Classifier: Operating System :: Microsoft :: Windows
17
+ Classifier: Programming Language :: Python :: 3
18
+ Classifier: Programming Language :: Python :: 3.6
19
+ Classifier: Programming Language :: Python :: 3.7
20
+ Classifier: Programming Language :: Python :: 3.8
21
+ Classifier: Programming Language :: Python :: 3.9
22
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
23
+ Classifier: Topic :: Scientific/Engineering :: Information Analysis
24
+ Classifier: Topic :: Software Development :: Libraries :: Python Modules
25
+ Classifier: Topic :: Software Development :: Internationalization
26
+ Classifier: Topic :: Software Development :: Localization
27
+ Classifier: Topic :: Software Development :: Build Tools
28
+ Classifier: Topic :: Text Processing :: Linguistic
29
+ Classifier: Topic :: Scientific/Engineering
30
+ Classifier: Typing :: Typed
31
+ Description-Content-Type: text/markdown
32
+
33
+ # Spark NLP: State-of-the-Art Natural Language Processing & LLMs Library
34
+
35
+ <p align="center">
36
+ <a href="https://github.com/JohnSnowLabs/spark-nlp/actions" alt="build">
37
+ <img src="https://github.com/JohnSnowLabs/spark-nlp/workflows/build/badge.svg" /></a>
38
+ <a href="https://github.com/JohnSnowLabs/spark-nlp/releases" alt="Current Release Version">
39
+ <img src="https://img.shields.io/github/v/release/JohnSnowLabs/spark-nlp.svg?style=flat-square&logo=github" /></a>
40
+ <a href="https://search.maven.org/artifact/com.johnsnowlabs.nlp/spark-nlp_2.12" alt="Maven Central">
41
+ <img src="https://maven-badges.herokuapp.com/maven-central/com.johnsnowlabs.nlp/spark-nlp_2.12/badge.svg" /></a>
42
+ <a href="https://badge.fury.io/py/spark-nlp" alt="PyPI version">
43
+ <img src="https://badge.fury.io/py/spark-nlp.svg" /></a>
44
+ <a href="https://anaconda.org/JohnSnowLabs/spark-nlp" alt="Anaconda-Cloud">
45
+ <img src="https://anaconda.org/johnsnowlabs/spark-nlp/badges/version.svg" /></a>
46
+ <a href="https://github.com/JohnSnowLabs/spark-nlp/blob/master/LICENSE" alt="License">
47
+ <img src="https://img.shields.io/badge/License-Apache%202.0-blue.svg" /></a>
48
+ <a href="https://pypi.org/project/spark-nlp/" alt="PyPi downloads">
49
+ <img src="https://static.pepy.tech/personalized-badge/spark-nlp?period=total&units=international_system&left_color=grey&right_color=orange&left_text=pip%20downloads" /></a>
50
+ </p>
51
+
52
+ Spark NLP is a state-of-the-art Natural Language Processing library built on top of Apache Spark. It provides **simple**, **performant** & **accurate** NLP annotations for machine learning pipelines that **scale** easily in a distributed environment.
53
+
54
+ Spark NLP comes with **83000+** pretrained **pipelines** and **models** in more than **200+** languages.
55
+ It also offers tasks such as **Tokenization**, **Word Segmentation**, **Part-of-Speech Tagging**, Word and Sentence **Embeddings**, **Named Entity Recognition**, **Dependency Parsing**, **Spell Checking**, **Text Classification**, **Sentiment Analysis**, **Token Classification**, **Machine Translation** (+180 languages), **Summarization**, **Question Answering**, **Table Question Answering**, **Text Generation**, **Image Classification**, **Image to Text (captioning)**, **Automatic Speech Recognition**, **Zero-Shot Learning**, and many more [NLP tasks](#features).
56
+
57
+ **Spark NLP** is the only open-source NLP library in **production** that offers state-of-the-art transformers such as **BERT**, **CamemBERT**, **ALBERT**, **ELECTRA**, **XLNet**, **DistilBERT**, **RoBERTa**, **DeBERTa**, **XLM-RoBERTa**, **Longformer**, **ELMO**, **Universal Sentence Encoder**, **Llama-2**, **M2M100**, **BART**, **Instructor**, **E5**, **Google T5**, **MarianMT**, **OpenAI GPT2**, **Vision Transformers (ViT)**, **OpenAI Whisper**, **Llama**, **Mistral**, **Phi**, **Qwen2**, and many more not only to **Python** and **R**, but also to **JVM** ecosystem (**Java**, **Scala**, and **Kotlin**) at **scale** by extending **Apache Spark** natively.
58
+
59
+ ## Model Importing Support
60
+
61
+ Spark NLP provides easy support for importing models from various popular frameworks:
62
+
63
+ - **TensorFlow**
64
+ - **ONNX**
65
+ - **OpenVINO**
66
+ - **Llama.cpp (GGUF)**
67
+
68
+ This wide range of support allows you to seamlessly integrate models from different sources into your Spark NLP workflows, enhancing flexibility and compatibility with existing machine learning ecosystems.
69
+
70
+ ## Project's website
71
+
72
+ Take a look at our official Spark NLP page: [https://sparknlp.org/](https://sparknlp.org/) for user
73
+ documentation and examples
74
+
75
+ ## Features
76
+
77
+ - [Text Preprocessing](https://sparknlp.org/docs/en/features#text-preproccesing)
78
+ - [Parsing and Analysis](https://sparknlp.org/docs/en/features#parsing-and-analysis)
79
+ - [Sentiment and Classification](https://sparknlp.org/docs/en/features#sentiment-and-classification)
80
+ - [Embeddings](https://sparknlp.org/docs/en/features#embeddings)
81
+ - [Classification and Question Answering](https://sparknlp.org/docs/en/features#classification-and-question-answering-models)
82
+ - [Machine Translation and Generation](https://sparknlp.org/docs/en/features#machine-translation-and-generation)
83
+ - [Image and Speech](https://sparknlp.org/docs/en/features#image-and-speech)
84
+ - [Integration and Interoperability (ONNX, OpenVINO)](https://sparknlp.org/docs/en/features#integration-and-interoperability)
85
+ - [Pre-trained Models (36000+ in +200 languages)](https://sparknlp.org/docs/en/features#pre-trained-models)
86
+ - [Multi-lingual Support](https://sparknlp.org/docs/en/features#multi-lingual-support)
87
+
88
+ ## Quick Start
89
+
90
+ This is a quick example of how to use Spark NLP pre-trained pipeline in Python and PySpark:
91
+
92
+ ```sh
93
+ $ java -version
94
+ # should be Java 8 or 11 (Oracle or OpenJDK)
95
+ $ conda create -n sparknlp python=3.7 -y
96
+ $ conda activate sparknlp
97
+ # spark-nlp by default is based on pyspark 3.x
98
+ $ pip install spark-nlp==5.5.2 pyspark==3.3.1
99
+ ```
100
+
101
+ In Python console or Jupyter `Python3` kernel:
102
+
103
+ ```python
104
+ # Import Spark NLP
105
+ from sparknlp.base import *
106
+ from sparknlp.annotator import *
107
+ from sparknlp.pretrained import PretrainedPipeline
108
+ import sparknlp
109
+
110
+ # Start SparkSession with Spark NLP
111
+ # start() functions has 3 parameters: gpu, apple_silicon, and memory
112
+ # sparknlp.start(gpu=True) will start the session with GPU support
113
+ # sparknlp.start(apple_silicon=True) will start the session with macOS M1 & M2 support
114
+ # sparknlp.start(memory="16G") to change the default driver memory in SparkSession
115
+ spark = sparknlp.start()
116
+
117
+ # Download a pre-trained pipeline
118
+ pipeline = PretrainedPipeline('explain_document_dl', lang='en')
119
+
120
+ # Your testing dataset
121
+ text = """
122
+ The Mona Lisa is a 16th century oil painting created by Leonardo.
123
+ It's held at the Louvre in Paris.
124
+ """
125
+
126
+ # Annotate your testing dataset
127
+ result = pipeline.annotate(text)
128
+
129
+ # What's in the pipeline
130
+ list(result.keys())
131
+ Output: ['entities', 'stem', 'checked', 'lemma', 'document',
132
+ 'pos', 'token', 'ner', 'embeddings', 'sentence']
133
+
134
+ # Check the results
135
+ result['entities']
136
+ Output: ['Mona Lisa', 'Leonardo', 'Louvre', 'Paris']
137
+ ```
138
+
139
+ For more examples, you can visit our dedicated [examples](https://github.com/JohnSnowLabs/spark-nlp/tree/master/examples) to showcase all Spark NLP use cases!
140
+
141
+ ### Packages Cheatsheet
142
+
143
+ This is a cheatsheet for corresponding Spark NLP Maven package to Apache Spark / PySpark major version:
144
+
145
+ | Apache Spark | Spark NLP on CPU | Spark NLP on GPU | Spark NLP on AArch64 (linux) | Spark NLP on Apple Silicon |
146
+ |-------------------------|--------------------|----------------------------|--------------------------------|--------------------------------------|
147
+ | 3.0/3.1/3.2/3.3/3.4/3.5 | `spark-nlp` | `spark-nlp-gpu` | `spark-nlp-aarch64` | `spark-nlp-silicon` |
148
+ | Start Function | `sparknlp.start()` | `sparknlp.start(gpu=True)` | `sparknlp.start(aarch64=True)` | `sparknlp.start(apple_silicon=True)` |
149
+
150
+ NOTE: `M1/M2` and `AArch64` are under `experimental` support. Access and support to these architectures are limited by the
151
+ community and we had to build most of the dependencies by ourselves to make them compatible. We support these two
152
+ architectures, however, they may not work in some environments.
153
+
154
+ ## Pipelines and Models
155
+
156
+ For a quick example of using pipelines and models take a look at our official [documentation](https://sparknlp.org/docs/en/install#pipelines-and-models)
157
+
158
+ #### Please check out our Models Hub for the full list of [pre-trained models](https://sparknlp.org/models) with examples, demo, benchmark, and more
159
+
160
+ ## Platform and Ecosystem Support
161
+
162
+ ### Apache Spark Support
163
+
164
+ Spark NLP *5.5.2* has been built on top of Apache Spark 3.4 while fully supports Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, 3.4.x, and 3.5.x
165
+
166
+ | Spark NLP | Apache Spark 3.5.x | Apache Spark 3.4.x | Apache Spark 3.3.x | Apache Spark 3.2.x | Apache Spark 3.1.x | Apache Spark 3.0.x | Apache Spark 2.4.x | Apache Spark 2.3.x |
167
+ |-----------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
168
+ | 5.5.x | YES | YES | YES | YES | YES | YES | NO | NO |
169
+ | 5.4.x | YES | YES | YES | YES | YES | YES | NO | NO |
170
+ | 5.3.x | YES | YES | YES | YES | YES | YES | NO | NO |
171
+ | 5.2.x | YES | YES | YES | YES | YES | YES | NO | NO |
172
+ | 5.1.x | Partially | YES | YES | YES | YES | YES | NO | NO |
173
+ | 5.0.x | YES | YES | YES | YES | YES | YES | NO | NO |
174
+
175
+ Find out more about `Spark NLP` versions from our [release notes](https://github.com/JohnSnowLabs/spark-nlp/releases).
176
+
177
+ ### Scala and Python Support
178
+
179
+ | Spark NLP | Python 3.6 | Python 3.7 | Python 3.8 | Python 3.9 | Python 3.10| Scala 2.11 | Scala 2.12 |
180
+ |-----------|------------|------------|------------|------------|------------|------------|------------|
181
+ | 5.5.x | NO | YES | YES | YES | YES | NO | YES |
182
+ | 5.4.x | NO | YES | YES | YES | YES | NO | YES |
183
+ | 5.3.x | NO | YES | YES | YES | YES | NO | YES |
184
+ | 5.2.x | NO | YES | YES | YES | YES | NO | YES |
185
+ | 5.1.x | NO | YES | YES | YES | YES | NO | YES |
186
+ | 5.0.x | NO | YES | YES | YES | YES | NO | YES |
187
+
188
+ Find out more about 4.x `SparkNLP` versions in our official [documentation](https://sparknlp.org/docs/en/install#apache-spark-support)
189
+
190
+ ### Databricks Support
191
+
192
+ Spark NLP 5.5.2 has been tested and is compatible with the following runtimes:
193
+
194
+ | **CPU** | **GPU** |
195
+ |--------------------|--------------------|
196
+ | 14.1 / 14.1 ML | 14.1 ML & GPU |
197
+ | 14.2 / 14.2 ML | 14.2 ML & GPU |
198
+ | 14.3 / 14.3 ML | 14.3 ML & GPU |
199
+ | 15.0 / 15.0 ML | 15.0 ML & GPU |
200
+ | 15.1 / 15.0 ML | 15.1 ML & GPU |
201
+ | 15.2 / 15.0 ML | 15.2 ML & GPU |
202
+ | 15.3 / 15.0 ML | 15.3 ML & GPU |
203
+ | 15.4 / 15.0 ML | 15.4 ML & GPU |
204
+
205
+ We are compatible with older runtimes. For a full list check databricks support in our official [documentation](https://sparknlp.org/docs/en/install#databricks-support)
206
+
207
+ ### EMR Support
208
+
209
+ Spark NLP 5.5.2 has been tested and is compatible with the following EMR releases:
210
+
211
+ | **EMR Release** |
212
+ |--------------------|
213
+ | emr-6.13.0 |
214
+ | emr-6.14.0 |
215
+ | emr-6.15.0 |
216
+ | emr-7.0.0 |
217
+ | emr-7.1.0 |
218
+ | emr-7.2.0 |
219
+
220
+ We are compatible with older EMR releases. For a full list check EMR support in our official [documentation](https://sparknlp.org/docs/en/install#emr-support)
221
+
222
+ Full list of [Amazon EMR 6.x releases](https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-release-6x.html)
223
+ Full list of [Amazon EMR 7.x releases](https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-release-7x.html)
224
+
225
+ NOTE: The EMR 6.1.0 and 6.1.1 are not supported.
226
+
227
+ ## Installation
228
+
229
+ ### Command line (requires internet connection)
230
+
231
+ To install spark-nlp packages through command line follow [these instructions](https://sparknlp.org/docs/en/install#command-line) from our official documentation
232
+
233
+ ### Scala
234
+
235
+ Spark NLP supports Scala 2.12.15 if you are using Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, and 3.4.x versions. Our packages are
236
+ deployed to Maven central. To add any of our packages as a dependency in your application you can follow [these instructions](https://sparknlp.org/docs/en/install#scala-and-java)
237
+ from our official documentation.
238
+
239
+ If you are interested, there is a simple SBT project for Spark NLP to guide you on how to use it in your
240
+ projects [Spark NLP SBT S5.5.2r](https://github.com/maziyarpanahi/spark-nlp-starter)
241
+
242
+ ### Python
243
+
244
+ Spark NLP supports Python 3.7.x and above depending on your major PySpark version.
245
+ Check all available installations for Python in our official [documentation](https://sparknlp.org/docs/en/install#python)
246
+
247
+ ### Compiled JARs
248
+
249
+ To compile the jars from source follow [these instructions](https://sparknlp.org/docs/en/compiled#jars) from our official documenation
250
+
251
+ ## Platform-Specific Instructions
252
+
253
+ For detailed instructions on how to use Spark NLP on supported platforms, please refer to our official documentation:
254
+
255
+ | Platform | Supported Language(s) |
256
+ |-------------------------|-----------------------|
257
+ | [Apache Zeppelin](https://sparknlp.org/docs/en/install#apache-zeppelin) | Scala, Python |
258
+ | [Jupyter Notebook](https://sparknlp.org/docs/en/install#jupter-notebook) | Python |
259
+ | [Google Colab Notebook](https://sparknlp.org/docs/en/install#google-colab-notebook) | Python |
260
+ | [Kaggle Kernel](https://sparknlp.org/docs/en/install#kaggle-kernel) | Python |
261
+ | [Databricks Cluster](https://sparknlp.org/docs/en/install#databricks-cluster) | Scala, Python |
262
+ | [EMR Cluster](https://sparknlp.org/docs/en/install#emr-cluster) | Scala, Python |
263
+ | [GCP Dataproc Cluster](https://sparknlp.org/docs/en/install#gcp-dataproc) | Scala, Python |
264
+
265
+ ### Offline
266
+
267
+ Spark NLP library and all the pre-trained models/pipelines can be used entirely offline with no access to the Internet.
268
+ Please check [these instructions](https://sparknlp.org/docs/en/install#s3-integration) from our official documentation
269
+ to use Spark NLP offline
270
+
271
+ ## Advanced Settings
272
+
273
+ You can change Spark NLP configurations via Spark properties configuration.
274
+ Please check [these instructions](https://sparknlp.org/docs/en/install#sparknlp-properties) from our official documentation.
275
+
276
+ ### S3 Integration
277
+
278
+ In Spark NLP we can define S3 locations to:
279
+
280
+ - Export log files of training models
281
+ - Store tensorflow graphs used in `NerDLApproach`
282
+
283
+ Please check [these instructions](https://sparknlp.org/docs/en/install#s3-integration) from our official documentation.
284
+
285
+ ## Document5.5.2
286
+
287
+ ### Examples
288
+
289
+ Need more **examples**? Check out our dedicated [Spark NLP Examples](https://github.com/JohnSnowLabs/spark-nlp/tree/master/examples)
290
+ repository to showcase all Spark NLP use cases!
291
+
292
+ Also, don't forget to check [Spark NLP in Action](https://sparknlp.org/demo) built by Streamlit.
293
+
294
+ #### All examples: [spark-nlp/examples](https://github.com/JohnSnowLabs/spark-nlp/tree/master/examples)
295
+
296
+ ### FAQ
297
+
298
+ [Check our Articles and Videos page here](https://sparknlp.org/learn)
299
+
300
+ ### Citation
301
+
302
+ We have published a [paper](https://www.sciencedirect.com/science/article/pii/S2665963821000063) that you can cite for
303
+ the Spark NLP library:
304
+
305
+ ```bibtex
306
+ @article{KOCAMAN2021100058,
307
+ title = {Spark NLP: Natural language understanding at scale},
308
+ journal = {Software Impacts},
309
+ pages = {100058},
310
+ year = {2021},
311
+ issn = {2665-9638},
312
+ doi = {https://doi.org/10.1016/j.simpa.2021.100058},
313
+ url = {https://www.sciencedirect.com/science/article/pii/S2665963.2.300063},
314
+ author = {Veysel Kocaman and David Talby},
315
+ keywords = {Spark, Natural language processing, Deep learning, Tensorflow, Cluster},
316
+ abstract = {Spark NLP is a Natural Language Processing (NLP) library built on top of Apache Spark ML. It provides simple, performant & accurate NLP annotations for machine learning pipelines that can scale easily in a distributed environment. Spark NLP comes with 1100+ pretrained pipelines and models in more than 192+ languages. It supports nearly all the NLP tasks and modules that can be used seamlessly in a cluster. Downloaded more than 2.7 million times and experiencing 9x growth since January 2020, Spark NLP is used by 54% of healthcare organizations as the world’s most widely used NLP library in the enterprise.}
317
+ }
318
+ }5.5.2
319
+ ```
320
+
321
+ ## Community support
322
+
323
+ - [Slack](https://join.slack.com/t/spark-nlp/shared_invite/zt-198dipu77-L3UWNe_AJ8xqDk0ivmih5Q) For live discussion with the Spark NLP community and the team
324
+ - [GitHub](https://github.com/JohnSnowLabs/spark-nlp) Bug reports, feature requests, and contributions
325
+ - [Discussions](https://github.com/JohnSnowLabs/spark-nlp/discussions) Engage with other community members, share ideas,
326
+ and show off how you use Spark NLP!
327
+ - [Medium](https://medium.com/spark-nlp) Spark NLP articles
328
+ - [YouTube](https://www.youtube.com/channel/UCmFOjlpYEhxf_wJUDuz6xxQ/videos) Spark NLP video tutorials
329
+
330
+ ## Contributing
331
+
332
+ We appreciate any sort of contributions:
333
+
334
+ - ideas
335
+ - feedback
336
+ - documentation
337
+ - bug reports
338
+ - NLP training and testing corpora
339
+ - Development and testing
340
+
341
+ Clone the repo and submit your pull-requests! Or directly create issues in this repo.
342
+
343
+ ## John Snow Labs
344
+
345
+ [http://johnsnowlabs.com](http://johnsnowlabs.com)
@@ -3,7 +3,7 @@ com/johnsnowlabs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,
3
3
  com/johnsnowlabs/ml/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
4
  com/johnsnowlabs/ml/ai/__init__.py,sha256=YQiK2M7U4d8y5irPy_HB8ae0mSpqS9583MH44pnKJXc,295
5
5
  com/johnsnowlabs/nlp/__init__.py,sha256=DPIVXtONO5xXyOk-HB0-sNiHAcco17NN13zPS_6Uw8c,294
6
- sparknlp/__init__.py,sha256=KDifiXnwBik4d6cz2zhtUwi3nicSAxEoD1Pht3ELBo0,13646
6
+ sparknlp/__init__.py,sha256=cdvKsW7Cb_LLCaot-GsMcb8n0RUXqr9NRpsallJamq0,13783
7
7
  sparknlp/annotation.py,sha256=I5zOxG5vV2RfPZfqN9enT1i4mo6oBcn3Lrzs37QiOiA,5635
8
8
  sparknlp/annotation_audio.py,sha256=iRV_InSVhgvAwSRe9NTbUH9v6OGvTM-FPCpSAKVu0mE,1917
9
9
  sparknlp/annotation_image.py,sha256=xhCe8Ko-77XqWVuuYHFrjKqF6zPd8Z-RY_rmZXNwCXU,2547
@@ -30,12 +30,13 @@ sparknlp/annotator/audio/__init__.py,sha256=dXjtvi5c0aTZFq1Q_JciUd1uFTBVSJoUdcq0
30
30
  sparknlp/annotator/audio/hubert_for_ctc.py,sha256=76PfwPZZvOHU5kfDqLueCFbmqa4W8pMNRGoCvOqjsEA,7859
31
31
  sparknlp/annotator/audio/wav2vec2_for_ctc.py,sha256=K78P1U6vA4O1UufsLYzy0H7arsKNmwPcIV7kzDFsA5Q,6210
32
32
  sparknlp/annotator/audio/whisper_for_ctc.py,sha256=uII51umuohqwnAW0Q7VdxEFyr_j5LMnfpcRlf8TbetA,9800
33
- sparknlp/annotator/classifier_dl/__init__.py,sha256=Oa5v2kInquQXLy3_Qs0bJAS_JJiTgqy9W0zeBF6y3B4,3933
33
+ sparknlp/annotator/classifier_dl/__init__.py,sha256=4v2_3kSWQFFBc_KzaJ0gEC6ANVJpy5tsHa6CJGc4nCw,4005
34
34
  sparknlp/annotator/classifier_dl/albert_for_question_answering.py,sha256=LG2dL6Fky1T35yXTUZBfIihIIGnkRFQ7ECQ3HRXXEG8,6517
35
35
  sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py,sha256=kWx7f9pcKE2qw319gn8FN0Md5dX38gbmfeoY9gWCLNk,7842
36
36
  sparknlp/annotator/classifier_dl/albert_for_token_classification.py,sha256=5rdsjWnsAVmtP-idU7ATKJ8lkH2rtlKZLnpi4Mq27eI,6839
37
37
  sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py,sha256=_TgV6EiIOiD_djA3fxfoz-o37mzMeKbn6iL2kZ6GzO0,8366
38
38
  sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py,sha256=yqQeDdpLbNOKuSZejZjSAjT8ydYyxsTVf2aFDgSSDfc,8767
39
+ sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py,sha256=Ew_NGBj7F5ApgK3SyQh2HIfjD7ZTqTs0LZEQxjwoyto,5936
39
40
  sparknlp/annotator/classifier_dl/bert_for_question_answering.py,sha256=2euY_RAdMPA4IHJXZAd5MkQojFOtFNhB_hSc1iVQ5DQ,6433
40
41
  sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py,sha256=AzD3RQcRuQc0DDTbL6vGiacTtHlZnbAqksNvRQq7EQE,7800
41
42
  sparknlp/annotator/classifier_dl/bert_for_token_classification.py,sha256=uJXoDLPfPWiRmKqtw_3lLBvneIirj87S2JWwfd33zq8,6668
@@ -74,7 +75,8 @@ sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py,sha256=CI9
74
75
  sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py,sha256=SndQpIfslsSYEOX-myLjpUS6-wVIeDG8MOhJYcu2_7M,6739
75
76
  sparknlp/annotator/coref/__init__.py,sha256=SG8MAaVxQpoYYAsyKaoOlvlHjorDzj3DHt4nnEdBWm8,53
76
77
  sparknlp/annotator/coref/spanbert_coref.py,sha256=AXWJhvVquY2uoApO_Np1fz7_KyJhxnZB4i-xk78sBfc,8407
77
- sparknlp/annotator/cv/__init__.py,sha256=LYbR0X-Wl-NkoWpSzovmhSQzk8zcCBAhqZfVd6YLnKs,943
78
+ sparknlp/annotator/cv/__init__.py,sha256=194aJ5N5eE3HOYRzAAdroHTTQ0o1qyCrgyRLddvqBp0,1006
79
+ sparknlp/annotator/cv/blip_for_question_answering.py,sha256=At7L5pPBNDR1r-JGLKM5b3dTrq5Ecz9r0M1gToUVZTs,6551
78
80
  sparknlp/annotator/cv/clip_for_zero_shot_classification.py,sha256=_1pLc9BiFrFN10eJPCDJLJT-vdnTSG9OnB25Y_kKJIA,7528
79
81
  sparknlp/annotator/cv/convnext_for_image_classification.py,sha256=KzaAlYW5M2l73zUozzgg8_p14eGDz9k9PYVAUZLN25k,11874
80
82
  sparknlp/annotator/cv/swin_for_image_classification.py,sha256=iZ1KY0GInbQmGzkmuNbds4PGPwCheLXc-Syv2HRmqug,10694
@@ -83,8 +85,9 @@ sparknlp/annotator/cv/vit_for_image_classification.py,sha256=D2V3pxAd3rBi1817lxV
83
85
  sparknlp/annotator/dependency/__init__.py,sha256=eV43oXAGaYl2N1XKIEAAZJLNP8gpHm8VxuXDeDlQzR4,774
84
86
  sparknlp/annotator/dependency/dependency_parser.py,sha256=SxyvHPp8Hs1Xnm5X1nLTMi095XoQMtfL8pbys15mYAI,11212
85
87
  sparknlp/annotator/dependency/typed_dependency_parser.py,sha256=60vPdYkbFk9MPGegg3m9Uik9cMXpMZd8tBvXG39gNww,12456
86
- sparknlp/annotator/embeddings/__init__.py,sha256=WifjEILUN6lZs4_WIX80xl5hrrsSrBK-4oVaLh-tONc,2343
88
+ sparknlp/annotator/embeddings/__init__.py,sha256=KHDCHb8SMlkSGGSu69SfKneUDDUlBdMGdMzDrYp_cis,2408
87
89
  sparknlp/annotator/embeddings/albert_embeddings.py,sha256=6Rd1LIn8oFIpq_ALcJh-RUjPEO7Ht8wsHY6JHSFyMkw,9995
90
+ sparknlp/annotator/embeddings/auto_gguf_embeddings.py,sha256=ngqjiXUqkL3xOrmt42bY8pp7azgbIWqXGfbKud1CijM,19981
88
91
  sparknlp/annotator/embeddings/bert_embeddings.py,sha256=HVUjkg56kBcpGZCo-fmPG5uatMDF3swW_lnbpy1SgSI,8463
89
92
  sparknlp/annotator/embeddings/bert_sentence_embeddings.py,sha256=NQy9KuXT9aKsTpYCR5RAeoFWI2YqEGorbdYrf_0KKmw,9148
90
93
  sparknlp/annotator/embeddings/bge_embeddings.py,sha256=hXFFd9HOru1w2L9N5YGSZlaKyxqMsZccpaI4Z8-bNUE,7919
@@ -99,7 +102,7 @@ sparknlp/annotator/embeddings/instructor_embeddings.py,sha256=CTKmbuBOx_KBM4JM-Y
99
102
  sparknlp/annotator/embeddings/longformer_embeddings.py,sha256=jS4fxB5O0-d9ta9VKv8ai-17n5YHt5rML8QxUw7K4Io,8754
100
103
  sparknlp/annotator/embeddings/mpnet_embeddings.py,sha256=7d6E4lS7jjkppDPvty1UHNNrbykkriFiysrxZ_RzL0U,7875
101
104
  sparknlp/annotator/embeddings/mxbai_embeddings.py,sha256=kCaYcM3lLYJjhElLK5isdxzJqIvoGZlUKKNkySMUkE8,6017
102
- sparknlp/annotator/embeddings/nomic_embeddings.py,sha256=SfiTTpx0MqeHGC_nyoFNxJbfEQL4v-PrNH6hAOFsd8c,7338
105
+ sparknlp/annotator/embeddings/nomic_embeddings.py,sha256=WTllH3htx9wDD2Le8pZgKVPM_U8XNmroJb6f4PeVeP8,7347
103
106
  sparknlp/annotator/embeddings/roberta_embeddings.py,sha256=q_WHby2lDcPc5bVHkGc6X_GwT3qyDUBLUVz5ZW4HCSY,9229
104
107
  sparknlp/annotator/embeddings/roberta_sentence_embeddings.py,sha256=KVrD4z_tIU-sphK6dmbbnHBBt8-Y89C_BFQAkN99kZo,8181
105
108
  sparknlp/annotator/embeddings/sentence_embeddings.py,sha256=azuA1FKMtTJ9suwJqTEHeWHumT6kYdfURTe_1fsqcB8,5402
@@ -145,19 +148,19 @@ sparknlp/annotator/sentiment/__init__.py,sha256=Lq3vKaZS1YATLMg0VNXSVtkWL5q5G9ta
145
148
  sparknlp/annotator/sentiment/sentiment_detector.py,sha256=m545NGU0Xzg_PO6_qIfpli1uZj7JQcyFgqe9R6wAPFI,8154
146
149
  sparknlp/annotator/sentiment/vivekn_sentiment.py,sha256=4rpXWDgzU6ddnbrSCp9VdLb2epCc9oZ3c6XcqxEw8nk,9655
147
150
  sparknlp/annotator/seq2seq/__init__.py,sha256=Fdz1zsxpB6vM2a0sKuGCSMD1ZgqeVqAez0-AtppMGB4,1541
148
- sparknlp/annotator/seq2seq/auto_gguf_model.py,sha256=YSWr2doOp9pwiodW_7qWgnQ2xdnl_WNEECBwxI6uq_c,39396
151
+ sparknlp/annotator/seq2seq/auto_gguf_model.py,sha256=pTQq3KztHQq3fybdCmXEq5wTlb0t-5ANCfdQ_-7oQRg,38343
149
152
  sparknlp/annotator/seq2seq/bart_transformer.py,sha256=I1flM4yeCzEAKOdQllBC30XuedxVJ7ferkFhZ6gwEbE,18481
150
- sparknlp/annotator/seq2seq/cpm_transformer.py,sha256=zRbw_xAsaRnhuyYAW8UAGhz7mIyhpqk09nCsJb8-7rg,13298
153
+ sparknlp/annotator/seq2seq/cpm_transformer.py,sha256=0CnBFMlxMu0pD2QZMHyoGtIYgXqfUQm68vr6zEAa6Eg,13290
151
154
  sparknlp/annotator/seq2seq/gpt2_transformer.py,sha256=Oz95R_NRR4tWHu_bW6Ak2832ZILXycp3ify7LfRSi8o,15310
152
155
  sparknlp/annotator/seq2seq/llama2_transformer.py,sha256=3LzTR0VerFdFmOizsrs2Q7HTnjELJ5WtfUgx5XnOqGM,13898
153
156
  sparknlp/annotator/seq2seq/llama3_transformer.py,sha256=dA3rIEVOLmlnJwhqkYmL_GrrcRVpoUY_i7QIyA5N2jM,14920
154
157
  sparknlp/annotator/seq2seq/m2m100_transformer.py,sha256=uIL9RZuuryTIdAy9TbJf9wbz6RekhW8S079bJhaB6i4,16116
155
158
  sparknlp/annotator/seq2seq/marian_transformer.py,sha256=mQ4Ylh7ZzXAOue8f-x0gqzfS3vAz3XUdD7eQ2XhcEs4,13781
156
159
  sparknlp/annotator/seq2seq/mistral_transformer.py,sha256=PJegrSQts_58rkt96xaHlqU1fKIaz8hxt7DTPkGS10A,14254
157
- sparknlp/annotator/seq2seq/nllb_transformer.py,sha256=hbE2k5YDAZUWPk0qyx6-5xIZi3nBFeFqLcr6lEU9LZ8,19474
160
+ sparknlp/annotator/seq2seq/nllb_transformer.py,sha256=hOmdJOgl_-_PxoADrV-tVYmlfFrqNwvn6Vn2RC4siZM,19534
158
161
  sparknlp/annotator/seq2seq/phi2_transformer.py,sha256=WwKCUOH8qGFv62YF63HjuT7bMVldh06gHvaZH3tbSDk,13787
159
- sparknlp/annotator/seq2seq/phi3_transformer.py,sha256=rIFSS0sit9kUazUvMvwGFSRRsIuFNqpLH28bVKkFzx4,14219
160
- sparknlp/annotator/seq2seq/qwen_transformer.py,sha256=UmxF84gQsqFVyofuki9TxaPTS_fP71WTj-ylCMLKsYY,14624
162
+ sparknlp/annotator/seq2seq/phi3_transformer.py,sha256=arIcw5NDMv3ubBwWz3KYRdLMsspTiEI8vk4s00lyq1c,14293
163
+ sparknlp/annotator/seq2seq/qwen_transformer.py,sha256=cOpOlz5r_apmVHZgp7uFjybSzVj2yxv8QYlYcGwFyKg,14645
161
164
  sparknlp/annotator/seq2seq/starcoder_transformer.py,sha256=BTXbSMRpXnDvrfh-6iFS5k6g6EcPV9zBl4U-SSC19wA,14293
162
165
  sparknlp/annotator/seq2seq/t5_transformer.py,sha256=wDVxNLluIU1HGZFqaKKc4YTt4l-elPlAtQ7EEa0f5tg,17308
163
166
  sparknlp/annotator/similarity/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -173,7 +176,7 @@ sparknlp/annotator/token/regex_tokenizer.py,sha256=FG2HvFwMb1G_4grfyIQaeBpaAgKv_
173
176
  sparknlp/annotator/token/tokenizer.py,sha256=Me3P3wogUKUJ7O7_2wLdPzF00vKpp_sHuiztpGWRVpU,19939
174
177
  sparknlp/annotator/ws/__init__.py,sha256=-l8bnl8Z6lGXWOBdRIBZ6958fzTHt4o87QhhLHIFF8A,693
175
178
  sparknlp/annotator/ws/word_segmenter.py,sha256=rrbshwn5wzXIHpCCDji6ZcsmiARpuA82_p_6TgNHfRc,16365
176
- sparknlp/base/__init__.py,sha256=iC4b4NzTDsqEu3eE_f5QL8JD-uoig4Pn2h1ZMyPHR6Q,1266
179
+ sparknlp/base/__init__.py,sha256=fCL-kReIavZceUa1OC99pSRH7MsXzqGB8BXgzVS_f7s,1311
177
180
  sparknlp/base/audio_assembler.py,sha256=HKa9mXvmuMUrjTihUZkppGj-WJjcUrm2BGapNuPifyI,3320
178
181
  sparknlp/base/doc2_chunk.py,sha256=TyvbdJNkVo9favHlOEoH5JwKbjpk5ZVJ75p8Cilp9jM,6551
179
182
  sparknlp/base/document_assembler.py,sha256=zl-SXWMTR3B0EZ8z6SWYchCwEo-61FhU6u7dHUKDIOg,6697
@@ -182,9 +185,10 @@ sparknlp/base/finisher.py,sha256=V4wkMm9Ug09q4zTQc9T9Wr-awmu2Hu-eNaJ039YgZXM,858
182
185
  sparknlp/base/graph_finisher.py,sha256=a8fxk3ei2YQw6s0Y9Yy8oMOF1i1XUrgqaiwVE0VPt4w,4834
183
186
  sparknlp/base/has_recursive_fit.py,sha256=P55rSHLIXhihXWS2bOC_DskcQTc3njieVD1JkjS2bcA,849
184
187
  sparknlp/base/has_recursive_transform.py,sha256=UkGNgo4LMsjQC-Coeefg4bJcg7FoPcPiG382zEa6Ywk,841
185
- sparknlp/base/image_assembler.py,sha256=HytRoYJTLMqGtvScHoFnp6CasG9IVNYAHYiT2_rrmeE,3719
186
- sparknlp/base/light_pipeline.py,sha256=Jk2DLpT4PLHCANlOo_WetTdPba_5lYs3ywiyY3lM-PE,16577
188
+ sparknlp/base/image_assembler.py,sha256=HH7ZJ-iZCXnBXVXekQLb1ei_HJuVxhYNVb94OrVLmeY,4068
189
+ sparknlp/base/light_pipeline.py,sha256=2lOstyyK0o6L3BHPIZWQBpIKtJ7LcSz3Pvgo6eZDs5U,17023
187
190
  sparknlp/base/multi_document_assembler.py,sha256=4htET1fRAeOB6zhsNXsBq5rKZvn-LGD4vrFRjPZeqow,7070
191
+ sparknlp/base/prompt_assembler.py,sha256=ysU4Vbmnuv2UBHK0JBkYrxiZiJ7_GTcVMip1-QRmheI,11570
188
192
  sparknlp/base/recursive_pipeline.py,sha256=V9rTnu8KMwgjoceykN9pF1mKGtOkkuiC_n9v8dE3LDk,4279
189
193
  sparknlp/base/table_assembler.py,sha256=Kxu3R2fY6JgCxEc07ibsMsjip6dgcPDHLiWAZ8gC_d8,5102
190
194
  sparknlp/base/token_assembler.py,sha256=qiHry07L7mVCqeHSH6hHxLygv1AsfZIE4jy1L75L3Do,5075
@@ -200,7 +204,7 @@ sparknlp/common/read_as.py,sha256=imxPGwV7jr4Li_acbo0OAHHRGCBbYv-akzEGaBWEfcY,12
200
204
  sparknlp/common/recursive_annotator_approach.py,sha256=vqugBw22cE3Ff7PIpRlnYFuOlchgL0nM26D8j-NdpqU,1449
201
205
  sparknlp/common/storage.py,sha256=D91H3p8EIjNspjqAYu6ephRpCUtdcAir4_PrAbkIQWE,4842
202
206
  sparknlp/common/utils.py,sha256=Yne6yYcwKxhOZC-U4qfYoDhWUP_6BIaAjI5X_P_df1E,1306
203
- sparknlp/internal/__init__.py,sha256=nK-9lncAVRXmyP8ATbiMwRnLJVe4IEd_r5Z3gEqDK3g,33672
207
+ sparknlp/internal/__init__.py,sha256=BttGS21n2-LGjx8udi7f4_nNt_BeUnfif9WpeZchuFE,34502
204
208
  sparknlp/internal/annotator_java_ml.py,sha256=UGPoThG0rGXUOXGSQnDzEDW81Mu1s5RPF29v7DFyE3c,1187
205
209
  sparknlp/internal/annotator_transformer.py,sha256=fXmc2IWXGybqZpbEU9obmbdBYPc798y42zvSB4tqV9U,1448
206
210
  sparknlp/internal/extended_java_wrapper.py,sha256=hwP0133-hDiDf5sBF-P3MtUsuuDj1PpQbtGZQIRwzfk,2240
@@ -212,6 +216,8 @@ sparknlp/pretrained/__init__.py,sha256=GV-x9UBK8F2_IR6zYatrzFcVJtkSUIMbxqWsxRUeP
212
216
  sparknlp/pretrained/pretrained_pipeline.py,sha256=lquxiaABuA68Rmu7csamJPqBoRJqMUO0oNHsmEZDAIs,5740
213
217
  sparknlp/pretrained/resource_downloader.py,sha256=8_-rpvO2LsX_Lq4wMPif2ca3RlJZWEabt8pDm2xymiI,7806
214
218
  sparknlp/pretrained/utils.py,sha256=T1MrvW_DaWk_jcOjVLOea0NMFE9w8fe0ZT_5urZ_nEY,1099
219
+ sparknlp/reader/__init__.py,sha256=-Toj3AIBki-zXPpV8ezFTI2LX1yP_rK2bhpoa8nBkTw,685
220
+ sparknlp/reader/sparknlp_reader.py,sha256=SLQ5KCWbHnR4S0DwdjRQw_NvaUTchrE0gVCHs__xAy8,17054
215
221
  sparknlp/training/__init__.py,sha256=qREi9u-5Vc2VjpL6-XZsyvu5jSEIdIhowW7_kKaqMqo,852
216
222
  sparknlp/training/conll.py,sha256=wKBiSTrjc6mjsl7Nyt6B8f4yXsDJkZb-sn8iOjix9cE,6961
217
223
  sparknlp/training/conllu.py,sha256=8r3i-tmyrLsyk1DtZ9uo2mMDCWb1yw2Y5W6UsV13MkY,4953
@@ -242,8 +248,8 @@ sparknlp/training/_tf_graph_builders_1x/ner_dl/dataset_encoder.py,sha256=R4yHFN3
242
248
  sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model.py,sha256=EoCSdcIjqQ3wv13MAuuWrKV8wyVBP0SbOEW41omHlR0,23189
243
249
  sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model_saver.py,sha256=k5CQ7gKV6HZbZMB8cKLUJuZxoZWlP_DFWdZ--aIDwsc,2356
244
250
  sparknlp/training/_tf_graph_builders_1x/ner_dl/sentence_grouper.py,sha256=pAxjWhjazSX8Vg0MFqJiuRVw1IbnQNSs-8Xp26L4nko,870
245
- spark_nlp-5.5.0rc1.dist-info/.uuid,sha256=1f6hF51aIuv9yCvh31NU9lOpS34NE-h3a0Et7R9yR6A,36
246
- spark_nlp-5.5.0rc1.dist-info/METADATA,sha256=c9a30g4ogelUAj-Np3naOPq4lWx6mGRgXD59IjQlr1M,55774
247
- spark_nlp-5.5.0rc1.dist-info/WHEEL,sha256=bb2Ot9scclHKMOLDEHY6B2sicWOgugjFKaJsT7vwMQo,110
248
- spark_nlp-5.5.0rc1.dist-info/top_level.txt,sha256=uuytur4pyMRw2H_txNY2ZkaucZHUs22QF8-R03ch_-E,13
249
- spark_nlp-5.5.0rc1.dist-info/RECORD,,
251
+ spark_nlp-5.5.2.dist-info/.uuid,sha256=1f6hF51aIuv9yCvh31NU9lOpS34NE-h3a0Et7R9yR6A,36
252
+ spark_nlp-5.5.2.dist-info/METADATA,sha256=iFDm_OdynA95nwoWm1vbJcF3i7uuRSnn7S9eU1t5_3c,19156
253
+ spark_nlp-5.5.2.dist-info/WHEEL,sha256=bb2Ot9scclHKMOLDEHY6B2sicWOgugjFKaJsT7vwMQo,110
254
+ spark_nlp-5.5.2.dist-info/top_level.txt,sha256=uuytur4pyMRw2H_txNY2ZkaucZHUs22QF8-R03ch_-E,13
255
+ spark_nlp-5.5.2.dist-info/RECORD,,
sparknlp/__init__.py CHANGED
@@ -12,17 +12,20 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
 
15
- import sys
16
15
  import subprocess
16
+ import sys
17
17
  import threading
18
+
19
+ from pyspark.conf import SparkConf
20
+ from pyspark.context import SparkContext
21
+ from pyspark.java_gateway import launch_gateway
18
22
  from pyspark.sql import SparkSession
23
+
19
24
  from sparknlp import annotator
20
25
  # Must be declared here one by one or else PretrainedPipeline will fail with AttributeError
21
26
  from sparknlp.base import DocumentAssembler, MultiDocumentAssembler, Finisher, EmbeddingsFinisher, TokenAssembler, \
22
27
  Doc2Chunk, AudioAssembler, GraphFinisher, ImageAssembler, TableAssembler
23
- from pyspark.conf import SparkConf
24
- from pyspark.context import SparkContext
25
- from pyspark.java_gateway import launch_gateway
28
+ from sparknlp.reader import SparkNLPReader
26
29
 
27
30
  sys.modules['com.johnsnowlabs.nlp.annotators'] = annotator
28
31
  sys.modules['com.johnsnsowlabs.nlp.annotators.tokenizer'] = annotator
@@ -129,7 +132,7 @@ def start(gpu=False,
129
132
  The initiated Spark session.
130
133
 
131
134
  """
132
- current_version = "5.5.0-rc1"
135
+ current_version = "5.5.2"
133
136
 
134
137
  if params is None:
135
138
  params = {}
@@ -301,6 +304,9 @@ def start(gpu=False,
301
304
  spark_session = start_without_realtime_output()
302
305
  return spark_session
303
306
 
307
+ def read(params=None):
308
+ spark_session = start()
309
+ return SparkNLPReader(spark_session, params)
304
310
 
305
311
  def version():
306
312
  """Returns the current Spark NLP version.
@@ -310,4 +316,4 @@ def version():
310
316
  str
311
317
  The current Spark NLP version.
312
318
  """
313
- return '5.5.0-rc1'
319
+ return '5.5.2'
@@ -54,3 +54,4 @@ from sparknlp.annotator.classifier_dl.mpnet_for_question_answering import *
54
54
  from sparknlp.annotator.classifier_dl.mpnet_for_token_classification import *
55
55
  from sparknlp.annotator.classifier_dl.albert_for_zero_shot_classification import *
56
56
  from sparknlp.annotator.classifier_dl.camembert_for_zero_shot_classification import *
57
+ from sparknlp.annotator.classifier_dl.bert_for_multiple_choice import *