spark-nlp 5.5.0rc1__py2.py3-none-any.whl → 5.5.2__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of spark-nlp might be problematic. Click here for more details.
- spark_nlp-5.5.2.dist-info/METADATA +345 -0
- {spark_nlp-5.5.0rc1.dist-info → spark_nlp-5.5.2.dist-info}/RECORD +25 -19
- sparknlp/__init__.py +12 -6
- sparknlp/annotator/classifier_dl/__init__.py +1 -0
- sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +161 -0
- sparknlp/annotator/cv/__init__.py +1 -0
- sparknlp/annotator/cv/blip_for_question_answering.py +172 -0
- sparknlp/annotator/embeddings/__init__.py +1 -0
- sparknlp/annotator/embeddings/auto_gguf_embeddings.py +538 -0
- sparknlp/annotator/embeddings/nomic_embeddings.py +3 -3
- sparknlp/annotator/seq2seq/auto_gguf_model.py +17 -27
- sparknlp/annotator/seq2seq/cpm_transformer.py +5 -5
- sparknlp/annotator/seq2seq/nllb_transformer.py +4 -4
- sparknlp/annotator/seq2seq/phi3_transformer.py +4 -4
- sparknlp/annotator/seq2seq/qwen_transformer.py +3 -3
- sparknlp/base/__init__.py +1 -0
- sparknlp/base/image_assembler.py +11 -0
- sparknlp/base/light_pipeline.py +20 -9
- sparknlp/base/prompt_assembler.py +207 -0
- sparknlp/internal/__init__.py +22 -0
- sparknlp/reader/__init__.py +15 -0
- sparknlp/reader/sparknlp_reader.py +121 -0
- spark_nlp-5.5.0rc1.dist-info/METADATA +0 -1357
- {spark_nlp-5.5.0rc1.dist-info → spark_nlp-5.5.2.dist-info}/.uuid +0 -0
- {spark_nlp-5.5.0rc1.dist-info → spark_nlp-5.5.2.dist-info}/WHEEL +0 -0
- {spark_nlp-5.5.0rc1.dist-info → spark_nlp-5.5.2.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,161 @@
|
|
|
1
|
+
# Copyright 2017-2024 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from sparknlp.common import *
|
|
16
|
+
|
|
17
|
+
class BertForMultipleChoice(AnnotatorModel,
|
|
18
|
+
HasCaseSensitiveProperties,
|
|
19
|
+
HasBatchedAnnotate,
|
|
20
|
+
HasEngine,
|
|
21
|
+
HasMaxSentenceLengthLimit):
|
|
22
|
+
"""BertForMultipleChoice can load BERT Models with a multiple choice classification head on top
|
|
23
|
+
(a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.
|
|
24
|
+
|
|
25
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
26
|
+
object:
|
|
27
|
+
|
|
28
|
+
>>> spanClassifier = BertForMultipleChoice.pretrained() \\
|
|
29
|
+
... .setInputCols(["document_question", "document_context"]) \\
|
|
30
|
+
... .setOutputCol("answer")
|
|
31
|
+
|
|
32
|
+
The default model is ``"bert_base_uncased_multiple_choice"``, if no name is
|
|
33
|
+
provided.
|
|
34
|
+
|
|
35
|
+
For available pretrained models please see the `Models Hub
|
|
36
|
+
<https://sparknlp.org/models?task=Multiple+Choice>`__.
|
|
37
|
+
|
|
38
|
+
To see which models are compatible and how to import them see
|
|
39
|
+
`Import Transformers into Spark NLP 🚀
|
|
40
|
+
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
|
|
41
|
+
|
|
42
|
+
====================== ======================
|
|
43
|
+
Input Annotation types Output Annotation type
|
|
44
|
+
====================== ======================
|
|
45
|
+
``DOCUMENT, DOCUMENT`` ``CHUNK``
|
|
46
|
+
====================== ======================
|
|
47
|
+
|
|
48
|
+
Parameters
|
|
49
|
+
----------
|
|
50
|
+
batchSize
|
|
51
|
+
Batch size. Large values allows faster processing but requires more
|
|
52
|
+
memory, by default 8
|
|
53
|
+
caseSensitive
|
|
54
|
+
Whether to ignore case in tokens for embeddings matching, by default
|
|
55
|
+
False
|
|
56
|
+
maxSentenceLength
|
|
57
|
+
Max sentence length to process, by default 512
|
|
58
|
+
|
|
59
|
+
Examples
|
|
60
|
+
--------
|
|
61
|
+
>>> import sparknlp
|
|
62
|
+
>>> from sparknlp.base import *
|
|
63
|
+
>>> from sparknlp.annotator import *
|
|
64
|
+
>>> from pyspark.ml import Pipeline
|
|
65
|
+
>>> documentAssembler = MultiDocumentAssembler() \\
|
|
66
|
+
... .setInputCols(["question", "context"]) \\
|
|
67
|
+
... .setOutputCols(["document_question", "document_context"])
|
|
68
|
+
>>> questionAnswering = BertForMultipleChoice.pretrained() \\
|
|
69
|
+
... .setInputCols(["document_question", "document_context"]) \\
|
|
70
|
+
... .setOutputCol("answer") \\
|
|
71
|
+
... .setCaseSensitive(False)
|
|
72
|
+
>>> pipeline = Pipeline().setStages([
|
|
73
|
+
... documentAssembler,
|
|
74
|
+
... questionAnswering
|
|
75
|
+
... ])
|
|
76
|
+
>>> data = spark.createDataFrame([["The Eiffel Tower is located in which country??", "Germany, France, Italy"]]).toDF("question", "context")
|
|
77
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
78
|
+
>>> result.select("answer.result").show(truncate=False)
|
|
79
|
+
+--------------------+
|
|
80
|
+
|result |
|
|
81
|
+
+--------------------+
|
|
82
|
+
|[France] |
|
|
83
|
+
+--------------------+
|
|
84
|
+
"""
|
|
85
|
+
name = "BertForMultipleChoice"
|
|
86
|
+
|
|
87
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.DOCUMENT]
|
|
88
|
+
|
|
89
|
+
outputAnnotatorType = AnnotatorType.CHUNK
|
|
90
|
+
|
|
91
|
+
choicesDelimiter = Param(Params._dummy(),
|
|
92
|
+
"choicesDelimiter",
|
|
93
|
+
"Delimiter character use to split the choices",
|
|
94
|
+
TypeConverters.toString)
|
|
95
|
+
|
|
96
|
+
def setChoicesDelimiter(self, value):
|
|
97
|
+
"""Sets delimiter character use to split the choices
|
|
98
|
+
|
|
99
|
+
Parameters
|
|
100
|
+
----------
|
|
101
|
+
value : string
|
|
102
|
+
Delimiter character use to split the choices
|
|
103
|
+
"""
|
|
104
|
+
return self._set(caseSensitive=value)
|
|
105
|
+
|
|
106
|
+
@keyword_only
|
|
107
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.BertForMultipleChoice",
|
|
108
|
+
java_model=None):
|
|
109
|
+
super(BertForMultipleChoice, self).__init__(
|
|
110
|
+
classname=classname,
|
|
111
|
+
java_model=java_model
|
|
112
|
+
)
|
|
113
|
+
self._setDefault(
|
|
114
|
+
batchSize=4,
|
|
115
|
+
maxSentenceLength=512,
|
|
116
|
+
caseSensitive=False,
|
|
117
|
+
choicesDelimiter = ","
|
|
118
|
+
)
|
|
119
|
+
|
|
120
|
+
@staticmethod
|
|
121
|
+
def loadSavedModel(folder, spark_session):
|
|
122
|
+
"""Loads a locally saved model.
|
|
123
|
+
|
|
124
|
+
Parameters
|
|
125
|
+
----------
|
|
126
|
+
folder : str
|
|
127
|
+
Folder of the saved model
|
|
128
|
+
spark_session : pyspark.sql.SparkSession
|
|
129
|
+
The current SparkSession
|
|
130
|
+
|
|
131
|
+
Returns
|
|
132
|
+
-------
|
|
133
|
+
BertForQuestionAnswering
|
|
134
|
+
The restored model
|
|
135
|
+
"""
|
|
136
|
+
from sparknlp.internal import _BertMultipleChoiceLoader
|
|
137
|
+
jModel = _BertMultipleChoiceLoader(folder, spark_session._jsparkSession)._java_obj
|
|
138
|
+
return BertForMultipleChoice(java_model=jModel)
|
|
139
|
+
|
|
140
|
+
@staticmethod
|
|
141
|
+
def pretrained(name="bert_base_uncased_multiple_choice", lang="en", remote_loc=None):
|
|
142
|
+
"""Downloads and loads a pretrained model.
|
|
143
|
+
|
|
144
|
+
Parameters
|
|
145
|
+
----------
|
|
146
|
+
name : str, optional
|
|
147
|
+
Name of the pretrained model, by default
|
|
148
|
+
"bert_base_uncased_multiple_choice"
|
|
149
|
+
lang : str, optional
|
|
150
|
+
Language of the pretrained model, by default "en"
|
|
151
|
+
remote_loc : str, optional
|
|
152
|
+
Optional remote address of the resource, by default None. Will use
|
|
153
|
+
Spark NLPs repositories otherwise.
|
|
154
|
+
|
|
155
|
+
Returns
|
|
156
|
+
-------
|
|
157
|
+
BertForQuestionAnswering
|
|
158
|
+
The restored model
|
|
159
|
+
"""
|
|
160
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
161
|
+
return ResourceDownloader.downloadModel(BertForMultipleChoice, name, lang, remote_loc)
|
|
@@ -16,3 +16,4 @@ from sparknlp.annotator.cv.swin_for_image_classification import *
|
|
|
16
16
|
from sparknlp.annotator.cv.convnext_for_image_classification import *
|
|
17
17
|
from sparknlp.annotator.cv.vision_encoder_decoder_for_image_captioning import *
|
|
18
18
|
from sparknlp.annotator.cv.clip_for_zero_shot_classification import *
|
|
19
|
+
from sparknlp.annotator.cv.blip_for_question_answering import *
|
|
@@ -0,0 +1,172 @@
|
|
|
1
|
+
# Copyright 2017-2024 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from sparknlp.common import *
|
|
16
|
+
|
|
17
|
+
class BLIPForQuestionAnswering(AnnotatorModel,
|
|
18
|
+
HasBatchedAnnotateImage,
|
|
19
|
+
HasImageFeatureProperties,
|
|
20
|
+
HasEngine,
|
|
21
|
+
HasCandidateLabelsProperties,
|
|
22
|
+
HasRescaleFactor):
|
|
23
|
+
"""BLIPForQuestionAnswering can load BLIP models for visual question answering.
|
|
24
|
+
The model consists of a vision encoder, a text encoder as well as a text decoder.
|
|
25
|
+
The vision encoder will encode the input image, the text encoder will encode the input question together
|
|
26
|
+
with the encoding of the image, and the text decoder will output the answer to the question.
|
|
27
|
+
|
|
28
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
29
|
+
object:
|
|
30
|
+
|
|
31
|
+
>>> visualQAClassifier = BLIPForQuestionAnswering.pretrained() \\
|
|
32
|
+
... .setInputCols(["image_assembler"]) \\
|
|
33
|
+
... .setOutputCol("answer")
|
|
34
|
+
|
|
35
|
+
The default model is ``"blip_vqa_base"``, if no name is
|
|
36
|
+
provided.
|
|
37
|
+
|
|
38
|
+
For available pretrained models please see the `Models Hub
|
|
39
|
+
<https://sparknlp.org/models?task=Question+Answering>`__.
|
|
40
|
+
|
|
41
|
+
To see which models are compatible and how to import them see
|
|
42
|
+
`Import Transformers into Spark NLP 🚀
|
|
43
|
+
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
|
|
44
|
+
|
|
45
|
+
====================== ======================
|
|
46
|
+
Input Annotation types Output Annotation type
|
|
47
|
+
====================== ======================
|
|
48
|
+
``IMAGE`` ``DOCUMENT``
|
|
49
|
+
====================== ======================
|
|
50
|
+
|
|
51
|
+
Parameters
|
|
52
|
+
----------
|
|
53
|
+
batchSize
|
|
54
|
+
Batch size. Large values allows faster processing but requires more
|
|
55
|
+
memory, by default 2
|
|
56
|
+
configProtoBytes
|
|
57
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
58
|
+
maxSentenceLength
|
|
59
|
+
Max sentence length to process, by default 50
|
|
60
|
+
|
|
61
|
+
Examples
|
|
62
|
+
--------
|
|
63
|
+
>>> import sparknlp
|
|
64
|
+
>>> from sparknlp.base import *
|
|
65
|
+
>>> from sparknlp.annotator import *
|
|
66
|
+
>>> from pyspark.ml import Pipeline
|
|
67
|
+
>>> image_df = SparkSessionForTest.spark.read.format("image").load(path=images_path)
|
|
68
|
+
>>> test_df = image_df.withColumn("text", lit("What's this picture about?"))
|
|
69
|
+
>>> imageAssembler = ImageAssembler() \\
|
|
70
|
+
... .setInputCol("image") \\
|
|
71
|
+
... .setOutputCol("image_assembler")
|
|
72
|
+
>>> visualQAClassifier = BLIPForQuestionAnswering.pretrained() \\
|
|
73
|
+
... .setInputCols("image_assembler") \\
|
|
74
|
+
... .setOutputCol("answer") \\
|
|
75
|
+
... .setSize(384)
|
|
76
|
+
>>> pipeline = Pipeline().setStages([
|
|
77
|
+
... imageAssembler,
|
|
78
|
+
... visualQAClassifier
|
|
79
|
+
... ])
|
|
80
|
+
>>> result = pipeline.fit(test_df).transform(test_df)
|
|
81
|
+
>>> result.select("image_assembler.origin", "answer.result").show(false)
|
|
82
|
+
+--------------------------------------+------+
|
|
83
|
+
|origin |result|
|
|
84
|
+
+--------------------------------------+------+
|
|
85
|
+
|[file:///content/images/cat_image.jpg]|[cats]|
|
|
86
|
+
+--------------------------------------+------+
|
|
87
|
+
"""
|
|
88
|
+
|
|
89
|
+
name = "BLIPForQuestionAnswering"
|
|
90
|
+
|
|
91
|
+
inputAnnotatorTypes = [AnnotatorType.IMAGE]
|
|
92
|
+
|
|
93
|
+
outputAnnotatorType = AnnotatorType.DOCUMENT
|
|
94
|
+
|
|
95
|
+
configProtoBytes = Param(Params._dummy(),
|
|
96
|
+
"configProtoBytes",
|
|
97
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with "
|
|
98
|
+
"config_proto.SerializeToString()",
|
|
99
|
+
TypeConverters.toListInt)
|
|
100
|
+
|
|
101
|
+
maxSentenceLength = Param(Params._dummy(),
|
|
102
|
+
"maxSentenceLength",
|
|
103
|
+
"Maximum sentence length that the annotator will process. Above this, the sentence is skipped",
|
|
104
|
+
typeConverter=TypeConverters.toInt)
|
|
105
|
+
|
|
106
|
+
def setMaxSentenceSize(self, value):
|
|
107
|
+
"""Sets Maximum sentence length that the annotator will process, by
|
|
108
|
+
default 50.
|
|
109
|
+
|
|
110
|
+
Parameters
|
|
111
|
+
----------
|
|
112
|
+
value : int
|
|
113
|
+
Maximum sentence length that the annotator will process
|
|
114
|
+
"""
|
|
115
|
+
return self._set(maxSentenceLength=value)
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
@keyword_only
|
|
119
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.cv.BLIPForQuestionAnswering",
|
|
120
|
+
java_model=None):
|
|
121
|
+
super(BLIPForQuestionAnswering, self).__init__(
|
|
122
|
+
classname=classname,
|
|
123
|
+
java_model=java_model
|
|
124
|
+
)
|
|
125
|
+
self._setDefault(
|
|
126
|
+
batchSize=2,
|
|
127
|
+
size=384,
|
|
128
|
+
maxSentenceLength=50
|
|
129
|
+
)
|
|
130
|
+
|
|
131
|
+
@staticmethod
|
|
132
|
+
def loadSavedModel(folder, spark_session):
|
|
133
|
+
"""Loads a locally saved model.
|
|
134
|
+
|
|
135
|
+
Parameters
|
|
136
|
+
----------
|
|
137
|
+
folder : str
|
|
138
|
+
Folder of the saved model
|
|
139
|
+
spark_session : pyspark.sql.SparkSession
|
|
140
|
+
The current SparkSession
|
|
141
|
+
|
|
142
|
+
Returns
|
|
143
|
+
-------
|
|
144
|
+
CLIPForZeroShotClassification
|
|
145
|
+
The restored model
|
|
146
|
+
"""
|
|
147
|
+
from sparknlp.internal import _BLIPForQuestionAnswering
|
|
148
|
+
jModel = _BLIPForQuestionAnswering(folder, spark_session._jsparkSession)._java_obj
|
|
149
|
+
return BLIPForQuestionAnswering(java_model=jModel)
|
|
150
|
+
|
|
151
|
+
@staticmethod
|
|
152
|
+
def pretrained(name="blip_vqa_base", lang="en", remote_loc=None):
|
|
153
|
+
"""Downloads and loads a pretrained model.
|
|
154
|
+
|
|
155
|
+
Parameters
|
|
156
|
+
----------
|
|
157
|
+
name : str, optional
|
|
158
|
+
Name of the pretrained model, by default
|
|
159
|
+
"blip_vqa_tf"
|
|
160
|
+
lang : str, optional
|
|
161
|
+
Language of the pretrained model, by default "en"
|
|
162
|
+
remote_loc : str, optional
|
|
163
|
+
Optional remote address of the resource, by default None. Will use
|
|
164
|
+
Spark NLPs repositories otherwise.
|
|
165
|
+
|
|
166
|
+
Returns
|
|
167
|
+
-------
|
|
168
|
+
CLIPForZeroShotClassification
|
|
169
|
+
The restored model
|
|
170
|
+
"""
|
|
171
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
172
|
+
return ResourceDownloader.downloadModel(BLIPForQuestionAnswering, name, lang, remote_loc)
|
|
@@ -40,3 +40,4 @@ from sparknlp.annotator.embeddings.uae_embeddings import *
|
|
|
40
40
|
from sparknlp.annotator.embeddings.mxbai_embeddings import *
|
|
41
41
|
from sparknlp.annotator.embeddings.snowflake_embeddings import *
|
|
42
42
|
from sparknlp.annotator.embeddings.nomic_embeddings import *
|
|
43
|
+
from sparknlp.annotator.embeddings.auto_gguf_embeddings import *
|