snowflake-ml-python 1.6.1__py3-none-any.whl → 1.6.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/telemetry.py +142 -20
- snowflake/ml/_internal/utils/identifier.py +48 -11
- snowflake/ml/_internal/utils/snowflake_env.py +23 -13
- snowflake/ml/_internal/utils/sql_identifier.py +1 -1
- snowflake/ml/_internal/utils/table_manager.py +19 -1
- snowflake/ml/_internal/utils/uri.py +2 -2
- snowflake/ml/data/data_connector.py +33 -7
- snowflake/ml/data/torch_utils.py +68 -0
- snowflake/ml/dataset/dataset.py +1 -3
- snowflake/ml/feature_store/feature_store.py +41 -17
- snowflake/ml/feature_store/feature_view.py +2 -2
- snowflake/ml/fileset/embedded_stage_fs.py +1 -1
- snowflake/ml/fileset/fileset.py +1 -1
- snowflake/ml/fileset/sfcfs.py +9 -3
- snowflake/ml/model/_client/model/model_version_impl.py +22 -7
- snowflake/ml/model/_client/ops/model_ops.py +39 -3
- snowflake/ml/model/_client/ops/service_ops.py +198 -7
- snowflake/ml/model/_client/service/model_deployment_spec.py +4 -5
- snowflake/ml/model/_client/service/model_deployment_spec_schema.py +1 -2
- snowflake/ml/model/_client/sql/service.py +85 -18
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -1
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +3 -3
- snowflake/ml/model/_model_composer/model_composer.py +2 -0
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +3 -8
- snowflake/ml/model/_packager/model_handlers/_utils.py +46 -14
- snowflake/ml/model/_packager/model_handlers/catboost.py +17 -15
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +23 -15
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +15 -57
- snowflake/ml/model/_packager/model_handlers/llm.py +4 -2
- snowflake/ml/model/_packager/model_handlers/model_objective_utils.py +116 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +36 -24
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +119 -6
- snowflake/ml/model/_packager/model_handlers/torchscript.py +2 -2
- snowflake/ml/model/_packager/model_handlers/xgboost.py +48 -48
- snowflake/ml/model/_packager/model_meta/model_meta.py +10 -7
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +0 -8
- snowflake/ml/model/_packager/model_packager.py +2 -0
- snowflake/ml/model/_signatures/pytorch_handler.py +1 -1
- snowflake/ml/model/_signatures/utils.py +9 -0
- snowflake/ml/model/models/llm.py +3 -1
- snowflake/ml/model/type_hints.py +9 -1
- snowflake/ml/modeling/_internal/constants.py +1 -0
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +5 -5
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +9 -6
- snowflake/ml/modeling/_internal/model_specifications.py +2 -0
- snowflake/ml/modeling/_internal/model_trainer.py +1 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +2 -2
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +113 -160
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +60 -21
- snowflake/ml/modeling/cluster/affinity_propagation.py +60 -21
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +60 -21
- snowflake/ml/modeling/cluster/birch.py +60 -21
- snowflake/ml/modeling/cluster/bisecting_k_means.py +60 -21
- snowflake/ml/modeling/cluster/dbscan.py +60 -21
- snowflake/ml/modeling/cluster/feature_agglomeration.py +60 -21
- snowflake/ml/modeling/cluster/k_means.py +60 -21
- snowflake/ml/modeling/cluster/mean_shift.py +60 -21
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +60 -21
- snowflake/ml/modeling/cluster/optics.py +60 -21
- snowflake/ml/modeling/cluster/spectral_biclustering.py +60 -21
- snowflake/ml/modeling/cluster/spectral_clustering.py +60 -21
- snowflake/ml/modeling/cluster/spectral_coclustering.py +60 -21
- snowflake/ml/modeling/compose/column_transformer.py +60 -21
- snowflake/ml/modeling/compose/transformed_target_regressor.py +60 -21
- snowflake/ml/modeling/covariance/elliptic_envelope.py +60 -21
- snowflake/ml/modeling/covariance/empirical_covariance.py +60 -21
- snowflake/ml/modeling/covariance/graphical_lasso.py +60 -21
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +60 -21
- snowflake/ml/modeling/covariance/ledoit_wolf.py +60 -21
- snowflake/ml/modeling/covariance/min_cov_det.py +60 -21
- snowflake/ml/modeling/covariance/oas.py +60 -21
- snowflake/ml/modeling/covariance/shrunk_covariance.py +60 -21
- snowflake/ml/modeling/decomposition/dictionary_learning.py +60 -21
- snowflake/ml/modeling/decomposition/factor_analysis.py +60 -21
- snowflake/ml/modeling/decomposition/fast_ica.py +60 -21
- snowflake/ml/modeling/decomposition/incremental_pca.py +60 -21
- snowflake/ml/modeling/decomposition/kernel_pca.py +60 -21
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +60 -21
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +60 -21
- snowflake/ml/modeling/decomposition/pca.py +60 -21
- snowflake/ml/modeling/decomposition/sparse_pca.py +60 -21
- snowflake/ml/modeling/decomposition/truncated_svd.py +60 -21
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +60 -21
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +60 -21
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +60 -21
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +60 -21
- snowflake/ml/modeling/ensemble/bagging_classifier.py +60 -21
- snowflake/ml/modeling/ensemble/bagging_regressor.py +60 -21
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +60 -21
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +60 -21
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +60 -21
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +60 -21
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +60 -21
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +60 -21
- snowflake/ml/modeling/ensemble/isolation_forest.py +60 -21
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +60 -21
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +60 -21
- snowflake/ml/modeling/ensemble/stacking_regressor.py +60 -21
- snowflake/ml/modeling/ensemble/voting_classifier.py +60 -21
- snowflake/ml/modeling/ensemble/voting_regressor.py +60 -21
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +60 -21
- snowflake/ml/modeling/feature_selection/select_fdr.py +60 -21
- snowflake/ml/modeling/feature_selection/select_fpr.py +60 -21
- snowflake/ml/modeling/feature_selection/select_fwe.py +60 -21
- snowflake/ml/modeling/feature_selection/select_k_best.py +60 -21
- snowflake/ml/modeling/feature_selection/select_percentile.py +60 -21
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +60 -21
- snowflake/ml/modeling/feature_selection/variance_threshold.py +60 -21
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +60 -21
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +60 -21
- snowflake/ml/modeling/impute/iterative_imputer.py +60 -21
- snowflake/ml/modeling/impute/knn_imputer.py +60 -21
- snowflake/ml/modeling/impute/missing_indicator.py +60 -21
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +60 -21
- snowflake/ml/modeling/kernel_approximation/nystroem.py +60 -21
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +60 -21
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +60 -21
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +60 -21
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +60 -21
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +60 -21
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +60 -21
- snowflake/ml/modeling/linear_model/ard_regression.py +60 -21
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +60 -21
- snowflake/ml/modeling/linear_model/elastic_net.py +60 -21
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +60 -21
- snowflake/ml/modeling/linear_model/gamma_regressor.py +60 -21
- snowflake/ml/modeling/linear_model/huber_regressor.py +60 -21
- snowflake/ml/modeling/linear_model/lars.py +60 -21
- snowflake/ml/modeling/linear_model/lars_cv.py +60 -21
- snowflake/ml/modeling/linear_model/lasso.py +60 -21
- snowflake/ml/modeling/linear_model/lasso_cv.py +60 -21
- snowflake/ml/modeling/linear_model/lasso_lars.py +60 -21
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +60 -21
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +60 -21
- snowflake/ml/modeling/linear_model/linear_regression.py +60 -21
- snowflake/ml/modeling/linear_model/logistic_regression.py +60 -21
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +60 -21
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +60 -21
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +60 -21
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +60 -21
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +60 -21
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +60 -21
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +60 -21
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +60 -21
- snowflake/ml/modeling/linear_model/perceptron.py +60 -21
- snowflake/ml/modeling/linear_model/poisson_regressor.py +60 -21
- snowflake/ml/modeling/linear_model/ransac_regressor.py +60 -21
- snowflake/ml/modeling/linear_model/ridge.py +60 -21
- snowflake/ml/modeling/linear_model/ridge_classifier.py +60 -21
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +60 -21
- snowflake/ml/modeling/linear_model/ridge_cv.py +60 -21
- snowflake/ml/modeling/linear_model/sgd_classifier.py +60 -21
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +60 -21
- snowflake/ml/modeling/linear_model/sgd_regressor.py +60 -21
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +60 -21
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +60 -21
- snowflake/ml/modeling/manifold/isomap.py +60 -21
- snowflake/ml/modeling/manifold/mds.py +60 -21
- snowflake/ml/modeling/manifold/spectral_embedding.py +60 -21
- snowflake/ml/modeling/manifold/tsne.py +60 -21
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +60 -21
- snowflake/ml/modeling/mixture/gaussian_mixture.py +60 -21
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +60 -21
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +60 -21
- snowflake/ml/modeling/multiclass/output_code_classifier.py +60 -21
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +60 -21
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +60 -21
- snowflake/ml/modeling/naive_bayes/complement_nb.py +60 -21
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +60 -21
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +60 -21
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +60 -21
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +60 -21
- snowflake/ml/modeling/neighbors/kernel_density.py +60 -21
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +60 -21
- snowflake/ml/modeling/neighbors/nearest_centroid.py +60 -21
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +60 -21
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +60 -21
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +60 -21
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +60 -21
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +60 -21
- snowflake/ml/modeling/neural_network/mlp_classifier.py +60 -21
- snowflake/ml/modeling/neural_network/mlp_regressor.py +60 -21
- snowflake/ml/modeling/parameters/disable_model_tracer.py +5 -0
- snowflake/ml/modeling/pipeline/pipeline.py +1 -12
- snowflake/ml/modeling/preprocessing/polynomial_features.py +60 -21
- snowflake/ml/modeling/semi_supervised/label_propagation.py +60 -21
- snowflake/ml/modeling/semi_supervised/label_spreading.py +60 -21
- snowflake/ml/modeling/svm/linear_svc.py +60 -21
- snowflake/ml/modeling/svm/linear_svr.py +60 -21
- snowflake/ml/modeling/svm/nu_svc.py +60 -21
- snowflake/ml/modeling/svm/nu_svr.py +60 -21
- snowflake/ml/modeling/svm/svc.py +60 -21
- snowflake/ml/modeling/svm/svr.py +60 -21
- snowflake/ml/modeling/tree/decision_tree_classifier.py +60 -21
- snowflake/ml/modeling/tree/decision_tree_regressor.py +60 -21
- snowflake/ml/modeling/tree/extra_tree_classifier.py +60 -21
- snowflake/ml/modeling/tree/extra_tree_regressor.py +60 -21
- snowflake/ml/modeling/xgboost/xgb_classifier.py +63 -23
- snowflake/ml/modeling/xgboost/xgb_regressor.py +63 -23
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +63 -23
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +63 -23
- snowflake/ml/registry/_manager/model_manager.py +4 -0
- snowflake/ml/registry/model_registry.py +1 -1
- snowflake/ml/registry/registry.py +1 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.6.1.dist-info → snowflake_ml_python-1.6.2.dist-info}/METADATA +23 -4
- {snowflake_ml_python-1.6.1.dist-info → snowflake_ml_python-1.6.2.dist-info}/RECORD +211 -209
- {snowflake_ml_python-1.6.1.dist-info → snowflake_ml_python-1.6.2.dist-info}/WHEEL +1 -1
- snowflake/ml/data/torch_dataset.py +0 -33
- {snowflake_ml_python-1.6.1.dist-info → snowflake_ml_python-1.6.2.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.6.1.dist-info → snowflake_ml_python-1.6.2.dist-info}/top_level.txt +0 -0
@@ -4,14 +4,12 @@
|
|
4
4
|
#
|
5
5
|
import inspect
|
6
6
|
import os
|
7
|
-
import
|
8
|
-
from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
|
9
|
-
from typing_extensions import TypeGuard
|
7
|
+
from typing import Iterable, Optional, Union, List, Any, Dict, Set, Tuple
|
10
8
|
from uuid import uuid4
|
11
9
|
|
12
10
|
import cloudpickle as cp
|
13
|
-
import pandas as pd
|
14
11
|
import numpy as np
|
12
|
+
import pandas as pd
|
15
13
|
from numpy import typing as npt
|
16
14
|
|
17
15
|
|
@@ -24,12 +22,11 @@ from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
|
24
22
|
from snowflake.ml._internal import telemetry
|
25
23
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
26
24
|
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
27
|
-
from snowflake.ml._internal.utils import
|
25
|
+
from snowflake.ml._internal.utils import identifier
|
28
26
|
from snowflake.snowpark import DataFrame, Session
|
29
27
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
30
28
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
29
|
from snowflake.ml.modeling._internal.transformer_protocols import (
|
32
|
-
ModelTransformHandlers,
|
33
30
|
BatchInferenceKwargsTypedDict,
|
34
31
|
ScoreKwargsTypedDict
|
35
32
|
)
|
@@ -557,12 +554,23 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
557
554
|
autogenerated=self._autogenerated,
|
558
555
|
subproject=_SUBPROJECT,
|
559
556
|
)
|
560
|
-
|
561
|
-
|
562
|
-
expected_output_cols_list=(
|
563
|
-
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
564
|
-
),
|
557
|
+
expected_output_cols = (
|
558
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
565
559
|
)
|
560
|
+
if isinstance(dataset, DataFrame):
|
561
|
+
expected_output_cols, example_output_pd_df = self._align_expected_output(
|
562
|
+
"fit_predict", dataset, expected_output_cols, output_cols_prefix
|
563
|
+
)
|
564
|
+
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
565
|
+
drop_input_cols=self._drop_input_cols,
|
566
|
+
expected_output_cols_list=expected_output_cols,
|
567
|
+
example_output_pd_df=example_output_pd_df,
|
568
|
+
)
|
569
|
+
else:
|
570
|
+
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
571
|
+
drop_input_cols=self._drop_input_cols,
|
572
|
+
expected_output_cols_list=expected_output_cols,
|
573
|
+
)
|
566
574
|
self._sklearn_object = fitted_estimator
|
567
575
|
self._is_fitted = True
|
568
576
|
return output_result
|
@@ -643,12 +651,41 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
643
651
|
|
644
652
|
return rv
|
645
653
|
|
646
|
-
def
|
647
|
-
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
648
|
-
) -> List[str]:
|
654
|
+
def _align_expected_output(
|
655
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str,
|
656
|
+
) -> Tuple[List[str], pd.DataFrame]:
|
657
|
+
""" Run 1 line of data with the desired method, and return one tuple that consists of the output column names
|
658
|
+
and output dataframe with 1 line.
|
659
|
+
If the method is fit_predict, run 2 lines of data.
|
660
|
+
"""
|
649
661
|
# in case the inferred output column names dimension is different
|
650
662
|
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
651
|
-
|
663
|
+
|
664
|
+
# For fit_predict method, a minimum of 2 is required by MinCovDet, BayesianGaussianMixture
|
665
|
+
# so change the minimum of number of rows to 2
|
666
|
+
num_examples = 2
|
667
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
668
|
+
project=_PROJECT,
|
669
|
+
subproject=_SUBPROJECT,
|
670
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
671
|
+
inspect.currentframe(), NeighborhoodComponentsAnalysis.__class__.__name__
|
672
|
+
),
|
673
|
+
api_calls=[Session.call],
|
674
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
675
|
+
)
|
676
|
+
if output_cols_prefix == "fit_predict_":
|
677
|
+
if hasattr(self._sklearn_object, "n_clusters"):
|
678
|
+
# cluster classes such as BisectingKMeansTest requires # of examples >= n_clusters
|
679
|
+
num_examples = self._sklearn_object.n_clusters
|
680
|
+
elif hasattr(self._sklearn_object, "min_samples"):
|
681
|
+
# OPTICS default min_samples 5, which requires at least 5 lines of data
|
682
|
+
num_examples = self._sklearn_object.min_samples
|
683
|
+
elif hasattr(self._sklearn_object, "n_neighbors") and hasattr(self._sklearn_object, "n_samples"):
|
684
|
+
# LocalOutlierFactor expects n_neighbors <= n_samples
|
685
|
+
num_examples = self._sklearn_object.n_neighbors
|
686
|
+
sample_pd_df = dataset.select(self.input_cols).limit(num_examples).to_pandas(statement_params=statement_params)
|
687
|
+
else:
|
688
|
+
sample_pd_df = dataset.select(self.input_cols).limit(1).to_pandas(statement_params=statement_params)
|
652
689
|
|
653
690
|
# Rename the pandas df column names to snowflake identifiers and reorder columns to match the order
|
654
691
|
# seen during the fit.
|
@@ -660,12 +697,14 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
660
697
|
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
661
698
|
if self.sample_weight_col:
|
662
699
|
output_df_columns_set -= set(self.sample_weight_col)
|
700
|
+
|
663
701
|
# if the dimension of inferred output column names is correct; use it
|
664
702
|
if len(expected_output_cols_list) == len(output_df_columns_set):
|
665
|
-
return expected_output_cols_list
|
703
|
+
return expected_output_cols_list, output_df_pd
|
666
704
|
# otherwise, use the sklearn estimator's output
|
667
705
|
else:
|
668
|
-
|
706
|
+
expected_output_cols_list = sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
707
|
+
return expected_output_cols_list, output_df_pd[expected_output_cols_list]
|
669
708
|
|
670
709
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
671
710
|
@telemetry.send_api_usage_telemetry(
|
@@ -711,7 +750,7 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
711
750
|
drop_input_cols=self._drop_input_cols,
|
712
751
|
expected_output_cols_type="float",
|
713
752
|
)
|
714
|
-
expected_output_cols = self.
|
753
|
+
expected_output_cols, _ = self._align_expected_output(
|
715
754
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
716
755
|
)
|
717
756
|
|
@@ -777,7 +816,7 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
777
816
|
drop_input_cols=self._drop_input_cols,
|
778
817
|
expected_output_cols_type="float",
|
779
818
|
)
|
780
|
-
expected_output_cols = self.
|
819
|
+
expected_output_cols, _ = self._align_expected_output(
|
781
820
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
782
821
|
)
|
783
822
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -840,7 +879,7 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
840
879
|
drop_input_cols=self._drop_input_cols,
|
841
880
|
expected_output_cols_type="float",
|
842
881
|
)
|
843
|
-
expected_output_cols = self.
|
882
|
+
expected_output_cols, _ = self._align_expected_output(
|
844
883
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
845
884
|
)
|
846
885
|
|
@@ -905,7 +944,7 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
905
944
|
drop_input_cols = self._drop_input_cols,
|
906
945
|
expected_output_cols_type="float",
|
907
946
|
)
|
908
|
-
expected_output_cols = self.
|
947
|
+
expected_output_cols, _ = self._align_expected_output(
|
909
948
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
910
949
|
)
|
911
950
|
|
@@ -4,14 +4,12 @@
|
|
4
4
|
#
|
5
5
|
import inspect
|
6
6
|
import os
|
7
|
-
import
|
8
|
-
from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
|
9
|
-
from typing_extensions import TypeGuard
|
7
|
+
from typing import Iterable, Optional, Union, List, Any, Dict, Set, Tuple
|
10
8
|
from uuid import uuid4
|
11
9
|
|
12
10
|
import cloudpickle as cp
|
13
|
-
import pandas as pd
|
14
11
|
import numpy as np
|
12
|
+
import pandas as pd
|
15
13
|
from numpy import typing as npt
|
16
14
|
|
17
15
|
|
@@ -24,12 +22,11 @@ from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
|
24
22
|
from snowflake.ml._internal import telemetry
|
25
23
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
26
24
|
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
27
|
-
from snowflake.ml._internal.utils import
|
25
|
+
from snowflake.ml._internal.utils import identifier
|
28
26
|
from snowflake.snowpark import DataFrame, Session
|
29
27
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
30
28
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
29
|
from snowflake.ml.modeling._internal.transformer_protocols import (
|
32
|
-
ModelTransformHandlers,
|
33
30
|
BatchInferenceKwargsTypedDict,
|
34
31
|
ScoreKwargsTypedDict
|
35
32
|
)
|
@@ -558,12 +555,23 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
558
555
|
autogenerated=self._autogenerated,
|
559
556
|
subproject=_SUBPROJECT,
|
560
557
|
)
|
561
|
-
|
562
|
-
|
563
|
-
expected_output_cols_list=(
|
564
|
-
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
565
|
-
),
|
558
|
+
expected_output_cols = (
|
559
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
566
560
|
)
|
561
|
+
if isinstance(dataset, DataFrame):
|
562
|
+
expected_output_cols, example_output_pd_df = self._align_expected_output(
|
563
|
+
"fit_predict", dataset, expected_output_cols, output_cols_prefix
|
564
|
+
)
|
565
|
+
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
566
|
+
drop_input_cols=self._drop_input_cols,
|
567
|
+
expected_output_cols_list=expected_output_cols,
|
568
|
+
example_output_pd_df=example_output_pd_df,
|
569
|
+
)
|
570
|
+
else:
|
571
|
+
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
572
|
+
drop_input_cols=self._drop_input_cols,
|
573
|
+
expected_output_cols_list=expected_output_cols,
|
574
|
+
)
|
567
575
|
self._sklearn_object = fitted_estimator
|
568
576
|
self._is_fitted = True
|
569
577
|
return output_result
|
@@ -642,12 +650,41 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
642
650
|
|
643
651
|
return rv
|
644
652
|
|
645
|
-
def
|
646
|
-
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
647
|
-
) -> List[str]:
|
653
|
+
def _align_expected_output(
|
654
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str,
|
655
|
+
) -> Tuple[List[str], pd.DataFrame]:
|
656
|
+
""" Run 1 line of data with the desired method, and return one tuple that consists of the output column names
|
657
|
+
and output dataframe with 1 line.
|
658
|
+
If the method is fit_predict, run 2 lines of data.
|
659
|
+
"""
|
648
660
|
# in case the inferred output column names dimension is different
|
649
661
|
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
650
|
-
|
662
|
+
|
663
|
+
# For fit_predict method, a minimum of 2 is required by MinCovDet, BayesianGaussianMixture
|
664
|
+
# so change the minimum of number of rows to 2
|
665
|
+
num_examples = 2
|
666
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
667
|
+
project=_PROJECT,
|
668
|
+
subproject=_SUBPROJECT,
|
669
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
670
|
+
inspect.currentframe(), RadiusNeighborsClassifier.__class__.__name__
|
671
|
+
),
|
672
|
+
api_calls=[Session.call],
|
673
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
674
|
+
)
|
675
|
+
if output_cols_prefix == "fit_predict_":
|
676
|
+
if hasattr(self._sklearn_object, "n_clusters"):
|
677
|
+
# cluster classes such as BisectingKMeansTest requires # of examples >= n_clusters
|
678
|
+
num_examples = self._sklearn_object.n_clusters
|
679
|
+
elif hasattr(self._sklearn_object, "min_samples"):
|
680
|
+
# OPTICS default min_samples 5, which requires at least 5 lines of data
|
681
|
+
num_examples = self._sklearn_object.min_samples
|
682
|
+
elif hasattr(self._sklearn_object, "n_neighbors") and hasattr(self._sklearn_object, "n_samples"):
|
683
|
+
# LocalOutlierFactor expects n_neighbors <= n_samples
|
684
|
+
num_examples = self._sklearn_object.n_neighbors
|
685
|
+
sample_pd_df = dataset.select(self.input_cols).limit(num_examples).to_pandas(statement_params=statement_params)
|
686
|
+
else:
|
687
|
+
sample_pd_df = dataset.select(self.input_cols).limit(1).to_pandas(statement_params=statement_params)
|
651
688
|
|
652
689
|
# Rename the pandas df column names to snowflake identifiers and reorder columns to match the order
|
653
690
|
# seen during the fit.
|
@@ -659,12 +696,14 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
659
696
|
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
660
697
|
if self.sample_weight_col:
|
661
698
|
output_df_columns_set -= set(self.sample_weight_col)
|
699
|
+
|
662
700
|
# if the dimension of inferred output column names is correct; use it
|
663
701
|
if len(expected_output_cols_list) == len(output_df_columns_set):
|
664
|
-
return expected_output_cols_list
|
702
|
+
return expected_output_cols_list, output_df_pd
|
665
703
|
# otherwise, use the sklearn estimator's output
|
666
704
|
else:
|
667
|
-
|
705
|
+
expected_output_cols_list = sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
706
|
+
return expected_output_cols_list, output_df_pd[expected_output_cols_list]
|
668
707
|
|
669
708
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
670
709
|
@telemetry.send_api_usage_telemetry(
|
@@ -712,7 +751,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
712
751
|
drop_input_cols=self._drop_input_cols,
|
713
752
|
expected_output_cols_type="float",
|
714
753
|
)
|
715
|
-
expected_output_cols = self.
|
754
|
+
expected_output_cols, _ = self._align_expected_output(
|
716
755
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
717
756
|
)
|
718
757
|
|
@@ -780,7 +819,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
780
819
|
drop_input_cols=self._drop_input_cols,
|
781
820
|
expected_output_cols_type="float",
|
782
821
|
)
|
783
|
-
expected_output_cols = self.
|
822
|
+
expected_output_cols, _ = self._align_expected_output(
|
784
823
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
785
824
|
)
|
786
825
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -843,7 +882,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
843
882
|
drop_input_cols=self._drop_input_cols,
|
844
883
|
expected_output_cols_type="float",
|
845
884
|
)
|
846
|
-
expected_output_cols = self.
|
885
|
+
expected_output_cols, _ = self._align_expected_output(
|
847
886
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
848
887
|
)
|
849
888
|
|
@@ -908,7 +947,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
908
947
|
drop_input_cols = self._drop_input_cols,
|
909
948
|
expected_output_cols_type="float",
|
910
949
|
)
|
911
|
-
expected_output_cols = self.
|
950
|
+
expected_output_cols, _ = self._align_expected_output(
|
912
951
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
913
952
|
)
|
914
953
|
|
@@ -4,14 +4,12 @@
|
|
4
4
|
#
|
5
5
|
import inspect
|
6
6
|
import os
|
7
|
-
import
|
8
|
-
from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
|
9
|
-
from typing_extensions import TypeGuard
|
7
|
+
from typing import Iterable, Optional, Union, List, Any, Dict, Set, Tuple
|
10
8
|
from uuid import uuid4
|
11
9
|
|
12
10
|
import cloudpickle as cp
|
13
|
-
import pandas as pd
|
14
11
|
import numpy as np
|
12
|
+
import pandas as pd
|
15
13
|
from numpy import typing as npt
|
16
14
|
|
17
15
|
|
@@ -24,12 +22,11 @@ from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
|
24
22
|
from snowflake.ml._internal import telemetry
|
25
23
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
26
24
|
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
27
|
-
from snowflake.ml._internal.utils import
|
25
|
+
from snowflake.ml._internal.utils import identifier
|
28
26
|
from snowflake.snowpark import DataFrame, Session
|
29
27
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
30
28
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
29
|
from snowflake.ml.modeling._internal.transformer_protocols import (
|
32
|
-
ModelTransformHandlers,
|
33
30
|
BatchInferenceKwargsTypedDict,
|
34
31
|
ScoreKwargsTypedDict
|
35
32
|
)
|
@@ -548,12 +545,23 @@ class RadiusNeighborsRegressor(BaseTransformer):
|
|
548
545
|
autogenerated=self._autogenerated,
|
549
546
|
subproject=_SUBPROJECT,
|
550
547
|
)
|
551
|
-
|
552
|
-
|
553
|
-
expected_output_cols_list=(
|
554
|
-
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
555
|
-
),
|
548
|
+
expected_output_cols = (
|
549
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
556
550
|
)
|
551
|
+
if isinstance(dataset, DataFrame):
|
552
|
+
expected_output_cols, example_output_pd_df = self._align_expected_output(
|
553
|
+
"fit_predict", dataset, expected_output_cols, output_cols_prefix
|
554
|
+
)
|
555
|
+
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
556
|
+
drop_input_cols=self._drop_input_cols,
|
557
|
+
expected_output_cols_list=expected_output_cols,
|
558
|
+
example_output_pd_df=example_output_pd_df,
|
559
|
+
)
|
560
|
+
else:
|
561
|
+
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
562
|
+
drop_input_cols=self._drop_input_cols,
|
563
|
+
expected_output_cols_list=expected_output_cols,
|
564
|
+
)
|
557
565
|
self._sklearn_object = fitted_estimator
|
558
566
|
self._is_fitted = True
|
559
567
|
return output_result
|
@@ -632,12 +640,41 @@ class RadiusNeighborsRegressor(BaseTransformer):
|
|
632
640
|
|
633
641
|
return rv
|
634
642
|
|
635
|
-
def
|
636
|
-
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
637
|
-
) -> List[str]:
|
643
|
+
def _align_expected_output(
|
644
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str,
|
645
|
+
) -> Tuple[List[str], pd.DataFrame]:
|
646
|
+
""" Run 1 line of data with the desired method, and return one tuple that consists of the output column names
|
647
|
+
and output dataframe with 1 line.
|
648
|
+
If the method is fit_predict, run 2 lines of data.
|
649
|
+
"""
|
638
650
|
# in case the inferred output column names dimension is different
|
639
651
|
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
640
|
-
|
652
|
+
|
653
|
+
# For fit_predict method, a minimum of 2 is required by MinCovDet, BayesianGaussianMixture
|
654
|
+
# so change the minimum of number of rows to 2
|
655
|
+
num_examples = 2
|
656
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
657
|
+
project=_PROJECT,
|
658
|
+
subproject=_SUBPROJECT,
|
659
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
660
|
+
inspect.currentframe(), RadiusNeighborsRegressor.__class__.__name__
|
661
|
+
),
|
662
|
+
api_calls=[Session.call],
|
663
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
664
|
+
)
|
665
|
+
if output_cols_prefix == "fit_predict_":
|
666
|
+
if hasattr(self._sklearn_object, "n_clusters"):
|
667
|
+
# cluster classes such as BisectingKMeansTest requires # of examples >= n_clusters
|
668
|
+
num_examples = self._sklearn_object.n_clusters
|
669
|
+
elif hasattr(self._sklearn_object, "min_samples"):
|
670
|
+
# OPTICS default min_samples 5, which requires at least 5 lines of data
|
671
|
+
num_examples = self._sklearn_object.min_samples
|
672
|
+
elif hasattr(self._sklearn_object, "n_neighbors") and hasattr(self._sklearn_object, "n_samples"):
|
673
|
+
# LocalOutlierFactor expects n_neighbors <= n_samples
|
674
|
+
num_examples = self._sklearn_object.n_neighbors
|
675
|
+
sample_pd_df = dataset.select(self.input_cols).limit(num_examples).to_pandas(statement_params=statement_params)
|
676
|
+
else:
|
677
|
+
sample_pd_df = dataset.select(self.input_cols).limit(1).to_pandas(statement_params=statement_params)
|
641
678
|
|
642
679
|
# Rename the pandas df column names to snowflake identifiers and reorder columns to match the order
|
643
680
|
# seen during the fit.
|
@@ -649,12 +686,14 @@ class RadiusNeighborsRegressor(BaseTransformer):
|
|
649
686
|
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
650
687
|
if self.sample_weight_col:
|
651
688
|
output_df_columns_set -= set(self.sample_weight_col)
|
689
|
+
|
652
690
|
# if the dimension of inferred output column names is correct; use it
|
653
691
|
if len(expected_output_cols_list) == len(output_df_columns_set):
|
654
|
-
return expected_output_cols_list
|
692
|
+
return expected_output_cols_list, output_df_pd
|
655
693
|
# otherwise, use the sklearn estimator's output
|
656
694
|
else:
|
657
|
-
|
695
|
+
expected_output_cols_list = sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
696
|
+
return expected_output_cols_list, output_df_pd[expected_output_cols_list]
|
658
697
|
|
659
698
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
660
699
|
@telemetry.send_api_usage_telemetry(
|
@@ -700,7 +739,7 @@ class RadiusNeighborsRegressor(BaseTransformer):
|
|
700
739
|
drop_input_cols=self._drop_input_cols,
|
701
740
|
expected_output_cols_type="float",
|
702
741
|
)
|
703
|
-
expected_output_cols = self.
|
742
|
+
expected_output_cols, _ = self._align_expected_output(
|
704
743
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
705
744
|
)
|
706
745
|
|
@@ -766,7 +805,7 @@ class RadiusNeighborsRegressor(BaseTransformer):
|
|
766
805
|
drop_input_cols=self._drop_input_cols,
|
767
806
|
expected_output_cols_type="float",
|
768
807
|
)
|
769
|
-
expected_output_cols = self.
|
808
|
+
expected_output_cols, _ = self._align_expected_output(
|
770
809
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
771
810
|
)
|
772
811
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -829,7 +868,7 @@ class RadiusNeighborsRegressor(BaseTransformer):
|
|
829
868
|
drop_input_cols=self._drop_input_cols,
|
830
869
|
expected_output_cols_type="float",
|
831
870
|
)
|
832
|
-
expected_output_cols = self.
|
871
|
+
expected_output_cols, _ = self._align_expected_output(
|
833
872
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
834
873
|
)
|
835
874
|
|
@@ -894,7 +933,7 @@ class RadiusNeighborsRegressor(BaseTransformer):
|
|
894
933
|
drop_input_cols = self._drop_input_cols,
|
895
934
|
expected_output_cols_type="float",
|
896
935
|
)
|
897
|
-
expected_output_cols = self.
|
936
|
+
expected_output_cols, _ = self._align_expected_output(
|
898
937
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
899
938
|
)
|
900
939
|
|
@@ -4,14 +4,12 @@
|
|
4
4
|
#
|
5
5
|
import inspect
|
6
6
|
import os
|
7
|
-
import
|
8
|
-
from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
|
9
|
-
from typing_extensions import TypeGuard
|
7
|
+
from typing import Iterable, Optional, Union, List, Any, Dict, Set, Tuple
|
10
8
|
from uuid import uuid4
|
11
9
|
|
12
10
|
import cloudpickle as cp
|
13
|
-
import pandas as pd
|
14
11
|
import numpy as np
|
12
|
+
import pandas as pd
|
15
13
|
from numpy import typing as npt
|
16
14
|
|
17
15
|
|
@@ -24,12 +22,11 @@ from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
|
24
22
|
from snowflake.ml._internal import telemetry
|
25
23
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
26
24
|
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
27
|
-
from snowflake.ml._internal.utils import
|
25
|
+
from snowflake.ml._internal.utils import identifier
|
28
26
|
from snowflake.snowpark import DataFrame, Session
|
29
27
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
30
28
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
29
|
from snowflake.ml.modeling._internal.transformer_protocols import (
|
32
|
-
ModelTransformHandlers,
|
33
30
|
BatchInferenceKwargsTypedDict,
|
34
31
|
ScoreKwargsTypedDict
|
35
32
|
)
|
@@ -507,12 +504,23 @@ class BernoulliRBM(BaseTransformer):
|
|
507
504
|
autogenerated=self._autogenerated,
|
508
505
|
subproject=_SUBPROJECT,
|
509
506
|
)
|
510
|
-
|
511
|
-
|
512
|
-
expected_output_cols_list=(
|
513
|
-
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
514
|
-
),
|
507
|
+
expected_output_cols = (
|
508
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
515
509
|
)
|
510
|
+
if isinstance(dataset, DataFrame):
|
511
|
+
expected_output_cols, example_output_pd_df = self._align_expected_output(
|
512
|
+
"fit_predict", dataset, expected_output_cols, output_cols_prefix
|
513
|
+
)
|
514
|
+
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
515
|
+
drop_input_cols=self._drop_input_cols,
|
516
|
+
expected_output_cols_list=expected_output_cols,
|
517
|
+
example_output_pd_df=example_output_pd_df,
|
518
|
+
)
|
519
|
+
else:
|
520
|
+
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
521
|
+
drop_input_cols=self._drop_input_cols,
|
522
|
+
expected_output_cols_list=expected_output_cols,
|
523
|
+
)
|
516
524
|
self._sklearn_object = fitted_estimator
|
517
525
|
self._is_fitted = True
|
518
526
|
return output_result
|
@@ -593,12 +601,41 @@ class BernoulliRBM(BaseTransformer):
|
|
593
601
|
|
594
602
|
return rv
|
595
603
|
|
596
|
-
def
|
597
|
-
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
598
|
-
) -> List[str]:
|
604
|
+
def _align_expected_output(
|
605
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str,
|
606
|
+
) -> Tuple[List[str], pd.DataFrame]:
|
607
|
+
""" Run 1 line of data with the desired method, and return one tuple that consists of the output column names
|
608
|
+
and output dataframe with 1 line.
|
609
|
+
If the method is fit_predict, run 2 lines of data.
|
610
|
+
"""
|
599
611
|
# in case the inferred output column names dimension is different
|
600
612
|
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
601
|
-
|
613
|
+
|
614
|
+
# For fit_predict method, a minimum of 2 is required by MinCovDet, BayesianGaussianMixture
|
615
|
+
# so change the minimum of number of rows to 2
|
616
|
+
num_examples = 2
|
617
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
618
|
+
project=_PROJECT,
|
619
|
+
subproject=_SUBPROJECT,
|
620
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
621
|
+
inspect.currentframe(), BernoulliRBM.__class__.__name__
|
622
|
+
),
|
623
|
+
api_calls=[Session.call],
|
624
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
625
|
+
)
|
626
|
+
if output_cols_prefix == "fit_predict_":
|
627
|
+
if hasattr(self._sklearn_object, "n_clusters"):
|
628
|
+
# cluster classes such as BisectingKMeansTest requires # of examples >= n_clusters
|
629
|
+
num_examples = self._sklearn_object.n_clusters
|
630
|
+
elif hasattr(self._sklearn_object, "min_samples"):
|
631
|
+
# OPTICS default min_samples 5, which requires at least 5 lines of data
|
632
|
+
num_examples = self._sklearn_object.min_samples
|
633
|
+
elif hasattr(self._sklearn_object, "n_neighbors") and hasattr(self._sklearn_object, "n_samples"):
|
634
|
+
# LocalOutlierFactor expects n_neighbors <= n_samples
|
635
|
+
num_examples = self._sklearn_object.n_neighbors
|
636
|
+
sample_pd_df = dataset.select(self.input_cols).limit(num_examples).to_pandas(statement_params=statement_params)
|
637
|
+
else:
|
638
|
+
sample_pd_df = dataset.select(self.input_cols).limit(1).to_pandas(statement_params=statement_params)
|
602
639
|
|
603
640
|
# Rename the pandas df column names to snowflake identifiers and reorder columns to match the order
|
604
641
|
# seen during the fit.
|
@@ -610,12 +647,14 @@ class BernoulliRBM(BaseTransformer):
|
|
610
647
|
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
611
648
|
if self.sample_weight_col:
|
612
649
|
output_df_columns_set -= set(self.sample_weight_col)
|
650
|
+
|
613
651
|
# if the dimension of inferred output column names is correct; use it
|
614
652
|
if len(expected_output_cols_list) == len(output_df_columns_set):
|
615
|
-
return expected_output_cols_list
|
653
|
+
return expected_output_cols_list, output_df_pd
|
616
654
|
# otherwise, use the sklearn estimator's output
|
617
655
|
else:
|
618
|
-
|
656
|
+
expected_output_cols_list = sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
657
|
+
return expected_output_cols_list, output_df_pd[expected_output_cols_list]
|
619
658
|
|
620
659
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
621
660
|
@telemetry.send_api_usage_telemetry(
|
@@ -661,7 +700,7 @@ class BernoulliRBM(BaseTransformer):
|
|
661
700
|
drop_input_cols=self._drop_input_cols,
|
662
701
|
expected_output_cols_type="float",
|
663
702
|
)
|
664
|
-
expected_output_cols = self.
|
703
|
+
expected_output_cols, _ = self._align_expected_output(
|
665
704
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
666
705
|
)
|
667
706
|
|
@@ -727,7 +766,7 @@ class BernoulliRBM(BaseTransformer):
|
|
727
766
|
drop_input_cols=self._drop_input_cols,
|
728
767
|
expected_output_cols_type="float",
|
729
768
|
)
|
730
|
-
expected_output_cols = self.
|
769
|
+
expected_output_cols, _ = self._align_expected_output(
|
731
770
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
732
771
|
)
|
733
772
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -790,7 +829,7 @@ class BernoulliRBM(BaseTransformer):
|
|
790
829
|
drop_input_cols=self._drop_input_cols,
|
791
830
|
expected_output_cols_type="float",
|
792
831
|
)
|
793
|
-
expected_output_cols = self.
|
832
|
+
expected_output_cols, _ = self._align_expected_output(
|
794
833
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
795
834
|
)
|
796
835
|
|
@@ -857,7 +896,7 @@ class BernoulliRBM(BaseTransformer):
|
|
857
896
|
drop_input_cols = self._drop_input_cols,
|
858
897
|
expected_output_cols_type="float",
|
859
898
|
)
|
860
|
-
expected_output_cols = self.
|
899
|
+
expected_output_cols, _ = self._align_expected_output(
|
861
900
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
862
901
|
)
|
863
902
|
|