snowflake-ml-python 1.6.1__py3-none-any.whl → 1.6.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/telemetry.py +142 -20
- snowflake/ml/_internal/utils/identifier.py +48 -11
- snowflake/ml/_internal/utils/snowflake_env.py +23 -13
- snowflake/ml/_internal/utils/sql_identifier.py +1 -1
- snowflake/ml/_internal/utils/table_manager.py +19 -1
- snowflake/ml/_internal/utils/uri.py +2 -2
- snowflake/ml/data/data_connector.py +33 -7
- snowflake/ml/data/torch_utils.py +68 -0
- snowflake/ml/dataset/dataset.py +1 -3
- snowflake/ml/feature_store/feature_store.py +41 -17
- snowflake/ml/feature_store/feature_view.py +2 -2
- snowflake/ml/fileset/embedded_stage_fs.py +1 -1
- snowflake/ml/fileset/fileset.py +1 -1
- snowflake/ml/fileset/sfcfs.py +9 -3
- snowflake/ml/model/_client/model/model_version_impl.py +22 -7
- snowflake/ml/model/_client/ops/model_ops.py +39 -3
- snowflake/ml/model/_client/ops/service_ops.py +198 -7
- snowflake/ml/model/_client/service/model_deployment_spec.py +4 -5
- snowflake/ml/model/_client/service/model_deployment_spec_schema.py +1 -2
- snowflake/ml/model/_client/sql/service.py +85 -18
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -1
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +3 -3
- snowflake/ml/model/_model_composer/model_composer.py +2 -0
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +3 -8
- snowflake/ml/model/_packager/model_handlers/_utils.py +46 -14
- snowflake/ml/model/_packager/model_handlers/catboost.py +17 -15
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +23 -15
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +15 -57
- snowflake/ml/model/_packager/model_handlers/llm.py +4 -2
- snowflake/ml/model/_packager/model_handlers/model_objective_utils.py +116 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +36 -24
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +119 -6
- snowflake/ml/model/_packager/model_handlers/torchscript.py +2 -2
- snowflake/ml/model/_packager/model_handlers/xgboost.py +48 -48
- snowflake/ml/model/_packager/model_meta/model_meta.py +10 -7
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +0 -8
- snowflake/ml/model/_packager/model_packager.py +2 -0
- snowflake/ml/model/_signatures/pytorch_handler.py +1 -1
- snowflake/ml/model/_signatures/utils.py +9 -0
- snowflake/ml/model/models/llm.py +3 -1
- snowflake/ml/model/type_hints.py +9 -1
- snowflake/ml/modeling/_internal/constants.py +1 -0
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +5 -5
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +9 -6
- snowflake/ml/modeling/_internal/model_specifications.py +2 -0
- snowflake/ml/modeling/_internal/model_trainer.py +1 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +2 -2
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +113 -160
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +60 -21
- snowflake/ml/modeling/cluster/affinity_propagation.py +60 -21
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +60 -21
- snowflake/ml/modeling/cluster/birch.py +60 -21
- snowflake/ml/modeling/cluster/bisecting_k_means.py +60 -21
- snowflake/ml/modeling/cluster/dbscan.py +60 -21
- snowflake/ml/modeling/cluster/feature_agglomeration.py +60 -21
- snowflake/ml/modeling/cluster/k_means.py +60 -21
- snowflake/ml/modeling/cluster/mean_shift.py +60 -21
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +60 -21
- snowflake/ml/modeling/cluster/optics.py +60 -21
- snowflake/ml/modeling/cluster/spectral_biclustering.py +60 -21
- snowflake/ml/modeling/cluster/spectral_clustering.py +60 -21
- snowflake/ml/modeling/cluster/spectral_coclustering.py +60 -21
- snowflake/ml/modeling/compose/column_transformer.py +60 -21
- snowflake/ml/modeling/compose/transformed_target_regressor.py +60 -21
- snowflake/ml/modeling/covariance/elliptic_envelope.py +60 -21
- snowflake/ml/modeling/covariance/empirical_covariance.py +60 -21
- snowflake/ml/modeling/covariance/graphical_lasso.py +60 -21
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +60 -21
- snowflake/ml/modeling/covariance/ledoit_wolf.py +60 -21
- snowflake/ml/modeling/covariance/min_cov_det.py +60 -21
- snowflake/ml/modeling/covariance/oas.py +60 -21
- snowflake/ml/modeling/covariance/shrunk_covariance.py +60 -21
- snowflake/ml/modeling/decomposition/dictionary_learning.py +60 -21
- snowflake/ml/modeling/decomposition/factor_analysis.py +60 -21
- snowflake/ml/modeling/decomposition/fast_ica.py +60 -21
- snowflake/ml/modeling/decomposition/incremental_pca.py +60 -21
- snowflake/ml/modeling/decomposition/kernel_pca.py +60 -21
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +60 -21
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +60 -21
- snowflake/ml/modeling/decomposition/pca.py +60 -21
- snowflake/ml/modeling/decomposition/sparse_pca.py +60 -21
- snowflake/ml/modeling/decomposition/truncated_svd.py +60 -21
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +60 -21
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +60 -21
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +60 -21
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +60 -21
- snowflake/ml/modeling/ensemble/bagging_classifier.py +60 -21
- snowflake/ml/modeling/ensemble/bagging_regressor.py +60 -21
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +60 -21
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +60 -21
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +60 -21
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +60 -21
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +60 -21
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +60 -21
- snowflake/ml/modeling/ensemble/isolation_forest.py +60 -21
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +60 -21
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +60 -21
- snowflake/ml/modeling/ensemble/stacking_regressor.py +60 -21
- snowflake/ml/modeling/ensemble/voting_classifier.py +60 -21
- snowflake/ml/modeling/ensemble/voting_regressor.py +60 -21
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +60 -21
- snowflake/ml/modeling/feature_selection/select_fdr.py +60 -21
- snowflake/ml/modeling/feature_selection/select_fpr.py +60 -21
- snowflake/ml/modeling/feature_selection/select_fwe.py +60 -21
- snowflake/ml/modeling/feature_selection/select_k_best.py +60 -21
- snowflake/ml/modeling/feature_selection/select_percentile.py +60 -21
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +60 -21
- snowflake/ml/modeling/feature_selection/variance_threshold.py +60 -21
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +60 -21
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +60 -21
- snowflake/ml/modeling/impute/iterative_imputer.py +60 -21
- snowflake/ml/modeling/impute/knn_imputer.py +60 -21
- snowflake/ml/modeling/impute/missing_indicator.py +60 -21
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +60 -21
- snowflake/ml/modeling/kernel_approximation/nystroem.py +60 -21
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +60 -21
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +60 -21
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +60 -21
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +60 -21
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +60 -21
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +60 -21
- snowflake/ml/modeling/linear_model/ard_regression.py +60 -21
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +60 -21
- snowflake/ml/modeling/linear_model/elastic_net.py +60 -21
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +60 -21
- snowflake/ml/modeling/linear_model/gamma_regressor.py +60 -21
- snowflake/ml/modeling/linear_model/huber_regressor.py +60 -21
- snowflake/ml/modeling/linear_model/lars.py +60 -21
- snowflake/ml/modeling/linear_model/lars_cv.py +60 -21
- snowflake/ml/modeling/linear_model/lasso.py +60 -21
- snowflake/ml/modeling/linear_model/lasso_cv.py +60 -21
- snowflake/ml/modeling/linear_model/lasso_lars.py +60 -21
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +60 -21
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +60 -21
- snowflake/ml/modeling/linear_model/linear_regression.py +60 -21
- snowflake/ml/modeling/linear_model/logistic_regression.py +60 -21
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +60 -21
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +60 -21
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +60 -21
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +60 -21
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +60 -21
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +60 -21
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +60 -21
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +60 -21
- snowflake/ml/modeling/linear_model/perceptron.py +60 -21
- snowflake/ml/modeling/linear_model/poisson_regressor.py +60 -21
- snowflake/ml/modeling/linear_model/ransac_regressor.py +60 -21
- snowflake/ml/modeling/linear_model/ridge.py +60 -21
- snowflake/ml/modeling/linear_model/ridge_classifier.py +60 -21
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +60 -21
- snowflake/ml/modeling/linear_model/ridge_cv.py +60 -21
- snowflake/ml/modeling/linear_model/sgd_classifier.py +60 -21
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +60 -21
- snowflake/ml/modeling/linear_model/sgd_regressor.py +60 -21
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +60 -21
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +60 -21
- snowflake/ml/modeling/manifold/isomap.py +60 -21
- snowflake/ml/modeling/manifold/mds.py +60 -21
- snowflake/ml/modeling/manifold/spectral_embedding.py +60 -21
- snowflake/ml/modeling/manifold/tsne.py +60 -21
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +60 -21
- snowflake/ml/modeling/mixture/gaussian_mixture.py +60 -21
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +60 -21
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +60 -21
- snowflake/ml/modeling/multiclass/output_code_classifier.py +60 -21
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +60 -21
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +60 -21
- snowflake/ml/modeling/naive_bayes/complement_nb.py +60 -21
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +60 -21
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +60 -21
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +60 -21
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +60 -21
- snowflake/ml/modeling/neighbors/kernel_density.py +60 -21
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +60 -21
- snowflake/ml/modeling/neighbors/nearest_centroid.py +60 -21
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +60 -21
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +60 -21
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +60 -21
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +60 -21
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +60 -21
- snowflake/ml/modeling/neural_network/mlp_classifier.py +60 -21
- snowflake/ml/modeling/neural_network/mlp_regressor.py +60 -21
- snowflake/ml/modeling/parameters/disable_model_tracer.py +5 -0
- snowflake/ml/modeling/pipeline/pipeline.py +1 -12
- snowflake/ml/modeling/preprocessing/polynomial_features.py +60 -21
- snowflake/ml/modeling/semi_supervised/label_propagation.py +60 -21
- snowflake/ml/modeling/semi_supervised/label_spreading.py +60 -21
- snowflake/ml/modeling/svm/linear_svc.py +60 -21
- snowflake/ml/modeling/svm/linear_svr.py +60 -21
- snowflake/ml/modeling/svm/nu_svc.py +60 -21
- snowflake/ml/modeling/svm/nu_svr.py +60 -21
- snowflake/ml/modeling/svm/svc.py +60 -21
- snowflake/ml/modeling/svm/svr.py +60 -21
- snowflake/ml/modeling/tree/decision_tree_classifier.py +60 -21
- snowflake/ml/modeling/tree/decision_tree_regressor.py +60 -21
- snowflake/ml/modeling/tree/extra_tree_classifier.py +60 -21
- snowflake/ml/modeling/tree/extra_tree_regressor.py +60 -21
- snowflake/ml/modeling/xgboost/xgb_classifier.py +63 -23
- snowflake/ml/modeling/xgboost/xgb_regressor.py +63 -23
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +63 -23
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +63 -23
- snowflake/ml/registry/_manager/model_manager.py +4 -0
- snowflake/ml/registry/model_registry.py +1 -1
- snowflake/ml/registry/registry.py +1 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.6.1.dist-info → snowflake_ml_python-1.6.2.dist-info}/METADATA +23 -4
- {snowflake_ml_python-1.6.1.dist-info → snowflake_ml_python-1.6.2.dist-info}/RECORD +211 -209
- {snowflake_ml_python-1.6.1.dist-info → snowflake_ml_python-1.6.2.dist-info}/WHEEL +1 -1
- snowflake/ml/data/torch_dataset.py +0 -33
- {snowflake_ml_python-1.6.1.dist-info → snowflake_ml_python-1.6.2.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.6.1.dist-info → snowflake_ml_python-1.6.2.dist-info}/top_level.txt +0 -0
@@ -4,14 +4,12 @@
|
|
4
4
|
#
|
5
5
|
import inspect
|
6
6
|
import os
|
7
|
-
import
|
8
|
-
from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
|
9
|
-
from typing_extensions import TypeGuard
|
7
|
+
from typing import Iterable, Optional, Union, List, Any, Dict, Set, Tuple
|
10
8
|
from uuid import uuid4
|
11
9
|
|
12
10
|
import cloudpickle as cp
|
13
|
-
import pandas as pd
|
14
11
|
import numpy as np
|
12
|
+
import pandas as pd
|
15
13
|
from numpy import typing as npt
|
16
14
|
|
17
15
|
|
@@ -24,12 +22,11 @@ from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
|
24
22
|
from snowflake.ml._internal import telemetry
|
25
23
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
26
24
|
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
27
|
-
from snowflake.ml._internal.utils import
|
25
|
+
from snowflake.ml._internal.utils import identifier
|
28
26
|
from snowflake.snowpark import DataFrame, Session
|
29
27
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
30
28
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
29
|
from snowflake.ml.modeling._internal.transformer_protocols import (
|
32
|
-
ModelTransformHandlers,
|
33
30
|
BatchInferenceKwargsTypedDict,
|
34
31
|
ScoreKwargsTypedDict
|
35
32
|
)
|
@@ -542,12 +539,23 @@ class LarsCV(BaseTransformer):
|
|
542
539
|
autogenerated=self._autogenerated,
|
543
540
|
subproject=_SUBPROJECT,
|
544
541
|
)
|
545
|
-
|
546
|
-
|
547
|
-
expected_output_cols_list=(
|
548
|
-
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
549
|
-
),
|
542
|
+
expected_output_cols = (
|
543
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
550
544
|
)
|
545
|
+
if isinstance(dataset, DataFrame):
|
546
|
+
expected_output_cols, example_output_pd_df = self._align_expected_output(
|
547
|
+
"fit_predict", dataset, expected_output_cols, output_cols_prefix
|
548
|
+
)
|
549
|
+
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
550
|
+
drop_input_cols=self._drop_input_cols,
|
551
|
+
expected_output_cols_list=expected_output_cols,
|
552
|
+
example_output_pd_df=example_output_pd_df,
|
553
|
+
)
|
554
|
+
else:
|
555
|
+
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
556
|
+
drop_input_cols=self._drop_input_cols,
|
557
|
+
expected_output_cols_list=expected_output_cols,
|
558
|
+
)
|
551
559
|
self._sklearn_object = fitted_estimator
|
552
560
|
self._is_fitted = True
|
553
561
|
return output_result
|
@@ -626,12 +634,41 @@ class LarsCV(BaseTransformer):
|
|
626
634
|
|
627
635
|
return rv
|
628
636
|
|
629
|
-
def
|
630
|
-
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
631
|
-
) -> List[str]:
|
637
|
+
def _align_expected_output(
|
638
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str,
|
639
|
+
) -> Tuple[List[str], pd.DataFrame]:
|
640
|
+
""" Run 1 line of data with the desired method, and return one tuple that consists of the output column names
|
641
|
+
and output dataframe with 1 line.
|
642
|
+
If the method is fit_predict, run 2 lines of data.
|
643
|
+
"""
|
632
644
|
# in case the inferred output column names dimension is different
|
633
645
|
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
634
|
-
|
646
|
+
|
647
|
+
# For fit_predict method, a minimum of 2 is required by MinCovDet, BayesianGaussianMixture
|
648
|
+
# so change the minimum of number of rows to 2
|
649
|
+
num_examples = 2
|
650
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
651
|
+
project=_PROJECT,
|
652
|
+
subproject=_SUBPROJECT,
|
653
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
654
|
+
inspect.currentframe(), LarsCV.__class__.__name__
|
655
|
+
),
|
656
|
+
api_calls=[Session.call],
|
657
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
658
|
+
)
|
659
|
+
if output_cols_prefix == "fit_predict_":
|
660
|
+
if hasattr(self._sklearn_object, "n_clusters"):
|
661
|
+
# cluster classes such as BisectingKMeansTest requires # of examples >= n_clusters
|
662
|
+
num_examples = self._sklearn_object.n_clusters
|
663
|
+
elif hasattr(self._sklearn_object, "min_samples"):
|
664
|
+
# OPTICS default min_samples 5, which requires at least 5 lines of data
|
665
|
+
num_examples = self._sklearn_object.min_samples
|
666
|
+
elif hasattr(self._sklearn_object, "n_neighbors") and hasattr(self._sklearn_object, "n_samples"):
|
667
|
+
# LocalOutlierFactor expects n_neighbors <= n_samples
|
668
|
+
num_examples = self._sklearn_object.n_neighbors
|
669
|
+
sample_pd_df = dataset.select(self.input_cols).limit(num_examples).to_pandas(statement_params=statement_params)
|
670
|
+
else:
|
671
|
+
sample_pd_df = dataset.select(self.input_cols).limit(1).to_pandas(statement_params=statement_params)
|
635
672
|
|
636
673
|
# Rename the pandas df column names to snowflake identifiers and reorder columns to match the order
|
637
674
|
# seen during the fit.
|
@@ -643,12 +680,14 @@ class LarsCV(BaseTransformer):
|
|
643
680
|
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
644
681
|
if self.sample_weight_col:
|
645
682
|
output_df_columns_set -= set(self.sample_weight_col)
|
683
|
+
|
646
684
|
# if the dimension of inferred output column names is correct; use it
|
647
685
|
if len(expected_output_cols_list) == len(output_df_columns_set):
|
648
|
-
return expected_output_cols_list
|
686
|
+
return expected_output_cols_list, output_df_pd
|
649
687
|
# otherwise, use the sklearn estimator's output
|
650
688
|
else:
|
651
|
-
|
689
|
+
expected_output_cols_list = sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
690
|
+
return expected_output_cols_list, output_df_pd[expected_output_cols_list]
|
652
691
|
|
653
692
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
654
693
|
@telemetry.send_api_usage_telemetry(
|
@@ -694,7 +733,7 @@ class LarsCV(BaseTransformer):
|
|
694
733
|
drop_input_cols=self._drop_input_cols,
|
695
734
|
expected_output_cols_type="float",
|
696
735
|
)
|
697
|
-
expected_output_cols = self.
|
736
|
+
expected_output_cols, _ = self._align_expected_output(
|
698
737
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
699
738
|
)
|
700
739
|
|
@@ -760,7 +799,7 @@ class LarsCV(BaseTransformer):
|
|
760
799
|
drop_input_cols=self._drop_input_cols,
|
761
800
|
expected_output_cols_type="float",
|
762
801
|
)
|
763
|
-
expected_output_cols = self.
|
802
|
+
expected_output_cols, _ = self._align_expected_output(
|
764
803
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
765
804
|
)
|
766
805
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -823,7 +862,7 @@ class LarsCV(BaseTransformer):
|
|
823
862
|
drop_input_cols=self._drop_input_cols,
|
824
863
|
expected_output_cols_type="float",
|
825
864
|
)
|
826
|
-
expected_output_cols = self.
|
865
|
+
expected_output_cols, _ = self._align_expected_output(
|
827
866
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
828
867
|
)
|
829
868
|
|
@@ -888,7 +927,7 @@ class LarsCV(BaseTransformer):
|
|
888
927
|
drop_input_cols = self._drop_input_cols,
|
889
928
|
expected_output_cols_type="float",
|
890
929
|
)
|
891
|
-
expected_output_cols = self.
|
930
|
+
expected_output_cols, _ = self._align_expected_output(
|
892
931
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
893
932
|
)
|
894
933
|
|
@@ -4,14 +4,12 @@
|
|
4
4
|
#
|
5
5
|
import inspect
|
6
6
|
import os
|
7
|
-
import
|
8
|
-
from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
|
9
|
-
from typing_extensions import TypeGuard
|
7
|
+
from typing import Iterable, Optional, Union, List, Any, Dict, Set, Tuple
|
10
8
|
from uuid import uuid4
|
11
9
|
|
12
10
|
import cloudpickle as cp
|
13
|
-
import pandas as pd
|
14
11
|
import numpy as np
|
12
|
+
import pandas as pd
|
15
13
|
from numpy import typing as npt
|
16
14
|
|
17
15
|
|
@@ -24,12 +22,11 @@ from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
|
24
22
|
from snowflake.ml._internal import telemetry
|
25
23
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
26
24
|
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
27
|
-
from snowflake.ml._internal.utils import
|
25
|
+
from snowflake.ml._internal.utils import identifier
|
28
26
|
from snowflake.snowpark import DataFrame, Session
|
29
27
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
30
28
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
29
|
from snowflake.ml.modeling._internal.transformer_protocols import (
|
32
|
-
ModelTransformHandlers,
|
33
30
|
BatchInferenceKwargsTypedDict,
|
34
31
|
ScoreKwargsTypedDict
|
35
32
|
)
|
@@ -535,12 +532,23 @@ class Lasso(BaseTransformer):
|
|
535
532
|
autogenerated=self._autogenerated,
|
536
533
|
subproject=_SUBPROJECT,
|
537
534
|
)
|
538
|
-
|
539
|
-
|
540
|
-
expected_output_cols_list=(
|
541
|
-
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
542
|
-
),
|
535
|
+
expected_output_cols = (
|
536
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
543
537
|
)
|
538
|
+
if isinstance(dataset, DataFrame):
|
539
|
+
expected_output_cols, example_output_pd_df = self._align_expected_output(
|
540
|
+
"fit_predict", dataset, expected_output_cols, output_cols_prefix
|
541
|
+
)
|
542
|
+
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
543
|
+
drop_input_cols=self._drop_input_cols,
|
544
|
+
expected_output_cols_list=expected_output_cols,
|
545
|
+
example_output_pd_df=example_output_pd_df,
|
546
|
+
)
|
547
|
+
else:
|
548
|
+
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
549
|
+
drop_input_cols=self._drop_input_cols,
|
550
|
+
expected_output_cols_list=expected_output_cols,
|
551
|
+
)
|
544
552
|
self._sklearn_object = fitted_estimator
|
545
553
|
self._is_fitted = True
|
546
554
|
return output_result
|
@@ -619,12 +627,41 @@ class Lasso(BaseTransformer):
|
|
619
627
|
|
620
628
|
return rv
|
621
629
|
|
622
|
-
def
|
623
|
-
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
624
|
-
) -> List[str]:
|
630
|
+
def _align_expected_output(
|
631
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str,
|
632
|
+
) -> Tuple[List[str], pd.DataFrame]:
|
633
|
+
""" Run 1 line of data with the desired method, and return one tuple that consists of the output column names
|
634
|
+
and output dataframe with 1 line.
|
635
|
+
If the method is fit_predict, run 2 lines of data.
|
636
|
+
"""
|
625
637
|
# in case the inferred output column names dimension is different
|
626
638
|
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
627
|
-
|
639
|
+
|
640
|
+
# For fit_predict method, a minimum of 2 is required by MinCovDet, BayesianGaussianMixture
|
641
|
+
# so change the minimum of number of rows to 2
|
642
|
+
num_examples = 2
|
643
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
644
|
+
project=_PROJECT,
|
645
|
+
subproject=_SUBPROJECT,
|
646
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
647
|
+
inspect.currentframe(), Lasso.__class__.__name__
|
648
|
+
),
|
649
|
+
api_calls=[Session.call],
|
650
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
651
|
+
)
|
652
|
+
if output_cols_prefix == "fit_predict_":
|
653
|
+
if hasattr(self._sklearn_object, "n_clusters"):
|
654
|
+
# cluster classes such as BisectingKMeansTest requires # of examples >= n_clusters
|
655
|
+
num_examples = self._sklearn_object.n_clusters
|
656
|
+
elif hasattr(self._sklearn_object, "min_samples"):
|
657
|
+
# OPTICS default min_samples 5, which requires at least 5 lines of data
|
658
|
+
num_examples = self._sklearn_object.min_samples
|
659
|
+
elif hasattr(self._sklearn_object, "n_neighbors") and hasattr(self._sklearn_object, "n_samples"):
|
660
|
+
# LocalOutlierFactor expects n_neighbors <= n_samples
|
661
|
+
num_examples = self._sklearn_object.n_neighbors
|
662
|
+
sample_pd_df = dataset.select(self.input_cols).limit(num_examples).to_pandas(statement_params=statement_params)
|
663
|
+
else:
|
664
|
+
sample_pd_df = dataset.select(self.input_cols).limit(1).to_pandas(statement_params=statement_params)
|
628
665
|
|
629
666
|
# Rename the pandas df column names to snowflake identifiers and reorder columns to match the order
|
630
667
|
# seen during the fit.
|
@@ -636,12 +673,14 @@ class Lasso(BaseTransformer):
|
|
636
673
|
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
637
674
|
if self.sample_weight_col:
|
638
675
|
output_df_columns_set -= set(self.sample_weight_col)
|
676
|
+
|
639
677
|
# if the dimension of inferred output column names is correct; use it
|
640
678
|
if len(expected_output_cols_list) == len(output_df_columns_set):
|
641
|
-
return expected_output_cols_list
|
679
|
+
return expected_output_cols_list, output_df_pd
|
642
680
|
# otherwise, use the sklearn estimator's output
|
643
681
|
else:
|
644
|
-
|
682
|
+
expected_output_cols_list = sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
683
|
+
return expected_output_cols_list, output_df_pd[expected_output_cols_list]
|
645
684
|
|
646
685
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
647
686
|
@telemetry.send_api_usage_telemetry(
|
@@ -687,7 +726,7 @@ class Lasso(BaseTransformer):
|
|
687
726
|
drop_input_cols=self._drop_input_cols,
|
688
727
|
expected_output_cols_type="float",
|
689
728
|
)
|
690
|
-
expected_output_cols = self.
|
729
|
+
expected_output_cols, _ = self._align_expected_output(
|
691
730
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
692
731
|
)
|
693
732
|
|
@@ -753,7 +792,7 @@ class Lasso(BaseTransformer):
|
|
753
792
|
drop_input_cols=self._drop_input_cols,
|
754
793
|
expected_output_cols_type="float",
|
755
794
|
)
|
756
|
-
expected_output_cols = self.
|
795
|
+
expected_output_cols, _ = self._align_expected_output(
|
757
796
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
758
797
|
)
|
759
798
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -816,7 +855,7 @@ class Lasso(BaseTransformer):
|
|
816
855
|
drop_input_cols=self._drop_input_cols,
|
817
856
|
expected_output_cols_type="float",
|
818
857
|
)
|
819
|
-
expected_output_cols = self.
|
858
|
+
expected_output_cols, _ = self._align_expected_output(
|
820
859
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
821
860
|
)
|
822
861
|
|
@@ -881,7 +920,7 @@ class Lasso(BaseTransformer):
|
|
881
920
|
drop_input_cols = self._drop_input_cols,
|
882
921
|
expected_output_cols_type="float",
|
883
922
|
)
|
884
|
-
expected_output_cols = self.
|
923
|
+
expected_output_cols, _ = self._align_expected_output(
|
885
924
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
886
925
|
)
|
887
926
|
|
@@ -4,14 +4,12 @@
|
|
4
4
|
#
|
5
5
|
import inspect
|
6
6
|
import os
|
7
|
-
import
|
8
|
-
from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
|
9
|
-
from typing_extensions import TypeGuard
|
7
|
+
from typing import Iterable, Optional, Union, List, Any, Dict, Set, Tuple
|
10
8
|
from uuid import uuid4
|
11
9
|
|
12
10
|
import cloudpickle as cp
|
13
|
-
import pandas as pd
|
14
11
|
import numpy as np
|
12
|
+
import pandas as pd
|
15
13
|
from numpy import typing as npt
|
16
14
|
|
17
15
|
|
@@ -24,12 +22,11 @@ from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
|
24
22
|
from snowflake.ml._internal import telemetry
|
25
23
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
26
24
|
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
27
|
-
from snowflake.ml._internal.utils import
|
25
|
+
from snowflake.ml._internal.utils import identifier
|
28
26
|
from snowflake.snowpark import DataFrame, Session
|
29
27
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
30
28
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
29
|
from snowflake.ml.modeling._internal.transformer_protocols import (
|
32
|
-
ModelTransformHandlers,
|
33
30
|
BatchInferenceKwargsTypedDict,
|
34
31
|
ScoreKwargsTypedDict
|
35
32
|
)
|
@@ -563,12 +560,23 @@ class LassoCV(BaseTransformer):
|
|
563
560
|
autogenerated=self._autogenerated,
|
564
561
|
subproject=_SUBPROJECT,
|
565
562
|
)
|
566
|
-
|
567
|
-
|
568
|
-
expected_output_cols_list=(
|
569
|
-
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
570
|
-
),
|
563
|
+
expected_output_cols = (
|
564
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
571
565
|
)
|
566
|
+
if isinstance(dataset, DataFrame):
|
567
|
+
expected_output_cols, example_output_pd_df = self._align_expected_output(
|
568
|
+
"fit_predict", dataset, expected_output_cols, output_cols_prefix
|
569
|
+
)
|
570
|
+
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
571
|
+
drop_input_cols=self._drop_input_cols,
|
572
|
+
expected_output_cols_list=expected_output_cols,
|
573
|
+
example_output_pd_df=example_output_pd_df,
|
574
|
+
)
|
575
|
+
else:
|
576
|
+
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
577
|
+
drop_input_cols=self._drop_input_cols,
|
578
|
+
expected_output_cols_list=expected_output_cols,
|
579
|
+
)
|
572
580
|
self._sklearn_object = fitted_estimator
|
573
581
|
self._is_fitted = True
|
574
582
|
return output_result
|
@@ -647,12 +655,41 @@ class LassoCV(BaseTransformer):
|
|
647
655
|
|
648
656
|
return rv
|
649
657
|
|
650
|
-
def
|
651
|
-
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
652
|
-
) -> List[str]:
|
658
|
+
def _align_expected_output(
|
659
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str,
|
660
|
+
) -> Tuple[List[str], pd.DataFrame]:
|
661
|
+
""" Run 1 line of data with the desired method, and return one tuple that consists of the output column names
|
662
|
+
and output dataframe with 1 line.
|
663
|
+
If the method is fit_predict, run 2 lines of data.
|
664
|
+
"""
|
653
665
|
# in case the inferred output column names dimension is different
|
654
666
|
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
655
|
-
|
667
|
+
|
668
|
+
# For fit_predict method, a minimum of 2 is required by MinCovDet, BayesianGaussianMixture
|
669
|
+
# so change the minimum of number of rows to 2
|
670
|
+
num_examples = 2
|
671
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
672
|
+
project=_PROJECT,
|
673
|
+
subproject=_SUBPROJECT,
|
674
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
675
|
+
inspect.currentframe(), LassoCV.__class__.__name__
|
676
|
+
),
|
677
|
+
api_calls=[Session.call],
|
678
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
679
|
+
)
|
680
|
+
if output_cols_prefix == "fit_predict_":
|
681
|
+
if hasattr(self._sklearn_object, "n_clusters"):
|
682
|
+
# cluster classes such as BisectingKMeansTest requires # of examples >= n_clusters
|
683
|
+
num_examples = self._sklearn_object.n_clusters
|
684
|
+
elif hasattr(self._sklearn_object, "min_samples"):
|
685
|
+
# OPTICS default min_samples 5, which requires at least 5 lines of data
|
686
|
+
num_examples = self._sklearn_object.min_samples
|
687
|
+
elif hasattr(self._sklearn_object, "n_neighbors") and hasattr(self._sklearn_object, "n_samples"):
|
688
|
+
# LocalOutlierFactor expects n_neighbors <= n_samples
|
689
|
+
num_examples = self._sklearn_object.n_neighbors
|
690
|
+
sample_pd_df = dataset.select(self.input_cols).limit(num_examples).to_pandas(statement_params=statement_params)
|
691
|
+
else:
|
692
|
+
sample_pd_df = dataset.select(self.input_cols).limit(1).to_pandas(statement_params=statement_params)
|
656
693
|
|
657
694
|
# Rename the pandas df column names to snowflake identifiers and reorder columns to match the order
|
658
695
|
# seen during the fit.
|
@@ -664,12 +701,14 @@ class LassoCV(BaseTransformer):
|
|
664
701
|
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
665
702
|
if self.sample_weight_col:
|
666
703
|
output_df_columns_set -= set(self.sample_weight_col)
|
704
|
+
|
667
705
|
# if the dimension of inferred output column names is correct; use it
|
668
706
|
if len(expected_output_cols_list) == len(output_df_columns_set):
|
669
|
-
return expected_output_cols_list
|
707
|
+
return expected_output_cols_list, output_df_pd
|
670
708
|
# otherwise, use the sklearn estimator's output
|
671
709
|
else:
|
672
|
-
|
710
|
+
expected_output_cols_list = sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
711
|
+
return expected_output_cols_list, output_df_pd[expected_output_cols_list]
|
673
712
|
|
674
713
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
675
714
|
@telemetry.send_api_usage_telemetry(
|
@@ -715,7 +754,7 @@ class LassoCV(BaseTransformer):
|
|
715
754
|
drop_input_cols=self._drop_input_cols,
|
716
755
|
expected_output_cols_type="float",
|
717
756
|
)
|
718
|
-
expected_output_cols = self.
|
757
|
+
expected_output_cols, _ = self._align_expected_output(
|
719
758
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
720
759
|
)
|
721
760
|
|
@@ -781,7 +820,7 @@ class LassoCV(BaseTransformer):
|
|
781
820
|
drop_input_cols=self._drop_input_cols,
|
782
821
|
expected_output_cols_type="float",
|
783
822
|
)
|
784
|
-
expected_output_cols = self.
|
823
|
+
expected_output_cols, _ = self._align_expected_output(
|
785
824
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
786
825
|
)
|
787
826
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -844,7 +883,7 @@ class LassoCV(BaseTransformer):
|
|
844
883
|
drop_input_cols=self._drop_input_cols,
|
845
884
|
expected_output_cols_type="float",
|
846
885
|
)
|
847
|
-
expected_output_cols = self.
|
886
|
+
expected_output_cols, _ = self._align_expected_output(
|
848
887
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
849
888
|
)
|
850
889
|
|
@@ -909,7 +948,7 @@ class LassoCV(BaseTransformer):
|
|
909
948
|
drop_input_cols = self._drop_input_cols,
|
910
949
|
expected_output_cols_type="float",
|
911
950
|
)
|
912
|
-
expected_output_cols = self.
|
951
|
+
expected_output_cols, _ = self._align_expected_output(
|
913
952
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
914
953
|
)
|
915
954
|
|
@@ -4,14 +4,12 @@
|
|
4
4
|
#
|
5
5
|
import inspect
|
6
6
|
import os
|
7
|
-
import
|
8
|
-
from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
|
9
|
-
from typing_extensions import TypeGuard
|
7
|
+
from typing import Iterable, Optional, Union, List, Any, Dict, Set, Tuple
|
10
8
|
from uuid import uuid4
|
11
9
|
|
12
10
|
import cloudpickle as cp
|
13
|
-
import pandas as pd
|
14
11
|
import numpy as np
|
12
|
+
import pandas as pd
|
15
13
|
from numpy import typing as npt
|
16
14
|
|
17
15
|
|
@@ -24,12 +22,11 @@ from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
|
24
22
|
from snowflake.ml._internal import telemetry
|
25
23
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
26
24
|
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
27
|
-
from snowflake.ml._internal.utils import
|
25
|
+
from snowflake.ml._internal.utils import identifier
|
28
26
|
from snowflake.snowpark import DataFrame, Session
|
29
27
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
30
28
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
29
|
from snowflake.ml.modeling._internal.transformer_protocols import (
|
32
|
-
ModelTransformHandlers,
|
33
30
|
BatchInferenceKwargsTypedDict,
|
34
31
|
ScoreKwargsTypedDict
|
35
32
|
)
|
@@ -555,12 +552,23 @@ class LassoLars(BaseTransformer):
|
|
555
552
|
autogenerated=self._autogenerated,
|
556
553
|
subproject=_SUBPROJECT,
|
557
554
|
)
|
558
|
-
|
559
|
-
|
560
|
-
expected_output_cols_list=(
|
561
|
-
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
562
|
-
),
|
555
|
+
expected_output_cols = (
|
556
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
563
557
|
)
|
558
|
+
if isinstance(dataset, DataFrame):
|
559
|
+
expected_output_cols, example_output_pd_df = self._align_expected_output(
|
560
|
+
"fit_predict", dataset, expected_output_cols, output_cols_prefix
|
561
|
+
)
|
562
|
+
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
563
|
+
drop_input_cols=self._drop_input_cols,
|
564
|
+
expected_output_cols_list=expected_output_cols,
|
565
|
+
example_output_pd_df=example_output_pd_df,
|
566
|
+
)
|
567
|
+
else:
|
568
|
+
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
569
|
+
drop_input_cols=self._drop_input_cols,
|
570
|
+
expected_output_cols_list=expected_output_cols,
|
571
|
+
)
|
564
572
|
self._sklearn_object = fitted_estimator
|
565
573
|
self._is_fitted = True
|
566
574
|
return output_result
|
@@ -639,12 +647,41 @@ class LassoLars(BaseTransformer):
|
|
639
647
|
|
640
648
|
return rv
|
641
649
|
|
642
|
-
def
|
643
|
-
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
644
|
-
) -> List[str]:
|
650
|
+
def _align_expected_output(
|
651
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str,
|
652
|
+
) -> Tuple[List[str], pd.DataFrame]:
|
653
|
+
""" Run 1 line of data with the desired method, and return one tuple that consists of the output column names
|
654
|
+
and output dataframe with 1 line.
|
655
|
+
If the method is fit_predict, run 2 lines of data.
|
656
|
+
"""
|
645
657
|
# in case the inferred output column names dimension is different
|
646
658
|
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
647
|
-
|
659
|
+
|
660
|
+
# For fit_predict method, a minimum of 2 is required by MinCovDet, BayesianGaussianMixture
|
661
|
+
# so change the minimum of number of rows to 2
|
662
|
+
num_examples = 2
|
663
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
664
|
+
project=_PROJECT,
|
665
|
+
subproject=_SUBPROJECT,
|
666
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
667
|
+
inspect.currentframe(), LassoLars.__class__.__name__
|
668
|
+
),
|
669
|
+
api_calls=[Session.call],
|
670
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
671
|
+
)
|
672
|
+
if output_cols_prefix == "fit_predict_":
|
673
|
+
if hasattr(self._sklearn_object, "n_clusters"):
|
674
|
+
# cluster classes such as BisectingKMeansTest requires # of examples >= n_clusters
|
675
|
+
num_examples = self._sklearn_object.n_clusters
|
676
|
+
elif hasattr(self._sklearn_object, "min_samples"):
|
677
|
+
# OPTICS default min_samples 5, which requires at least 5 lines of data
|
678
|
+
num_examples = self._sklearn_object.min_samples
|
679
|
+
elif hasattr(self._sklearn_object, "n_neighbors") and hasattr(self._sklearn_object, "n_samples"):
|
680
|
+
# LocalOutlierFactor expects n_neighbors <= n_samples
|
681
|
+
num_examples = self._sklearn_object.n_neighbors
|
682
|
+
sample_pd_df = dataset.select(self.input_cols).limit(num_examples).to_pandas(statement_params=statement_params)
|
683
|
+
else:
|
684
|
+
sample_pd_df = dataset.select(self.input_cols).limit(1).to_pandas(statement_params=statement_params)
|
648
685
|
|
649
686
|
# Rename the pandas df column names to snowflake identifiers and reorder columns to match the order
|
650
687
|
# seen during the fit.
|
@@ -656,12 +693,14 @@ class LassoLars(BaseTransformer):
|
|
656
693
|
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
657
694
|
if self.sample_weight_col:
|
658
695
|
output_df_columns_set -= set(self.sample_weight_col)
|
696
|
+
|
659
697
|
# if the dimension of inferred output column names is correct; use it
|
660
698
|
if len(expected_output_cols_list) == len(output_df_columns_set):
|
661
|
-
return expected_output_cols_list
|
699
|
+
return expected_output_cols_list, output_df_pd
|
662
700
|
# otherwise, use the sklearn estimator's output
|
663
701
|
else:
|
664
|
-
|
702
|
+
expected_output_cols_list = sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
703
|
+
return expected_output_cols_list, output_df_pd[expected_output_cols_list]
|
665
704
|
|
666
705
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
667
706
|
@telemetry.send_api_usage_telemetry(
|
@@ -707,7 +746,7 @@ class LassoLars(BaseTransformer):
|
|
707
746
|
drop_input_cols=self._drop_input_cols,
|
708
747
|
expected_output_cols_type="float",
|
709
748
|
)
|
710
|
-
expected_output_cols = self.
|
749
|
+
expected_output_cols, _ = self._align_expected_output(
|
711
750
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
712
751
|
)
|
713
752
|
|
@@ -773,7 +812,7 @@ class LassoLars(BaseTransformer):
|
|
773
812
|
drop_input_cols=self._drop_input_cols,
|
774
813
|
expected_output_cols_type="float",
|
775
814
|
)
|
776
|
-
expected_output_cols = self.
|
815
|
+
expected_output_cols, _ = self._align_expected_output(
|
777
816
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
778
817
|
)
|
779
818
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -836,7 +875,7 @@ class LassoLars(BaseTransformer):
|
|
836
875
|
drop_input_cols=self._drop_input_cols,
|
837
876
|
expected_output_cols_type="float",
|
838
877
|
)
|
839
|
-
expected_output_cols = self.
|
878
|
+
expected_output_cols, _ = self._align_expected_output(
|
840
879
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
841
880
|
)
|
842
881
|
|
@@ -901,7 +940,7 @@ class LassoLars(BaseTransformer):
|
|
901
940
|
drop_input_cols = self._drop_input_cols,
|
902
941
|
expected_output_cols_type="float",
|
903
942
|
)
|
904
|
-
expected_output_cols = self.
|
943
|
+
expected_output_cols, _ = self._align_expected_output(
|
905
944
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
906
945
|
)
|
907
946
|
|