snowflake-ml-python 1.6.1__py3-none-any.whl → 1.6.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/telemetry.py +142 -20
- snowflake/ml/_internal/utils/identifier.py +48 -11
- snowflake/ml/_internal/utils/snowflake_env.py +23 -13
- snowflake/ml/_internal/utils/sql_identifier.py +1 -1
- snowflake/ml/_internal/utils/table_manager.py +19 -1
- snowflake/ml/_internal/utils/uri.py +2 -2
- snowflake/ml/data/data_connector.py +33 -7
- snowflake/ml/data/torch_utils.py +68 -0
- snowflake/ml/dataset/dataset.py +1 -3
- snowflake/ml/feature_store/feature_store.py +41 -17
- snowflake/ml/feature_store/feature_view.py +2 -2
- snowflake/ml/fileset/embedded_stage_fs.py +1 -1
- snowflake/ml/fileset/fileset.py +1 -1
- snowflake/ml/fileset/sfcfs.py +9 -3
- snowflake/ml/model/_client/model/model_version_impl.py +22 -7
- snowflake/ml/model/_client/ops/model_ops.py +39 -3
- snowflake/ml/model/_client/ops/service_ops.py +198 -7
- snowflake/ml/model/_client/service/model_deployment_spec.py +4 -5
- snowflake/ml/model/_client/service/model_deployment_spec_schema.py +1 -2
- snowflake/ml/model/_client/sql/service.py +85 -18
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -1
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +3 -3
- snowflake/ml/model/_model_composer/model_composer.py +2 -0
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +3 -8
- snowflake/ml/model/_packager/model_handlers/_utils.py +46 -14
- snowflake/ml/model/_packager/model_handlers/catboost.py +17 -15
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +23 -15
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +15 -57
- snowflake/ml/model/_packager/model_handlers/llm.py +4 -2
- snowflake/ml/model/_packager/model_handlers/model_objective_utils.py +116 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +36 -24
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +119 -6
- snowflake/ml/model/_packager/model_handlers/torchscript.py +2 -2
- snowflake/ml/model/_packager/model_handlers/xgboost.py +48 -48
- snowflake/ml/model/_packager/model_meta/model_meta.py +10 -7
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +0 -8
- snowflake/ml/model/_packager/model_packager.py +2 -0
- snowflake/ml/model/_signatures/pytorch_handler.py +1 -1
- snowflake/ml/model/_signatures/utils.py +9 -0
- snowflake/ml/model/models/llm.py +3 -1
- snowflake/ml/model/type_hints.py +9 -1
- snowflake/ml/modeling/_internal/constants.py +1 -0
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +5 -5
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +9 -6
- snowflake/ml/modeling/_internal/model_specifications.py +2 -0
- snowflake/ml/modeling/_internal/model_trainer.py +1 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +2 -2
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +113 -160
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +60 -21
- snowflake/ml/modeling/cluster/affinity_propagation.py +60 -21
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +60 -21
- snowflake/ml/modeling/cluster/birch.py +60 -21
- snowflake/ml/modeling/cluster/bisecting_k_means.py +60 -21
- snowflake/ml/modeling/cluster/dbscan.py +60 -21
- snowflake/ml/modeling/cluster/feature_agglomeration.py +60 -21
- snowflake/ml/modeling/cluster/k_means.py +60 -21
- snowflake/ml/modeling/cluster/mean_shift.py +60 -21
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +60 -21
- snowflake/ml/modeling/cluster/optics.py +60 -21
- snowflake/ml/modeling/cluster/spectral_biclustering.py +60 -21
- snowflake/ml/modeling/cluster/spectral_clustering.py +60 -21
- snowflake/ml/modeling/cluster/spectral_coclustering.py +60 -21
- snowflake/ml/modeling/compose/column_transformer.py +60 -21
- snowflake/ml/modeling/compose/transformed_target_regressor.py +60 -21
- snowflake/ml/modeling/covariance/elliptic_envelope.py +60 -21
- snowflake/ml/modeling/covariance/empirical_covariance.py +60 -21
- snowflake/ml/modeling/covariance/graphical_lasso.py +60 -21
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +60 -21
- snowflake/ml/modeling/covariance/ledoit_wolf.py +60 -21
- snowflake/ml/modeling/covariance/min_cov_det.py +60 -21
- snowflake/ml/modeling/covariance/oas.py +60 -21
- snowflake/ml/modeling/covariance/shrunk_covariance.py +60 -21
- snowflake/ml/modeling/decomposition/dictionary_learning.py +60 -21
- snowflake/ml/modeling/decomposition/factor_analysis.py +60 -21
- snowflake/ml/modeling/decomposition/fast_ica.py +60 -21
- snowflake/ml/modeling/decomposition/incremental_pca.py +60 -21
- snowflake/ml/modeling/decomposition/kernel_pca.py +60 -21
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +60 -21
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +60 -21
- snowflake/ml/modeling/decomposition/pca.py +60 -21
- snowflake/ml/modeling/decomposition/sparse_pca.py +60 -21
- snowflake/ml/modeling/decomposition/truncated_svd.py +60 -21
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +60 -21
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +60 -21
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +60 -21
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +60 -21
- snowflake/ml/modeling/ensemble/bagging_classifier.py +60 -21
- snowflake/ml/modeling/ensemble/bagging_regressor.py +60 -21
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +60 -21
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +60 -21
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +60 -21
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +60 -21
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +60 -21
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +60 -21
- snowflake/ml/modeling/ensemble/isolation_forest.py +60 -21
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +60 -21
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +60 -21
- snowflake/ml/modeling/ensemble/stacking_regressor.py +60 -21
- snowflake/ml/modeling/ensemble/voting_classifier.py +60 -21
- snowflake/ml/modeling/ensemble/voting_regressor.py +60 -21
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +60 -21
- snowflake/ml/modeling/feature_selection/select_fdr.py +60 -21
- snowflake/ml/modeling/feature_selection/select_fpr.py +60 -21
- snowflake/ml/modeling/feature_selection/select_fwe.py +60 -21
- snowflake/ml/modeling/feature_selection/select_k_best.py +60 -21
- snowflake/ml/modeling/feature_selection/select_percentile.py +60 -21
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +60 -21
- snowflake/ml/modeling/feature_selection/variance_threshold.py +60 -21
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +60 -21
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +60 -21
- snowflake/ml/modeling/impute/iterative_imputer.py +60 -21
- snowflake/ml/modeling/impute/knn_imputer.py +60 -21
- snowflake/ml/modeling/impute/missing_indicator.py +60 -21
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +60 -21
- snowflake/ml/modeling/kernel_approximation/nystroem.py +60 -21
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +60 -21
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +60 -21
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +60 -21
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +60 -21
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +60 -21
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +60 -21
- snowflake/ml/modeling/linear_model/ard_regression.py +60 -21
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +60 -21
- snowflake/ml/modeling/linear_model/elastic_net.py +60 -21
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +60 -21
- snowflake/ml/modeling/linear_model/gamma_regressor.py +60 -21
- snowflake/ml/modeling/linear_model/huber_regressor.py +60 -21
- snowflake/ml/modeling/linear_model/lars.py +60 -21
- snowflake/ml/modeling/linear_model/lars_cv.py +60 -21
- snowflake/ml/modeling/linear_model/lasso.py +60 -21
- snowflake/ml/modeling/linear_model/lasso_cv.py +60 -21
- snowflake/ml/modeling/linear_model/lasso_lars.py +60 -21
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +60 -21
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +60 -21
- snowflake/ml/modeling/linear_model/linear_regression.py +60 -21
- snowflake/ml/modeling/linear_model/logistic_regression.py +60 -21
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +60 -21
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +60 -21
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +60 -21
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +60 -21
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +60 -21
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +60 -21
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +60 -21
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +60 -21
- snowflake/ml/modeling/linear_model/perceptron.py +60 -21
- snowflake/ml/modeling/linear_model/poisson_regressor.py +60 -21
- snowflake/ml/modeling/linear_model/ransac_regressor.py +60 -21
- snowflake/ml/modeling/linear_model/ridge.py +60 -21
- snowflake/ml/modeling/linear_model/ridge_classifier.py +60 -21
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +60 -21
- snowflake/ml/modeling/linear_model/ridge_cv.py +60 -21
- snowflake/ml/modeling/linear_model/sgd_classifier.py +60 -21
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +60 -21
- snowflake/ml/modeling/linear_model/sgd_regressor.py +60 -21
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +60 -21
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +60 -21
- snowflake/ml/modeling/manifold/isomap.py +60 -21
- snowflake/ml/modeling/manifold/mds.py +60 -21
- snowflake/ml/modeling/manifold/spectral_embedding.py +60 -21
- snowflake/ml/modeling/manifold/tsne.py +60 -21
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +60 -21
- snowflake/ml/modeling/mixture/gaussian_mixture.py +60 -21
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +60 -21
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +60 -21
- snowflake/ml/modeling/multiclass/output_code_classifier.py +60 -21
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +60 -21
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +60 -21
- snowflake/ml/modeling/naive_bayes/complement_nb.py +60 -21
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +60 -21
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +60 -21
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +60 -21
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +60 -21
- snowflake/ml/modeling/neighbors/kernel_density.py +60 -21
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +60 -21
- snowflake/ml/modeling/neighbors/nearest_centroid.py +60 -21
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +60 -21
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +60 -21
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +60 -21
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +60 -21
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +60 -21
- snowflake/ml/modeling/neural_network/mlp_classifier.py +60 -21
- snowflake/ml/modeling/neural_network/mlp_regressor.py +60 -21
- snowflake/ml/modeling/parameters/disable_model_tracer.py +5 -0
- snowflake/ml/modeling/pipeline/pipeline.py +1 -12
- snowflake/ml/modeling/preprocessing/polynomial_features.py +60 -21
- snowflake/ml/modeling/semi_supervised/label_propagation.py +60 -21
- snowflake/ml/modeling/semi_supervised/label_spreading.py +60 -21
- snowflake/ml/modeling/svm/linear_svc.py +60 -21
- snowflake/ml/modeling/svm/linear_svr.py +60 -21
- snowflake/ml/modeling/svm/nu_svc.py +60 -21
- snowflake/ml/modeling/svm/nu_svr.py +60 -21
- snowflake/ml/modeling/svm/svc.py +60 -21
- snowflake/ml/modeling/svm/svr.py +60 -21
- snowflake/ml/modeling/tree/decision_tree_classifier.py +60 -21
- snowflake/ml/modeling/tree/decision_tree_regressor.py +60 -21
- snowflake/ml/modeling/tree/extra_tree_classifier.py +60 -21
- snowflake/ml/modeling/tree/extra_tree_regressor.py +60 -21
- snowflake/ml/modeling/xgboost/xgb_classifier.py +63 -23
- snowflake/ml/modeling/xgboost/xgb_regressor.py +63 -23
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +63 -23
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +63 -23
- snowflake/ml/registry/_manager/model_manager.py +4 -0
- snowflake/ml/registry/model_registry.py +1 -1
- snowflake/ml/registry/registry.py +1 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.6.1.dist-info → snowflake_ml_python-1.6.2.dist-info}/METADATA +23 -4
- {snowflake_ml_python-1.6.1.dist-info → snowflake_ml_python-1.6.2.dist-info}/RECORD +211 -209
- {snowflake_ml_python-1.6.1.dist-info → snowflake_ml_python-1.6.2.dist-info}/WHEEL +1 -1
- snowflake/ml/data/torch_dataset.py +0 -33
- {snowflake_ml_python-1.6.1.dist-info → snowflake_ml_python-1.6.2.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.6.1.dist-info → snowflake_ml_python-1.6.2.dist-info}/top_level.txt +0 -0
@@ -4,14 +4,12 @@
|
|
4
4
|
#
|
5
5
|
import inspect
|
6
6
|
import os
|
7
|
-
import
|
8
|
-
from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
|
9
|
-
from typing_extensions import TypeGuard
|
7
|
+
from typing import Iterable, Optional, Union, List, Any, Dict, Set, Tuple
|
10
8
|
from uuid import uuid4
|
11
9
|
|
12
10
|
import cloudpickle as cp
|
13
|
-
import pandas as pd
|
14
11
|
import numpy as np
|
12
|
+
import pandas as pd
|
15
13
|
from numpy import typing as npt
|
16
14
|
|
17
15
|
|
@@ -24,12 +22,11 @@ from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
|
24
22
|
from snowflake.ml._internal import telemetry
|
25
23
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
26
24
|
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
27
|
-
from snowflake.ml._internal.utils import
|
25
|
+
from snowflake.ml._internal.utils import identifier
|
28
26
|
from snowflake.snowpark import DataFrame, Session
|
29
27
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
30
28
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
29
|
from snowflake.ml.modeling._internal.transformer_protocols import (
|
32
|
-
ModelTransformHandlers,
|
33
30
|
BatchInferenceKwargsTypedDict,
|
34
31
|
ScoreKwargsTypedDict
|
35
32
|
)
|
@@ -525,12 +522,23 @@ class KernelDensity(BaseTransformer):
|
|
525
522
|
autogenerated=self._autogenerated,
|
526
523
|
subproject=_SUBPROJECT,
|
527
524
|
)
|
528
|
-
|
529
|
-
|
530
|
-
expected_output_cols_list=(
|
531
|
-
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
532
|
-
),
|
525
|
+
expected_output_cols = (
|
526
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
533
527
|
)
|
528
|
+
if isinstance(dataset, DataFrame):
|
529
|
+
expected_output_cols, example_output_pd_df = self._align_expected_output(
|
530
|
+
"fit_predict", dataset, expected_output_cols, output_cols_prefix
|
531
|
+
)
|
532
|
+
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
533
|
+
drop_input_cols=self._drop_input_cols,
|
534
|
+
expected_output_cols_list=expected_output_cols,
|
535
|
+
example_output_pd_df=example_output_pd_df,
|
536
|
+
)
|
537
|
+
else:
|
538
|
+
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
539
|
+
drop_input_cols=self._drop_input_cols,
|
540
|
+
expected_output_cols_list=expected_output_cols,
|
541
|
+
)
|
534
542
|
self._sklearn_object = fitted_estimator
|
535
543
|
self._is_fitted = True
|
536
544
|
return output_result
|
@@ -609,12 +617,41 @@ class KernelDensity(BaseTransformer):
|
|
609
617
|
|
610
618
|
return rv
|
611
619
|
|
612
|
-
def
|
613
|
-
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
614
|
-
) -> List[str]:
|
620
|
+
def _align_expected_output(
|
621
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str,
|
622
|
+
) -> Tuple[List[str], pd.DataFrame]:
|
623
|
+
""" Run 1 line of data with the desired method, and return one tuple that consists of the output column names
|
624
|
+
and output dataframe with 1 line.
|
625
|
+
If the method is fit_predict, run 2 lines of data.
|
626
|
+
"""
|
615
627
|
# in case the inferred output column names dimension is different
|
616
628
|
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
617
|
-
|
629
|
+
|
630
|
+
# For fit_predict method, a minimum of 2 is required by MinCovDet, BayesianGaussianMixture
|
631
|
+
# so change the minimum of number of rows to 2
|
632
|
+
num_examples = 2
|
633
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
634
|
+
project=_PROJECT,
|
635
|
+
subproject=_SUBPROJECT,
|
636
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
637
|
+
inspect.currentframe(), KernelDensity.__class__.__name__
|
638
|
+
),
|
639
|
+
api_calls=[Session.call],
|
640
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
641
|
+
)
|
642
|
+
if output_cols_prefix == "fit_predict_":
|
643
|
+
if hasattr(self._sklearn_object, "n_clusters"):
|
644
|
+
# cluster classes such as BisectingKMeansTest requires # of examples >= n_clusters
|
645
|
+
num_examples = self._sklearn_object.n_clusters
|
646
|
+
elif hasattr(self._sklearn_object, "min_samples"):
|
647
|
+
# OPTICS default min_samples 5, which requires at least 5 lines of data
|
648
|
+
num_examples = self._sklearn_object.min_samples
|
649
|
+
elif hasattr(self._sklearn_object, "n_neighbors") and hasattr(self._sklearn_object, "n_samples"):
|
650
|
+
# LocalOutlierFactor expects n_neighbors <= n_samples
|
651
|
+
num_examples = self._sklearn_object.n_neighbors
|
652
|
+
sample_pd_df = dataset.select(self.input_cols).limit(num_examples).to_pandas(statement_params=statement_params)
|
653
|
+
else:
|
654
|
+
sample_pd_df = dataset.select(self.input_cols).limit(1).to_pandas(statement_params=statement_params)
|
618
655
|
|
619
656
|
# Rename the pandas df column names to snowflake identifiers and reorder columns to match the order
|
620
657
|
# seen during the fit.
|
@@ -626,12 +663,14 @@ class KernelDensity(BaseTransformer):
|
|
626
663
|
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
627
664
|
if self.sample_weight_col:
|
628
665
|
output_df_columns_set -= set(self.sample_weight_col)
|
666
|
+
|
629
667
|
# if the dimension of inferred output column names is correct; use it
|
630
668
|
if len(expected_output_cols_list) == len(output_df_columns_set):
|
631
|
-
return expected_output_cols_list
|
669
|
+
return expected_output_cols_list, output_df_pd
|
632
670
|
# otherwise, use the sklearn estimator's output
|
633
671
|
else:
|
634
|
-
|
672
|
+
expected_output_cols_list = sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
673
|
+
return expected_output_cols_list, output_df_pd[expected_output_cols_list]
|
635
674
|
|
636
675
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
637
676
|
@telemetry.send_api_usage_telemetry(
|
@@ -677,7 +716,7 @@ class KernelDensity(BaseTransformer):
|
|
677
716
|
drop_input_cols=self._drop_input_cols,
|
678
717
|
expected_output_cols_type="float",
|
679
718
|
)
|
680
|
-
expected_output_cols = self.
|
719
|
+
expected_output_cols, _ = self._align_expected_output(
|
681
720
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
682
721
|
)
|
683
722
|
|
@@ -743,7 +782,7 @@ class KernelDensity(BaseTransformer):
|
|
743
782
|
drop_input_cols=self._drop_input_cols,
|
744
783
|
expected_output_cols_type="float",
|
745
784
|
)
|
746
|
-
expected_output_cols = self.
|
785
|
+
expected_output_cols, _ = self._align_expected_output(
|
747
786
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
748
787
|
)
|
749
788
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -806,7 +845,7 @@ class KernelDensity(BaseTransformer):
|
|
806
845
|
drop_input_cols=self._drop_input_cols,
|
807
846
|
expected_output_cols_type="float",
|
808
847
|
)
|
809
|
-
expected_output_cols = self.
|
848
|
+
expected_output_cols, _ = self._align_expected_output(
|
810
849
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
811
850
|
)
|
812
851
|
|
@@ -873,7 +912,7 @@ class KernelDensity(BaseTransformer):
|
|
873
912
|
drop_input_cols = self._drop_input_cols,
|
874
913
|
expected_output_cols_type="float",
|
875
914
|
)
|
876
|
-
expected_output_cols = self.
|
915
|
+
expected_output_cols, _ = self._align_expected_output(
|
877
916
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
878
917
|
)
|
879
918
|
|
@@ -4,14 +4,12 @@
|
|
4
4
|
#
|
5
5
|
import inspect
|
6
6
|
import os
|
7
|
-
import
|
8
|
-
from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
|
9
|
-
from typing_extensions import TypeGuard
|
7
|
+
from typing import Iterable, Optional, Union, List, Any, Dict, Set, Tuple
|
10
8
|
from uuid import uuid4
|
11
9
|
|
12
10
|
import cloudpickle as cp
|
13
|
-
import pandas as pd
|
14
11
|
import numpy as np
|
12
|
+
import pandas as pd
|
15
13
|
from numpy import typing as npt
|
16
14
|
|
17
15
|
|
@@ -24,12 +22,11 @@ from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
|
24
22
|
from snowflake.ml._internal import telemetry
|
25
23
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
26
24
|
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
27
|
-
from snowflake.ml._internal.utils import
|
25
|
+
from snowflake.ml._internal.utils import identifier
|
28
26
|
from snowflake.snowpark import DataFrame, Session
|
29
27
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
30
28
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
29
|
from snowflake.ml.modeling._internal.transformer_protocols import (
|
32
|
-
ModelTransformHandlers,
|
33
30
|
BatchInferenceKwargsTypedDict,
|
34
31
|
ScoreKwargsTypedDict
|
35
32
|
)
|
@@ -557,12 +554,23 @@ class LocalOutlierFactor(BaseTransformer):
|
|
557
554
|
autogenerated=self._autogenerated,
|
558
555
|
subproject=_SUBPROJECT,
|
559
556
|
)
|
560
|
-
|
561
|
-
|
562
|
-
expected_output_cols_list=(
|
563
|
-
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
564
|
-
),
|
557
|
+
expected_output_cols = (
|
558
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
565
559
|
)
|
560
|
+
if isinstance(dataset, DataFrame):
|
561
|
+
expected_output_cols, example_output_pd_df = self._align_expected_output(
|
562
|
+
"fit_predict", dataset, expected_output_cols, output_cols_prefix
|
563
|
+
)
|
564
|
+
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
565
|
+
drop_input_cols=self._drop_input_cols,
|
566
|
+
expected_output_cols_list=expected_output_cols,
|
567
|
+
example_output_pd_df=example_output_pd_df,
|
568
|
+
)
|
569
|
+
else:
|
570
|
+
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
571
|
+
drop_input_cols=self._drop_input_cols,
|
572
|
+
expected_output_cols_list=expected_output_cols,
|
573
|
+
)
|
566
574
|
self._sklearn_object = fitted_estimator
|
567
575
|
self._is_fitted = True
|
568
576
|
return output_result
|
@@ -641,12 +649,41 @@ class LocalOutlierFactor(BaseTransformer):
|
|
641
649
|
|
642
650
|
return rv
|
643
651
|
|
644
|
-
def
|
645
|
-
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
646
|
-
) -> List[str]:
|
652
|
+
def _align_expected_output(
|
653
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str,
|
654
|
+
) -> Tuple[List[str], pd.DataFrame]:
|
655
|
+
""" Run 1 line of data with the desired method, and return one tuple that consists of the output column names
|
656
|
+
and output dataframe with 1 line.
|
657
|
+
If the method is fit_predict, run 2 lines of data.
|
658
|
+
"""
|
647
659
|
# in case the inferred output column names dimension is different
|
648
660
|
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
649
|
-
|
661
|
+
|
662
|
+
# For fit_predict method, a minimum of 2 is required by MinCovDet, BayesianGaussianMixture
|
663
|
+
# so change the minimum of number of rows to 2
|
664
|
+
num_examples = 2
|
665
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
666
|
+
project=_PROJECT,
|
667
|
+
subproject=_SUBPROJECT,
|
668
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
669
|
+
inspect.currentframe(), LocalOutlierFactor.__class__.__name__
|
670
|
+
),
|
671
|
+
api_calls=[Session.call],
|
672
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
673
|
+
)
|
674
|
+
if output_cols_prefix == "fit_predict_":
|
675
|
+
if hasattr(self._sklearn_object, "n_clusters"):
|
676
|
+
# cluster classes such as BisectingKMeansTest requires # of examples >= n_clusters
|
677
|
+
num_examples = self._sklearn_object.n_clusters
|
678
|
+
elif hasattr(self._sklearn_object, "min_samples"):
|
679
|
+
# OPTICS default min_samples 5, which requires at least 5 lines of data
|
680
|
+
num_examples = self._sklearn_object.min_samples
|
681
|
+
elif hasattr(self._sklearn_object, "n_neighbors") and hasattr(self._sklearn_object, "n_samples"):
|
682
|
+
# LocalOutlierFactor expects n_neighbors <= n_samples
|
683
|
+
num_examples = self._sklearn_object.n_neighbors
|
684
|
+
sample_pd_df = dataset.select(self.input_cols).limit(num_examples).to_pandas(statement_params=statement_params)
|
685
|
+
else:
|
686
|
+
sample_pd_df = dataset.select(self.input_cols).limit(1).to_pandas(statement_params=statement_params)
|
650
687
|
|
651
688
|
# Rename the pandas df column names to snowflake identifiers and reorder columns to match the order
|
652
689
|
# seen during the fit.
|
@@ -658,12 +695,14 @@ class LocalOutlierFactor(BaseTransformer):
|
|
658
695
|
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
659
696
|
if self.sample_weight_col:
|
660
697
|
output_df_columns_set -= set(self.sample_weight_col)
|
698
|
+
|
661
699
|
# if the dimension of inferred output column names is correct; use it
|
662
700
|
if len(expected_output_cols_list) == len(output_df_columns_set):
|
663
|
-
return expected_output_cols_list
|
701
|
+
return expected_output_cols_list, output_df_pd
|
664
702
|
# otherwise, use the sklearn estimator's output
|
665
703
|
else:
|
666
|
-
|
704
|
+
expected_output_cols_list = sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
705
|
+
return expected_output_cols_list, output_df_pd[expected_output_cols_list]
|
667
706
|
|
668
707
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
669
708
|
@telemetry.send_api_usage_telemetry(
|
@@ -709,7 +748,7 @@ class LocalOutlierFactor(BaseTransformer):
|
|
709
748
|
drop_input_cols=self._drop_input_cols,
|
710
749
|
expected_output_cols_type="float",
|
711
750
|
)
|
712
|
-
expected_output_cols = self.
|
751
|
+
expected_output_cols, _ = self._align_expected_output(
|
713
752
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
714
753
|
)
|
715
754
|
|
@@ -775,7 +814,7 @@ class LocalOutlierFactor(BaseTransformer):
|
|
775
814
|
drop_input_cols=self._drop_input_cols,
|
776
815
|
expected_output_cols_type="float",
|
777
816
|
)
|
778
|
-
expected_output_cols = self.
|
817
|
+
expected_output_cols, _ = self._align_expected_output(
|
779
818
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
780
819
|
)
|
781
820
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -840,7 +879,7 @@ class LocalOutlierFactor(BaseTransformer):
|
|
840
879
|
drop_input_cols=self._drop_input_cols,
|
841
880
|
expected_output_cols_type="float",
|
842
881
|
)
|
843
|
-
expected_output_cols = self.
|
882
|
+
expected_output_cols, _ = self._align_expected_output(
|
844
883
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
845
884
|
)
|
846
885
|
|
@@ -907,7 +946,7 @@ class LocalOutlierFactor(BaseTransformer):
|
|
907
946
|
drop_input_cols = self._drop_input_cols,
|
908
947
|
expected_output_cols_type="float",
|
909
948
|
)
|
910
|
-
expected_output_cols = self.
|
949
|
+
expected_output_cols, _ = self._align_expected_output(
|
911
950
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
912
951
|
)
|
913
952
|
|
@@ -4,14 +4,12 @@
|
|
4
4
|
#
|
5
5
|
import inspect
|
6
6
|
import os
|
7
|
-
import
|
8
|
-
from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
|
9
|
-
from typing_extensions import TypeGuard
|
7
|
+
from typing import Iterable, Optional, Union, List, Any, Dict, Set, Tuple
|
10
8
|
from uuid import uuid4
|
11
9
|
|
12
10
|
import cloudpickle as cp
|
13
|
-
import pandas as pd
|
14
11
|
import numpy as np
|
12
|
+
import pandas as pd
|
15
13
|
from numpy import typing as npt
|
16
14
|
|
17
15
|
|
@@ -24,12 +22,11 @@ from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
|
24
22
|
from snowflake.ml._internal import telemetry
|
25
23
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
26
24
|
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
27
|
-
from snowflake.ml._internal.utils import
|
25
|
+
from snowflake.ml._internal.utils import identifier
|
28
26
|
from snowflake.snowpark import DataFrame, Session
|
29
27
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
30
28
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
29
|
from snowflake.ml.modeling._internal.transformer_protocols import (
|
32
|
-
ModelTransformHandlers,
|
33
30
|
BatchInferenceKwargsTypedDict,
|
34
31
|
ScoreKwargsTypedDict
|
35
32
|
)
|
@@ -486,12 +483,23 @@ class NearestCentroid(BaseTransformer):
|
|
486
483
|
autogenerated=self._autogenerated,
|
487
484
|
subproject=_SUBPROJECT,
|
488
485
|
)
|
489
|
-
|
490
|
-
|
491
|
-
expected_output_cols_list=(
|
492
|
-
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
493
|
-
),
|
486
|
+
expected_output_cols = (
|
487
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
494
488
|
)
|
489
|
+
if isinstance(dataset, DataFrame):
|
490
|
+
expected_output_cols, example_output_pd_df = self._align_expected_output(
|
491
|
+
"fit_predict", dataset, expected_output_cols, output_cols_prefix
|
492
|
+
)
|
493
|
+
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
494
|
+
drop_input_cols=self._drop_input_cols,
|
495
|
+
expected_output_cols_list=expected_output_cols,
|
496
|
+
example_output_pd_df=example_output_pd_df,
|
497
|
+
)
|
498
|
+
else:
|
499
|
+
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
500
|
+
drop_input_cols=self._drop_input_cols,
|
501
|
+
expected_output_cols_list=expected_output_cols,
|
502
|
+
)
|
495
503
|
self._sklearn_object = fitted_estimator
|
496
504
|
self._is_fitted = True
|
497
505
|
return output_result
|
@@ -570,12 +578,41 @@ class NearestCentroid(BaseTransformer):
|
|
570
578
|
|
571
579
|
return rv
|
572
580
|
|
573
|
-
def
|
574
|
-
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
575
|
-
) -> List[str]:
|
581
|
+
def _align_expected_output(
|
582
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str,
|
583
|
+
) -> Tuple[List[str], pd.DataFrame]:
|
584
|
+
""" Run 1 line of data with the desired method, and return one tuple that consists of the output column names
|
585
|
+
and output dataframe with 1 line.
|
586
|
+
If the method is fit_predict, run 2 lines of data.
|
587
|
+
"""
|
576
588
|
# in case the inferred output column names dimension is different
|
577
589
|
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
578
|
-
|
590
|
+
|
591
|
+
# For fit_predict method, a minimum of 2 is required by MinCovDet, BayesianGaussianMixture
|
592
|
+
# so change the minimum of number of rows to 2
|
593
|
+
num_examples = 2
|
594
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
595
|
+
project=_PROJECT,
|
596
|
+
subproject=_SUBPROJECT,
|
597
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
598
|
+
inspect.currentframe(), NearestCentroid.__class__.__name__
|
599
|
+
),
|
600
|
+
api_calls=[Session.call],
|
601
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
602
|
+
)
|
603
|
+
if output_cols_prefix == "fit_predict_":
|
604
|
+
if hasattr(self._sklearn_object, "n_clusters"):
|
605
|
+
# cluster classes such as BisectingKMeansTest requires # of examples >= n_clusters
|
606
|
+
num_examples = self._sklearn_object.n_clusters
|
607
|
+
elif hasattr(self._sklearn_object, "min_samples"):
|
608
|
+
# OPTICS default min_samples 5, which requires at least 5 lines of data
|
609
|
+
num_examples = self._sklearn_object.min_samples
|
610
|
+
elif hasattr(self._sklearn_object, "n_neighbors") and hasattr(self._sklearn_object, "n_samples"):
|
611
|
+
# LocalOutlierFactor expects n_neighbors <= n_samples
|
612
|
+
num_examples = self._sklearn_object.n_neighbors
|
613
|
+
sample_pd_df = dataset.select(self.input_cols).limit(num_examples).to_pandas(statement_params=statement_params)
|
614
|
+
else:
|
615
|
+
sample_pd_df = dataset.select(self.input_cols).limit(1).to_pandas(statement_params=statement_params)
|
579
616
|
|
580
617
|
# Rename the pandas df column names to snowflake identifiers and reorder columns to match the order
|
581
618
|
# seen during the fit.
|
@@ -587,12 +624,14 @@ class NearestCentroid(BaseTransformer):
|
|
587
624
|
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
588
625
|
if self.sample_weight_col:
|
589
626
|
output_df_columns_set -= set(self.sample_weight_col)
|
627
|
+
|
590
628
|
# if the dimension of inferred output column names is correct; use it
|
591
629
|
if len(expected_output_cols_list) == len(output_df_columns_set):
|
592
|
-
return expected_output_cols_list
|
630
|
+
return expected_output_cols_list, output_df_pd
|
593
631
|
# otherwise, use the sklearn estimator's output
|
594
632
|
else:
|
595
|
-
|
633
|
+
expected_output_cols_list = sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
634
|
+
return expected_output_cols_list, output_df_pd[expected_output_cols_list]
|
596
635
|
|
597
636
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
598
637
|
@telemetry.send_api_usage_telemetry(
|
@@ -638,7 +677,7 @@ class NearestCentroid(BaseTransformer):
|
|
638
677
|
drop_input_cols=self._drop_input_cols,
|
639
678
|
expected_output_cols_type="float",
|
640
679
|
)
|
641
|
-
expected_output_cols = self.
|
680
|
+
expected_output_cols, _ = self._align_expected_output(
|
642
681
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
643
682
|
)
|
644
683
|
|
@@ -704,7 +743,7 @@ class NearestCentroid(BaseTransformer):
|
|
704
743
|
drop_input_cols=self._drop_input_cols,
|
705
744
|
expected_output_cols_type="float",
|
706
745
|
)
|
707
|
-
expected_output_cols = self.
|
746
|
+
expected_output_cols, _ = self._align_expected_output(
|
708
747
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
709
748
|
)
|
710
749
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -767,7 +806,7 @@ class NearestCentroid(BaseTransformer):
|
|
767
806
|
drop_input_cols=self._drop_input_cols,
|
768
807
|
expected_output_cols_type="float",
|
769
808
|
)
|
770
|
-
expected_output_cols = self.
|
809
|
+
expected_output_cols, _ = self._align_expected_output(
|
771
810
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
772
811
|
)
|
773
812
|
|
@@ -832,7 +871,7 @@ class NearestCentroid(BaseTransformer):
|
|
832
871
|
drop_input_cols = self._drop_input_cols,
|
833
872
|
expected_output_cols_type="float",
|
834
873
|
)
|
835
|
-
expected_output_cols = self.
|
874
|
+
expected_output_cols, _ = self._align_expected_output(
|
836
875
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
837
876
|
)
|
838
877
|
|
@@ -4,14 +4,12 @@
|
|
4
4
|
#
|
5
5
|
import inspect
|
6
6
|
import os
|
7
|
-
import
|
8
|
-
from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
|
9
|
-
from typing_extensions import TypeGuard
|
7
|
+
from typing import Iterable, Optional, Union, List, Any, Dict, Set, Tuple
|
10
8
|
from uuid import uuid4
|
11
9
|
|
12
10
|
import cloudpickle as cp
|
13
|
-
import pandas as pd
|
14
11
|
import numpy as np
|
12
|
+
import pandas as pd
|
15
13
|
from numpy import typing as npt
|
16
14
|
|
17
15
|
|
@@ -24,12 +22,11 @@ from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
|
24
22
|
from snowflake.ml._internal import telemetry
|
25
23
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
26
24
|
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
27
|
-
from snowflake.ml._internal.utils import
|
25
|
+
from snowflake.ml._internal.utils import identifier
|
28
26
|
from snowflake.snowpark import DataFrame, Session
|
29
27
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
30
28
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
29
|
from snowflake.ml.modeling._internal.transformer_protocols import (
|
32
|
-
ModelTransformHandlers,
|
33
30
|
BatchInferenceKwargsTypedDict,
|
34
31
|
ScoreKwargsTypedDict
|
35
32
|
)
|
@@ -536,12 +533,23 @@ class NearestNeighbors(BaseTransformer):
|
|
536
533
|
autogenerated=self._autogenerated,
|
537
534
|
subproject=_SUBPROJECT,
|
538
535
|
)
|
539
|
-
|
540
|
-
|
541
|
-
expected_output_cols_list=(
|
542
|
-
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
543
|
-
),
|
536
|
+
expected_output_cols = (
|
537
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
544
538
|
)
|
539
|
+
if isinstance(dataset, DataFrame):
|
540
|
+
expected_output_cols, example_output_pd_df = self._align_expected_output(
|
541
|
+
"fit_predict", dataset, expected_output_cols, output_cols_prefix
|
542
|
+
)
|
543
|
+
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
544
|
+
drop_input_cols=self._drop_input_cols,
|
545
|
+
expected_output_cols_list=expected_output_cols,
|
546
|
+
example_output_pd_df=example_output_pd_df,
|
547
|
+
)
|
548
|
+
else:
|
549
|
+
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
550
|
+
drop_input_cols=self._drop_input_cols,
|
551
|
+
expected_output_cols_list=expected_output_cols,
|
552
|
+
)
|
545
553
|
self._sklearn_object = fitted_estimator
|
546
554
|
self._is_fitted = True
|
547
555
|
return output_result
|
@@ -620,12 +628,41 @@ class NearestNeighbors(BaseTransformer):
|
|
620
628
|
|
621
629
|
return rv
|
622
630
|
|
623
|
-
def
|
624
|
-
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
625
|
-
) -> List[str]:
|
631
|
+
def _align_expected_output(
|
632
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str,
|
633
|
+
) -> Tuple[List[str], pd.DataFrame]:
|
634
|
+
""" Run 1 line of data with the desired method, and return one tuple that consists of the output column names
|
635
|
+
and output dataframe with 1 line.
|
636
|
+
If the method is fit_predict, run 2 lines of data.
|
637
|
+
"""
|
626
638
|
# in case the inferred output column names dimension is different
|
627
639
|
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
628
|
-
|
640
|
+
|
641
|
+
# For fit_predict method, a minimum of 2 is required by MinCovDet, BayesianGaussianMixture
|
642
|
+
# so change the minimum of number of rows to 2
|
643
|
+
num_examples = 2
|
644
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
645
|
+
project=_PROJECT,
|
646
|
+
subproject=_SUBPROJECT,
|
647
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
648
|
+
inspect.currentframe(), NearestNeighbors.__class__.__name__
|
649
|
+
),
|
650
|
+
api_calls=[Session.call],
|
651
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
652
|
+
)
|
653
|
+
if output_cols_prefix == "fit_predict_":
|
654
|
+
if hasattr(self._sklearn_object, "n_clusters"):
|
655
|
+
# cluster classes such as BisectingKMeansTest requires # of examples >= n_clusters
|
656
|
+
num_examples = self._sklearn_object.n_clusters
|
657
|
+
elif hasattr(self._sklearn_object, "min_samples"):
|
658
|
+
# OPTICS default min_samples 5, which requires at least 5 lines of data
|
659
|
+
num_examples = self._sklearn_object.min_samples
|
660
|
+
elif hasattr(self._sklearn_object, "n_neighbors") and hasattr(self._sklearn_object, "n_samples"):
|
661
|
+
# LocalOutlierFactor expects n_neighbors <= n_samples
|
662
|
+
num_examples = self._sklearn_object.n_neighbors
|
663
|
+
sample_pd_df = dataset.select(self.input_cols).limit(num_examples).to_pandas(statement_params=statement_params)
|
664
|
+
else:
|
665
|
+
sample_pd_df = dataset.select(self.input_cols).limit(1).to_pandas(statement_params=statement_params)
|
629
666
|
|
630
667
|
# Rename the pandas df column names to snowflake identifiers and reorder columns to match the order
|
631
668
|
# seen during the fit.
|
@@ -637,12 +674,14 @@ class NearestNeighbors(BaseTransformer):
|
|
637
674
|
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
638
675
|
if self.sample_weight_col:
|
639
676
|
output_df_columns_set -= set(self.sample_weight_col)
|
677
|
+
|
640
678
|
# if the dimension of inferred output column names is correct; use it
|
641
679
|
if len(expected_output_cols_list) == len(output_df_columns_set):
|
642
|
-
return expected_output_cols_list
|
680
|
+
return expected_output_cols_list, output_df_pd
|
643
681
|
# otherwise, use the sklearn estimator's output
|
644
682
|
else:
|
645
|
-
|
683
|
+
expected_output_cols_list = sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
684
|
+
return expected_output_cols_list, output_df_pd[expected_output_cols_list]
|
646
685
|
|
647
686
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
648
687
|
@telemetry.send_api_usage_telemetry(
|
@@ -688,7 +727,7 @@ class NearestNeighbors(BaseTransformer):
|
|
688
727
|
drop_input_cols=self._drop_input_cols,
|
689
728
|
expected_output_cols_type="float",
|
690
729
|
)
|
691
|
-
expected_output_cols = self.
|
730
|
+
expected_output_cols, _ = self._align_expected_output(
|
692
731
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
693
732
|
)
|
694
733
|
|
@@ -754,7 +793,7 @@ class NearestNeighbors(BaseTransformer):
|
|
754
793
|
drop_input_cols=self._drop_input_cols,
|
755
794
|
expected_output_cols_type="float",
|
756
795
|
)
|
757
|
-
expected_output_cols = self.
|
796
|
+
expected_output_cols, _ = self._align_expected_output(
|
758
797
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
759
798
|
)
|
760
799
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -817,7 +856,7 @@ class NearestNeighbors(BaseTransformer):
|
|
817
856
|
drop_input_cols=self._drop_input_cols,
|
818
857
|
expected_output_cols_type="float",
|
819
858
|
)
|
820
|
-
expected_output_cols = self.
|
859
|
+
expected_output_cols, _ = self._align_expected_output(
|
821
860
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
822
861
|
)
|
823
862
|
|
@@ -882,7 +921,7 @@ class NearestNeighbors(BaseTransformer):
|
|
882
921
|
drop_input_cols = self._drop_input_cols,
|
883
922
|
expected_output_cols_type="float",
|
884
923
|
)
|
885
|
-
expected_output_cols = self.
|
924
|
+
expected_output_cols, _ = self._align_expected_output(
|
886
925
|
inference_method, dataset, expected_output_cols, output_cols_prefix
|
887
926
|
)
|
888
927
|
|