snowflake-ml-python 1.5.2__py3-none-any.whl → 1.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/__init__.py +2 -1
- snowflake/cortex/_complete.py +240 -16
- snowflake/cortex/_extract_answer.py +0 -1
- snowflake/cortex/_sentiment.py +0 -1
- snowflake/cortex/_sse_client.py +81 -0
- snowflake/cortex/_summarize.py +0 -1
- snowflake/cortex/_translate.py +0 -1
- snowflake/cortex/_util.py +34 -10
- snowflake/ml/_internal/container_services/image_registry/http_client.py +10 -3
- snowflake/ml/_internal/container_services/image_registry/imagelib.py +23 -10
- snowflake/ml/_internal/container_services/image_registry/registry_client.py +7 -1
- snowflake/ml/_internal/exceptions/dataset_errors.py +7 -7
- snowflake/ml/_internal/exceptions/fileset_errors.py +3 -3
- snowflake/ml/_internal/exceptions/sql_error_codes.py +6 -0
- snowflake/ml/_internal/lineage/lineage_utils.py +34 -25
- snowflake/ml/_internal/telemetry.py +26 -0
- snowflake/ml/_internal/utils/identifier.py +14 -0
- snowflake/ml/_internal/utils/snowpark_dataframe_utils.py +15 -4
- snowflake/ml/dataset/dataset.py +54 -32
- snowflake/ml/dataset/dataset_factory.py +3 -4
- snowflake/ml/feature_store/feature_store.py +440 -243
- snowflake/ml/feature_store/feature_view.py +61 -9
- snowflake/ml/fileset/embedded_stage_fs.py +25 -21
- snowflake/ml/fileset/fileset.py +2 -2
- snowflake/ml/fileset/snowfs.py +4 -15
- snowflake/ml/fileset/stage_fs.py +6 -8
- snowflake/ml/lineage/__init__.py +3 -0
- snowflake/ml/lineage/lineage_node.py +139 -0
- snowflake/ml/model/_client/model/model_impl.py +47 -14
- snowflake/ml/model/_client/model/model_version_impl.py +82 -2
- snowflake/ml/model/_client/ops/model_ops.py +77 -5
- snowflake/ml/model/_client/sql/model.py +1 -0
- snowflake/ml/model/_client/sql/model_version.py +47 -4
- snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py +2 -3
- snowflake/ml/model/_model_composer/model_composer.py +7 -6
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +7 -1
- snowflake/ml/model/_model_composer/model_method/function_generator.py +17 -1
- snowflake/ml/model/_model_composer/model_method/infer_partitioned.py_template +79 -0
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +5 -3
- snowflake/ml/model/_model_composer/model_method/model_method.py +5 -5
- snowflake/ml/model/_packager/model_handlers/_base.py +2 -2
- snowflake/ml/model/_packager/model_handlers/_utils.py +1 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +2 -2
- snowflake/ml/model/_packager/model_handlers/custom.py +12 -4
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +18 -15
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +2 -2
- snowflake/ml/model/_packager/model_handlers/llm.py +2 -2
- snowflake/ml/model/_packager/model_handlers/mlflow.py +2 -2
- snowflake/ml/model/_packager/model_handlers/pytorch.py +2 -2
- snowflake/ml/model/_packager/model_handlers/sentence_transformers.py +2 -2
- snowflake/ml/model/_packager/model_handlers/sklearn.py +2 -2
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +2 -2
- snowflake/ml/model/_packager/model_handlers/tensorflow.py +2 -2
- snowflake/ml/model/_packager/model_handlers/torchscript.py +2 -2
- snowflake/ml/model/_packager/model_handlers/xgboost.py +2 -2
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_blob_meta.py +2 -0
- snowflake/ml/model/_packager/model_meta/model_meta.py +21 -1
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +6 -1
- snowflake/ml/model/_packager/model_packager.py +9 -4
- snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +1 -1
- snowflake/ml/model/_signatures/builtins_handler.py +2 -1
- snowflake/ml/model/_signatures/core.py +13 -1
- snowflake/ml/model/_signatures/pandas_handler.py +2 -0
- snowflake/ml/model/_signatures/snowpark_handler.py +3 -3
- snowflake/ml/model/custom_model.py +22 -2
- snowflake/ml/model/model_signature.py +2 -0
- snowflake/ml/model/type_hints.py +74 -4
- snowflake/ml/modeling/_internal/estimator_utils.py +58 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +158 -121
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py +2 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +39 -18
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +88 -134
- snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py +22 -17
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +1 -1
- snowflake/ml/modeling/cluster/affinity_propagation.py +5 -3
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +5 -3
- snowflake/ml/modeling/cluster/birch.py +5 -3
- snowflake/ml/modeling/cluster/bisecting_k_means.py +5 -3
- snowflake/ml/modeling/cluster/dbscan.py +5 -3
- snowflake/ml/modeling/cluster/feature_agglomeration.py +5 -3
- snowflake/ml/modeling/cluster/k_means.py +5 -3
- snowflake/ml/modeling/cluster/mean_shift.py +5 -3
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +5 -3
- snowflake/ml/modeling/cluster/optics.py +5 -3
- snowflake/ml/modeling/cluster/spectral_biclustering.py +5 -3
- snowflake/ml/modeling/cluster/spectral_clustering.py +5 -3
- snowflake/ml/modeling/cluster/spectral_coclustering.py +5 -3
- snowflake/ml/modeling/compose/column_transformer.py +5 -3
- snowflake/ml/modeling/compose/transformed_target_regressor.py +1 -1
- snowflake/ml/modeling/covariance/elliptic_envelope.py +5 -3
- snowflake/ml/modeling/covariance/empirical_covariance.py +5 -3
- snowflake/ml/modeling/covariance/graphical_lasso.py +5 -3
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +5 -3
- snowflake/ml/modeling/covariance/ledoit_wolf.py +5 -3
- snowflake/ml/modeling/covariance/min_cov_det.py +5 -3
- snowflake/ml/modeling/covariance/oas.py +5 -3
- snowflake/ml/modeling/covariance/shrunk_covariance.py +5 -3
- snowflake/ml/modeling/decomposition/dictionary_learning.py +5 -3
- snowflake/ml/modeling/decomposition/factor_analysis.py +5 -3
- snowflake/ml/modeling/decomposition/fast_ica.py +5 -3
- snowflake/ml/modeling/decomposition/incremental_pca.py +5 -3
- snowflake/ml/modeling/decomposition/kernel_pca.py +5 -3
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +5 -3
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +5 -3
- snowflake/ml/modeling/decomposition/pca.py +5 -3
- snowflake/ml/modeling/decomposition/sparse_pca.py +5 -3
- snowflake/ml/modeling/decomposition/truncated_svd.py +5 -3
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +1 -1
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +1 -1
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/bagging_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/bagging_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/isolation_forest.py +5 -3
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/stacking_regressor.py +1 -1
- snowflake/ml/modeling/ensemble/voting_classifier.py +1 -1
- snowflake/ml/modeling/ensemble/voting_regressor.py +1 -1
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +1 -1
- snowflake/ml/modeling/feature_selection/select_fdr.py +1 -1
- snowflake/ml/modeling/feature_selection/select_fpr.py +1 -1
- snowflake/ml/modeling/feature_selection/select_fwe.py +1 -1
- snowflake/ml/modeling/feature_selection/select_k_best.py +1 -1
- snowflake/ml/modeling/feature_selection/select_percentile.py +1 -1
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +5 -3
- snowflake/ml/modeling/feature_selection/variance_threshold.py +5 -3
- snowflake/ml/modeling/framework/base.py +3 -8
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +1 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +1 -1
- snowflake/ml/modeling/impute/iterative_imputer.py +5 -3
- snowflake/ml/modeling/impute/knn_imputer.py +5 -3
- snowflake/ml/modeling/impute/missing_indicator.py +5 -3
- snowflake/ml/modeling/impute/simple_imputer.py +8 -4
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +5 -3
- snowflake/ml/modeling/kernel_approximation/nystroem.py +5 -3
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +5 -3
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +5 -3
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +5 -3
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +1 -1
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +1 -1
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/ard_regression.py +1 -1
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +1 -1
- snowflake/ml/modeling/linear_model/elastic_net.py +1 -1
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +1 -1
- snowflake/ml/modeling/linear_model/gamma_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/huber_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/lars.py +1 -1
- snowflake/ml/modeling/linear_model/lars_cv.py +1 -1
- snowflake/ml/modeling/linear_model/lasso.py +1 -1
- snowflake/ml/modeling/linear_model/lasso_cv.py +1 -1
- snowflake/ml/modeling/linear_model/lasso_lars.py +1 -1
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +1 -1
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +1 -1
- snowflake/ml/modeling/linear_model/linear_regression.py +1 -1
- snowflake/ml/modeling/linear_model/logistic_regression.py +1 -1
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +1 -1
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +1 -1
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +1 -1
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +1 -1
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +1 -1
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +1 -1
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +1 -1
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/perceptron.py +1 -1
- snowflake/ml/modeling/linear_model/poisson_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/ransac_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/ridge.py +1 -1
- snowflake/ml/modeling/linear_model/ridge_classifier.py +1 -1
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +1 -1
- snowflake/ml/modeling/linear_model/ridge_cv.py +1 -1
- snowflake/ml/modeling/linear_model/sgd_classifier.py +1 -1
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +5 -3
- snowflake/ml/modeling/linear_model/sgd_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +1 -1
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +1 -1
- snowflake/ml/modeling/manifold/isomap.py +5 -3
- snowflake/ml/modeling/manifold/mds.py +5 -3
- snowflake/ml/modeling/manifold/spectral_embedding.py +5 -3
- snowflake/ml/modeling/manifold/tsne.py +5 -3
- snowflake/ml/modeling/metrics/ranking.py +3 -0
- snowflake/ml/modeling/metrics/regression.py +3 -0
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +5 -3
- snowflake/ml/modeling/mixture/gaussian_mixture.py +5 -3
- snowflake/ml/modeling/model_selection/grid_search_cv.py +1 -5
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +1 -5
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +1 -1
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +1 -1
- snowflake/ml/modeling/multiclass/output_code_classifier.py +1 -1
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +1 -1
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +1 -1
- snowflake/ml/modeling/naive_bayes/complement_nb.py +1 -1
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +1 -1
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +1 -1
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +1 -1
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +1 -1
- snowflake/ml/modeling/neighbors/kernel_density.py +5 -3
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +5 -3
- snowflake/ml/modeling/neighbors/nearest_centroid.py +1 -1
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +5 -3
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +1 -1
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +1 -1
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +1 -1
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +5 -3
- snowflake/ml/modeling/neural_network/mlp_classifier.py +1 -1
- snowflake/ml/modeling/neural_network/mlp_regressor.py +1 -1
- snowflake/ml/modeling/pipeline/pipeline.py +6 -0
- snowflake/ml/modeling/preprocessing/binarizer.py +7 -3
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +7 -2
- snowflake/ml/modeling/preprocessing/label_encoder.py +8 -7
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +7 -3
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +7 -4
- snowflake/ml/modeling/preprocessing/normalizer.py +7 -3
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +53 -11
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +44 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +5 -3
- snowflake/ml/modeling/preprocessing/robust_scaler.py +7 -4
- snowflake/ml/modeling/preprocessing/standard_scaler.py +7 -3
- snowflake/ml/modeling/semi_supervised/label_propagation.py +1 -1
- snowflake/ml/modeling/semi_supervised/label_spreading.py +1 -1
- snowflake/ml/modeling/svm/linear_svc.py +1 -1
- snowflake/ml/modeling/svm/linear_svr.py +1 -1
- snowflake/ml/modeling/svm/nu_svc.py +1 -1
- snowflake/ml/modeling/svm/nu_svr.py +1 -1
- snowflake/ml/modeling/svm/svc.py +1 -1
- snowflake/ml/modeling/svm/svr.py +1 -1
- snowflake/ml/modeling/tree/decision_tree_classifier.py +1 -1
- snowflake/ml/modeling/tree/decision_tree_regressor.py +1 -1
- snowflake/ml/modeling/tree/extra_tree_classifier.py +1 -1
- snowflake/ml/modeling/tree/extra_tree_regressor.py +1 -1
- snowflake/ml/modeling/xgboost/xgb_classifier.py +1 -1
- snowflake/ml/modeling/xgboost/xgb_regressor.py +1 -1
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +1 -1
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +1 -1
- snowflake/ml/registry/_manager/model_manager.py +16 -3
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.4.dist-info}/METADATA +51 -7
- snowflake_ml_python-1.5.4.dist-info/RECORD +389 -0
- {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.4.dist-info}/WHEEL +1 -1
- snowflake_ml_python-1.5.2.dist-info/RECORD +0 -384
- {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.4.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.5.2.dist-info → snowflake_ml_python-1.5.4.dist-info}/top_level.txt +0 -0
@@ -13,12 +13,12 @@ from snowflake.ml._internal.exceptions import (
|
|
13
13
|
exceptions,
|
14
14
|
modeling_error_messages,
|
15
15
|
)
|
16
|
-
from snowflake.ml._internal.utils import pkg_version_utils
|
16
|
+
from snowflake.ml._internal.utils import pkg_version_utils, temp_file_utils
|
17
17
|
from snowflake.ml._internal.utils.query_result_checker import ResultValidator
|
18
18
|
from snowflake.ml._internal.utils.snowpark_dataframe_utils import (
|
19
19
|
cast_snowpark_dataframe,
|
20
20
|
)
|
21
|
-
from snowflake.ml._internal
|
21
|
+
from snowflake.ml.modeling._internal import estimator_utils
|
22
22
|
from snowflake.ml.modeling._internal.model_specifications import (
|
23
23
|
ModelSpecifications,
|
24
24
|
ModelSpecificationsBuilder,
|
@@ -303,11 +303,10 @@ class XGBoostExternalMemoryTrainer(SnowparkModelTrainer):
|
|
303
303
|
statement_params=statement_params,
|
304
304
|
anonymous=True,
|
305
305
|
imports=list(import_file_paths),
|
306
|
+
execute_as="caller",
|
306
307
|
) # type: ignore[misc]
|
307
308
|
def fit_wrapper_sproc(
|
308
309
|
session: Session,
|
309
|
-
stage_transform_file_name: str,
|
310
|
-
stage_result_file_name: str,
|
311
310
|
dataset_stage_name: str,
|
312
311
|
batch_size: int,
|
313
312
|
input_cols: List[str],
|
@@ -320,9 +319,13 @@ class XGBoostExternalMemoryTrainer(SnowparkModelTrainer):
|
|
320
319
|
|
321
320
|
import cloudpickle as cp
|
322
321
|
|
323
|
-
local_transform_file_name = get_temp_file_path()
|
322
|
+
local_transform_file_name = temp_file_utils.get_temp_file_path()
|
324
323
|
|
325
|
-
session.file.get(
|
324
|
+
session.file.get(
|
325
|
+
stage_location=dataset_stage_name,
|
326
|
+
target_directory=local_transform_file_name,
|
327
|
+
statement_params=statement_params,
|
328
|
+
)
|
326
329
|
|
327
330
|
local_transform_file_path = os.path.join(
|
328
331
|
local_transform_file_name, os.listdir(local_transform_file_name)[0]
|
@@ -345,13 +348,13 @@ class XGBoostExternalMemoryTrainer(SnowparkModelTrainer):
|
|
345
348
|
sample_weight_col=sample_weight_col,
|
346
349
|
)
|
347
350
|
|
348
|
-
local_result_file_name = get_temp_file_path()
|
351
|
+
local_result_file_name = temp_file_utils.get_temp_file_path()
|
349
352
|
with open(local_result_file_name, mode="w+b") as local_result_file_obj:
|
350
353
|
cp.dump(estimator, local_result_file_obj)
|
351
354
|
|
352
355
|
session.file.put(
|
353
|
-
local_result_file_name,
|
354
|
-
|
356
|
+
local_file_name=local_result_file_name,
|
357
|
+
stage_location=dataset_stage_name,
|
355
358
|
auto_compress=False,
|
356
359
|
overwrite=True,
|
357
360
|
statement_params=statement_params,
|
@@ -394,11 +397,6 @@ class XGBoostExternalMemoryTrainer(SnowparkModelTrainer):
|
|
394
397
|
SnowflakeMLException: For known types of user and system errors.
|
395
398
|
e: For every unexpected exception from SnowflakeClient.
|
396
399
|
"""
|
397
|
-
temp_stage_name = self._create_temp_stage()
|
398
|
-
(stage_transform_file_name, stage_result_file_name) = self._upload_model_to_stage(stage_name=temp_stage_name)
|
399
|
-
data_file_paths = self._write_training_data_to_stage(dataset_stage_name=temp_stage_name)
|
400
|
-
|
401
|
-
# Call fit sproc
|
402
400
|
statement_params = telemetry.get_function_usage_statement_params(
|
403
401
|
project=_PROJECT,
|
404
402
|
subproject=self._subproject,
|
@@ -406,7 +404,16 @@ class XGBoostExternalMemoryTrainer(SnowparkModelTrainer):
|
|
406
404
|
api_calls=[Session.call],
|
407
405
|
custom_tags=None,
|
408
406
|
)
|
407
|
+
temp_stage_name = estimator_utils.create_temp_stage(self.session)
|
408
|
+
estimator_utils.upload_model_to_stage(
|
409
|
+
stage_name=temp_stage_name,
|
410
|
+
estimator=self.estimator,
|
411
|
+
session=self.session,
|
412
|
+
statement_params=statement_params,
|
413
|
+
)
|
414
|
+
data_file_paths = self._write_training_data_to_stage(dataset_stage_name=temp_stage_name)
|
409
415
|
|
416
|
+
# Call fit sproc
|
410
417
|
model_spec = ModelSpecificationsBuilder.build(model=self.estimator)
|
411
418
|
fit_wrapper = self._get_xgb_external_memory_fit_wrapper_sproc(
|
412
419
|
model_spec=model_spec,
|
@@ -418,8 +425,6 @@ class XGBoostExternalMemoryTrainer(SnowparkModelTrainer):
|
|
418
425
|
try:
|
419
426
|
sproc_export_file_name = fit_wrapper(
|
420
427
|
self.session,
|
421
|
-
stage_transform_file_name,
|
422
|
-
stage_result_file_name,
|
423
428
|
temp_stage_name,
|
424
429
|
self._batch_size,
|
425
430
|
self.input_cols,
|
@@ -440,7 +445,7 @@ class XGBoostExternalMemoryTrainer(SnowparkModelTrainer):
|
|
440
445
|
sproc_export_file_name = fields[0]
|
441
446
|
|
442
447
|
return self._fetch_model_from_stage(
|
443
|
-
dir_path=
|
448
|
+
dir_path=temp_stage_name,
|
444
449
|
file_name=sproc_export_file_name,
|
445
450
|
statement_params=statement_params,
|
446
451
|
)
|
@@ -296,7 +296,7 @@ class CalibratedClassifierCV(BaseTransformer):
|
|
296
296
|
inspect.currentframe(), CalibratedClassifierCV.__class__.__name__
|
297
297
|
),
|
298
298
|
api_calls=[Session.call],
|
299
|
-
custom_tags=
|
299
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
300
300
|
)
|
301
301
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
302
302
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class AffinityPropagation(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -271,7 +273,7 @@ class AffinityPropagation(BaseTransformer):
|
|
271
273
|
inspect.currentframe(), AffinityPropagation.__class__.__name__
|
272
274
|
),
|
273
275
|
api_calls=[Session.call],
|
274
|
-
custom_tags=
|
276
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
275
277
|
)
|
276
278
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
277
279
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class AgglomerativeClustering(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -304,7 +306,7 @@ class AgglomerativeClustering(BaseTransformer):
|
|
304
306
|
inspect.currentframe(), AgglomerativeClustering.__class__.__name__
|
305
307
|
),
|
306
308
|
api_calls=[Session.call],
|
307
|
-
custom_tags=
|
309
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
308
310
|
)
|
309
311
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
310
312
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class Birch(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -262,7 +264,7 @@ class Birch(BaseTransformer):
|
|
262
264
|
inspect.currentframe(), Birch.__class__.__name__
|
263
265
|
),
|
264
266
|
api_calls=[Session.call],
|
265
|
-
custom_tags=
|
267
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
266
268
|
)
|
267
269
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
268
270
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class BisectingKMeans(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -311,7 +313,7 @@ class BisectingKMeans(BaseTransformer):
|
|
311
313
|
inspect.currentframe(), BisectingKMeans.__class__.__name__
|
312
314
|
),
|
313
315
|
api_calls=[Session.call],
|
314
|
-
custom_tags=
|
316
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
315
317
|
)
|
316
318
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
317
319
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class DBSCAN(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -279,7 +281,7 @@ class DBSCAN(BaseTransformer):
|
|
279
281
|
inspect.currentframe(), DBSCAN.__class__.__name__
|
280
282
|
),
|
281
283
|
api_calls=[Session.call],
|
282
|
-
custom_tags=
|
284
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
283
285
|
)
|
284
286
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
285
287
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class FeatureAgglomeration(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -311,7 +313,7 @@ class FeatureAgglomeration(BaseTransformer):
|
|
311
313
|
inspect.currentframe(), FeatureAgglomeration.__class__.__name__
|
312
314
|
),
|
313
315
|
api_calls=[Session.call],
|
314
|
-
custom_tags=
|
316
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
315
317
|
)
|
316
318
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
317
319
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class KMeans(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -306,7 +308,7 @@ class KMeans(BaseTransformer):
|
|
306
308
|
inspect.currentframe(), KMeans.__class__.__name__
|
307
309
|
),
|
308
310
|
api_calls=[Session.call],
|
309
|
-
custom_tags=
|
311
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
310
312
|
)
|
311
313
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
312
314
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class MeanShift(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -282,7 +284,7 @@ class MeanShift(BaseTransformer):
|
|
282
284
|
inspect.currentframe(), MeanShift.__class__.__name__
|
283
285
|
),
|
284
286
|
api_calls=[Session.call],
|
285
|
-
custom_tags=
|
287
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
286
288
|
)
|
287
289
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
288
290
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class MiniBatchKMeans(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -332,7 +334,7 @@ class MiniBatchKMeans(BaseTransformer):
|
|
332
334
|
inspect.currentframe(), MiniBatchKMeans.__class__.__name__
|
333
335
|
),
|
334
336
|
api_calls=[Session.call],
|
335
|
-
custom_tags=
|
337
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
336
338
|
)
|
337
339
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
338
340
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class OPTICS(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -352,7 +354,7 @@ class OPTICS(BaseTransformer):
|
|
352
354
|
inspect.currentframe(), OPTICS.__class__.__name__
|
353
355
|
),
|
354
356
|
api_calls=[Session.call],
|
355
|
-
custom_tags=
|
357
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
356
358
|
)
|
357
359
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
358
360
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class SpectralBiclustering(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -290,7 +292,7 @@ class SpectralBiclustering(BaseTransformer):
|
|
290
292
|
inspect.currentframe(), SpectralBiclustering.__class__.__name__
|
291
293
|
),
|
292
294
|
api_calls=[Session.call],
|
293
|
-
custom_tags=
|
295
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
294
296
|
)
|
295
297
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
296
298
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class SpectralClustering(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -348,7 +350,7 @@ class SpectralClustering(BaseTransformer):
|
|
348
350
|
inspect.currentframe(), SpectralClustering.__class__.__name__
|
349
351
|
),
|
350
352
|
api_calls=[Session.call],
|
351
|
-
custom_tags=
|
353
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
352
354
|
)
|
353
355
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
354
356
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class SpectralCoclustering(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -269,7 +271,7 @@ class SpectralCoclustering(BaseTransformer):
|
|
269
271
|
inspect.currentframe(), SpectralCoclustering.__class__.__name__
|
270
272
|
),
|
271
273
|
api_calls=[Session.call],
|
272
|
-
custom_tags=
|
274
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
273
275
|
)
|
274
276
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
275
277
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class ColumnTransformer(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -299,7 +301,7 @@ class ColumnTransformer(BaseTransformer):
|
|
299
301
|
inspect.currentframe(), ColumnTransformer.__class__.__name__
|
300
302
|
),
|
301
303
|
api_calls=[Session.call],
|
302
|
-
custom_tags=
|
304
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
303
305
|
)
|
304
306
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
305
307
|
pd_df.columns = dataset.columns
|
@@ -260,7 +260,7 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
260
260
|
inspect.currentframe(), TransformedTargetRegressor.__class__.__name__
|
261
261
|
),
|
262
262
|
api_calls=[Session.call],
|
263
|
-
custom_tags=
|
263
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
264
264
|
)
|
265
265
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
266
266
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class EllipticEnvelope(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -255,7 +257,7 @@ class EllipticEnvelope(BaseTransformer):
|
|
255
257
|
inspect.currentframe(), EllipticEnvelope.__class__.__name__
|
256
258
|
),
|
257
259
|
api_calls=[Session.call],
|
258
|
-
custom_tags=
|
260
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
259
261
|
)
|
260
262
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
261
263
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class EmpiricalCovariance(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -231,7 +233,7 @@ class EmpiricalCovariance(BaseTransformer):
|
|
231
233
|
inspect.currentframe(), EmpiricalCovariance.__class__.__name__
|
232
234
|
),
|
233
235
|
api_calls=[Session.call],
|
234
|
-
custom_tags=
|
236
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
235
237
|
)
|
236
238
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
237
239
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class GraphicalLasso(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -279,7 +281,7 @@ class GraphicalLasso(BaseTransformer):
|
|
279
281
|
inspect.currentframe(), GraphicalLasso.__class__.__name__
|
280
282
|
),
|
281
283
|
api_calls=[Session.call],
|
282
|
-
custom_tags=
|
284
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
283
285
|
)
|
284
286
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
285
287
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class GraphicalLassoCV(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -305,7 +307,7 @@ class GraphicalLassoCV(BaseTransformer):
|
|
305
307
|
inspect.currentframe(), GraphicalLassoCV.__class__.__name__
|
306
308
|
),
|
307
309
|
api_calls=[Session.call],
|
308
|
-
custom_tags=
|
310
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
309
311
|
)
|
310
312
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
311
313
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class LedoitWolf(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -238,7 +240,7 @@ class LedoitWolf(BaseTransformer):
|
|
238
240
|
inspect.currentframe(), LedoitWolf.__class__.__name__
|
239
241
|
),
|
240
242
|
api_calls=[Session.call],
|
241
|
-
custom_tags=
|
243
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
242
244
|
)
|
243
245
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
244
246
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class MinCovDet(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -250,7 +252,7 @@ class MinCovDet(BaseTransformer):
|
|
250
252
|
inspect.currentframe(), MinCovDet.__class__.__name__
|
251
253
|
),
|
252
254
|
api_calls=[Session.call],
|
253
|
-
custom_tags=
|
255
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
254
256
|
)
|
255
257
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
256
258
|
pd_df.columns = dataset.columns
|
@@ -76,8 +76,10 @@ class OAS(BaseTransformer):
|
|
76
76
|
initialization with the `set_input_cols` method.
|
77
77
|
|
78
78
|
label_cols: Optional[Union[str, List[str]]]
|
79
|
-
|
80
|
-
|
79
|
+
A string or list of strings representing column names that contain labels.
|
80
|
+
Label columns must be specified with this parameter during initialization
|
81
|
+
or with the `set_label_cols` method before fitting.
|
82
|
+
|
81
83
|
output_cols: Optional[Union[str, List[str]]]
|
82
84
|
A string or list of strings representing column names that will store the
|
83
85
|
output of predict and transform operations. The length of output_cols must
|
@@ -231,7 +233,7 @@ class OAS(BaseTransformer):
|
|
231
233
|
inspect.currentframe(), OAS.__class__.__name__
|
232
234
|
),
|
233
235
|
api_calls=[Session.call],
|
234
|
-
custom_tags=
|
236
|
+
custom_tags={"autogen": True} if self._autogenerated else None,
|
235
237
|
)
|
236
238
|
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
237
239
|
pd_df.columns = dataset.columns
|